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Zusammenfassung

In dieser Arbeit haben wir ein vortrainiertes Convolutional Neural Net-
work, das auf der VGG16 Architektur basiert, genutzt. Das Netzwerk wurde
angepasst um Bubbles und Bubble-ähnliche Strukturen im Interstellaren Me-
dium der Großen Magellanschen Wolke (GMW) und um Fanaroff-Reiley I
(FRI) Galaxien anhand ihrer Morphologie zu detektieren.

Zur Detektion von Bubble-ähnlichen Strukturen wurde das Netzwerk mit
einem Set von lediglich 83 dieser Strukturen trainiert, die manuell aus den
Daten des Southern H-Alpha Sky Survey Atlas (SHASSA) selektiert wurden.

Das so trainierte Netzwerk wurde auf Beobachtungsdaten von SPITZER
angewendet, um weitere Bubble-ähnliche Strukturen zu identifizieren, die dann
als erweitertes Training-set verwendet wurden.

Das finale Model des Netzwerks wurde auf schmalbandige Bilder der GMW
aus der Magellanic Cloud Emission Line Survey (MCELS) angewendet und
fand 456 Bubble-ähnliche Strukturen in Hα, 288 in [OIII] und 267 in [SII].

Die Verteilung von Bubbles wurde mit der Verteilung von massereichen
Sternen aus dem Bonanos et al. (2009) Katalog, und mit HI Shells und Su-
pershells, Assoziationen, Sternhaufen und Emissionsnebeln aus dem allgemei-
nen Katalog von ausgedehnten Objekten in der GMW von Bica et al. (2008)
verglichen. Die Korrelation der Verteilungen wurde mithilfe von Ripleys K
Funktion (Ripley 1981) analysiert.

Zusätzlich wurde ein weiteres Convolutional Neuronal Network mit 340
FRI Objekten trainiert, die manuell in den Pilot-Beobachtungen des neuen
Australian Square Kilometre Array Pathfinder (ASKAP) gefunden wurden.
Das so angepasste Netzwerk wurde auf ASKAP Daten der GMW angewendet
und fand insgesamt 186 FRI Kandidaten. Ein großer Teil der detektierten
FRI Objekte konnte mit bereits bekannten extragalaktischen Objekten und
Radioquellen assoziiert werden.

Ein vortrainiertes Netzwerk kann, mit Hilfe von Data Augmentation, be-
reits mit wenig initialen Trainingsdaten zu einem ersten Model führen. Dieses
Model kann auf unbekannte Daten angewendet werden, um Kandidaten für die
gesuchten Objekte zu identifizeren, die anschließend manuell verifiziert wer-
den. Korrekt klassifizerte Objekte können dann als erweitertes Trainingset
verwendet werden. Dieser Prozess kann solange wiederholt werden, bis die
Leistung des Netzwerks zufriedenstellend ist.

In beiden Fällen haben wir mit sehr wenigen Trainingsdaten begonnen.
Diese Arbeit zeigt, dass es selbst mit dieser geringen Zahl an Daten möglich
ist, ein gut funktionierendes Convolutional Neural Network zu erzeugen.
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Abstract

In this work we used a pretrained convolutional neural network based
on the VGG16 network to detect bubbles and bubble-like structures in the
interstellar medium of the Large Magellanic Cloud (LMC), as well as Fanaroff-
Riley I (FRI) galaxies by their morphology.

For the detection of bubble-like structures a small training set of only 83
bubble-like structures was manually selected from data from the Southern
H-Alpha Sky Survey Atlas (SHASSA). The trained network was applied to
SPITZER data, and identified additional bubble-like structures that served
as additional training data. The final model of the network was applied to
narrow-band images from the LMC from the Magellanic Cloud Emission Line
Survey (MCELS) and found 456 bubble-like structures in Hα, 288 in [OIII]
and 267 in [SII]. The distribution of bubbles was compared to the distribu-
tion of massive stars from the Bonanos et al. (2009) catalog, HI shells and
supershells, associations, star clusters, and emission nebulae from the general
catalog of extended objects in the LMC by Bica et al. (2008). The correlation
between the distributions was studied using Ripleys K function. A signifi-
cant correlation was found between bubbles and massive stars, and between
bubbles and emission nebulae.

Additionally a neural network based on the VGG16 was trained on 340
manually labeled FRI objects from the new Australian Square Kilometre Ar-
ray Pathfinder (ASKAP) pilot survey of the Emu sky region. The trained
network was applied to ASKAP data from the LMC and found a total of 186
FRI objects. A huge amount of the detected FRI galaxies can be associated
to already known extragalactic objects and radio sources.

A pretrained network and data augmentation allows to generate a first
model which, applied to new data, yields additional new training data. After
manually evaluating this additional training data the network can be trained
again on the larger set. This can be repeated until the performance of the
network is satisfying.

For both cases we started with very few training samples. This study
shows, that even with such a small amount of initial training data it is possible
to create a well performing convolutional neural network.
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1 Motivation

In 2019 the Space Telescope Science Institute (STScI) in conjunction with the Uni-
versity of Hawai’i Institute for Astronomy published over 1.6 petabytes of data in
one batch, which was gathered in a period of four years as part of the largest digital
sky survey Pan-STARRS - the Panoramic Survey Telescope and Rapid Response
System. This is equivalent to 30.000 times the total text content on Wikipedia
or two billion selfies NASA & ESA (2019). It is an tremendously huge amount of
images with an incredible amount of information stored in it. Yet it is only one
of many ongoing surveys of the sky and only a small part of the already gathered
information from previous observations. The data volume of entire surveys from a
decade ago can be nowadays obtained in a single night and the capability of the
observation equipment is increasing rapidly. Data volumes of this size obviously
can not be handled manually by individual scientists anymore and, therefore, mod-
ern Astronomy requires more and more sophisticated automatized data analysis
methods. A rough roundup of the increasing gathered data volume from different
sky surveys is depicted in Table 1. For a variety of scientific questions this im-

Survey Approximate Data Volume
DPOSS (The Palomar Digital Sky Survey) 3 TB
2MASS (The Two Micron All-Sky Survey) 10 TB
GBT (Green Bank Telescope) 20 PB
GALEX (The Galaxy Evolution Explorer) 30 TB
SDSS (The Sloan Digital Sky Survey) 40 TB
SkyMapper Southern Sky Survey 500 TB
PanSTARRS ≈ 40 PB expected
LSST (The Large Synoptic Survey Telescope) ≈ 200 PB expected
SKA (The Square Kilometer Array) ≈ 4.6 EB expected

Table 1: Estimated Data Volume of different Sky Surveys Zhang & Zhao (2015).

mensely huge amount of data is actually not a problem but rather an advantage,
since scientists can focus on specific information of the survey. On the other hand,
if someone is ,e.g., interested in the amount of some specific recurring objects in the
sky one would have to look through all these images. This is obviously not feasible.
There were approaches like, for example, delegating this problem to a citizen science
project where many non-scientific people voluntarily analyse images by comparing
the images to a given exemplary data-set. A more efficient and maybe more reliable
option is the usage of image recognition algorithms. In the recent years the field of
machine learning and deep learning in particular developed rapidly. In this work,
a convolutional neural network based on the famous VGG16 by Karen Simonyan
and Andrew Zisserman is used in order to automatize the search for bubbles and
bubble-like structures within astronomical survey data, especially in optical data
from the Large Magellanic Cloud.
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2 Deep Learning Introduction

2.1 Neural Networks

The above mentioned citizen science projects are projects where amateur scientists
are asked to evaluate given data like ,e.g., images of regions in the sky based on a
set of criteria that were predefined by professionals. An exemplary task for such
a project is to identify structures within images that are similar to a given set of
samples. Imagine you are given images (Figure 1a) as examples of the objects to
search for and are asked to identify this kind of objects in a wider region of the sky
as it is shown in Figure 1b.

You most certainly will identify at least the marked areas and maybe also more.
You will also probably be able to order the found areas by their likelihood with
your training set. Even though this task seems straightforward for humans this
simplicity is compelling. Trying to put your decision for this likelihood in words
and, in addition to that, write it into an algorithm should reveal that it is not that
easy after all. Of course, the obvious property is the circular shape but the extension
is unique for every example, the borderline is hard to generalize, and every example
is unique in itself.

While there are some specific tasks computers are ultimately more efficient to do,
like e.g. linear algebra tasks on your calculator or most other linear well defined
problems, the human brain has its advantages in its incredible versatility. The
primary visual cortex contains more than 140 million neurons allowing you to gather
more than 10 million bits of information per second and filter them for relevant
information in a heartbeat Markowsky (2017). The primary idea of Artificial Neural
Networks is to recreate this competence in an algorithm. Just like the human brain,
artificial neural networks also consists of billions of connected neurons. Of course,
the nature of artificial and biological neurons differ, yet their working principle is
strongly related.

2.1.1 The Perceptron

The first kind of artificial neuron was already introduced in the 1950s and 1960s by
Frank Rosenblatt. A very simple illustration of a perceptron is depicted in Figure
2a. The perceptron takes a number of scalar inputs and has a binary output. In
this case there are three input variables to this perceptron. Each of them can be
imagined as a decision criterion that contributes differently to the final result of the
neuron. Applied to our citizen science example these inputs could be:

1. ”Is it brighter than the surrounding?”
2. ”Is it pancake shaped?”
3. ”Is it toroidal shaped?”

You could assume that criterion 2 and 3 exclude each other but if you look closely

7



2.1 Neural Networks

(a)

(b)

Figure 1: Exemplary task for a citizen science project: Understand the concept of
the objects in the left image (a) and transfer that concept in order to find similar-
looking regions in a wider area of the sky like in the right image (b).

8



2.1 Neural Networks

(a)

(b)

Figure 2: An example for a Rosenblatt Perceptron and its decision making process
(a) and a simple neural network where every neuron of every layer in the network
is connected with all neurons in the next layer (b). Each connection has a certain
weight and every neuron an associated bias. This network allows to create complex
decision criteria. Inputs to that network could be the pixel values of an image.
These values are also connected to every neuron of the next layer. Note that for a
better presentability not all connections are drawn.

the transition is actually diffuse. The output of the perceptron would be the clas-
sification if some object is a bubble or bubble-like structure or not. Imagine you
could choose a value xi between zero and one in order to evaluate a given image
by these questions. Each of these values is multiplied with an individual weight
wi defining the importance of the criterion. The sum of the weighted criteria is
compared to a offset bias b. If this bias is exceeded the neuron outputs High/One,
otherwise Low/Zero. Essentially, the bias is a measure of how easy it is to activate
the neuron.

y =

{
1 if

∑3
i=0 ωixi > b

0 otherwise
(1)

So, for example, if an object is by far brighter than its surrounding you can assign
x1 = 0.9 but on the other hand it is only slightly toroidal or pancake shaped so
the values for x2 = 0.1 and x3 = 0.2 are rather small. The decision if something
is considered a bubble or bubble-like is then dependant on how each of these cri-
teria is weighted and what threshold has to be exceeded. If the importance of the
toroidal shape is high but it should also contrast to the surrounding the correspond-
ing weights have to be high, e.g. w1 = 10 and w3 = 8, while the pancake shape is
not so important w2 = 2. For a threshold of b = 12 the perceptron will decide that
the given object is not a bubble because: 10 · 0.9 + 2 · 0.1 + 8 · 0.2 = 10.8 < 12.
However, if the object had been slightly more toroidal or pancake-like it would have
been classified as bubble. You can see that while the inputs xi for each individual
image won’t change we have free parameters wi and b, which we can adjust in order
to define our decision-making. Of course, this exemplary decision is already at a
high level since you need an evaluation of its shape and brightness. Yet it illustrates
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2.1 Neural Networks

how a perceptron weighs up different kind of evidences in order to make decisions.

2.1.2 Fully Connected Layers

Actually the upper example for a perceptron is only the last high-level step of a
chain of such decision-making perceptrons as it can be seen in Figure 2b. Any input
is connected with every neuron of the first layer and every neuron of the first layer
is connected to every neuron of the next layer and so on. Each connection has a
certain weight and every neuron is associated with a bias. This ultimately allows for
an increasing complex and abstract decision-making with every layer. These fully
connected layers are also called dense layers.

For arbitrarily many neurons every layer can be written as a vector product

y =

{
1 if ~ω~x+ b > 0

0 otherwise
(2)

and in order to ease further computations we changed a little detail to our threshold
b −→ −b. Since this is only an arbitrary value we can switch it’s sign without any
change to the concept. So far we have only discussed networks with one final result
y. However, if we have more neurons in our last layer the network has that many
outputs and y −→ ~y the output becomes a vector with that many entries.

2.1.3 Activation function

In order to discuss the learning part of a neural network we have to add an important
detail to our neuron.

As already mentioned in Section 2.1.1 we have weights and biases as free parameters
which we can adjust in order to define our decision-making. We can evaluate their
impact on the final decision of the network by varying them slightly. We then will
need to see a small but significant change in the output. For example if the network
mistakenly classifies an object as bubble even though it is not bright or circular
shaped enough, we can change the weights and biases again and again until the
output of the networks converges towards the desired output. If we stick with the
Rosenblatt perceptron this is not possible. The perceptron only has a binary output
and any change to the weights or biases will either result in no change at all or
make the neuron flip from one state to the other. It is impossible to tell if you are
coming closer to the desired output or if you are moving away from it further and
further. So what we need is a continuous slope in the output for the neuron - at
least in the part that we want to evaluate. The function which defines the activation
condition of the neuron is called the activation function. So far we essentially used
the Heaviside function (Figure 3a):

Θ(z) =

{
1 if z > 0

0 otherwise
(3)

10



2.1 Neural Networks

(a) Heaviside function (b) Sigmoid function (c) ReLU function

Figure 3: Different activation functions responsible for the decision making of every
neuron

The first calculation of the neuron is

z = ~ω~x+ b (4)

This is then evaluated by the activation function in order to decide if the neuron
fires. Over time many different activation functions have been developed. We will
only discuss those, which are the most important to this work.

