

Simulating galaxy clusters

Sophie Beaumont, N. Clerc, E. Pointecouteau SIXTE Workshop 2022

The Athena/X~IFU

- Athena is the next X-ray observatory, to be launched in the mid 2030's
- The X-IFU is its cryogenic imaging spectrometer based on a **TES microcalorimeter array** of ~3k pixels

Prototype TES microcalorimeter array and its supporting wafer (Credit : NASA GSFC)

X-IFU simulated spectrum of a Perseus like galaxy cluster. Hundreds of lines per spectrum (Credit : X-IFU team (data courtesy of C. Pinto and A.C. Fabian)

Effective area comparison between Athena X-IFU and XRISM resolve (Credit : IRAP and X-IFU team)

Science goal ~ Turbulence/Bulk motion in galaxy clusters

• Galaxy clusters = most massive gravitationally-bound objects in the Universe

 \Rightarrow Key to further understanding our universe

• Often assumed in hydrostatic equilibrium, but strong hints part of gas pressure provided by bulk and turbulent motions

Perseus clusters in X-ray (Credit: Simionescu et al, 2019)

Energy transfer through turbulences (Credit: derived from Humbert, 2014)

End-to-End simulation

- In order to assess the capability of measuring turbulence in galaxy clusters with X-IFU, we perform E2E simulations
 - Aim : 1. Recover the turbulence parameters (i.e. injection & dissipation scales, slope and normalization) 2. Find optimum observation strategy to recover those parameters
- Work in continuity with previous work from P. Peille and E. Cucchetti
- Simulation using the SIXTE (Simulation of X-ray Telescopes) simulator

Overview of SIXTE E2E simulation process (Credit : Wilms et al. 2014)

Photon list generation

- Chose not to use SIXTE for the photon generation
 L generated independently, to allow parallelization and reduce computational time
- First : choosing the parameterization of the galaxy cluster

Photon list generation

• Then, defining a 3D cube to represent the cluster...

- Cube split into cells (or particles) of ½ X-IFU pixel size (i.e 2.365 ")
- Simulated velocity grid -> 6480 x 810 x 810
 Input tables (1 pointing at a time) -> 6480 x 142 x 142
- To each cell (~40 million per pointing) will be associated a value of turbulent velocity => turbulent velocity cube and redshift, T, abundance, and emissivity => input table

Photon list generation

• Turbulent velocity field

Input table

	RA	DEC	T	FE_ABUND	REDSHIFT	NORM
Select	1D	1D	1D	- 1D	1D	1D
E All	degrees	degrees	keV			
Invert	Modify	Modify	Modify	Modify	Modify	Modify
1	-3.041032837626E-02	-5.681050070655E-03	1.474014768974E+00	9.707655183447E-02	9.933215379715E-02	9.339954051396E-15
2	-3.041032837626E-02	-5.012691242452E-03	1.474017928557E+00	9.707671898813E-02	9.922410547733E-02	9.340120100947E-15
3	-3.041032837626E-02	-4.344332412883E-03	1.474020693216E+00	9.707686524881E-02	9.903363883495E-02	9.340265397706E-15
4	-3.041032837626E-02	-3.675973582133E-03	1.474023062942E+00	9.707699061601E-02	9.894151985645E-02	9.340389940311E-15
5	-3.041032837626E-02	-3.007614750382E-03	1.474025037726E+00	9.707709508932E-02	9.945443272591E-02	9.340493727598E-15
6	-3.041032837626E-02	-2.339255917813E-03	1.474026617561E+00	9.707717866838E-02	9.963335841894E-02	9.340576758593E-15
7	-3.041032837626E-02	-1.670897084607E-03	1.474027802443E+00	9.707724135292E-02	9.914942830801E-02	9.340639032521E-15
8	-3.041032837626E-02	-1.002538250946E-03	1.474028592366E+00	9.707728314273E-02	9.893646836281E-02	9.340680548796E-15
9	-3.041032837626E-02	-3.341794170123E-04	1.474028987328E+00	9.707730403768E-02	9.916778653860E-02	9.340701307031E-15
10	-3.041032837626E-02	3.341794170123E-04	1.474028987328E+00	9.707730403768E-02	9.900964051485E-02	9.340701307031E-15
11	-3.041032837626E-02	1.002538250946E-03	1.474028592366E+00	9.707728314273E-02	9.876482188702E-02	9.340680548796E-15
12	-3.041032837626E-02	1.670897084607E-03	1.474027802443E+00	9.707724135292E-02	9.918778389692E-02	9.340639032521E-15
13	-3.041032837626E-02	2.339255917813E-03	1.474026617561E+00	9.707717866838E-02	9.949777275324E-02	9.340576758593E-15
14	-3.041032837626E-02	3.007614750382E-03	1.474025037726E+00	9.707709508932E-02	9.956596046686E-02	9.340493727598E-15
15	-3.041032837626E-02	3.675973582133E-03	1.474023062942E+00	9.707699061601E-02	1.000841856003E-01	9.340389940311E-15
16	-3.041032837626E-02	4.344332412883E-03	1.474020693216E+00	9.707686524881E-02	1.007845550776E-01	9.340265397706E-15
17	-3.041032837626E-02	5.012691242452E-03	1.474017928557E+00	9.707671898813E-02	1.004668250680E-01	9.340120100947E-15
18	-3.041032837626E-02	5.681050070655E-03	1.474014768974E+00	9.707655183447E-02	1.000520586967E-01	9.339954051396E-15
19	-2.974196963226E-02	-8.354485417349E-03	1.474015953814E+00	9.707661451692E-02	1.005271449685E-01	9.340016319492E-15
20	-2.974196963226E-02	-7.686126592328E-03	1.474020693216E+00	9.707686524881E-02	1.002178117633E-01	9.340265397706E-15

- Spectra (and flux) needed for each cell
 using precomputed tables of spectra for range of T and Z, @ z = 0.1 (fix)
 correct T, Z interpolated, then z adjusted by shifting the spectra
- From input table cut in parts, generation of the **photon list** for each cells

Photon imaging & detection with SIXTE / xifupipeline

Post-processing

- Simulation ran 19 times, for different pointings
- For each pointing:
 - Parallelization ~ 40 CPUs
 - Runtime ~ 30 hours
 - Disk space ~ 5 to 25 Go
- All files merged together

Post-processing

Analysis

Use of the structure function as diagnostic, calculated from the measurements of emission line centroid shifts
 spatial correlation function

SF can also be calculated from a theoretical model (Clerc et al 2019)

 Goal : assuming turbulence parameters (injection, dissipation, slope and normalization) not known, we try to recover them through MCMC fits, using modeled SF for prediction

Conclusions

- SIXTE simulator allowed us to perform end-to-end simulations of galaxy cluster representative of what will be observed with Athena/X-IFU and investigate the bulk motion in those clusters
- So far, we performed:
 - > multiple simulations of the central pointing
 - > 2 full simulations with 19 pointings each, 500 ks exposure per pointing :
 - L each full simulation runs in ~10 days on 2*48 CPUs
- Full datasets taking ~1.5 Tb of disk space
- Follow up analysis on-going

Thank you for your attention.

Any questions ?