SIXTE Implementation of the Athena WFI

Maximilian Lorenz Remeis Observatory & ECAP on behalf of the SIXTE team

End-to-end simulations with SIXTE: An online workshop, March 2022

The Athena X-ray observatory

THE ASTROPHYSICS OF THE HOT AND ENERGETIC UNIVERSE

How does ordinary matter ASSEMBLE INTO THE LARGE SCALE STRUCTURES THAT WE SEE TODAY?

HOW DO BLACK HOLES GROW AND SHAPE THE UNIVERSE?

Europe's next generation X-RAY OBSERVATORY

- To be launched to L1 in early 2030s as the second ESA L-class mission
- 12 m focal length, mirror based on Silicon Pore Optics technology
- Two instruments on board:
 - Wide Field Imager (WFI)
 - X-ray Integral Field Unit (X-IFU)

The Athena Instruments

WFI (Imager)

- For imaging and spectroscopy over large field of view (40' × 40' FoV, 170 eV @ 7 keV)
- High count-rate capabilities

Credit: MPE

X-IFU (Calorimeter)

- For high spectral resolution imaging (5' FoV, 2.5 eV up to 7 keV)
- Calorimeter operating at 50 mKelvin

Credit: X-IFU Consortium

The Wide Field Imager (WFI)

Large Detector Array (LDA) and Fast Detector (FD, 35 mm defocused)

Credit: MPE

- DePFET active pixel technology (similar to CCD with line-by-line readout)
- Energy resolution: \leq 170 eV @ 7 keV
- Large FOV: $40' \times 40'$
- High count-rate capabilities (10 Crab)

Meidinger et al. (2020)

Example: The Galactic Center with Athena

Example: The Chandra Deep Field South with Athena

Example: The Chandra Deep Field South with Athena

Dithering efficiently removes gaps between the chips.

WFI Mirror Area and Ancillary Response File (ARF)

Be filter \Rightarrow removes photons below 2 keV

WFI Redistribution Matrix File (RMF)

WFI Point Spread Function (PSF)

PSF at different energies and off-axis angles

Defocused PSF (35 mm)

 \Rightarrow Defocusing distributes photons over larger area

LDA Chip Geometry

WFI DePFET read-out implementation in SIXTE

If photon hits during the read-out: measured charge is affected \Rightarrow Wrong energy ("Misfit")

this is most relevant for window modes or the fast detector

Different modes of the WFI (in SIXTE)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	lame	Filename	Size (rows \times columns)	Time Resolution	Defocusing	Filter
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	full	ld_wfi_ff_chip[0,1,2,3].xml	$(4 \times) 512 \times 512$	5018 μs	—	wo/w
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	large	ld_wfi_ff_large.xml	512 imes 512	$5018\mu{ m s}$	—	wo/w
$\begin{tabular}{ c c c c c c c c c c c c c c } \hline $w256$ & Id_wfi_w256.xml & 256×512 & $2509\mu{\rm s}$ & $-$\\ \hline $fast$ & $fd_wfi_df35mm.xml$ & 64×64 & $80\mu{\rm s}$ & $35mm$ \\ \hline \end{tabular}$	w128	ld_wfi_w128.xml	128 imes 512	1254 $\mu \mathrm{s}$	—	wo/w
fastfd_wfi_df35mm.xml 64×64 $80 \mu s$ $35 mm$	w256	ld_wfi_w256.xml	256×512	$2509\mu{ m s}$	—	wo/w
	fast	fd_wfi_df35mm.xml	64 imes 64	80 µs	35 mm	W
<i>fastBe</i> fd_wfi_df35mm_Be100.xml 64×64 $80 \mu s$ 35 mm	<i>astBe</i> f	fd_wfi_df35mm_Be100.xml	64 imes 64	$80\mu{ m s}$	35 mm	W

- Large Detector Array configurations available w/wo optical blocking filter.
- Fast Detector defocused by default.
- Option for a 100 μm Be filter.

Charge Cloud and Split Patterns

Charge cloud has finite extension and may be distributed among several neighboring pixels.

 \Rightarrow Four possible types of **valid split patterns** (properly handled by pattern recombination step in SIXTE):

Performance Degradation due to Pile-Up

Main problems when dealing with high count rates: Emergence of **invalid patterns** and **pile-up**.

 \Rightarrow Pile-up events **distort spectral shape** (hardening)

Example: Bright Source Performance of the WFI

Goal: Determine **pile-up limit** (maximum pile-up fraction such that there are no significant changes in the spectrum).

- Simulate point source (on-axis) with Crab-like spectrum.
- **Simulation procedure:** Vary flux to see how the throughput, pile-up fraction, and spectral shape changes.

Example: Bright Source Performance of the WFI

Taking into account all valid event patterns:

• **Throughput:** Ratio of the number of valid split patterns and the total number of simulated photons.

Example: Bright Source Performance of the WFI

- **Throughput:** Ratio of the number of valid split patterns and the total number of simulated photons.
- **Pile-up Fraction:** Fraction of events affected by energy or pattern pile-up among all valid event patterns.

Summary: The WFI with SIXTE

- DePFET technology: active pixels, no line shifts → misfits if pixel is hit during read-out
- Observations possible up to a few Crab, plus a thick filter for even brighter sources.
- large 40' FoV made of 4 chips \rightarrow requires dithering
- Simulations possible for the full 4 chip LDA with athenawfisim, or only a single chip (LD, or the 35 mm defocused FD) with runsixt.

References

 N. Meidinger, et al., "Development status of the wide field imager instrument for Athena," Proc. SPIE 11444, Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray, 114440T (13 December 2020); https://doi.org/10.1117/12.2560507