Sigmoid activation
As the name already hints the sigmoid activation function is the sigmoid function
(Figure 3b).

σ(z) =
1

1 + e−z
(5)

It is essentially a smoothed out version of the Heaviside function. This smoothness
allows to see a change in the output for any small changes to the weights and biases.
However, for very large or very small values of z the sigmoid function converges
against zero or one which can result to the so-called vanishing gradient problem.
For these values small changes to z actually result in extremely small changes in the
output which happen to be below the machine precision. Nevertheless, the sigmoid
was used for a long time as the default activation function.

Rectified linear unit activation
To overcome the vanishing gradient problem the Rectified Linear Unit or ReLU is
often used (Figure 3c)

ReLU(z) =

{
z if z > 0

0 otherwise
(6)

This function essentially combines two important properties of an activation func-
tion: It is partially linear and therefore very easy to evaluate for changes to our free
parameters. But it also has a non-linearity at zero, which allows decision making.
The function is also not limited by zero and one, which avoids the saturation of the
function as it happens with the sigmoid. The ReLU is nowadays the most commonly
used activation function.
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2.1 Neural Networks

2.1.4 Classification

Depending on the task of the neural network we have different options to implement
the final classification of our input. In our example the classification is binary -
either it is a bubble or it is not. This corresponds to a sigmoid activation function
in our last layer. However, there are also multi-label tasks where the network should
learn to classify the input to multiple categories. In this case our final activation
function is the softmax function:

Softmax
The softmax function essentially rescales an input vector ~x:

ŷk =
exp (xk)∑K
j=1 exp (xj)

(7)

This essentially introduces a normalized probability distribution. For every output
neuron the output value is normalized using all other parallel output neuron values.

2.1.5 Loss-function

A non-binary activation function allows us to evaluate the impact of a change to
the weights and biases of a neuron on the output of the neuron. But we still need a
way to evaluate if our neuron output is actually coming closer to the desired result.
Therefore we need to introduce a Loss-function

L(~x, ~y, ~ω, b) =
1

2
||f(~x, ~ω, b)− ~y||22 (8)

Here ~y is the desired output for the input ~x. The function f(~x, ~ω, b) represents the
neural network and has a certain output dependant on its weights, biases and the
input. The Loss is then defined as the square of the absolute value of the difference
between desired output and actual output.

For a neural network with arbitrarily many layers this function is of course depending
on all weights and biases of the network

L(~x, ~y, ~ω, b) −→ L(~x, ~y, ~ω1, ~ω2, ~ω3, ..., b1, b2, b3, ...)

In order to improve the outcome of our network we want to minimize the outcome
of the Loss function under the alternation of the weights and biases of the network.

For multi-label problems we have to use a different loss function. In this case the
cross-entropy loss is used

L(~x, ~y, ~ω, b) = −log

(
exp (xk(~ω, b))∑K
j=1 exp (xj(~ω, b))

)
|yk=1 (9)
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2.1 Neural Networks

If the amount of training data is unbalanced between the labels we can introduce
an additional weight that is applied to the loss for the different labels. For example
if there are two times more images for one class than for the other class the loss also
has to be doubled. On the other hand we can favor a certain class by weighting the
loss for this class higher. The network then trains to predict this class easier.

2.1.6 Training

Without further assumptions for any activation function σ, the impact of a change
to the free parameters of a network can be calculated. The output of a single neuron
is given by

σ = σ(~x, ~ω, b) (10)

Altering the weights ~ω and the biases b results in a change of the output. The total
derivative is

∆σ(~x, ~ω, b) =
∑
i

δσ(~x, ~ω, b)

δ ~ωi
∆ωi +

δσ(~x, ~ω, b)

δb
∆b (11)

which is a linear function of the changes ∆ωi and ∆b.

For multiple layers of neurons the input of a neuron of the layer i is actually the
output from different previous neurons and therefore ~x −→ σ(~x, ~ωi−1, bi−1) can be
repeatedly applied until the first layer is reached and ~x is the input vector.

The last step of the calculation is the Loss-function. So what we are actually evalu-
ating is the gradient of the Loss-function with respect to the weights and the biases
of our network. For simplicity ω and b represent all existing weights and biases
inside the network with arbitrary many layers. When we know this gradient we can
update our weights and biases in a way that will reduce the Loss:

(ωk+1, bk+1) = (ωk, bk)− η∇ω,bL(~x, ~y, ~ω, b) (12)

with ∇ω,b = ( δ
δω1
, ..., δ

δωn
, δ
δb1
, ..., δ

δbn
). This is iterated until the gradient converges to

zero. η is also called the learning rate. It defines how strong the weights are adjusted
along the gradient. Note that the loss function is actually a chained function of all
layers of the network, e.g., L(Layeri(Layeri−1(Layeri−2(...)))) . This essentially can
be imagined as a multidimensional gradient descent depicted exemplary in Figure 4
for a Loss-function that is only dependent on two weights. For a real neural network
this gradient descent would happen in k-dimensions with k being the amount of free
parameters - the weights and biases - of the network. Since we can not evaluate the
loss function for every set of parameters we need to stick to a few certain values
determined by the training data. Calculating the gradient descent in several steps
is also called a stochastic gradient descent. The update of these parameters is not
done for every single sample but for a particular amount of samples given by the
batch size. This allows to include a variety of different features into the calculation
of the loss. When every sample of the training data were used once to train the
network one epoch of the data was processed.
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2.1 Neural Networks

Figure 4: Gradient descent in two dimensions. The Loss function depends only on
two weights ω1 and ω2. The plotted Loss function is actually not known like depicted
here but is rather evaluated for every training step at the position of the black arrow-
origin. The gradient then allows us to update the weights along the direction that
the Loss function decreases most - along the black arrows. This procedure is iterated
until the gradient converges to zero.

In general it can not be guaranteed that the stochastic gradient descent finds the
global minimum. However, since the dimensionality is very high, it is assumed that
there are many local minima which result in a similar small Loss. The learning rate
has a big impact on the gradient descent. If it is chosen too high the change of
weights can overshoot, while a too small learning rate will be very inefficient. There
are different approaches to optimize the learning rate, e.g., high in the beginning,
small the closer it gets to a minimum. The used optimizer in this work is the
RMSprob.

Optimizer - RMSprop
When updating the weights of the network it occurs that some features are activated
very infrequently while others are updated very often. In order to account for
that it is beneficial to introduce individual learning rates for every parameter in
the network. This can be implemented by updating the weights according to the
following equations with the element-wise multiplication � and the gradient g(k)

g(k) = ∇L( ~ω(k)) (13)

r(k) = ρr(k−1) + (1− ρ)(g(k) � g(k)) (14)

ω(k+1) = ω(k) − η√
~r(k) + η

� g(k) (15)

With the value r(k) we essentially calculate the weighted mean square of the gradient
from the last iteration and the current iteration. This process averages the gradients
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2.1 Neural Networks

that are used to update our weights over successive mini-batches. With this value
we finally can update our weights. This optimization of the learning process is called
RMSProb Hinton (n.d.).

2.1.7 Dropout Layer

While training it happens that some connections between layers becoming more
and more important than others. This means the classification concentrates on few
features which can result in the problem that the network does not generalize to the
problem very well. To avoid this dropout layers can be used while training. They
randomly block connections in the network to force the feature learning to distribute
more over all connections. For normal operation the dropout layer is deactivated.

2.1.8 Data Augmentation

For many problems that are approached with self learning algorithms, the amount of
data that is needed to train a network efficiently is actually the limitation. One very
useful method to approach this problem is data augmentation. All samples that are
used as training data can be altered slightly to create additional training data. For
example you could introduce a small amount of noise to the image and still expect
the network to recognize it just like the original one. Of course it is mandatory that
the augmented object is still recognizable. The kind of data augmentation therefor
is very dependant on the problem. While the rotation of our bubbles or bubble-like
structures does not alter the concept of the object, a rotation of a cat is problem-
atic. In the end it is still a cat but the network also learns repeating properties
like the spatial orientation or location. If these properties are unwanted features
because the object is actually spatially invariant, the augmentation of the object to
different spatial properties will teach the network to disregard this property. In the
case of bubbles and bubble-like structures we can use the following augmentation
possibilities:

Rotation Range The rotation range defines the rotation that can be applied for
augmentation. Since bubbles are circular structures they can be rotated at
will.

Width Shift Range The width shift range defines how far the image can be shifted
in width. This is limited by the fact that a too high value would shift the object
out of the image.

Height Shift Range The height shift range defines how far the image can be
shifted in height. This is limited by the fact that a too high value would
shift the object out of the image.

Brightness Range The brightness range defines how strong the brightness of the
image can be scaled. In general we can use this but with caution. A too high
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value would distort the fundamental physical properties and may introduce
new features that are not generalizable.

Zoom Range The zoom range defines the enlargement factor that can be used. A
too high value can enlarge the bubble to a point where the boundaries are not
inside the image anymore. A too small value can shrink the bubble to a point
source.

Horizontal Flip The horizontal flip defines if the image can be mirrored horizon-
tally. In our case this is no problem and does not distort any information.

Vertical Flip The vertical flip defines if the image can be mirrored vertically. In
our case this is no problem and does not distort any information.

2.2 Validation

After the network is trained, it has to be tested for its performance. For a quan-
titative validation it is necessary to use a part of the training data and separate
it. A usual fraction is 20%. These samples are not allowed to be used during the
actual training. When the network is applied to this validation data the outcome
of the network is compared to the actual known labels and the performance can be
calculated.

At some point if the chosen network has a very high capacity there is a chance that
the network starts to internalize the complete set of training data and achieves a very
high performance on the training set. However, the network does not necessarily
generalize to other data. Therefor it is useful to monitor the performance on the
validation set after every epoch. If the performance on the validation set decreases
repeatedly while the performance on the training set increases the training should
be stopped. After this early-stop the weights are then restored to the state with the
best validation performance.

2.3 Convolutional Neural Networks

So far we have only discussed inputs to the neural network as some kind of a vector
which is distributed to every neuron in the first layer. This can also be done with
images. For example you could use an image with 32 × 32 pixels and concatenate
all pixel rows which would result in a 1024 × 1 input vector. For a few problems
this works in general, but it is actually very inefficient. If you take a look on the
examples of our citizen science project in Figure 1a again you can see that the larger
part of each picture is actually black and doesn’t have any impact on the concept
of the object. This means that from our 1024 × 1 input vector only a very small
amount is actually interesting. A way to analyze images with a neural network more
efficient are convolutional neural networks. The concept of convolution for images
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2.3 Convolutional Neural Networks

(a) First convoluted value (b) Second convoluted value

Figure 5: Convolution of an Image. A kernel with given weights is applied to the
image. The values of the pixels within the kernel reach are multiplied with the kernel
weights and summed up while the kernel is walking over the whole image resulting
in a new convoluted image. The increment of the kernel movement is called stride
and is 2× 2 pixels in this example.

is depicted in Figure 5a and was first described by Kunihiko Fukushima in 1980
Fukushima (1980).

The idea is, to analyze correlated pixel-areas. Therefore an arbitrary big kernel is
used, which is essentially an array of weights. This array moves step-by-step over the
whole image. At every position the pixel values are multiplied with the associated
weight of the kernel and all weighted pixels are then summed up. This results in a
new value for one pixel in the convoluted image. Convolution reduces the image size
by 2 · s · bn/2c with kernel size n and stride s which is the increment of the kernel
movement.

For the example in Figure 5 you can see that the kernel has size 2 × 2 with
weights −1, 1, 1, 2 while the image pixels in reach of the current kernel position
are 5.7, 2.4, 3.1, 4.4 . The convoluted value then is e.g.

conv11 = −1 · 5.7 + 1 · 2.4 + 1 · 3.1 + 2 · 4.4 = 8.6

The weights of this kernel can be adjusted and trained and allows the network to
work out different kernels for different features inside of the image. This could be for
example a kernel that scans for perpendicular edges, or curvatures exemplary shown
in Figure 6. Each of these kernels results in a different convoluted image, which is
then essentially a heat map where straight lines or curvatures in the original image
are depicted. This heat map can then be flattened to a one dimensional vector and
fed into a fully connected layer. This layer than has the positional information about
these features in the image as an input. These features do not only have to be spa-
tially distributed. The kernel can have a depth which means not only spatial correla-
tion is calculated but also channel correlation. For an RGB image this would be the
channels red, green and blue and essentially allows to correlate color in the image. A
kernel with size 1×1×3 for example does not regard any spatial correlation but only
color.
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2.4 VGG16

Figure 6: Different ker-
nels for a variety of fea-
tures than can be con-
tained within the image.

Convolution allows us to find correlated pixel-areas very
efficiently. The weight and the size of the kernel define
the way of this correlation. The common practice is to
use more than 30 kernels at every convolutional layer
but the exact number depends on the task. Applied to
an image 30 kernels would produce a k × k × 30 array
where k is the strided image size.

Max Pooling
Max pooling allows to fuse information of input across

spatial locations and decreases the number of parame-
ters of the network. Similar to the convolution process
a k × k shaped area moves over the array but instead of
convoluting this area with a kernel simply the maximum
value in the area is propagated. For the above example
(Figure 5a) the propagated value would be 5.7. Typical choices are 2 × 2 or 3 × 3
neighborhoods with a striding equal to the neighborhood size.

2.4 VGG16

A very important example for convolutional neural networks is the VGG16 pro-
posed by K. Simonyan and A. Zisserman from the Visual Geometry Group at the
University of Oxford Simonyan & Zisserman (2014). The model achieves 92.7% test
accuracy on Imagenet.

Imagenet is a data-set of over 14million labeled images in roughly 22.000 categories
Deng et al. (2009). The images were gathered from the world wide web and labeled
by humans. The data-set is used regularly for training neural networks. There are
many challenges about which network architectures can achieve the best accuracy
on this data-set.

