Practical Sessions 1 and 2: First Simulations and Analysis

The SIXTE Team – Remeis Observatory

Sixte Workshop -

March 2022

Set up \rightarrow Does everything work?

• Installed SIMPUT and SIXTE and XSPEC (\rightarrow HEASoft)?

0.1 Set environment variable

.bashrc

export SIMPUT=simputdir
export SIXTE=sixtedir
. \$SIXTE/bin/sixte-install.sh

.cshrc

setenv SIMPUT=simputdir
setenv SIXTE=sixtedir
source \$SIXTE/bin/sixte-install.sh

SciServer

source \$HOME/workspace/Storage/sixte/sixte_volume/sixte_setup.sh

Set up \rightarrow Does everything work?

0.2 Test SIMPUT, SIXTE and XSPEC

plist simputfile

plist runsixt

xspec

Part 1: Preparing Input \rightarrow simputfile

1.1 Run plist simputfile (or look into manual: sect. 10.2.2)

1.2 Which parameters do you think we should change for

name of source	
source position	
source flux	
energy	
logarithmic energy grid & number of bins	
define xspec file	

Part 1: Preparing Input \rightarrow simputfile

1.3 Write shell script to create a simputfile (\rightarrow manual sect. 10.2.2):

name of source	Src_Name= <i>name</i> .fits
source position	Ra=0.0, Dec=0.0
source flux	srcFlux=2.137e-11
energy	Elow=0.1, Eup=15, Emin=2, Emax=10
logarithmic energy grid & number of bins	logEgrid=yes,Nbins=1000
define xspec file	XSPECFile=name.xcm

Part 1: Preparing Input $\rightarrow xspec$

- Source needs spectrum \rightarrow create spectrum with xspec
- **1.4** If you use the SciServer \rightarrow Create folder in:

/\$HOME/workspace/Storage/username/persistent/name_of_folder

1.5 Go there!

1.6 Now start by typing xspec into terminal

model	phabs*pegpwrlw
nH>	0.2
PhoIndex>	2.05
eMin>	2
eMax>	10
norm>	21.6

 \rightarrow See manual for name of xspec file and further advice (section 10.2.2) 1.7 run simputfile

Part 1: Preparing Input \rightarrow simputfile shell script

Solution simputfile shell script:

#!/bin/sh

```
base=mcrab
```

```
$SIXTE/bin/simputfile
    Simput=${base}.fits
    Src_Name=first
    RA=0.0 Dec=0.0
    srcFlux=2.137e-11
    Elow=0.1 Eup=15
    Nbins = 1000
    logEgrid=yes
    Emin=2 Emax=10
    XSPECFile=${base}.xcm
    clobber=yes
```

Part 2: Running the Simulation \rightarrow runsixt

2.1 Which parameters do you think we should change for ...

Path to .xml file	
Simput Catalog	
telescope pointing	
exposure time	
output file	
prefix for output file	

Hint: run plist runsixt

Part 2: Running the Simulation \rightarrow runsixt

2.2 Write a shell script and run a simulation for one large chip of the WFI2.3 Run a second simulation with an offset pointing of the source

Path to .xml file	XMLFile= <i>xmlfile</i>
Simput Catalog	Simput=name.fits
telescope pointing	Ra=0.0, Dec=0.0
exposure time	Exposure=1000
output file	EvtFile=name.fits
prefix for output file	Prefix=name

Hint: Run plist runsixt

Hint: xmldir=\$SIXTE/share/sixte/instruments/athena-wfi/wfi_wo_filter_B4C

Hint: Take a look into the manual, section 10.2.4

Part 2: Running the Simulation \rightarrow runsixt

Solution runsixt shell script:

```
#!/bin/sh
base=mcrab
xmldir=#xmldir
xml=${xmldir}/ld_wfi_ff_large.xml
$SIXTE/bin/runsixt
XMLFile=${xml}
```

```
RA=0.000 Dec=0.000
Prefix=sim_
Simput=${base}.fits
EvtFile=evt_${base}.fits
```

```
Exposure=1000
```

Part 3: Analysing the Simulation \rightarrow FTOOLS

3.1 Take a look at the structure of the event file.

- Use fstruct and fv or fdump
- Speculate on the meaning of the individual columns in the event file
- 3.2 Check if the Event File contains a significant fraction of pile-up
 - What do the individual rows mean?

