
Good Programming Practices

Thomas Dauser, Maximilian Lorenz, Jakob Stierhof, Philipp Weber

@ Remeis Zoom Meeting, 11.12.2020

Agenda

● Why does “Good Code” matter?
● Basic Concepts towards writing “Good Code”
● Basic Concepts of Software/Script Design
● Literature and further reading

● Real-life Examples
○ code snippets
○ the isisscripts
○ gitlab & documentation

● Discussion

Purpose of the workshop

● Convince you that Good Code
○ … is important, also as Astrophysicists
○ … is (very likely) not what you are currently producing
○ … is hard to write and needs practice
○ … can be written and maintained by a simple set of standards and rules

● Give you a basic understanding on how to write Better Code
● Motivate you that it is worth spending time on producing it Good Code
● Discuss the applicability of the concepts to our problems/projects

We will NOT discuss implementation / programming language specific solutions

Bad Code

Robert C. Martin:

“Have you ever been significantly impeded by bad code? If you are a
programmer of any experience then you’ve felt this impediment many
times. Indeed, we have a name for it. We call it wading. We wade
through bad code. We slog through a morass of tangled brambles and
hidden pitfalls. We struggle to find our way, hoping for some hint,
some clue, of what is going on; but all we see is more and more
senseless code.

Of course you have been impeded by bad code. So then—why
did you write it?”

Bad Code: The Total Cost of Owning a Mess

Robert C. Martin:

“Have you ever waded through a mess so
grave that it took weeks to do what should
have taken hours? Have you seen what
should have been a one-line change, made
instead in hundreds of different modules?
[...] Why does good code rot so quickly into
bad code?

But the fault [...] is not in our stars, but in
ourselves. We are unprofessional.”

Why does “Good Code” matter?

We are Astrophysicists!

So, as we (most of us) do not write production code, does it
actually matter to produce clean code?

Questions:
- What do you think?
- What are the problems you solve with scripts / programs?
- Have you been stuck in an old code, not understanding what it does any more?

Programming in Science

Merali, Nature, 2010

● programming has become a fundamental tool for
science

● it is a craftsmanship that needs to be studied
and requires practice: simply knowing the syntax
is not enough

if you are already spending time on it, you might as well
do it well (and save yourself and others a lot of trouble)

big promise: it will be more fun!

Importance of Clean Code

● The ONLY way to keep your code maintainable!
● Problems become easier to solve: trying to write clean code is a first step to

solve the actual problem
● Speed up your research

○ make your own code re-usable (already applies to any plotting)
○ will save countless hours of debugging and frustration

● making code accessible and sharing it publicly will encourage others to use it
and not waste their time reinventing the wheel (isisscripts)

Importance of Clean Code for Scripting

● applies to everything larger than a few lines of code
● applies to any data analysis script you would like to understand weeks,

months, years (?) later
● applies to any script someone else might eventually read

… now you might ask: “does this apply to me, if I’m only writing data analysis script?”

➔ a data analysis script is also a record/journal of how you came up with the
results

➔ clean code does not require a complex usage of classes, hierarchies

What are the main aspects of writing
Clean Code?

A word of Caution...

the following set of guidelines

● are not meant to be followed religiously
● might only partly apply to your specific problem, but are a good starting point

to improve the quality of any script/code
● requires practice and critical reflection/discussions to improve

A word of advice: have a look at the literature and read it. Then write code, read
some more and improve your code. Talk to your colleges. Iterate …

Clean Code: Simplified Summary

1. contains no duplication

2. minimizes the complexity (length) and number of functions/classes

3. reveals its full intention when being read

We are Authors!

● Most of the time programming is spend reading (and thinking)
● Only 1/10 is spent actually writing

So, wouldn’t making it easier to read actually make it easier to write?

Consider programming like writing literature. Simply putting words on a sheet of
paper is simple, but writing a story people enjoy reading takes effort.

Naming

variable d; // elapsed time in days

// ... some code //

if (d > 284) {

 do_something_cool();

}

variable daysSinceLaunch;

// ... some code //

variable day_erass1_complete = 284;

if (daysSinceLaunch > day_erass1_complete) {

 do_something_cool();

}

Naming

● Use Intention-Revealing Names

 variable daysSinceLaunch;

 instead of

variable d; % days since launch

● Avoid disinformation: the name suggests one thing, but the function does

something else

Naming

● Make Meaningful Distinctions
 getLaunchDate();

getLaunchDays();

retrieveLaunchDay(); %%% ???????