The architecture of the VGG16 is shown in Figure 7. For the original network
224 × 224 × 3 RGB images are used as input (RGB means three color channels).
The images are passed through a variety of convolutional layers with 3 × 3 kernel
size which is the smallest kernel possible that still gathers notion of right/left and
up/down. Spatial pooling is realized with five max-pooling layers over a 2× 2 pixel
window with a stride of 2. In the last part of the network three fully connected
layers follow the convolutional part. These layers can be imagined as the evaluation
and decision making part of the network. While the convolutional layers mainly
reduce the original image to its most important features and their spatial position
this information is then used in the fully connected layers in order to decide on a
certain label. The amount of channels of the last layer depends on the application.
For the Imagenet this would be 22.000 channels one for each label. The detailed
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2.4 VGG16

Figure 7: The VGG16 convolutional neural network.

configuration for each layer is listed in Table 8 in the appendix.

A very useful property of the VGG16 is that it can be obtained as an already trained
network online Baraldi (2016). The weights and biases in this network are already
trained on the images of the Imagenet data-set. As we have already discussed in
the previous chapters the first part of the network actually analyses the images on a
very basic level (Figure 6). Successively the deeper layers of the network learn more
and more abstract properties of the image. So even if the images of a certain task
differ from the images in the Imagenet this network can still be very useful. We can
initiate the last part of the network, specifically all fully connected layers, new and
start training the network again on a new data-set. When a new neural network is
created usually all weights and biases are set to a random value. Then the training
begins. However, since the convolutional part of the network is already pretrained
it can find basic features like edges or curvatures in the image without any problem.
The reset fully connected layers than are trained on the new task - in our work to
find bubble like structures.
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3 Astronomical Objects

3.1 Extended bubble-like structures

The first model of interstellar bubbles that explained UV and X-ray observations
of these objects was presented by Weaver et al. (1977). Young massive stars with
strong stellar winds, inside of a homogeneous interstellar medium (ISM), create a
symmetrical, spherical shock front that propagates outwards. This can be seen in
Figure 8 schematically.

The shock front interacts with the interstellar medium, that is surrounding the
star. While the fast stellar winds expands freely in the beginning in region (a), they
encounter an adiabatic stagnation shock at radius R1 as the stellar winds accumulate
in region (b). In the outer parts the ambient interstellar gas in region (d) is shocked
by the expanding bubble at radius R2, as it accumulates an increasing amount
of interstellar gas in region (c). A contact discontinuity at radius RC separate
the shocked stellar wind and the shocked interstellar gas. UV radiation from the
star ionizes the surrounding. When the ionized hydrogen recombines again, the
relaxation of the excited, recombined hydrogen emits photons. This allows to observe
the shock front, and the surrounding medium in the Hα line. Since most gas is
accumulated at the shock front the radiation from the front is largest. Dependant
on the concentration and evolutionary status of the massive star, different shell
structures are produced. These structures have sizes ranging between more than
1000pc to less than 1pc and are differentiated into supergiant shells, superbubbles
and bubbles Chu (2008).

Supergiant shells
Supergiant shells (SGS) have sizes of ≈ 103 pc, dynamic ages of ≈ 107 yr, and
require multiple generations of star formation.

Superbubbles
Superbubbles have sizes of ≈ 102 pc, dynamic ages of ≈ 106 yr and require only one
episode of star formation. They are powered initially by fast stellar winds and later
by supernova explosions.

Bubbles
Bubbles have sizes in the order of ≈ 101 pc and are powered by stellar wind of indi-
vidual massive stars. According to the model, massive stars ionize the surrounding
stellar medium which is visible in the Hα line. However, hardly any known main
sequence O stars are surrounded by shell nebulae. When the environment of the
star has a low density, no strong compression occurs. Therefor no sharp density
contrasts to the complex background are produced Chu (2008).
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3.2 Large Magellanic Cloud

Figure 8: Schematic drawing of the structure of interstellar bubbles. Adopted from
Weaver et al. (1977).

The ongoing stellar winds impinging on the outer shell imparts the out-going mo-
mentum.

For this work we classify something as a bubble only by its morphological structure,
without any further information. This of course is very unspecific, but allows to
search a large area of the sky in different wavelengths for interesting candidates that
can be evaluated further. Including spectral information into the classification is
broached in the outlook (Section 7). The method used in this work is therefore also
not dependant on the size of the bubble shell.

3.2 Large Magellanic Cloud

The Large Magellanic Cloud (LMC) is a galaxy, that is only about 50 kiloparsecs
away from the Milky Way (Pietrzyński et al. 2019). It is one of the closest galaxies to
us. With an inclination of ≈ 33◦ to 45◦ (Westerlund 1997) it is tilted in a way, that
allows to observe it almost face-on. This makes it a perfect object of investigation
for Astronomy. One of these observations is the Magellanic Cloud Emission Survey
- MCELS (Smith et al. 2000) - which is a deep imaging survey of the LMC in the
emission of Hα, [SII] and [OIII] (Section 4.3). The LMC is an actively star-forming
galaxy (Harris & Zaritsky 2009) with a huge population of young massive stars.
1750 of these stars are e.g. listed in a catalog by Bonanos et al. (2009). Since young
massive stars are assumed to be the origin of bubble-like structures, we will compare
their distributions as part of this work. In Figure 9 the Large Magellanic Cloud is
depicted in the optical wavelength regime.
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3.3 Active Galactic Nucleus

Figure 9: The Large Magellanic Cloud. Zdeněk Bardon/ESO (2017)

3.3 Active Galactic Nucleus

An Active Galactic Nucleus (AGN) is the center of a galaxy, that is emitting a huge
amount of radiation in a broad band of wavelengths. The source of this energy is
assumed to be a black hole, with a mass of over 100 million sun masses, that accretes
gas and dust. The binding energy from the accreted material is set free, and partly
radiated while it is falling inwards to the black hole. During the accretion, two jets
of accelerated charged particles are emitted from the galactic center in opposing
directions. These jets can reach length of more than a million light-years. AGNs
can be differentiated by the level of activity, which is mainly given by the accretion
rate and the mass of the source. Dependant on the shape of the radio emission
around the jets, AGNs can be classified into FRI or FRII objects.

3.3.1 FRI and FRII

FRI and FRII galaxies are categories of galaxies that are very luminous at radio
wavelength. These radio loud galaxies show a wide range of structures. The most
common structure are so called lobes. Radio lobes are conically outflows on either
side of the active nucleus of the galaxy that are often fairly symmetrical. They
are formed around the jets that are emitted by the galactic nucleus. Dependant
on the shape of the lobe, the radio galaxies can be differentiated with e.g. the
Fanaroff–Riley classification, which was created by Fanaroff & Riley (1974).

With this classification, radio galaxies with active nuclei can be distinguished based
on their radio luminosity in relation to their immediate surrounding. The luminosity
of FRI sources decreases, as the distance from the central source increases. The
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3.3 Active Galactic Nucleus

(a) FRI
(b) FRII

Figure 10: Exemplary image of a FRI and FRII radio galaxy. In Figure 10a the FRI
radio galaxy 3C31 is depicted (Laing et al. 2008). The lobes are luminous close to
the source and fade out towards the outer part. In Figure 10b the FRII radio galaxy
3C219 is depicted (Clarke et al. 1991). The lobes are faint close to the source and
increase in luminosity towards the outer part.

luminosity of FRII sources however exhibit an increasing luminosity in some distance
of the central source. Both types are depicted in Figure 10. It can be seen that the
lobes, that are emitted from the FRI source, are fading outwards.
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4 Astronomical Observations

4.1 SHASSA

The Southern H-Alpha Sky Survey Atlas (SHASSA) is the result of a digital imaging
survey of Hα emissions from interstellar gas of the Milky Way. The observation was
performed for a declination of δ = +15◦ to −90◦ and each image of the observa-
tion covers 13◦ square at an angular resolution of approximately 0.8′ and reaches a
sensitivity level corresponding to an emission measure of 4 cm−6pc (Gaustad et al.
2001).

4.2 SPITZER

SPITZER is a NASA space telescope that is orbiting the sun while tailing the earth.
It was launched in 2003 and disabled in January 2020. It was observing the universe
in the wavelength regime of 3 to 180 µm. The telescope can perform imaging,
photometry, spectroscopy and spectrophotometry.

GLIMPSE
The Galactic Legacy Infrared Midplane Extraordinaire (GLIMPSE) of Spitzer is a
survey of the inner Milky Way Galaxy. It spans 130 degrees in longitude and 2-4
degrees in latitude and therefore contains a large volume of our galaxy. The survey
was performed using the Spitzer Space Telescope. The observation was performed
in four different infrared wavelengths: 3.6, 4.5, 5.8 and 8 µm which we will call I1,
I2, I3 and I4. Since most bubble like structures are only visible in I3 and I4 for the
most part we only used these images.

4.3 MCELS2

The main task of the Magellanic Cloud Emission Line Survey (MCELS) was the
tracing of ionized gas in the Magellanic Cloud Smith et al. (2000). Therefore three
different emission lines were measured with narrow band filters: The [SII]λ6716Å,
Hα and [OIII]λ5007Å lines. The survey was performed with the 0.6m CTIO Cur-
tis/Schmidt Telescope. It produces individual images of 1.35◦ × 1.35◦ with a reso-
lution of 2.3”/pixel.

4.4 ASKAP

The Australian Square Kilometre Array Pathfinder (ASKAP) is a synthesis radio
telescope array that consists of 36 dish antennas with 12 m diameter each. The
antenna positions are separated by 6km. ASKAP has an excellent imaging capability
and dense UV sampling and due to the relatively small dishes a large field of view.
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ASKAP is sensitive to radio waves with frequencies in the range of 700 to 1800 MHz.
ASKAP became fully operational in February 2019 and is currently conducting pilot
surveys.

4.5 EMU

The Emu in the Sky is a ”constellation” of nebulae in the sky that is visible by eye.
It has a long history in aboriginal culture and is extensively engraved in rocks all
over the Ku-ring-gai Chase National Park in the north of Sydney. The Emu has
became an icon of the Australian SKA Pathfinder (ASKAP) project and was one
of the first pilot observation targets. Within this constellation a huge amount of
radio galaxies was discovered. The observation was performed for a period of 10h
per pointing and 100h total with an observing band of 800-1088 MHz at 944 MHz
centre. The resolution of the observation is 13 × 11 arcsec. It was performed in 8
different observation tiles so far. The tiles and their coordinates are listed in Table
2 adopted from https://confluence.csiro.au/display/askapsst/EMU.

Tile description Ra Dec Observation time Centerfrequency

EMU 2034-60 20:34:17.142 -60:19:18.17 10 hrs 943.491 MHz
EMU 2042-55 20:42:00.000 -55:43:29.41 10 hrs 943.491 MHz
EMU 2115-60 21:15:25.714 -60:19:18.17 10 hrs 943.491 MHz
EMU 2132-51 21:32:43.636 -51:07:6.396 10 hrs 943.491 MHz
EMU 2027-51 20:27:16.363 -51:07:6.396 10 hrs 943.491 MHz
EMU 2118-55 21:18:00.000 -55:43:29.41 10 hrs 943.491 MHz
EMU 2154-55 21:54:00.000 -55:43:29.41 10 hrs 943.491 MHz
EMU 2156-60 21:56:34.285 -60:19:18.17 10 hrs 943.491 MHz

Table 2: Performed tiles of the ASKAP observation in the EMU region.

4.6 Simbad

Simbad is the reference database for identification and bibliography of astronomi-
cal objects. It contains identifications, ‘basic data’, bibliography, and selected ob-
servational measurements for several million astronomical objects. Simbad is de-
veloped and maintained by CDS, Strasbourg. Building the database contents is
achieved with the help of several contributing institutes (Wenger et al. 2000). The
Simbad database has a python application programming interface which allows to
access data automatized. The web presence of the database can be found here
http://simbad.u-strasbg.fr/simbad/.
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5 Extended bubble-like structure detection

The program described in this Section can be downloaded from https://www.

sternwarte.uni-erlangen.de/gitlab/ramsteck/blobscan. It is referred to as
Blobscan in the following.

In order to implement a neural network that is able to detect bubble-like structures
in astronomical survey data a framework had to be implemented for a variety of
associated tasks. Using the framework we were able to obtain a program that is
able to find bubble-like structures automatized. Besides the parameter that were
used for training the network there are some important parameters that vary the
outcome drastically. They are described in Section 5.1.1.

For further instructions regarding the application of the program see Section A.2.4
in the appendix. In the following we talk about positive training data when there
is a bubble in the image and negative if there is no bubble.

5.1 Framework

The framework that we used throughout this work was necessary to execute a variety
of tasks that were associated with training, validation and application of the neural
network. It mainly contains the following methods

Training Data Extraction
Methods to extract training data from labeled astronomical survey areas and to
generate counter examples. Therefore a list of galactic coordinates with a certain
radius is given to the algorithm and the framework allows to extract these areas
from within astronomical data by cutting them out and saving them as an separate
image.

Neural Network Handling
Methods for training and handling the neural network. Therefore the architecture
of the network described in Section 5.2 is build up and the extracted training data
is given to the network. It also allows to save and load the network and the used
parameters as well as the training history of the model.

5.1.1 Bubble Detection

In order to apply the network to a large sky area we need a method to search this sky
area for bubbles. In state of the art object detection algorithms the larger image is
usually divided into sub images by separating regions in the image due to their color
and contrast. This allows to create sub images around areas that usually belong to
the same object. For astronomical images this is very hard to recreate since the
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5.1 Framework

contrast between objects and background vary heavily and we did not implement
different colors e.g. wavelengths into the network.

So we need a different approach. In this work we applied the network to a large
sky region by grating the image of this region into several tiles. Each tile is a small
cutout region of the wider sky area. We then predicted every tile of the image with
the network. Essentially we defined a certain box size e.g. 0.01× 0.01degree2 and a
certain step size e.g. 1/2 of the box size. Then we dissect the complete image into
tiles by walking over the image line by line while the step width along the line and
between lines is the step size. E.g. for a 10× 10 image with 2× 2 box size and 2× 2
step size this would result in 25 boxes - five for each line with five lines. Every box is
then used as an input for our convolutional neural network. The network maps the
input to two different categories - bubble or no-bubble. This method is by far more
inefficient but since a real-time prediction is not necessary and every sky survey in
general only needs to be evaluated once, this is okay. Also it guarantees to include
every possible area in the image.

