4U 1626-67

From Remeis-Wiki
Jump to navigation Jump to search


Other names : 3U 1626-67 (Simbad)

Monitoring data: CGRO/BATSE, RXTE/ASM, Swift/BAT, MAXI, Fermi/GBM pulsed flux,Fermi/GMB Occultation Project

Coordinates

Simbad

RA 16h 32' 16.8" Dec -67° 27' 43"
RA 248.0699 Dec -67.4617

Binary system

Distance

The distance is estimated to be between 5 and 13 kpc ([1]).

Orbit

Parameter Value Unit Reference
Porb 42 min [1]
i 18 deg [2]

Note : Porb was obtained from the optical lightcurve, due to reprocessed emission, it has not yet been detected from the neutron star pulsed X-ray emission ([3] and therein).


Optical Companion

Names :' V* KZ TrA ([4])

Parameter Value Unit Reference
Mass 0.04 M [2]
V ~ 17.5 [4]

Available data

  • ASCA: one observation in 1993 of ~75 ksec
  • RXTE: many monitorings between 1996 and 2010, ranging from 1.2-73.6 ksec in exposure time
  • Chandra: three observations (2000, 2003, 2010) > 30 ksec
  • XMM Newton: four observations
  • BeppoSAX: one observation in 1996
  • INTEGRAL: many observations since 2003
  • Swift: twelve observations in 2005 and one in 2008
  • Suzaku: two observations in 2007 of 100 ksec and in 2011 of 20 ksec, respectively

Description

Discovered in 1972 by Uhuru ([5]). 4U 1626-67 is a LMXB, with a very compact system composed of a faint blue star and an accreting X-ray pulsar with an almost completely face-on orbit ([4], [2]). The accretion occurs through Roche-lobe overflow ([6]). The neutron star has a magnetic field in the range 2.4-6.3 x 1012 G ([7]). The source has shown stable spin-up or spin-down with two torque reversals in 1991 ([8]) and 2008 ([9]).

Flux

4u1626-67 flux camero12.png Figure above obtained from [10].

The source has shown gradually decreasing flux and luminosity (~2.5 x 1034 d2kpc - 10 x 1034 d2kpc ([10]) until the torque reversal in 2008, when the intensity started increasing.
A QPO frequency of 40 mHz, was found from Ginga observations ([11]). Later with BeppoSAX ([12]), ASCA ([13]), RXTE ([14]), and XMM-Newton ([15]) a QPO frequancy of 48 mHz was determined. [16] found that the QPO frequency trend in 4U 1626-67 went from positive to a negative. During the spin-up period, the QPO central frequency increased from ~36 mHz in 1983 to ~49 mHz in 1993. In the spin-down period, it gradually decreased at a rate ~(0.2 ± 0.05) mHz yr-1. After the last torque reversal, no QPO was observed ([3]).

Spectrum

4u1626 suzspec camero12.png Figure above obtained from [10].

The spectrum consists of a low-energy absorption, a blackbody and a high-energy cutoff power law.
The spectrum also shows a cyclotron line feature at ~37 keV an iron K fluorescence line at ~6.4 keV and additional emission lines between 0.5 and 1.5 keV ([10]).


Pulse Profile

A 7.7s X-ray pulsar, 4U 1626-67 has a complex, energy- and time-dependent pulse profile ([17]).

Figure below obtained from [17].
4u162667 pulse period rappaport77 new.png

Figure below obtained from [3].
4u1626 pulse profile jain10.png

Pulse Period Evolution

The source showed an abrupt torque reversal in mid-1990 ([8]).
Observed with Swift/BAT, a second large torque reversal occurred on Feb 2008, with a transition lasting ~150 days ([9]).


Figure below obtained from [9].

4u1626 pulse per evol camero10.png


References

  1. 1.0 1.1 Chakrabarty, D., 1998, ApJ, 492, 342 (NASA ADS)
  2. 2.0 2.1 2.2 Levine, A., Ma, C. P., McClintock, J., et al., 1988, ApJ, 327, 732 (NASA ADS)
  3. 3.0 3.1 3.2 Jain, C., Paul, B., Dutta, A., 2010, MNRAS, 403, 920 (NASA ADS)
  4. 4.0 4.1 4.2 McClintock, J. E., Bradt, H. V., Doxsey, R. E., 1977, Nature, 270, 320 (NASA ADS)
  5. Giacconi, R., Murray, S., Gursky, H., et al., 1972, ApJ, 178, 281 (NASA ADS)
  6. Reynolds, A.P., Quaintrell, H., Still, M.D., et al., 1997, MNRAS, 288, 43 (NASA ADS)
  7. Orlandini M., dal Fiume, D., Frontera, F., et al., 1998, ApJ, 500, L163 (NASA ADS)
  8. 8.0 8.1 Bildsten, L., 1993, ApJ, 418, L21 (NASA ADS)
  9. 9.0 9.1 9.2 Camero-Arranz, A., Finger, M. H., Ikhsanov, N. R., et al. 2010, ApJ, 708 (NASA ADS)
  10. 10.0 10.1 10.2 10.3 Camero-Arranz, A., Pottschmidt K., Finger, M. H., et al. 2012 (in progress)
  11. Shinoda, K., Kii, T., Mitsuda, K., et al., 1990, PASJ, 42, 27 (NASA ADS)
  12. Owens, A., Oosterbroek, T., Parmar, A. N., A&A, 324, L9 (NASA ADS)
  13. Angelini, L., White, N. E., Nagase, F., et al., 1995, ApJ, 449, 41 (NASA ADS)
  14. Kommers, J., Chakrabarty, D., Lewin, W. H. G., 1998, ApJ, 497, L33 (NASA ADS)
  15. Krauss, M. I., Schulz, N. S., Chakrabarty, D., et al., 2007, ApJ, 660, 605 (NASA ADS)
  16. Kaur, R., Paul, B., Kumar, B., et al., 2008, ApJ, 676, 1184 (NASA ADS)
  17. 17.0 17.1 Rappaport, S., Markert, T., Li, F. K., et al., 1977, ApJ 217L, 29 (NASA ADS)