SIXTE Implementation of the Athena X-IFU

Christian Kirsch Remeis Observatory & ECAP

Online Sixte Workshop — March 2022

The Athena Instruments

WFI (Imager)

- high count-rate, moderate spectral resolution
- large field of view

X-IFU (Calorimeter)

- for high-spectral resolution imaging
- calorimeter operating at 50 mK

- very high spectral resolution imaging (2.5 eV FWHM and a 5' FoV)
- 3168 (final number being consolidated) TES (Transition Edge Sensor) pixels

Pixels are single *Transition Edge Sensors*, operated at 50 mK \Rightarrow measure temperature increase of photon hitting the pixel

Pixels are single *Transition Edge Sensors*, operated at 50 mK \Rightarrow measure temperature increase of photon hitting the pixel

• numerical solution of differential equations for T(t), I(t) (Irwin & Hilton, 2005),

$$C\frac{dT}{dt} = -P_{\rm b} + P_{\rm J} + P + \text{Noise}$$
 and $L\frac{dI}{dt} = V - IR_{\rm L} - IR(T, I) + \text{Noise}$

- linear resistance, $R(T, I; \alpha, \beta)$; noise: Johnson of circuit, bath, excess noise
- input parameters: C, $G_{\rm b}$, n, α , β , m, R_0 , T_0 , $T_{\rm b}$, $L_{\rm crit}$

Pixels are single *Transition Edge Sensors*, operated at 50 mK \Rightarrow measure temperature increase of photon hitting the pixel

pulses with smaller separation yield lower energy resolution \Rightarrow Event Grading depending on the source flux

X-IFU Implementation in the end-to-end simulator SIXTE

xifupipeline:

- full detector array
- full imaging implemented
- fast detection simulation using response matrices (works similar to CCD-type simulations)
- \Rightarrow science simulations

tessim/xifusim + SIRENA

- Simulation of TES physics and pulse reconstruction
- Slower than xifupipeline, but much better physics
- pixel interaction (crosstalk)
- \Rightarrow **Input for** xifupipeline

X-IFU Implementation in the end-to-end simulator SIXTE

xifupipeline:

- full detector array
- full imaging implemented
- fast detection simulation using response matrices (works similar to CCD-type simulations)
- \Rightarrow science simulations

tessim/xifusim + SIRENA

- Simulation of TES physics and pulse reconstruction
- Slower than xifupipeline, but much better physics
- pixel interaction (crosstalk)

 \Rightarrow **Input for** xifupipeline

 \Rightarrow physics-based tessim/xifusim results converted to be used in the fast and general xifupipeline simulation (event grading, crosstalk,...)

Example: SIXTE X-IFU simulation of a Galaxy Cluster

SIXTE describing, simulating, and analyzing complicated sources X-IFU spatially resolved high-resolution spectroscopy

Performance at High Countrates (grading effect only)

defocusing of the Athena optics allows observations up to 1 Crab

Grade	Δt since previous pulse	∆t until next pulse	Energy res.
(1) High res.	≥ 11.1 ms	≥ 41.3 ms	2.5 eV
(2) Medium res.	≥ 11.1 ms	≥ 2.2 ms	3 eV
(3) Limited res.	≥ 11.1 ms	≥ 0.85 ms	7 eV
(4) Low res.	≥ 11.1 ms	_	\sim 30 eV

Crosstalk in SIXTE

unintended transmission of information between signal channels

Different types of crosstalk:

- thermal coupling of two pixels (physical neighbors)
- electrical coupling due to e.g. mutual inductance
- coupling due to multiplexed readout (TDM) \rightarrow implemented in SIXTE

crosstalk effect on events is predictable

How does Crosstalk affect X-IFU Events?

 \Rightarrow remove events which are *strongly* effected by crosstalk

trade-off between energy resolution and throughput \Rightarrow 10 eV resolution with 50% throughput @ 1 Crab

XML files

xifupipeline requires two XML files to run:

Standard SIXTE XML (XMLFile)

- Same format as e.g. WFI XML files
- Defines ARF, PSF, background
- Four configurations: In-Focus and Defocussed, With and Without Be-Filter

X-IFU specific XML (AdvXml)

- Defines data for Grading (including RMF) and Crosstalk
- Specifies readout channels, pixel positions

In practice: AdvXml is fixed, XMLFile chosen depending on observation (mostly source brightness)

Summary: The X-IFU with Sixte

- 3168 (final number TBC \rightarrow Red Book) TES pixels in a hexagonal array
- 5' FoV
- higher flux (>10mCrab) reduces energy resolution and throughput
- science simulations with xifupipeline, taking the most important TES physics effects into account
- physics input to the simulation pipeline by tessim/xifusim

Tutorial: Extended Source Simulations (continued)

We begin by comparing observations from the X-IFU and WFI in the case of Cas A

- simulate a 100 s observation of Cas A (using the simput generated yesterday) for the X-IFU using xifupipeline.
- construct an image from the event file using imgev. How does it compare to the WFI?
- create spectra for both observations via makespec. For this, use the same extraction region in RA and Dec in both (keyword: EventFilter) and compare them.

A *xifupipeline* command is shown in the Simulator Manual, Sect. 10.7

Tutorial: Simulating Galaxy Clusters

The main difficulty of simulating a galaxy cluster observation lies in the building of a suitable SIMPUT file containing all the information probed by a high-resolution integrated field unit like the X-IFU.

- download the X-IFU_clusters_tutorial.tgz file containing all data to simulate A2146 (already uploaded on SciServer)
- construct a point source XSPEC model file with an absorbed apec model
- create a SIMPUT file of A2146 with simputmultispec, using the given temperature and abundance map such that the source spectrum changes over the source
- look at the simput with fstruct and/or fv and try to understand what simputmultispec does
- simulate the source with xifupipeline
- extract spectra from different source regions and compare them

detailed commands in the Simulator Manual, Sect. 10.7

Tutorial: High Count-Rate Observations (Optional)

We will now examine the effect of high count-rates on the energy resolution of the X-IFU, and how it can be mitigated

- Prepare the model: Build a 1 mCrab model file (c.f. simulator manual section 10.2.2), adding a sharp gaussian emission line at 6.4 keV (XSPEC model gauss, sigma=0.001 keV, norm=0.1)
- Build a simput file using this model, setting its flux to the equivalent of 1 Crab (srcFlux=2.137e-8)
- Run a 10 s simulation using xifupipeline, with the doCrosstalk option set to all, and extract the spectrum using makespec. Plot the emission line! Does it look like a Gaussian?
- Run the same simulation, now using the defocused option (change XMLFile to .../xifu_baseline_35mm.xml). Extract the spectrum again, and compare the shape of the emission line with the previous simulation.
- Compare the counts distribution on the detector between simulations.