The method has two downsides though. For once we need to know the size of the
bubbles beforehand in order to choose a suitable box size. It is possible to use
different box sizes and superimpose the results for all box sizes. And by choosing
a too large step size we can face the problem that the network does not predict
reliably. Although we tried to train the network to be spatially invariant this can
not be ensured completely. Objects that are cut off by the border of the box can not
be predicted reliably. A large step size however will result in a higher probability to
only predict cropped objects instead of complete objects. A small step size on the
other hand, results in a way higher computational time.

The box size and the step size are parameters that can be set when using the
Blobscan program.

For this work we used a complete set of box sizes during the training: 0.033, 0.050,
0.067, 0.083, 0.100, 0.133, 0.150, 0.167, 0.200, 0.233 and 0.267 degree. The step size
was chosen to be 1/7 of the box size to make sure that every object in the image is
given to the network in a way that the network is able to identify it as a bubble.

5.1.2 Box Merging

The framework also needs to contain methods for merging predicted boxes with
different sizes (Section 5.1.1) or with the same size that appear multiple times due
to a small step size. Therefore we have to differentiate between two cases: If there
are two boxes close to each other because there is a bubble in the overlap of both
boxes or if there are two boxes close to each other because in each of the non-
overlapping part of the boxes there are objects. So a new box with twice the box
size of the individual boxes is placed in the center of the overlap and this new box
is predicted by the network. If the network predicts a bubble in this new box both
smaller boxes are merged into the bigger one. If it does not predict a bubble both
small boxes are assumed to be independent of each other and kept in the results.
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However, if a small box is already contained in a bigger box it is removed.

5.1.3 Neural Network Validation

In order to evaluate our network, the framework also has to contain methods for
validating the objects that were predicted by the network. Either by comparing the
predicted sky regions with the SIMBAD database or by plotting the object in order
to evaluate it manually. This is described more detailed in Section 5.2.6.

5.2 Network

A V GG16 based convolutional neural network was trained on a small amount of
manually selected bubbles and then applied to new astronomical data in order to
generate more training data. From iteration to iteration the detected bubbles got
more and more blurred out. While we started with well defined pancake-shaped
bubbles with a clear boundary the last generation of the network predicted even
very diffuse toroidal shaped bubble-like structures. This led to a rapid increase
in false positive predicted samples but also allowed us to find a huge variety of
bubble-like structures. In order to evaluate the predicted samples we checked the
sky regions that were predicted as bubble for any known objects in SIMBAD. By
evaluating the ratio between found objects that were already known and the amount
of unknown or unrelated objects we settled with the most promising training status
of the network. This final state of the network was then applied to MCELS2 data
of the Large Magellanic Cloud.

5.2.1 Structure

The network structure is based on the VGG16 architectureSimonyan & Zisserman
(2014). The network is pretrained on Imagenet and can be downloadedBaraldi
(2016) and used inside KerasChollet et al. (2015). Keras is a high-level deep learn-
ing API for python. Since our initial training-set was extremely small for deep
learning standards the use of a pretrained network was advantageous (Section 2.4)
and the major motivation to use the VGG16. As already discussed there, retrain-
ing an already pretrained network benefits from the basic feature extraction in the
first parts of the network that is mostly similar for any kind of image. In direct
comparison to an untrained simple convolutional neural network this approach has
proven to be better. The used pretrained VGG16 network has an 35× 35× 3 input
and accordingly sized further layers. Since it is pretrained on the RGB images from
Imagenet it has intrinsically three channels. The images of bubbles that were used
here only have one channel - the intensity. This means that channel correlation
inside the network can not be exploited but it does not restrict the power of the
network in general. In order to fit to the input of the network the singular channel
of the bubble images was expanded to three channels by copying the values of each
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5.2 Network

Model: ”Blobscan” Input: ”35× 35× 3”

Layer (type) Output Shape Param #

vgg16 (Model) (None, 1, 1, 512) 14714688
flatten (Flatten) (None, 512) 0
fc1 (Dense) (None, 1024) 525312
dropout (Dropout) (None, 1024) 0
prediction (Dense) (None, 2) 2050

Total params: 15,242,050
Trainable params: 7,606,786
Non-trainable params: 7,635,264

Table 3: Architecture of the Blobscan model. The amount of weights and biases
within the layers is called ”Params” here.

pixel.

The fully connected layers of the network were reset and trained only on our training-
set. The final structure is listed in Table 3. The layer vgg16 here represents the
untouched layers from the original VGG16 architecture as it is listed in Table 8
but without the layers flatten, fc1, fc2 and prediction. Instead the newly generated
layers flatten, fc1, dropout and prediction are attached. These are the only trainable
layers. The prediction layer has two outputs - bubble and no-bubble. The layer
”flatten” only takes a multi-dimensional array and concatenates it line by line to a
one-dimensional chain. A 25 × 25 image for example would become a chain of 25
lines with 25 values each - A chain with 625 scalar values. For a detailed explanation
of the fully connected layers see Section 2.1.2. The dropout layer is explained in
Section 2.1.7. The used activation function for classification is the softmax function
and thus the loss function is the categorical cross-entropy. This is explained in detail
in Section 2.1.4 and 2.1.5.

5.2.2 Training Iteration One

Positive Training Data
The first generation of training data was gathered manually. Therefore the as-
tronomical data of the SHASSA observation (Section 4.1) were partially searched
for bubble-like structures and their positions and radii were marked. Due to this
time-intensive procedure only a total of 83 bubble-like structures were marked. The
complete list of this first generation training-data is listed in Table 9 in the appendix
Section A.2.1. The marked regions were cutout and used as positive training set.

Negative Training Data
In order to obtain images that serve as counter example random positions within
the same data that do not overlap with the marked regions were generated. These
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Hyper-parameter Value
Validation fraction 0.2
Epochs 30
Batch size 10
Class Weights 1:12

Table 4: Blobscan training parameters.

counter examples were cutout as well and used as negative training set. This works
almost automatically and in general we could generate an almost arbitrary amount
of counter examples. However, if the amount of negative training data is by far
bigger than the amount of positive training data this leads to the following problem:
In Section 2.1.6 we already discussed how training works. For every training step a
batch of several images is presented to the network and the weights and biases are
adapted. If all of these images happen to be actually negative samples the network
will learn to simply categorize every input as negative independent of the input.
By applying a certain weight to the loss of the underrepresented class this problem
can be reduced to some point. If the weight difference is too high this does not
work reliable anymore. Imagine the network learns many little steps into classifying
everything as negative and then for one sample takes an enormous step into another
direction. The probability that this result in an overshoot of the network is very
high. Therefore we limited the amount of negative training sample to a maximum
of 10 times the amount of positive samples. This lead to a negative training set of
830 images.

Additionally since we want the network to be more sensitive towards positive predic-
tions we increased the class weight for the loss of positive training samples further
to a total of 12. Miss-classifying a bubble as no-bubble therefore results on average
in a 2 times bigger loss than miss-classifying a no-bubble as bubble. The additional
weight difference of 10 only compensates the different amount of samples here. The
network was trained in a first iteration with the following hyper-parameters:

As optimizer the RMSprop with a learning rate of η = 1 · 10−4 is used.

Since our training data is pretty small we used data augmentation (Section 2.1.8)
with the parameters listed in Table 5.

In order to prevent overfitting the validation loss was monitored and after four epochs
without decreasing the validation loss the training was stopped. The weights were
then set to the values for the minimal validation loss. An exemplary set of positive
training data is depicted in Figure 11. We only used smooth bubble like structures
with a well defined border that are filled towards the middle. The network after this
training iteration is called model 1 in the following.
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Augmentation-parameter Value Comment
Rotation Range 360◦ Allowed rotation of the object
Width Shift Range 0.01 Allowed scaling

for the width of the object
Height Shift Range 0.01 Allowed scaling

for the height of the object
Brightness Range 0.2 to 1.9 Allowed scaling

of the intensity of the object
Zoom Range 0.5 to 1 Allowed size change of the object
Horizontal Flip True If the object is allowed

to be mirrored horizontally
Vertical Flip True If the object is allowed

to be mirrored vertically

Table 5: Blobscan data augmentation parameters.

Figure 11: 12 exemplary positive training samples of the first generation of training
data. The data is gathered from SHASSA. It can be seen that the structures are
mainly definite with clear borders and filled towards the middle.

5.2.3 Training Iteration Two

In a second generation of the network new data were used. Therefore the net-
work that was already trained on the first generation training data was applied to
SPITZER (Section 4.2) data using the bubble detection method developed within
the framework (Section 5.1.1). The resulting positive classified images were then
evaluated for correctness manually. While only definite pancake-like shaped bub-
bles were used in the first training iteration the network still has a certain tolerance
towards blurred out objects that are not always filled towards the middle. Only defi-
nite bubble-like structures were approved. This time also toroidal shaped bubble-like
structures were approved. An exemplary set of accepted objects is depicted in Figure
12.

All true positive samples were additionally used as positive training set for another
training iteration of the network. In order to keep the ratio between positive and neg-
ative training samples additional counter-examples were extracted randomly from
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Figure 12: 12 exemplary positive training samples of the second generation of train-
ing data. The data were taken with SPITZER. It can be seen that the structures
are mainly similar to generation one but the borders are not so well defined anymore
and are blurred out. Using this kind of samples as additional training set will result
in an even wider range of accepted shapes.

the leftover SPITZER data. The amount of training data increased to 731 posi-
tive samples and 6610 negative samples. The network that was already trained on
the generation one training set was then trained on the generation two training set
again. The hyper-parameters, the optimizer and the early-stop method used in the
first generation were maintained. The network after this training iteration is called
model 2 in the following.

5.2.4 Training Iteration Three

In the third generation of the network the SPITZER data were again searched by
the bubble detection method. This time the network already was trained on the
first and second generation of training data. The resulting positive classified images
were evaluated manually for correctness. Again only definite bubble-like structures
were approved but toroidal as well as pancake-like shaped bubbles were accepted.
An exemplary set of accepted objects is depicted in Figure 13. Due to the increased
variety of allowed shapes in the second training iteration the network predicts an
even bigger variety this time. Interestingly the network which was actually only
trained on pancake shaped bubbles in the first place still classified an increasing
number of toroidal shaped bubble-like structures as bubble. This was not expected
but is in general not odd since it only means that the network weights the fact that
the object is circularly shaped way more than the fact that it is filled towards the
middle. This was amplified by the fact that a lot of the results from the previous
generation that tend towards a toroidal shaped were selected as further training
samples The amount of training data increased to 1362 positive samples and 6610
negative samples. The network that was already trained on the generation one and
generation two training sets was then trained on the generation three training set
again. The hyper-parameters, the optimizer and the early-stop method used in the
first generation were maintained. The network after this training iteration is called
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Figure 13: 12 exemplary positive training samples of the third generation of training
data. The data is gathered from SPITZER. The borders of the objects became even
more smeared out. Interestingly the network classified an increasing number of
toroidal shaped bubble-like structures as bubble.

model 3 in the following.

5.2.5 Training Iteration Four

In the fourth generation of the network the SPITZER data were again searched by
the bubble detection method. This time the network already was trained on the first,
second and third generation of training data. The resulting positive classified images
were evaluated manually for correctness. Again only definite bubble-like structures
were approved but toroidal as well as pancake-like shaped bubbles were accepted.
An exemplary set of accepted objects is depicted in Figure 14. It can be seen that
the resulting samples become more and more blurred out and the borders are not
well defined anymore. Even filament like structures were classified as bubbles. By
pushing the decision criteria for bubbles into a more and more lenient direction
the amount of results increased dramatically but also the amount of false positive
classifications increased. We were able to alter these decision criteria by softening
the requirement that objects had to fulfill to become a positive training sample.

The amount of training data increased to 2366 positive samples and 35663 negative
samples. The network that was already trained on the generation one, two and three
training sets was then trained on the generation four training set again. The hyper-
parameters, the optimizer and the early-stop method used in the first generation
were maintained. The network after this training iteration is called model 4 in the
following.

5.2.6 Validation

Usually the performance of a network can be evaluated by withholding a certain
fraction of the training data that is then used as validation set (Section 2.2). This
part of the training data is not used in the actual training of the network. After
training finished the network is asked to predict all validation samples and the ac-
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Figure 14: 12 exemplary positive training samples of the fourth generation of train-
ing data. The data is gathered from SPITZER. It can be seen that the structures
are smeared out and the borders are increasingly blurred. The network started to
classify even filament like structures as bubble.

curacy on the validation set is assumed to be the actual accuracy of the network.
This assumption is based on the idea that the validation set is representative for
all the data used. However, since our data set is extremely small for deep learn-
ing conditions this does not work very well. Additionally the shapes of bubble-like
structures are diverse and our training sets do not include enough of this variety.
So we needed a different validation possibility to evaluate the performance of our
network. Therefore we used the astronomical database SIMBAD (Section 4.6). Ev-
ery predicted sky region of the network was checked in SIMBAD for known objects.
By evaluating the amount of regions that contain an object type that we associate
with a bubble or bubble-like structure we are able to evaluate the performance of
the network. The following categories in the SIMBAD catalog were assumed to be
associated to bubble or bubble-like structure:

• Bubble

• Dense Core

• HII Regions

These categories are not the only kind of objects that are physically associated with
bubbles or bubble-like structures but they were the most useful ones for validation.
For each generation of the network the results differed. With every generation the
total amount of results increased rapidly. This is not remarkable since for every
increase of the training data the network has seen a bigger variety of objects that
are classified as bubbles. Therefore the network learns more and more features that
are associated to the bubble class and the classification boundaries become more
and more lenient. However, this goes with the problem that also more and more
objects were classified as bubbles which could not be approved as positive result
manually or by SIMBAD anymore. In Figure 15 the progress of the network on the
SPITZER data is depicted. While the amount of found objects that we associate
with bubbles flattens the overall amount of found regions increases heavily. The
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Figure 15: Progress of the evaluated results throughout the different iterations of
the neural network.

detailed constituents of the result for each model is shown in Figure 16. We decided
to continue the work with model2. The following section will show that the results
are already plenty and even this state of the network already tends to overpredict.

