2D Map SAA (xfig example)
Revision as of 13:17, 13 April 2018 by Gokus (talk | contribs) (Created page with " Category:SLxfig ==== 2D map SAA ==== <pre> require("isisscripts"); % load all the maps I want to plot: % directory with electron and proton distributions variable epdir...")
2D map SAA
require("isisscripts"); % load all the maps I want to plot: % directory with electron and proton distributions variable epdir = "/userdata/data/hell/saa_rhessi/karten/"; % directory with the magnetic field information variable magdir = "/userdata/data/hell/saa_rhessi/magnet/"; % the image names variable imgname = "/home/hell/Documents/saa_rhessi/map2003_75_570_cont"; variable imgname_e = "/home/hell/Documents/saa_rhessi/map2003_75_570_cont_e"; variable imgname_p = "/home/hell/Documents/saa_rhessi/map2003_75_570_cont_p"; % load the actual data variable p = fits_read_img(epdir+"2003_75_a570.fits\[5]"); variable e = fits_read_img(epdir+"2003_75_a570.fits\[4]"); variable ep = fits_read_img(epdir+"2003_75_a570.fits\[6]"); variable mag = fits_read_img(magdir+"bfield-570-2003.75.fits"); % define the values of the contour levels for the magnetic field variable levels = int( [[19e3:27.5e3:2e3],[30e3:56e3:3e3]] ); % calculate the contours variable cont = gcontour_compute(mag,levels); % define a function to put the contour labels at a position in the map, % where they hopefully do not look stupid, i.e., not too close to the edges % of the plot or too pointy slopes of the curve. % Here I go for the point of the contour which is farthest south define cont_label(xf,xar,yar,level) %push xar by -180, yar by -90 ! { variable lx = length(xar); if( lx < 20) { xf.plot(xar,yar;width=1); return; } variable mx = where_min(yar); mx = mx[length(mx)/2]; % leave enough space for the label, i.e., not to close to the axes if(mx < 10 or mx > lx-11) mx = where_max(yar); if(mx < 10 or mx > lx-11) mx = int(lx/4.); variable er = [mx-13:mx+14]; % rotate the label such that it is parallel to the line variable x0 = xar[mx][0]; variable y0 = yar[mx][0]; variable rot = atan( (yar[mx-13]-yar[mx+14])/(xar[mx-13]-xar[mx+14]) ) *180./PI ; if (isnan(rot) ) rot = 0; variable label = xfig_new_text( string(level); rotate=rot, size="\scriptsize"R); xf.add_object( label ,x0,y0,0,0 ); % for better legibility, draw a white rectangle between the map and the label variable xx = [0,0.95,0.95,0]; variable yy = [0,0,.205,.205]; variable xcorner = xx*cos(rot*PI/180.) - yy*sin(rot*PI/180.); variable ycorner = xx*sin(rot*PI/180.) + yy*cos(rot*PI/180.); xf.add_object( xfig_new_polyline( xcorner,ycorner; color="white", fillcolor="white"), x0,y0,0,-.05); % finally, also plot the contour xf.plot(xar,yar;width=1); } % function to draw the map, the contours and the worldcoastlines, add x- and % y-axes and a color scale define draw_map_cont(image,cont,lev,filename, scaletitle,minv,maxv, scale) { require("isisscripts"); require("xfig"); require("png"); variable width = 15; variable height = 10; % define a rainbow color map, starting at white