● Add meaningful context
 getLaunchDate();

setLaunchDate();

Naming

Use Pronounceable and Searchable Names

● do not just use short names

variable a, a1, a_new, …

define b(){ … };

● prefer longer, understandable names
variable generation_date; instead of variable genymdhms;

Naming: Summary

➔ Proper naming takes time and effort, but pays off

➔ Finding a fitting name helps thinking about what you want to do

➔ Requires constant changes to the code (refactoring)

need to be able to constantly update your code → use Search-and-Replace
or a proper IDE to easily rename variables

Comments

What is the purpose of a comment?

➔ To explain the purpose of code if the code cannot explain its own purpose.
➔ Every use of a comment represents a failure.
➔ Write code that explains itself.
➔ Comment as last resort.

Comments

● Comments lie
● Not always, not intentionally.
● As code changes and evolves, comments silently rot and migrate.
● Inaccurate comments are worse than no comments at all.

Typical situation with confusing, messy code you hardly understand yourself:
“Ooh, I’d better comment that” → “No! You better clean it!”

Comments

● Explain yourself in code
// Check to see if the employee is eligible for full benefits
if ((employee.flags & HOURLY_FLAG) && (employee.age > 65))

if (employee.isEligibleForFullBenefits())

Good Comments

● Legal comments (copyright, authorship statements, etc.)
● Informative comments

// format matched kk:mm:ss EEE, MMM dd, yyyy
Pattern timeMatcher = Pattern.compile(
 "\\d*:\\d*:\\d* \\w*, \\w* \\d*, \\d*");

● Explanation of intent (why, not what)

● TODO Comments (OK during development, delete before check-in)
● Documentation comments (doxygen, Javadoc, etc. - but don’t overdo it)

// Loop backwards through all elements (they should be processed
// chronologically).

// Need a stable sort (the performance does not matter).

Bad Comments

● Redundant comments and noise comments
// Initialize the days since the launch
int daysSinceLaunch = 0;

// Increment daysSinceLaunch
daysSinceLaunch++;

● Journal comments (use version control systems)
● Closing Brace Comments

 } // END of loop over all neighbors
} // END of loop over all elements

● Commented-out code (should never be checked-in!)
● Nonlocal information (comment should only describe code it appears near)

Comments

“Good code is self-documenting.”

“Don’t comment the code, clean the code.”

● Should be your goal.
● Of course not always possible in real world.
● Only add a comment if you can’t make the code simpler.
● Easy action: Replace a commented code piece with a function.

Don’t repeat yourself (DRY)

● try not do have any code repetition
● goal: if you have to change one thing, you only have to change it in one

place
● should be applied at all scales: variables, functions, classes, scripts, … (did

you ever manage to end up with two similar but not identical scripts?)

strategy: if possible, publish your code and re-use existing code that is known to
work (isisscripts)

Functions (and Classes)

● keep them short
● keep them even shorter!

Naming:
● Classes / Objects: use nouns

Satellite, Detector, Dataset, Plot

● Functions: use verbs (they do something)
getLaunchDate(); …

Functions (and Classes)

1. Should do one thing only (and do it well)

2. Should have no side effects (already conflicts with rule 1)

3. Should be short and even shorter

Do NOT create a God-Function

or a God-SLang/ISIS script

Scopes: Local and Global Variables

● define variables as close as possible to where you need them

● use local variables (only defined inside the function)

● avoid using global variables!

SLang/isis: use namespaces

Variables are visible in the scope (e.g., function) where they are defined

Example: variables/simple_function_bare.sl

Data Structures and Classes

Classes/Objects

hide data behind abstractions and
expose functions that operate on
this data

variable Plot = xfig_plot_new();

Data Structures

expose their data and have no
meaningful functions

variable data_struct =

 get_data_counts(1);

understand the language you are using

Basic Software Development:

The (slightly) Bigger Structure

Basic Software Engineering Principles

1. Modularity
2. Documentation
3. Testing
4. Version-Control

https://astrobites.org/2020/10/23/towards-better-research-code-and-software/

Modularity

Making a code modular means dividing it into small functional units,
encapsulating complexity and removing duplication:

1. It’s much more human readable
2. The code can be fixed easily when it breaks (otherwise we will have to make

the corrections to every copy of the code)
3. The code can be easily used in another project
4.

https://astrobites.org/2020/10/23/towards-better-research-code-and-software/

https://astrobites.org/2020/10/23/towards-better-research-code-and-software/

Documentation

1. enables other people to use and change (and potentially improve) your code

2. ensures you write code you understand yourself

see isisscripts example

Version Control

● we have git and gitlab installed
● use it, there is no excuse ...