5.3 Result

5.3.1 Bubbles in the LMC

The final model of our Blobscan network was used on the MCELS2 data (Section
4.3). The used set of box sizes was 0.056, 0.083, 0.111, 0.139, 0.167, 0.222, 0.250,
0.278 0.333, 0.389 and 0.444 degree and the tiling was 1/7 of the box size. The
results for the Hα image are depicted in Figure 17 and all found bubbles are listed
with their position and radius in Table 11. The results for the [OIII] image are
depicted in Figure 18 and all found bubbles are listed with their position and radius
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Figure 16: SIMBAD categories for the found sky regions in SPITZER data for all
models. NA means that there is no known object in the sky region that was classified
as bubble by the network. The complete list of abbreviations can be found in Table
10.

in Table 12. The results for the [SII] image are depicted in Figure 19 and all
found bubbles are listed with their position and radius in Table 13. Even though
the network was trained and used on data from various different wavelengths the
network generalizes well as long as bubbles or bubble-like structures look similar
across the used wavelengths.

5.3.2 Bubbles compared to star distribution

We already discussed in section 3.1 that it is assumed that stellar bubbles and super-
bubbles originate from massive stars. We can compare the position of the bubbles
that were found by the network with the catalog of massive stars in the LMC Bo-
nanos et al. (2009). Furthermore we can compare the distribution of found bubbles
for each spectral line that we used. In order to do this we used the spatial analysis
method called the bivariate Ripley’s K function Ripley (1976). With this function
one can determine if a spatial distribution is dispersed, clustered or randomly dis-
tributed. The function essentially counts the amount of objects within a certain
radius of a given object. This is done for each object. A value can then be deter-
mined that correlates to the clustering of the objects. For different kinds of objects
this calculation has to be done separately. Then the amount of objects of one class
within a certain radius of the object of the other class is counted. Mathematically
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Figure 17: The LMC in the Hα line and the marked bubbles that were predicted by
the network.
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Figure 18: The LMC in the [OIII] line and the marked bubbles that were predicted
by the network.
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Figure 19: The LMC in the [SII] line and the marked bubbles that were predicted
by the network.
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Figure 20: Bivariate Ripley’s L comparing the distribution of found bubbles between
Hα and [OIII] (left), Hα and [SII] (middle) and [OIII] and [SII] (right). 100 pixels
correspond to 0.056 degree.

Ripley’s K function is given by

K(t) = A

n1∑
i=1

n2∑
j=1

ωij
Θt(||ri| − |rj|| − t)

n1 · n2

(16)

where A is the area of the plot, ωij the edge correction and n1, n2 the sample size. Θ
is the Heaviside function (Figure 3a) and ||ri|− |rj|| is the distance between object i
and object j. The Heaviside function is one if both objects are within a radius t and
zero otherwise. The edge correction is necessary since the property of clustering is
dependent on the area that is considered. If e.g. four points are randomly distributed
within a square this distribution would not be considered clustered. However, if we
enlarge the square but keep the points position they would be clustered within a
way bigger square.

For large t the estimators of K often have a high variance due to its cumulative
nature. In order to mitigate a variance stabilized transform can be used

L(t) =

√
K(t)

π
(17)

which was first proposed by Besag Besag (1977). Usually in order to test a pattern
with Ripleys K it has to be compared to another known distribution. For example
it can be tested against a homogeneous Poisson distribution. If the tested pattern is
clustered the value of L is bigger than for the poisson distribution. However, if we
want to use the bivariate function and compare two known clustered distributions
it makes no sense to compare it to a homogeneous distributed pattern. Therefore
one of the clustered patterns is shifted randomly 300 times and the mean L value is
calculated. The used algorithm was adapted from the thesis of Caroline Collischon
Collischon (2020). The values in the following evaluation are chosen similarly so
the results of both works can be compared. In Figure 20 the spatial correlation
of predicted bubbles in the different wavelengths is tested. It can be seen that
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Figure 21: Bivariate Ripley’s L comparing the distribution of massive stars to found
bubbles in Hα (left), [OIII] (middle) and [SII] (right). 100 pixels correspond to 0.056
degree.

the bubble distribution in all three wavelengths are correlated. This can also be
seen by eye if you compare the Figures 17, 18 and 19. It actually states that the
majority of the bubbles is visible for the network in all three wavelengths. In Figure
21 the spatial correlation of predicted bubbles in all three wavelengths is compared
to the distribution of massive stars given by the Bonanos catalog. The correlation
of the patterns is significant while the biggest L values are below a radius of 100
pixels (0.056 degree). This is due to the fact that the majority of bubbles that were
predicted by the network are given with a box size of 100 pixel. Also for bigger
boxes the correlation states that a major part of the massive stars are clustered
within 100 pixel around the center of the box. Nevertheless the correlation between
the two distributions is not overwhelming.

Another important variation of Ripleys K function is the pair correlation function

g(t) =
K(t)

2πt
(18)

The main difference to Ripleys K function is the different weighting. The PCF gives
greater weight to points close to the respective object and less weight to points
further away. In Figure 22 the pair cross correlation function for predicted bubbles
in Hα, [OIII] and [SII] to the massive stars is calculated. It can be seen that the
correlation is significant for small radii and reduces for bigger radii. This supports
the conclusion we draw from Ripleys K already. The biggest correlation between the
distribution of young, heavy stars and predicted bubbles is in the radius of 100 pixels
and less. The envelopes that are depicted in the graphs are the Global Maximum
Absolute Deviation (MAD). The simulated mean value is taken from nsim/2 of
the simulations. For the remaining patterns, the highest absolute deviation from
this mean is calculated. Then, again the n-th largest of these deviation values is
used as a critical value dcrit. The envelope then has upper/lower boundary values
mean±dcrit at a constant width 2·dcrit. The null hypothesis is rejected if the observed
function exceeds this envelope at any value of r. The MAD test has significance level
α = n/(1 + nsim/2) ≈ 0.046 (Collischon 2020) (Ripley 1981).
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Figure 22: Cross correlation function of the distribution of massive stars and the
found bubbles in Hα (left), [OIII] (middle) and [SII] (right). 100 pixels correspond
to 0.056 degree.

5.3.3 Bubbles compared to other extended objects

Additionally we used the Ripleys K function, described in the previous section,
to investigate the distribution of bubbles that were found by the network further.
Therefor we compared the distribution with the general catalog of extended objects
in the Magellanic Cloud by Bica et al. (2008). The catalog contains the categories
HI shells and supershells, associations, star clusters and emission nebulae. In the
Figures 23, 24 and 25 the correlation of the detected bubbles in Hα, SII and OIII with
these categories is depicted. It can be seen, that only the distribution of emission
nebulae is significantly correlated to the detected bubbles. This was expected since
these regions mostly contain young, hot stars - the source of bubble-like structures -
and are mainly HII regions. A correlation to HI shells and supershells was possible
but since most of these objects were found in the HI hydrogen line they are not
necessarily visible in Hα, SII or OIII. No correlation to the other two categories was
expected and none was found.
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(a) Hα to associations (b) Hα to star clusters

(c) Hα to HI shells and supershells (d) Hα to emission nebulae

Figure 23: Correlation between bubbles found by the network in Hα and different
object categories.
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(a) SII to associations (b) SII to star clusters

(c) SII to HI shells and supershells (d) SII to emission nebulae

Figure 24: Correlation between bubbles found by the network in SII and different
object categories.
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(a) OIII to associations (b) OIII to star clusters

(c) OIII to HI shells and supershells (d) OIII to emission nebulae

Figure 25: Correlation between bubbles found by the network in OIII and different
object categories.
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6 FRI detection

Another interesting task that is similar to the bubble detection at a software level, is
the detection of radio lobes in FRI galaxies (Section 3.3.1). As part of the increasing
amount of data that is gathered by the new ASKAP radio telescope, a growing
number of FRI objects is detected. One special region of the sky that was used here
is the Emu in the sky (Section 4.5).

6.1 Framework

The framework is essentially the same as for the Blobscan network (Section 5). The
major difference is the FRI detection method that is used to find FRI in a given
region. As we discussed in section 5.1.1, the process of walking over the entire image
with a given box size is very inefficient. For FRI a different approach is possible and
described in the following section.

6.1.1 FRI detection

Since FRI essentially originate from a point like source we used the AEGEAN source
finding tool by Hancock et al. (2012), that allows to create a catalog of sources from
an astronomical image. With this catalog we can cutout the surrounding of every
source and check this region with the network. This reduces the computational time
immensely.

6.2 Network

In a similar way as the bubble detection that was discussed in section 5, the network
that we used to detect FRI is based on the VGG16 model. The network was trained
by a small amount of manually labeled data. The training data were cleaned from
disturbing redundant sources and noise in the images. The network was applied to
newly captured ASKAP radio data from the Large Magellanic Cloud.

6.2.1 Structure

The detailed architecture is given in Table 6. The main differences to the Blobscan
network are the bigger input size of 50 × 50 × 3, and the different output size of
four different categories. The bigger input size is due to the more detailed structure
which needs to be preserved. The four different classes for the output are used in
order to differentiate between point sources, complex extended sources, verified and
uncertain FRIs. Since this is a multi label problem also the activation function
for classification has to be the softmax function and the loss function has to be
the categorical cross-entropy. Again the network has the untouched layers from
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the original VGG16 architecture and the untrained fully connected, dropout and
prediction layer.

Model: ”FRI” Input: ”50× 50× 3”

Layer (type) Output Shape Param #

vgg16 (Model) (None, 1, 1, 512) 14714688
flatten (Flatten) (None, 512) 0
fc1 (Dense) (None, 1024) 525312
dropout (Dropout) (None, 1024) 0
prediction (Dense) (None, 4) 4100

Total params: 15,244,100
Trainable params: 7,608,836
Non-trainable params: 7,635,264

Table 6: Architecture of the FRI model.

6.2.2 Training

The Emu in the sky (Section 4.5) was one of the first pilot targets of the new ASKAP
radio telescope (Section 4.4). The observed center frequency was 943.5MHz. In the
Emu region a set of 340 verified FRI and 346 uncertain FRI were already labeled
manually and served as training data together with a set of 3000 other complex
sources and 3000 point sources as counter examples. Complex sources here essen-
tially include all extended sources, that are no point sources and also no FRI objects.
As we want to use all of this data we either can just pool the verified and uncertain
FRI as positive and the complex and point sources as negative training data. But
this would ignore the fact, that there is a visible difference between uncertain and
verified FRI. In order to use this additional information, we extended our two class
network, that we described in the previous section, to a four class network.

Using the raw images of the FRI and their immediate surroundings did not lead to
a satisfying result, since a majority of them contained disturbing redundant sources
and noise. Therefore, the photutils source finding tool was used to identify and crop
the central source in the image. Photutils is an affiliated package from Astropy by
Bradley et al. (2019). This process can be exemplary seen in Figure 26. The left
image is the original ASKAP data from the FRI object. In the second image the
different sources within the image are identified with the photutils package. In the
third image the central source is isolated and masked. In the fourth image the final
cropped image is depicted. The cropped images where than used as training data.
In Figure 27 six FRI as raw image are depicted in the first line and the corresponding
cropped image that was used as training data in the second line. Due to the small
training set, data augmentation was used. The data augmentation parameters are
the same as for the bubble detection network and are listed in Table 5. The used
training parameters are given in Table 7. As optimizer the RMSprop with a learning
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Figure 26: Exemplary cropping procedure for all sources. In the left image the
original data is depicted. Using the photutils package all sources in the image can
be detected and separated. The central source is separated and cropped in order to
remove noise and unwanted sources.

Training parameter Value
Validation fraction 0.2
Epochs 30
Batch size 50
Class Weights 1:1:10:10

Table 7: FRI detection training parameters. Here the class weights are associated to
the classes complex, point source, FRI verified and FRI uncertain in that particular
order.

rate of η = 1 · 10−4 is used. In order to prevent overfitting, the validation loss was
monitored and after four epochs without decreasing the validation loss the training
was stopped. The weights were set to the values for the minimal validation loss.

Figure 27: Exemplary set of 6 FRI objects in their original state (first line) and the
clean cropped sources that were used as training data (second line).

6.3 Result

The FRI detection algorithm was applied to new ASKAP data at 888MHz from
the Large Magellanic Cloud. A box size of 400” × 400” was tested. A total of 186
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objects were classified as FRI. The detected FRI objects were checked for known
objects in SIMBAD (Section 4.6). A total of 48 found FRI objects can be associated
to already known galaxies, groups of galaxies, or cluster of galaxies. Three further
FRI objects were associated to known active galactic nuclei. With the new ASKAP
data, lobes from galaxies that were not identified as AGNs yet, might be visible.

A total of 30 found FRI objects can be associated to already known radio sources,
16 to already known x-ray sources. However, 98 found FRI objects could not be
correlated to any known possible extragalactic source. Since the position of the
origin source is not exactly known, a surrounding of 0.003 degree radius was queried
from SIMBAD. It is not guaranteed that the found FRI object and the SIMBAD
results are associated to the same source. A more thorough and detailed, individual
analysis has to be done for that.

Figure 28: Exemplary set of 12 FRI objects in the LMC that were found by the
network.

An exemplary set of twelve found FRIs is depicted in Figure 28. While a majority
of the found objects could be verified as actual FRI, there are also a few objects
that were mistakenly classified as FRI. Especially in regions with a lot of emission
in a small area, the network performs poorly. One reason for this is the fact, that
we trained the network only on clearly cropped sources. An overlap of multiple
different sources is therefore not included in the training data, which prevents that
the network does know how to classify them. Since the photutils source finding tool
separates sources based on the contrast between objects and the background, an
area of overlapping emissions is not separated into different sources.

