SIXTE Implementation of the NewAthena X-IFU

Christian Kirsch Remeis Observatory & ECAP

SIXTE Workshop — November 2024

The NewAthena Instruments

WFI (Imager)

- high count-rate, moderate spectral resolution
- large field of view

X-IFU (Calorimeter)

- for high-spectral resolution imaging
- calorimeter operating at 50 mK

- very high spectral resolution imaging (4 eV FWHM and a 4' FoV)
- 1504 TES (Transition Edge Sensor) pixels

Pixels are single *Transition Edge Sensors*, operated at 50 mK \Rightarrow measure temperature increase of photon hitting the pixel

Pixels are single *Transition Edge Sensors*, operated at 50 mK \Rightarrow measure temperature increase of photon hitting the pixel

• numerical solution of differential equations for T(t), I(t) (Irwin & Hilton, 2005),

$$C\frac{dT}{dt} = -P_{\rm b} + P_{\rm J} + P + \text{Noise}$$
 and $L\frac{dI}{dt} = V - IR_{\rm L} - IR(T, I) + \text{Noise}$

- linear resistance, $R(T, I; \alpha, \beta)$; noise: Johnson of circuit, bath, excess noise
- input parameters: C, $G_{\rm b}$, n, α , β , m, R_0 , T_0 , $T_{\rm b}$, $L_{\rm crit}$

Pixels are single *Transition Edge Sensors*, operated at 50 mK \Rightarrow measure temperature increase of photon hitting the pixel

pulses with smaller separation yield lower energy resolution \Rightarrow Event Grading depending on the source flux

X-IFU Implementation in the end-to-end simulator SIXTE

sixtesim:

- full detector array
- full imaging implemented
- fast detection simulation using response matrices (works similar to CCD-type simulations)
- \Rightarrow science simulations

tessim/xifusim + SIRENA

- Simulation of TES physics and pulse reconstruction
- Slower than sixtesim, but much better physics
- pixel interaction (crosstalk)

 \Rightarrow Input for sixtesim

 \Rightarrow physics-based tessim/xifusim results converted to be used in the fast and general sixtesim simulation (event grading, crosstalk, ...)

Example: SIXTE X-IFU simulation of a Galaxy Cluster

SIXTE describing, simulating, and analyzing complicated sources X-IFU spatially resolved high-resolution spectroscopy

Performance at High Countrates (grading effect only)

defocusing of the NewAthena optics allows observations up to 1 Crab

Grade	∆t since previous pulse	∆t until next pulse	Energy res.
(1) Very High res.	\geqslant 24.0 ms	≥ 55.2 ms	4 eV
(2) High res.	\geqslant 24.0 ms	≥ 26.8 ms	\sim 4 eV
(3) Intermediate res.	≥ 12.0 ms	≥ 11.1 ms	4.2 eV
(3) Medium res.	\geqslant 12.0 ms	\geqslant 3.16 ms	5 eV
(3) Limited res.	\geqslant 12.0 ms	\geqslant 1.20 ms	7 eV
(3) Low res.	≥ 12.0 ms	\geqslant 0.05 ms	30 eV

Crosstalk in SIXTE

unintended transmission of information between signal channels

Different types of crosstalk:

- thermal coupling of two pixels (physical neighbors)
- electrical coupling due to e.g. mutual inductance
- coupling due to multiplexed readout (TDM) \rightarrow implemented in SIXTE

crosstalk effect on events is predictable

How does Crosstalk affect X-IFU Events?

 \Rightarrow remove events which are *strongly* effected by crosstalk

trade-off between energy resolution and throughput \Rightarrow 10 eV resolution with 50% throughput @ 1 Crab

XML files

Microcalorimeters require some extra XML tags:

Grading

- Define grades via distance in time to previous and next pulse
- Per grade, use a different RMF to calculate measured energy

Crosstalk

- Readout channel specification
- Lookup tables for Crosstalk Mechanisms

XRISM Resolve

How do we simulate XRISM Resolve with SIXTE?

Simply use sixtesim with a different XML!

This simulates the Grading effect as well. Crosstalk is not yet implemented, due to lack of data.

Example Cas A, center

50 ks Resolve with Gate Valve

1 ks X-IFU with Thick Be Filter

Example Cas A, center

50 ks Resolve with Gate Valve

1 ks X-IFU with Thick Be Filter

Summary: The X-IFU with SIXTE

- 1504 TES pixels in a hexagonal array
- 4' FoV
- higher flux (>10mCrab) reduces energy resolution and throughput
- science simulations with sixtesim, taking the most important TES physics effects into account
- physics input to the simulation pipeline by tessim/xifusim