Re-visiting code: the “Boy Scout Rule”

● “leave the camp cleaner than you found it”

● improve the code every time you look at it, even if it is just a small change
(e.g., re-name a variable, add some documentation; isisscripts!)

code would get better over time and not rot, how good is this??

Testing

could spend hours talking about it...

idea: usually when scripting/programming you have to write some sort of tests to
verify the functionality.

➔ Why not write it explicitly and run it (automatically)?

Linting and IDEs

Static Code Analysis: Tools will discover problems with your code, partly even
while you type (unfortunately not available for SLang)

IDEs containing these tools (and much more) automatically:

● python: pycharm
● C/C++: CLion
● ...

Linting and IDEs

Last words of advice: Use the right tools for the right problems

● before starting any new (even little) task, take some time to think about the
approach to a problem and the available toolset you have

● consider looking in the isisscripts (or on the web for other languages), part of
your problem might have already been solved

○ When doing so, improve the code and add better help, while you’re at it

● larger projects: choose the programming language(s) wisely!

○ most languages might solve your problem, but there is likely one which is best suited

Last words of advice: Learning

● get advice: ask your colleagues (discuss tools,
usage of programming language, good
practices similar to)

● look at the code of masters

○ how is code in my language X written by knowledgeable
coders / my experienced colleague

● Retire old ideas and learn new ones
○ Languages change, concepts change
○ Things you learnt some years ago might be considered

bad practice today
○ Try to adjust yourself to new standards (linters can help)

Summary: Clean Code

1. contains no duplication

2. minimizes the complexity (length) and number of functions/classes

3. reveals its full intention when being read

● Naming: Intention Revealing
● Functions: Single Responsibility → should do one thing and be short
● Comments: used sparsely, a necessary evil

Read: “Clean Code” by Robert C. Martin

Summary: The Bigger Picture

1. be prepared for change: invest time to adapt your code/script to changes
(otherwise it will rot and be unusable)

2. documentation (for others and yourself)

3. collaborate: share your code, use existing functions, and discuss

4. programming develops: have an open mind for changes

Programming has become THE most important tool for us

➔ Spend time to study and improve your skills

➔ Well maintained scripts/code increase the science output

Quotes

Martin Fowler: “Any fool can write code that a computer can understand. Good
programmers write code that humans can understand.”

Tim Peters, The Zen of Python: “Beautiful is better than ugly. Explicit is better
than implicit. Simple is better than complex. Complex is better than
complicated. Flat is better than nested. Sparse is better than dense. Readability
counts.“

Brian W. Kernighan: “Everyone knows that debugging is twice as hard as
writing a program in the first place. So if you're as clever as you can be when
you write it, how will you ever debug it?”

The Perl programming motto (modern version): “There is more than one way to
do it -- but sometimes consistency is not a bad thing either.”

Literature

● Short, nice write-up of basic concepts:
https://www.makeuseof.com/tag/10-tips-writing-cleaner-better-code/

● Clean Code: A Handbook of Agile Software
Craftsmanship (Robert C. Martin)

● Youtube:
○ Breaking dependencies with SOLID

https://www.youtube.com/watch?v=Ntraj80qN2k
○ …
○ Basically every talk by Kevlin Henney

● Books on the language you use
● NOT stackoverflow

https://www.makeuseof.com/tag/10-tips-writing-cleaner-better-code/
https://www.youtube.com/watch?v=Ntraj80qN2k

Discussion: Tribal Knowledge

● Undocumented things which are just ‘common knowledge’
○ Sign for incredibly bad documentation
○ See isisscripts: You don’t know about a lot of undocumented functions, unless somebody told

you about them
○ ⇒ slxfig

Example: The Isisscripts

● General use functions
● Modularity
● Documentation
● (Tests)

See presentation by Jakob

Example: Some Code Snippets

● script/plot_paper_spectra.sl