Additionally there are many further possible FRI objects that can be seen in the
data but that were not found by the network. This can be explained by the fact,
that the photutils source finding algorithm separates sources by a certain threshold
from the background in the image. A lot of the sources that can be found in the
ASKAP data have very faint lobes however. For a high threshold this can result
in the problem that very faint lobes are cropped from the source as background,
preventing the network to identify it as a FRI object. Since the threshold between
feature and background is different for every source it is hard to generalize a value
as threshold.
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In general we assume that one reason for the varying performance of the network is
the small amount of training data, but also the fact that by cropping the training
data with the use of the photutils package a strong definite border to the object is
introduced. This adds additional unwanted features that might be learned from the
network.
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7 Summary and Outlook

Bubbles and bubble-like structures are circular, pancake-like or toroidal-like shaped
objects in star forming regions of the universe. Their size and structure varies. We
initially identified 83 bubbles within the SHASSA observation data. We used this as
positive training set together with 830 random regions in the same data as negative
training samples. We used the well known VGG16 convolutional neural network
architecture and removed the last three layers that are most important for the final
classification. These layers were replaced with new randomly initiated layers that
are trained on our bubble data. The main reason for the VGG16 was the matter of
fact that it can be obtained with already trained weights. This training was done
on the Imagenet, a database of millions of RGB pictures. It allows to make the
best of our very small training set. After training the adapted VGG16 we applied
it on SPITZER data in order to find additional bubble-like structures that can be
used as training data for a new iteration of training of the network. This was done
repeatedly until the results of the network were satisfying. The final network was
applied to MCELS data of the LMC and found 456 bubble-like structures in Hα,
288 in [OIII] and 267 in [SII]. Additionally a similar model was used to detect FRI
objects in new ASKAP data. Therefore a set of 340 manually labeled FRI in the
EMU region of the sky were used as training data together with over 3000 other
complex sources as counter examples. For better results, the objects were cleaned
from noise and adjacent sources. The network was applied to new ASKAP data from
the LMC and found a total of 186 FRI objects. In order to improve the network
for FRI detection, the application of the photutils package needs to be evaluated.
For very faint lobes the differentiation between lobe and background needs to be
extremely sensitive. It might be better to still use the cropped and cleaned FRI
objects as training data like before, but with specifically added noisy background.
This allows to apply the network to the real data without cropping the sources from
the background with the photutils source finder. It avoids the problem that very
faint lobes might be cropped too.

There are some important comments to this work. Even though the used VGG16
network has actually a three channel input - Red, Green and Blue channel - we only
used one input channel, the detector intensity. A way better method would be to
create a individual convolutional neural network with one channel for every avail-
able wavelengths from this area of the sky. In this way spectral information could
be included in the classification process. However, this leads to the problem that
usually the resolution for different wavelengths varies immensely. While pixels of
radio-data have a resolution of about 30”/pixel and more, optical observations can
achieve 5”/pixel and less. Rescaling every image to fit each other is possible but can
introduce unwanted features in the data. It would also limit the amount of train-
ing data, which is very small anyway, since including all wavelengths information
restricts the possible objects that can be used to those who are actually represented
in all channels. So probably only actually confirmed bubbles could be used instead
of just morphological, manually classified bubble-like structures. Nevertheless this
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would be an interesting approach with an uncertain outcome. In this work one
could achieve a similar outcome by applying the Blobscan network to images in dif-
ferent wavelengths and applying individual decision criteria. E.g. one could consider
something as bubble only if the network detects a bubble like structure in infrared
and in Hα data. However, this requires a similar structure throughout the different
wavelengths.

We used the pretrained VGG16 simply for the fact that it can be obtained pretrained
and that the size and calculation speed is irrelevant for this work. However, it is
possible to train a individual network on the Imagenet database also with all images
in gray-scale which have only one channel. Since the Imagenet database was under
maintenance for a major part of this work we were not able to try this. Using these
additional images to pretrain an individual network could enable it to benefit even
from a really small amount of training data. Like the wavelength sensible network
mentioned above. Also the images of bubble-like structures, that can be gathered
with the Blobscan model, could serve as additional training data for a new network.

For a new individual network it might be advantageously to use Maxpooling only in
a close confined area since it may blur out important features. The size of the kernels
for convolution should be chosen bigger since we are interested mostly in large scale
structures from only one object that covers the entire picture. It might be possible to
introduce a simulation tool for bubble-like structures that could generate additional
training data.
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A.1 VGG16 parameters

Model: ”vgg16” Input: ”224× 224× 3”

Layer (type) Output Shape Param #

input1 (InputLayer) (None, 224, 224, 3) 0
block1conv1 (Conv2D) (None, 224, 224, 64) 1792
block1conv2 (Conv2D) (None, 224, 224, 64) 36928
block1pool (MaxPooling2D) (None, 112, 112, 64) 0
block2conv1 (Conv2D) (None, 112, 112, 128) 73856
block2conv2 (Conv2D) (None, 112, 112, 128) 147584
block2pool (MaxPooling2D) (None, 56, 56, 128) 0
block3conv1 (Conv2D) (None, 56, 56, 256) 295168
block3conv2 (Conv2D) (None, 56, 56, 256) 590080
block3conv3 (Conv2D) (None, 56, 56, 256) 590080
block3pool (MaxPooling2D) (None, 28, 28, 256) 0
block4conv1 (Conv2D) (None, 28, 28, 512) 1180160
block4conv2 (Conv2D) (None, 28, 28, 512) 2359808
block4conv3 (Conv2D) (None, 28, 28, 512) 2359808
block4pool (MaxPooling2D) (None, 14, 14, 512) 0
block5conv1 (Conv2D) (None, 14, 14, 512) 2359808
block5conv2 (Conv2D) (None, 14, 14, 512) 2359808
block5conv3 (Conv2D) (None, 14, 14, 512) 2359808
block5pool (MaxPooling2D) (None, 7, 7, 512) 0
flatten (Flatten) (None, 25088) 0
fc1 (Dense) (None, 4096) 102764544
fc2 (Dense) (None, 4096) 16781312
predictions (Dense) (None, 1000) 4097000

Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0

Table 8: Detailed architecture of the VGG16 convolutional neural network.
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A.2 Blobscan

A.2.1 Training Set

SHASSA Field Number Galactic l Galactic b Radius

010 0 302.0728095 -44.9388960 772.708”
1 300.8995014 -44.3170519 625.286”

013 2 276.1817830 -34.0688809 422.159”
3 276.0649106 -35.3160122 459.551”
4 278.9384472 -36.3335636 459.551”
5 279.2340101 -35.9585397 498.567”
6 277.4972789 -34.9708914 459.551”
7 278.9129046 -35.3948865 496.061”
8 275.9927795 -31.8460168 486.817”
9 277.9593940 -31.3595022 623.403”
10 278.3152691 -30.1575000 459.551”
11 281.3192422 -31.5081031 459.551”
12 282.3497012 -33.0588235 459.551”
13 282.8041404 -33.2245045 459.551”
14 282.2386265 -35.1562435 459.551”
15 281.5373287 -35.3022212 459.551”
16 277.2058976 -33.6937498 459.551”
17 278.6032462 -34.4743815 558.954”
18 279.5860708 -35.7346619 498.567”
19 278.1503577 -36.0224225 657.146”
20 276.4361136 -32.5721192 463.300”
21 275.8816972 -32.2945452 423.834”
22 276.6422344 -32.0754184 590.355”
23 279.7719894 -34.2447635 421.688”
24 279.6190033 -34.4400041 490.539”

032 25 286.2386693 -0.1857618 1085.482”

034 26 300.6181809 1.0598222 1197.199”
27 299.9854249 0.4296204 1141.249”

035 28 309.3060670 -0.4186289 1417.926”
29 308.6506879 0.5687986 1453.707”

037 30 330.0454051 -8.1798681 3071.483”

053 31 277.8946287 0.5639412 2128.990”
32 280.1520674 0.1700679 1860.119”

054 33 285.8714592 4.4492381 1330.095”

058 34 326.2148512 0.7891228 1236.694”

117 35 358.5620557 9.0513584 2967.020”

137 36 231.4809062 -4.5128546 1515.100”

138 37 232.5970566 0.8996234 2087.357”
38 234.8096079 -0.2180313 1083.282”
39 234.8247115 2.4212563 1360.338”

142 40 261.1347050 32.0977603 2124.590”

153 41 11.6402179 -1.7444381 1069.095”
42 7.0220283 -0.2767767 894.931”
43 15.0391832 3.3401482 1949.926”

242 44 194.6389092 -15.5366587 1393.471”

245 45 205.1236450 14.2320609 1561.845”

263 46 47.1253046 -2.6435391 2109.698”
47 46.8107420 3.8493781 1233.733”

436 48 294.1980225 -26.1493947 1577.405”

512 49 281.5599315 -34.7593580 852.029”
50 281.5417755 -35.2788069 852.029”
51 279.7892334 -34.2502216 439.132”
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52 279.9286861 -33.4579367 783.611”

513 53 280.5208528 -30.6542048 952.923”
54 281.8646021 -32.0881178 952.923”
55 279.5638966 -35.5052208 952.923”
56 281.5555355 -34.7728328 590.874”
57 281.5519216 -35.3008771 758.496”
58 279.3568496 -32.7569483 749.122”
59 279.7817972 -34.2360862 508.282”

533 60 294.1089413 -2.3456250 882.740”
61 300.6391449 1.0354132 843.946”

534 62 309.3411276 -0.4182920 1253.213”
63 300.6065168 1.0684040 1246.343”

553 64 280.1438593 0.1823304 1549.034”
65 277.9537859 0.6168734 2019.926”

637 66 234.7927634 -0.2291000 1007.687”

638 67 243.1801275 0.3513620 758.363”

653 68 3.9382672 -5.6764033 1170.122”
69 11.6070131 -1.7695818 840.278”

673 70 232.5910701 0.8532783 2256.977”
71 234.7935290 -0.2082726 1021.376”
72 227.8173311 -0.0204504 1182.302”

689 73 11.6380883 -1.7415817 902.176”
74 15.0574425 3.3305641 1189.711”
75 16.6685094 -0.3374406 617.621”
76 16.8046269 -1.0792631 534.470”
77 18.6630285 1.9723136 387.727”

742 78 194.6391038 -15.5513066 2323.867”

743 79 212.0235023 -1.3467613 1505.644”
80 206.3988087 -2.0106279 4447.440”

744 81 212.0166099 -1.3146378 1442.294”

762 82 36.3690918 -1.7271053 1613.390”
83 31.8878536 1.4060049 906.893”

Table 9: First generation of training data. Manually labeled bubbles and bubble-like
structures in SHASSA data.

56



A.2 Blobscan

Abbreviation Extended Explanation
bub Bubble
NA No object found in SIMBAD for this region
smm sub-millimetric source
Rad Radio-source
Y*O|smm Young Stellar Object|sub-millimetric source
Y*?|IR Young Stellar Object Candidate| Infra-Red source
*|IR Star|Infra-Red source
IR|FIR Infra-Red source|Far-IR source (λ >= 30µm)
IR Infra-Red source
cor|cor Dense core
Mas Maser
DNe|DNe Radio-source
mm millimetric Radio-source
HII|rad HII (ionized) region|Radio-source
HII HII (ionized) region
* RStar
*|*iC Star|Star in Cluster
*|*iC|IR Star|Star in Cluster|Infra-Red source
Y*?|*|IR Young Stellar Object Candidate|Star|Infra-Red source

Table 10: Extended explanation for the abbreviations that are returned from SIM-
BAD.

A.2.2 SIMBAD Abbreviation
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A.2.3 LMC Results