over purple-blue-green-yellow-orange to red. % array with 256 colors variable color = [ 0xFFFFFF, 0xD3D3FF, 0xC9C9FF, 0xC4C4FF, 0xBABAFF, 0xB5B5FF, 0xB0B0FF, 0xABABFF, 0xA6A6FF, 0xA1A1FF, 0x9E9EFF, 0x9C9CFF, 0x9797FF, 0x9494FF, 0x9292FF, 0x8D8DFF, 0x8A8AFF, 0x8888FF, 0x8383FF, 0x8080FF, 0x7E7EFF, 0x7979FF, 0x7676FF, 0x7474FF, 0x6F6FFF, 0x6C6CFF, 0x6A6AFF, 0x6565FF, 0x6262FF, 0x6060FF, 0x5B5BFF, 0x5858FF, 0x5656FF, 0x5151FF, 0x4E4EFF, 0x4C4CFF, 0x4747FF, 0x4444FF, 0x4242FF, 0x3D3DFF, 0x3838FF, 0x3333FF, 0x2E2EFF, 0x2929FF, 0x2424FF, 0x1F1FFF, 0x1A1AFF, 0x1515FF, 0x1010FF, 0x0B0BFF, 0x0606FF, 0x0000FF, 0x0006FF, 0x000BFF, 0x0010FF, 0x0015FF, 0x001AFF, 0x001FFF, 0x0024FF, 0x0029FF, 0x002EFF, 0x0033FF, 0x0038FF, 0x003DFF, 0x0042FF, 0x0047FF, 0x004CFF, 0x0051FF, 0x0056FF, 0x005BFF, 0x0060FF, 0x0065FF, 0x006AFF, 0x006FFF, 0x0074FF, 0x0079FF, 0x007EFF, 0x0083FF, 0x0088FF, 0x008DFF, 0x0092FF, 0x0097FF, 0x009CFF, 0x00A1FF, 0x00A6FF, 0x00ABFF, 0x00B0FF, 0x00B5FF, 0x00BAFF, 0x00BFFF, 0x00C4FF, 0x00C9FF, 0x00CEFF, 0x00D3FF, 0x00D8FF, 0x00DDFF, 0x00E2FF, 0x00E7FF, 0x00ECFF, 0x00F1FF, 0x00F6FF, 0x00FBFF, 0x00FFFF, 0x00FFF6, 0x00FFF1, 0x00FFEC, 0x00FFE7, 0x00FFE2, 0x00FFDD, 0x00FFD8, 0x00FFD3, 0x00FFCE, 0x00FFC9, 0x00FFC4, 0x00FFBF, 0x00FFBA, 0x00FFB5, 0x00FFB0, 0x00FFAB, 0x00FFA6, 0x00FFA1, 0x00FF9C, 0x00FF97, 0x00FF92, 0x00FF8D, 0x00FF8D, 0x00FF88, 0x00FF83, 0x00FF7E, 0x00FF79, 0x00FF74, 0x00FF6F, 0x00FF6A, 0x00FF65, 0x00FF60, 0x00FF5B, 0x00FF56, 0x00FF51, 0x00FF4C, 0x00FF47, 0x00FF42, 0x00FF3D, 0x00FF38, 0x00FF33, 0x00FF2E, 0x00FF29, 0x00FF24, 0x00FF1F, 0x00FF1A, 0x00FF15, 0x00FF10, 0x00FF0B, 0x00FF06, 0x00FF00, 0x06FF00, 0x0BFF00, 0x10FF00, 0x15FF00, 0x1AFF00, 0x1FFF00, 0x24FF00, 0x29FF00, 0x2EFF00, 0x33FF00, 0x38FF00, 0x3DFF00, 0x42FF00, 0x47FF00, 0x4CFF00, 0x51FF00, 0x56FF00, 0x5BFF00, 0x60FF00, 0x65FF00, 0x6AFF00, 0x6FFF00, 0x74FF00, 0x79FF00, 0x7EFF00, 0x83FF00, 0x88FF00, 0x8DFF00, 0x92FF00, 0x97FF00, 0x9CFF00, 0xA1FF00, 0xA6FF00, 0xABFF00, 0xB0FF00, 0xB5FF00, 0xBAFF00, 0xBFFF00, 0xC4FF00, 0xC9FF00, 0xCEFF00, 0xD3FF00, 0xD8FF00, 0xDDFF00, 0xE2FF00, 0xE7FF00, 0xECFF00, 0xF1FF00, 0xF6FF00, 0xFBFF00, 0xFFFF00, 0xFFFB00, 0xFFF600, 0xFFF100, 0xFFEC00, 0xFFE700, 0xFFE200, 0xFFDD00, 0xFFD800, 0xFFD300, 0xFFCE00, 0xFFC900, 0xFFC400, 0xFFBF00, 0xFFBA00, 0xFFB500, 0xFFB000, 0xFFAB00, 0xFFA600, 0xFFA100, 0xFF9C00, 0xFF9700, 0xFF9200, 0xFF8D00, 0xFF8800, 0xFF8300, 0xFF7E00, 0xFF7900, 0xFF7400, 0xFF6F00, 0xFF6A00, 0xFF6500, 0xFF6000, 0xFF5B00, 0xFF5600, 0xFF5100, 0xFF4C00, 0xFF4700, 0xFF4200, 0xFF3D00, 0xFF3800, 0xFF3300, 0xFF2E00, 0xFF2900, 0xFF2400, 0xFF1F00, 0xFF1A00, 0xFF1500, 0xFF1000, 0xFF0B00, 0xFF0600, 0xFF0000 ]; png_add_colormap ("rainbow_white", color); variable imagergb, scalearr, scalergb; variable m1 = xfig_plot_new (width, height); variable m2 = xfig_plot_new (0.5,height); % number of bins in either direction of the image variable nblat = length(image[*,0]); variable nblon = length(image[0,*]); % scaling (logarithmic or linear) of the color map if (scale == "log") { % convert