Hint: Take a look into the manual (sect. 10.2.5) for details

Part 3: Analysing the Simulation $\rightarrow \texttt{imgev}$

- 3.3 Generate an image of the event file using imgev
- 3.4 What do the different parameters mean?
- \rightarrow Manual, section 10.2.5

Part 3: Analysing the Simulation $\rightarrow \texttt{imgev}$

Solution imgev shell script:

#!/bin/sh

```
$SIXTE/bin/imgev
EvtFile=sim_evt_mcrab.fits
Image=img_mcrab.fits
CoordinateSystem=0 Projection=TAN
NAXIS1=512 NAXIS2=512
CUNIT1=deg CUNIT2=deg
CRVAL1=0.0 CRVAL2=0.0
CRPIX1=256.5 CRPIX2=256.5
CDELT1=-6.207043e-04 CDELT2=-6.207043e-04
history=true clobber=yes
```

Part 3: Analysing the Simulation \rightarrow makespec

- Point source \rightarrow quite boring. So, spectral shape:
- 3.5 Generate a spectrum using makespec
 - Hint: Use same xmldir as before Hint: Manual, sect. 10.2.5
- 2 Clica VCDCC on your own machine to plat th
- 3.6 Use XSPEC on your own machine to plot the spectrum
 - \rightarrow If working on SciServer: download spectrum from SciServer
 - \rightarrow Take a look into the manual, section 10.2.5

Part 3: Analysing the Simulation \rightarrow makespec

```
Solution makespec shell script:
```

```
#!/bin/sh
xmldir=#xmldir
```

```
$SIXTE/bin/makespec
EvtFile=sim_evt_mcrab.fits
Spectrum=spec_mcrab.pha
EventFilter=
    "(RA>359.95_||__RA<0.05)_&&_Dec>-0.05_&_Dec<+0.05"
RSPPath=${xmldir}
clobber=yes
```

Part 3: Analysing the Simulation \rightarrow makelc

- Generate a lightcurve
- What's important for a lightcurve to define?
 - \rightarrow Duration
 - \rightarrow Time resolution
- Ways to define a lightcurve:
 - ASCII
 - \rightarrow Energy dependent \rightarrow time and flux
 - \rightarrow Stochastic through power spectrum \rightarrow frequency and power
 - Lorentzians and zero-centered low frequency QPO
- \rightarrow More informations: Manual section 10.3.1

Part 3: Analysing the Simulation \rightarrow makelc

- Ways to define a lightcurve:
 - ASCII \rightarrow Energy dependent \rightarrow time and flux

3.7 Create a simput file with a TIMING extension

- Parameter for Date \rightarrow value is 55000
- Include lightcurve \rightarrow /sixtedata/tutorial/inputs/Practical_2

Or https://www.sternwarte.uni-erlangen.de/
 research/sixte/downloads/example_lightcurve.dat

3.8 Run the simulation $\rightarrow \texttt{runsixt}$

3.9 Produce the light curve $\rightarrow \texttt{makelc}$

- \rightarrow Eventfile
- \rightarrow Lightcurve
- \rightarrow Duration (in s) \rightarrow 1000.0
- \rightarrow Time resolution (in s) \rightarrow 1.0
- 3.10 Analyze the light curve \rightarrow fplot
 - \rightarrow Manual, section 10.3.1

Part 3: Analysing the Simulation \rightarrow makelc

Solution makelc shell script:

```
#!/bin/sh
base=mcrab_lightcurve
$SIXTE/bin/makelc \
    EvtFile=sim_evt_${base}.fits \
    Lightcurve=sim_${base}.lc \
    length=1000.0 \
    dt=1.0
```