Number Galactic l Galactic b Radius Number Galactic l Galactic b Radius

0 282.6974501 -32.5960373 1600” 229 280.2415462 -31.5091994 200”
1 281.4215943 -32.3618801 1600” 230 280.3478315 -31.9410113 200”
2 279.5638541 -31.6727496 1600” 231 280.5799498 -32.9125916 200”
3 279.2863421 -32.8749761 1600” 232 280.1071158 -31.5114376 200”
4 278.2772105 -30.1940263 1600” 233 280.2289496 -32.6426245 200”
5 277.8931722 -32.4218839 1600” 234 280.0415605 -32.4116712 200”
6 276.6759657 -36.2555811 1600” 235 279.9937435 -32.5265864 200”
7 276.144443 -34.1010505 1600” 236 280.6650069 -35.4437004 200”
8 275.4462541 -33.858716 1600” 237 279.788338 -32.5530132 200”
9 282.5211 -32.6789175 1400” 238 279.3738298 -30.8709208 200”
10 281.8514375 -32.0310037 1400” 239 279.7087122 -33.0813288 200”
11 279.9323955 -33.39178 1400” 240 279.066848 -31.5805235 200”
12 279.3706592 -31.6434903 1400” 241 279.0741379 -31.6550843 200”
13 279.4408732 -35.4972941 1400” 242 279.1484702 -32.5129526 200”
14 278.9077055 -35.4050579 1400” 243 279.1294024 -32.494619 200”
15 278.5089893 -34.4615578 1400” 244 279.2127721 -33.3856358 200”
16 277.7321577 -33.0962809 1400” 245 279.1031779 -33.8029564 400”
17 276.6045428 -32.0817884 1400” 246 278.4796739 -31.8719014 200”
18 277.1647467 -36.0828353 1400” 247 279.0565529 -34.3626105 200”
19 275.8707566 -31.8922883 1400” 248 278.492731 -33.2606112 400”
20 280.4612808 -30.5919385 1200” 249 278.7592035 -35.0638807 200”
21 277.4599602 -33.1773826 1200” 250 278.0407806 -32.0061801 200”
22 278.0479891 -36.0858785 1200” 251 277.8741063 -32.066369 200”
23 276.23145 -32.1922679 1200” 252 278.4668626 -35.3002967 200”
24 275.9503089 -32.2829306 1200” 253 278.1133244 -35.1175555 200”
25 281.5645872 -34.7491323 1000” 254 277.2219773 -32.1501584 200”
26 281.4982262 -35.2727744 1000” 255 277.3209832 -32.6172915 200”
27 280.2461046 -31.1967767 1000” 256 277.9761755 -36.2894896 200”
28 279.3298834 -31.3138112 1000” 257 277.5433255 -35.7198568 200”
29 278.604731 -35.5912952 1000” 258 276.8066757 -33.5011595 200”
30 278.3203604 -35.042195 1000” 259 276.1947613 -32.6262325 200”
31 277.7263868 -33.7776433 1000” 260 276.2922111 -33.3345114 200”
32 277.5242934 -34.9511365 1000” 261 276.030877 -33.3166731 200”
33 276.1836254 -31.9347929 1000” 262 275.7329986 -33.6738736 200”
34 276.8575799 -35.9349463 1000” 263 276.9363798 -31.6112994 600”
35 276.1058168 -35.3214761 1000” 264 280.4056037 -32.8697021 300”
36 282.4553624 -32.2670044 900” 265 280.0194028 -31.9642981 300”
37 280.5739509 -30.8700052 900” 266 279.8322644 -31.4768894 300”
38 279.8710876 -32.7411435 900” 267 276.8998412 -31.9574986 300”
39 280.0623903 -33.8861722 900” 268 282.2212671 -31.9408327 200”
40 279.7386121 -34.2452205 900” 269 281.8710519 -32.3320694 200”
41 279.5978024 -34.4207308 900” 270 282.1499608 -34.1702287 200”
42 278.9703778 -32.3619917 900” 271 280.7523157 -31.500881 400”
43 278.9326442 -34.7194023 900” 272 281.0392834 -33.19869 200”
44 277.9762688 -32.9386716 900” 273 281.0253752 -34.125695 200”
45 278.3554306 -36.2108284 900” 274 280.0287867 -31.2816699 200”
46 277.1291161 -31.066903 900” 275 281.133798 -35.8782122 200”
47 277.1920352 -33.7011049 900” 276 279.7756502 -31.3236844 200”
48 276.0676176 -32.3922844 900” 277 280.0145816 -32.9522512 200”
49 282.2848835 -32.2209693 800” 278 280.550121 -35.4358513 200”
50 282.2747075 -33.0767239 800” 279 279.5733516 -32.5200917 200”
51 281.1843421 -31.2360796 800” 280 278.9860124 -31.7399471 200”
52 282.2347386 -35.1678111 800” 281 278.6458547 -33.1324934 200”
53 281.0213995 -32.3219732 800” 282 279.0948481 -35.0910987 200”
54 279.8080839 -33.9658856 800” 283 278.4617577 -33.4804696 200”
55 279.9998322 -35.3960393 800” 284 278.2441423 -33.2707048 200”
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56 279.6649483 -35.8935323 800” 285 277.2610019 -31.3896121 200”
57 277.3280697 -31.2125542 800” 286 277.8351061 -34.6098768 200”
58 277.2454267 -35.927678 800” 287 277.0163784 -31.3047517 200”
59 276.4518664 -32.5600572 800” 288 277.463759 -36.0887751 200”
60 276.87907 -35.777138 800” 289 276.7148715 -35.6774964 200”
61 282.1888891 -31.2557059 600” 290 282.5961601 -33.3597344 600”
62 282.5271497 -35.9288636 600” 291 279.4065253 -34.9282668 400”
63 279.6673999 -30.6986906 600” 292 281.9309621 -31.0992006 300”
64 280.3714471 -34.0704438 600” 293 282.3856078 -33.9596771 300”
65 279.8710809 -35.5337825 600” 294 281.2988935 -31.7058069 300”
66 279.3067405 -33.3587009 600” 295 280.6920365 -34.7301504 300”
67 279.0502062 -34.4712001 600” 296 280.996767 -35.9160436 300”
68 278.6385808 -33.2388926 600” 297 279.9413277 -32.0969331 300”
69 277.6731388 -32.8569349 600” 298 280.1626727 -33.9891719 300”
70 277.9370757 -34.1887947 600” 299 280.0442821 -33.635155 300”
71 277.7369025 -35.3624035 600” 300 279.1288933 -34.6361789 300”
72 276.7559301 -34.2625517 600” 301 282.6153672 -34.5442688 200”
73 275.7618325 -33.1104578 600” 302 281.5496319 -33.674285 200”
74 275.7356824 -33.594789 600” 303 281.419384 -34.3680615 200”
75 280.4352033 -33.2220544 500” 304 281.3589994 -34.6064372 200”
76 280.8096191 -35.1726861 500” 305 280.00708 -31.0793935 200”
77 280.9266235 -35.9079514 500” 306 279.9263276 -30.9277613 200”
78 279.5681497 -31.1920981 500” 307 280.6443482 -35.2260297 200”
79 280.4758351 -35.272866 500” 308 279.5116435 -31.9862872 200”
80 280.6186103 -35.9196194 500” 309 280.0457808 -34.6615155 200”
81 280.6248763 -36.3379313 500” 310 279.4790715 -33.6857446 200”
82 279.4623062 -33.5570859 500” 311 278.4630008 -33.1511239 200”
83 279.7795254 -36.1870366 500” 312 276.8519616 -32.9917866 200”
84 279.1782603 -35.1127016 500” 313 280.3612495 -31.7656822 500”
85 279.2758661 -35.9342592 500” 314 281.9663688 -34.0517426 400”
86 279.2808192 -35.9543851 500” 315 281.3841253 -33.6888438 400”
87 279.250987 -35.9382648 500” 316 281.3405081 -34.252831 400”
88 279.2559343 -35.9583919 500” 317 280.3766649 -31.3559364 400”
89 278.8494128 -34.9143495 500” 318 280.1504136 -34.8954565 400”
90 277.3777204 -34.5971088 500” 319 278.5824685 -33.4215872 400”
91 276.5395028 -31.5511123 500” 320 282.1179291 -33.9463256 300”
92 276.7430826 -34.2305851 500” 321 280.4527606 -33.3455448 300”
93 276.5255036 -33.3029168 500” 322 280.8433056 -35.5623214 300”
94 276.339593 -33.2461505 500” 323 280.7126172 -35.9917885 300”
95 276.505232 -35.5142232 500” 324 280.4841214 -35.5170113 300”
96 282.583007 -33.797497 400” 325 280.2040922 -35.2236791 300”
97 281.8357818 -32.2500412 400” 326 278.9815113 -33.1921743 300”
98 282.0667574 -34.2377343 400” 327 279.5740918 -35.7760231 300”
99 280.7814927 -32.2236025 400” 328 277.5272562 -31.8682519 300”
100 280.3216041 -31.829427 400” 329 277.7688704 -34.0648275 300”
101 280.1256941 -31.8470396 400” 330 277.5591559 -34.2704308 300”
102 279.7152851 -31.1372178 400” 331 277.8183695 -36.2238684 300”
103 280.8026817 -35.6437608 400” 332 275.921312 -33.279605 300”
104 280.0561763 -32.7947421 400” 333 281.9776124 -31.6146881 200”
105 280.6696655 -35.6159012 400” 334 281.8711023 -34.0496829 200”
106 280.6936982 -35.8669298 400” 335 281.3961534 -34.3893554 200”
107 280.3055793 -35.7465978 400” 336 280.1722232 -31.0184859 200”
108 280.096127 -35.2550785 400” 337 281.2559188 -35.3682104 200”
109 279.4579468 -33.2540982 400” 338 281.27905 -35.5707687 200”
110 278.641381 -33.356727 400” 339 280.0418109 -30.7495272 200”
111 278.8227744 -34.8020651 400” 340 280.1737784 -31.4985352 200”
112 277.8426452 -31.5493417 400” 341 280.000646 -30.9073237 200”
113 277.5490469 -32.0352155 400” 342 280.2690211 -33.8953002 200”
114 277.2590342 -32.0796962 400” 343 280.5338449 -35.5634381 200”
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115 277.1541382 -31.9603465 400” 344 280.5409772 -35.9415071 200”
116 282.5307596 -33.750069 300” 345 279.4647243 -33.4966158 200”
117 282.3509776 -34.6239267 300” 346 279.3945851 -34.9868547 200”
118 281.1528804 -33.9452931 300” 347 278.8079961 -33.327479 200”
119 281.1814199 -34.3402258 300” 348 278.1385812 -31.6716021 200”
120 280.7970177 -33.0344875 300” 349 278.3343582 -33.3972154 200”
121 280.6317887 -32.6768347 300” 350 278.3574417 -35.6008223 200”
122 280.3098902 -31.8604221 300” 351 277.5395147 -32.2826508 200”
123 280.0815735 -31.5267012 300” 352 277.2997125 -32.1524349 200”
124 280.1943242 -32.1677503 300” 353 277.3606199 -35.2431557 200”
125 280.3783113 -32.9091348 300” 354 281.2140161 -31.8481676 300”
126 280.1778299 -32.2205508 300” 355 276.4764099 -33.4975064 300”
127 280.3876345 -34.1936208 300” 356 281.0955554 -31.3671227 200”
128 280.8046912 -35.9185053 300” 357 281.8397715 -34.5715359 200”
129 279.8993382 -32.5310403 300” 358 279.9508781 -32.8991832 200”
130 280.397899 -36.0136291 300” 359 280.7346181 -36.3348702 200”
131 280.4010058 -36.0255644 300” 360 279.2285118 -34.6040892 200”
132 280.0574408 -35.2860039 300” 361 277.5572612 -32.7810271 200”
133 278.3969857 -32.1593526 300” 362 277.0646831 -32.0155678 200”
134 279.0016907 -35.0862868 300” 363 276.9828685 -34.6784968 200”
135 278.7349586 -34.7306365 300” 364 277.4893078 -34.3723199 400”
136 278.3392948 -33.2132419 300” 365 280.7490125 -33.4304257 300”
137 277.7715565 -31.8488201 300” 366 278.1442353 -34.2981091 300”
138 277.4814327 -31.3110496 300” 367 277.0021868 -33.684555 300”
139 277.26889 -32.2366267 300” 368 281.7771039 -34.3363016 200”
140 278.1735112 -36.7058588 300” 369 281.009293 -35.7322767 200”
141 276.8365609 -33.4793332 300” 370 279.9958894 -31.834666 200”
142 276.4361747 -33.2644697 300” 371 278.0318467 -35.1932297 200”
143 283.9477971 -31.8361471 200” 372 277.0572881 -35.7096272 200”
144 283.0229956 -34.717433 200” 373 282.363114 -35.6533216 1000”
145 281.878406 -31.2245659 200” 374 277.755864 -33.9386138 300”
146 281.9070914 -31.5599762 200” 375 278.9478063 -32.9758089 200”
147 282.6030325 -34.2607218 200” 376 282.0386291 -31.1676845 600”
148 282.2510895 -34.182927 200” 377 276.713037 -35.8116862 600”
149 281.4412321 -31.6139638 200” 378 280.933606 -32.9019502 500”
150 281.9515222 -34.2565408 200” 379 280.534648 -31.4199992 500”
151 281.8798873 -34.3723507 200” 380 277.5676309 -35.1246771 500”
152 280.7077811 -31.4000667 200” 381 277.0289774 -34.1525843 500”
153 281.0967575 -33.5951443 200” 382 280.2072324 -31.4722159 300”
154 280.732949 -32.5360716 200” 383 281.1159576 -35.5953332 300”
155 280.6047867 -32.7889499 200” 384 282.5953045 -34.7326474 200”
156 280.5795572 -33.2107233 200” 385 281.5540253 -31.2691154 200”
157 280.0927663 -31.7394805 200” 386 281.3319371 -31.2835237 200”
158 280.3307711 -32.7864246 200” 387 281.9915804 -33.892776 200”
159 280.7511016 -35.2754675 200” 388 280.8919706 -30.7553436 200”
160 280.7852836 -35.4056712 200” 389 281.3125143 -34.3829774 200”
161 279.846234 -31.9610169 200” 390 280.7664023 -32.4636237 200”
162 280.2782702 -33.7149363 200” 391 280.4319642 -32.3418443 200”
163 279.8634113 -33.6502763 200” 392 280.2531713 -31.7140077 200”
164 280.3273068 -36.1820008 200” 393 280.2237352 -32.0043707 200”
165 279.6392314 -33.5267602 200” 394 280.0109567 -32.1437493 200”
166 279.8480356 -34.4183685 200” 395 280.5695821 -35.5453492 200”
167 279.2531588 -31.9944515 200” 396 277.9407706 -32.1151531 200”
168 279.4081872 -34.1774702 200” 397 277.6693649 -31.6921886 200”
169 279.6040631 -35.020264 200” 398 278.0817342 -34.2456194 200”
170 279.6630243 -35.3418387 200” 399 277.5414633 -32.5836653 200”
171 278.7880132 -31.8429057 200” 400 277.662091 -34.1646003 200”
172 279.3904902 -34.5287869 200” 401 278.3919459 -33.7392462 300”
173 278.8187685 -32.4571394 200” 402 280.4515483 -33.4780224 200”
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174 278.3105478 -30.777628 200” 403 279.2754678 -34.2747272 200”
175 278.4813669 -33.4535911 200” 404 278.4103893 -33.1900594 200”
176 277.9086434 -31.8831297 200” 405 279.4805556 -36.9005706 400”
177 277.922251 -31.9910518 200” 406 281.3808388 -31.3856448 300”
178 277.7784104 -33.4449477 200” 407 280.8329006 -35.7950414 200”
179 277.7802177 -33.4531417 200” 408 279.2753809 -31.1624818 200”
180 277.7829625 -34.1558636 200” 409 279.9085546 -34.1314047 200”
181 277.137581 -31.1995896 200” 410 277.4418663 -35.2109376 200”
182 277.4480719 -32.7164477 200” 411 276.1686155 -33.2219501 300”
183 277.1139497 -31.2285357 200” 412 280.7147812 -35.4900553 200”
184 277.9455649 -35.0629162 200” 413 278.0732661 -34.0480218 200”
185 277.9534369 -35.1887557 200” 414 277.3770595 -32.234243 200”
186 277.2050738 -31.9497981 200” 415 280.7524469 -34.9011904 200”
187 277.7433715 -34.576895 200” 416 278.4929337 -33.8058084 200”
188 277.9542732 -36.3310891 200” 417 278.3506023 -33.2481979 200”
189 277.3971218 -35.9057656 200” 418 279.9188993 -30.9573609 300”
190 276.6355623 -33.3107172 200” 419 277.4211707 -36.1135428 300”
191 275.846585 -33.4052446 200” 420 282.2512724 -30.8958649 200”
192 275.8164599 -33.6624638 200” 421 283.1292386 -35.2042764 200”
193 276.2051242 -31.3919916 1600” 422 281.8930197 -31.3001615 200”
194 278.9945163 -36.3702265 1400” 423 280.3691002 -32.4914236 200”
195 282.2663136 -32.6115476 1000” 424 279.3412856 -34.5697427 200”
196 277.9720615 -31.3471719 1000” 425 278.6404347 -32.2165364 200”
197 280.1738549 -31.2265984 900” 426 277.7942178 -31.92878 200”
198 279.9151285 -31.5836379 800” 427 276.0930064 -33.2472113 200”
199 277.7011664 -32.1538026 600” 428 280.1635101 -34.0798029 300”
200 278.160749 -36.3903852 600” 429 279.0049061 -31.1997 300”
201 280.4237548 -33.2762914 500” 430 276.9057127 -32.9500535 300”
202 279.5917978 -34.090772 500” 431 280.1680152 -31.425899 200”
203 278.025894 -34.6039398 500” 432 280.2350414 -31.7705012 200”
204 282.4068768 -32.4221478 400” 433 278.4533632 -33.2748177 200”
205 280.2090684 -33.5340337 400” 434 277.4947055 -31.3518153 200”
206 278.7978947 -32.2936905 400” 435 277.974767 -36.4621921 200”
207 279.6033941 -35.7451769 400” 436 280.3568013 -31.3804521 300”
208 278.9809094 -34.5984461 400” 437 280.2836245 -31.4422249 200”
209 277.0920489 -35.910213 400” 438 278.1731259 -33.4028503 200”
210 282.1268368 -31.0677141 300” 439 278.0527793 -33.3793004 200”
211 281.0786492 -31.3032926 300” 440 277.9702774 -36.4155146 200”
212 280.5917673 -31.5480599 300” 441 276.3453023 -35.4462657 200”
213 280.1673613 -31.8482058 300” 442 277.0054459 -33.604008 200”
214 280.8725456 -34.8391186 300” 443 279.6669901 -33.1995271 200”
215 280.1700953 -32.4589574 300” 444 278.3888984 -33.3266184 400”
216 280.9024857 -35.8514911 300” 445 280.3560688 -33.8421283 200”
217 279.7165104 -31.2230209 300” 446 279.2745719 -34.3677584 200”
218 279.8273543 -32.082141 300” 447 278.201341 -33.3718502 200”
219 279.6132197 -31.3404958 300” 448 280.4019522 -31.4477645 200”
220 280.2236531 -33.8725265 300” 449 277.6472239 -36.1966627 200”
221 279.9001487 -32.8988605 300” 450 281.2671972 -31.3625585 200”
222 278.35395 -32.8191088 300” 451 280.8250374 -31.8161468 200”
223 278.8658776 -35.0271216 300” 452 277.6407276 -34.5313843 200”
224 278.4014849 -33.1598124 300” 453 278.4916177 -33.267576 200”
225 277.4114292 -34.2817891 300” 454 280.4161597 -33.0789694 200”
226 276.5575212 -35.8732171 300” 455 280.3237737 -32.9045478 200”
227 281.3194705 -31.5089323 200” 456 280.2318955 -31.4100487 200”
228 281.979201 -34.0937198 200”
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Table 11: Bubbles that were detected by the network in the LMC at the Hα emission
line. Note that the Radius is actually the size of the box that was used to query the
network. It is not the actual size of the bubble but the bubble is contained within
the radius.