the values in the image to colors imagergb = png_gray_to_rgb (log10(image),"rainbow_white";gmin = log10(minv), gmax = log10(maxv)) ; % save the image as png with png_write_flipped as the corner (0,0) of the image is top left, % but my world map scaling starts at the bottom left corner of the array (or something like that) png_write_flipped (filename+".png",imagergb[[0:nblat-1],[0:nblon-1]]) ; % create the key for the color scale scalearr = _reshape([log10(minv):log10(maxv):#256],[256,1]); scalergb = png_gray_to_rgb (scalearr, "rainbow_white"); png_write_flipped ("scale.png", scalergb); m2.world (0, 1, minv, maxv; logy); } else if (scale == "lin") { imagergb = png_gray_to_rgb (image,"rainbow_white"; gmin = minv, gmax = maxv) ; png_write_flipped (filename+".png",imagergb[[0:nblat-1],[0:nblon-1]]) ; scalearr = _reshape([minv:maxv:#256],[256,1]); scalergb = png_gray_to_rgb (scalearr, "rainbow_white"); png_write_flipped ("scale.png", scalergb); m2.world (0, 1, minv, maxv); %m2.world (minv, maxv, 0, 1); } else { ()=printf("Invalid scale: use \"log\" or \"lin\" \n"); return; } % define the world coordinates for the image m1.world(-180,180, -90,90 ; xlin , ylin) ; m1.xlabel("Longitude") ; m1.ylabel("Latitude") ; % load the png image to frame with the coordinate system m1.plot_png(filename+".png") ; % define horizontal lines lines to indicate the tropes and the polar regions variable fineness = 3600; variable tropics = struct{lon=[-180:179:#fineness], equat = ones(fineness)*0., cancer = ones(fineness)*23.43, capricorn = ones(fineness)*(-23.43), arctic_north = ones(fineness)*66.55, arctic_south = ones(fineness)*(-66.55)}; xfig_new_color("grey",0x808080); variable cl; % plot the world coast line foreach cl(WorldCoastLine()) { m1.plot(cl.x, cl.y; width = 1, color="grey"); } m1.plot(tropics.lon, tropics.equat ; width = 1, color="grey" ); m1.plot(tropics.lon, tropics.cancer ; width = 1, color="grey" ); m1.plot(tropics.lon, tropics.capricorn ; width = 1, color="grey" ); m1.plot(tropics.lon, tropics.arctic_north ; width = 1, color="grey"); m1.plot(tropics.lon, tropics.arctic_south ; width = 1, color="grey" ); % draw the contour lines and their labels variable i,j; variable lx,mx,xar,yar,er,x0,y0,rot; _for i (0,length(cont)-1,1) { _for j (0,length(cont[i].x_list)-1,1) { cont_label(m1,cont[i].x_list[j]-180, cont[i].y_list[j]-90, lev[i]); } } m2.xaxis (;off); m2.yaxis (;off); m2.y2axis (;on); m2.x2axis (;off); m2.y2label(scaletitle); m2.plot_png("scale.png"); % combine the map and the key to one image xfig_new_hbox_compound (m1, m2, 0.1).render(filename+".eps"); % get rid of the redundant png file () = remove (filename + ".png"); } % use the above function to plot as many SAA/magentic field maps as you wish: % electron to proton ratio draw_map_cont(ep, cont,levels, imgname, "electrons per proton",0.5,50.,"log"); % electrons draw_map_cont(e, cont,levels, imgname_e, "electrons",0.05,4000.,"log"); %protons draw_map_cont(p, cont,levels, imgname_p, "protons",0.05,4000.,"log");