Number Galactic l Galactic b Radius Number Galactic l Galactic b Radius

0 282.6974501 -32.5960373 1600” 145 276.7163087 -35.826985 600”
1 282.4725237 -32.366694 1600” 146 279.4043869 -31.2077738 400”
2 277.1370971 -31.1180322 1600” 147 279.2781952 -31.3904698 400”
3 278.2170803 -36.0321311 1600” 148 280.0493378 -34.6592085 400”
4 276.6759657 -36.2555811 1600” 149 279.0591961 -31.6479735 400”
5 280.5782479 -30.5990789 1400” 150 277.9254817 -32.3405862 400”
6 281.2846701 -34.4647612 1400” 151 277.5442595 -35.1343464 400”
7 279.9323955 -33.39178 1400” 152 276.1725781 -34.1393529 400”
8 279.3840976 -31.7006256 1400” 153 282.0498684 -34.2488826 300”
9 278.894 -35.3478595 1400” 154 281.2918882 -31.7071081 300”
10 277.7321577 -33.0962809 1400” 155 279.9220681 -30.9568044 300”
11 277.1371415 -31.2925598 1400” 156 279.9307676 -32.1140719 300”
12 279.2261785 -34.731301 1200” 157 279.4963684 -31.9894588 300”
13 278.6081589 -34.4741734 1200” 158 279.7374415 -34.2488189 300”
14 282.3254662 -32.6428318 1000” 159 278.7825863 -32.2707514 300”
15 281.1533475 -31.2446616 1000” 160 278.3189632 -30.7621558 300”
16 281.4982262 -35.2727744 1000” 161 278.192706 -33.3545549 300”
17 279.2805743 -32.8079778 1000” 162 277.7603217 -33.9249449 300”
18 279.0174029 -32.9790771 1000” 163 277.7629846 -33.9369633 300”
19 277.3606184 -33.0287674 1000” 164 277.7911788 -34.131458 300”
20 279.8799775 -32.7775976 900” 165 277.0048543 -33.6779609 300”
21 280.0623903 -33.8861722 900” 166 276.2895192 -33.1615032 300”
22 279.385171 -32.7859015 900” 167 275.5924048 -34.5939077 300”
23 279.4841638 -35.4641705 900” 168 282.9169266 -35.1443272 200”
24 277.9762688 -32.9386716 900” 169 281.2271743 -31.8707207 200”
25 277.8521119 -32.5796347 900” 170 281.7961593 -34.0466067 200”
26 278.364028 -36.2473226 900” 171 281.8752989 -34.3732067 200”
27 277.8578838 -34.2438434 900” 172 280.1042669 -31.8904818 200”
28 281.8705781 -32.0273668 800” 173 280.4184852 -33.239189 200”
29 282.2347386 -35.1678111 800” 174 279.6847667 -31.7470724 200”
30 280.1839162 -31.2134865 800” 175 279.6981465 -34.3121135 200”
31 279.4509315 -31.3072823 800” 176 278.9394079 -34.8229989 200”
32 277.9277437 -31.4230431 800” 177 278.5079152 -33.2796744 200”
33 278.602796 -35.6565749 800” 178 277.5992651 -34.3191593 200”
34 278.6105407 -35.6892667 800” 179 276.721005 -31.9463815 200”
35 277.7302791 -32.1650715 800” 180 277.5541376 -36.2547737 200”
36 276.3205674 -32.1062889 800” 181 281.3446151 -32.3761611 1600”
37 279.4172842 -31.5308627 600” 182 282.0204407 -31.1541443 600”
38 278.4829765 -30.6958064 600” 183 276.4750219 -32.539252 500”
39 278.2819976 -35.0255286 600” 184 277.0235933 -36.1479208 400”
40 277.5209431 -34.2518906 600” 185 279.9070989 -32.5325328 300”
41 276.4924604 -33.2862569 600” 186 279.7119321 -36.0137005 300”
42 275.9584006 -32.2733541 600” 187 281.3455715 -34.2382654 200”
43 282.3265366 -33.0627749 500” 188 280.6848417 -32.5748005 200”
44 282.453715 -34.3446803 500” 189 280.2719798 -31.0641617 200”
45 280.3465533 -31.7682966 500” 190 279.7801066 -31.3229095 200”
46 280.8805227 -35.8320839 500” 191 280.7780417 -35.9157776 200”
47 279.0315948 -32.3716493 500” 192 279.4597439 -33.2277317 200”
48 279.2808192 -35.9543851 500” 193 278.3311238 -33.3949004 200”
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49 277.2593067 -32.0683796 500” 194 278.2880013 -33.2852568 200”
50 276.5497087 -33.299437 500” 195 275.9938785 -35.1842535 200”
51 277.1118081 -35.9496265 500” 196 277.5595995 -32.2705282 400”
52 276.1368708 -32.3588103 500” 197 280.6402454 -35.6448313 300”
53 276.1999168 -34.0364935 500” 198 279.9291454 -31.4158121 200”
54 275.7594352 -33.0776154 500” 199 280.8001335 -35.1630021 200”
55 281.8411044 -31.208974 400” 200 279.7612896 -31.41902 200”
56 281.954617 -34.0539495 400” 201 280.2812776 -33.7268977 200”
57 281.6221514 -35.4973876 400” 202 279.4915424 -32.0282194 200”
58 279.8683154 -33.9329733 400” 203 279.6761986 -34.3707764 200”
59 279.4158332 -34.9437261 400” 204 278.9086014 -32.3874781 200”
60 278.8737647 -34.9296949 400” 205 279.4667923 -36.7615658 200”
61 278.0633847 -33.4629755 400” 206 277.3959687 -36.0287519 200”
62 277.55256 -32.0515952 400” 207 276.1913157 -31.4288392 200”
63 277.1835588 -33.7153353 400” 208 275.9752227 -33.6698511 200”
64 277.3994805 -36.1194988 400” 209 275.8180817 -33.6706774 200”
65 276.9356608 -35.8141813 400” 210 281.7663019 -32.1881342 500”
66 282.6291591 -35.2846873 300” 211 280.5936783 -31.5477156 300”
67 282.4254198 -34.8351879 300” 212 280.0188107 -31.9536334 300”
68 280.8958539 -31.5053586 300” 213 280.0141187 -32.1539678 300”
69 281.0253004 -33.1682695 300” 214 280.8579766 -35.5597468 300”
70 280.1641653 -31.0261446 300” 215 280.5386036 -35.4531585 300”
71 280.1990302 -31.4685691 300” 216 280.1691687 -34.8848805 300”
72 280.4579644 -33.344628 300” 217 278.5613465 -31.3026916 300”
73 280.1630076 -32.4601995 300” 218 277.6973382 -32.0714467 300”
74 279.7399583 -31.1380233 300” 219 277.1817043 -33.6749965 300”
75 280.9089561 -35.9626647 300” 220 280.3136187 -32.0406482 200”
76 280.7909976 -35.6338906 300” 221 279.7792273 -31.9046381 200”
77 280.3717226 -34.0715308 300” 222 279.8785094 -32.4150324 200”
78 279.8344171 -32.0809184 300” 223 280.5951595 -35.4643478 200”
79 280.2356152 -33.7705836 300” 224 280.6990261 -35.982806 200”
80 280.230856 -33.8712784 300” 225 280.471482 -35.2560345 200”
81 279.7067775 -31.9783205 300” 226 279.5989207 -35.6293052 200”
82 279.692664 -31.9807505 300” 227 278.1030663 -35.1179943 200”
83 279.7856349 -34.321759 300” 228 277.2678568 -32.2474968 200”
84 278.7997088 -33.3384453 300” 229 276.1696145 -33.3039786 200”
85 278.3992895 -33.7386502 300” 230 276.5124217 -35.7945086 200”
86 278.0022982 -34.2358323 300” 231 280.4109035 -33.0742201 200”
87 277.6869495 -32.8802136 300” 232 280.2818584 -35.7359027 200”
88 277.8181063 -36.2379987 300” 233 279.866747 -35.5248769 200”
89 277.1023476 -34.7305274 300” 234 278.4136193 -33.1804969 200”
90 276.3951279 -32.6262329 300” 235 278.5730573 -35.5425573 200”
91 283.0088049 -35.8222903 200” 236 280.6465088 -35.6074459 400”
92 281.9780184 -34.0893894 200” 237 280.9275611 -32.9047478 300”
93 281.6533797 -34.1840393 200” 238 276.8634496 -33.4658266 300”
94 281.6075776 -34.2436846 200” 239 280.4261298 -33.1078614 200”
95 281.4120919 -33.665515 200” 240 279.6179673 -31.2151849 200”
96 280.6754294 -31.6696462 200” 241 279.7348227 -34.1908722 200”
97 280.9606405 -32.912394 200” 242 278.8648326 -32.3720613 200”
98 281.1779316 -34.1004601 200” 243 276.8185825 -33.4870262 200”
99 280.2576992 -31.718874 200” 244 276.9890569 -35.5166028 200”
100 280.2917842 -31.8573956 200” 245 279.4678897 -36.8867922 300”
101 280.0723272 -32.0661338 200” 246 277.0685786 -35.933262 400”
102 281.0022754 -35.7505383 200” 247 280.4825714 -35.5110406 300”
103 279.9033307 -31.5347228 200” 248 279.2483908 -31.3621565 300”
104 280.0834848 -32.7276055 200” 249 278.0240468 -35.189334 300”
105 280.742508 -35.3620908 200” 250 277.7702045 -34.0708365 300”
106 279.9072037 -32.1714398 200” 251 281.6292472 -34.1020495 200”
107 280.2214335 -33.5290474 200” 252 280.0488734 -30.7460144 200”
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108 280.2620308 -33.8539538 200” 253 280.2277162 -31.7678289 200”
109 279.8381989 -32.2599019 200” 254 280.2192731 -31.9943852 200”
110 279.8474927 -32.547362 200” 255 278.9694396 -34.8419397 200”
111 280.0346305 -34.216519 200” 256 278.2276459 -33.3654485 200”
112 279.9151188 -34.0667745 200” 257 278.1958971 -36.399751 200”
113 279.3939192 -32.5482315 200” 258 278.1448211 -36.6915589 200”
114 279.4549934 -33.566243 200” 259 277.9560746 -36.4238277 200”
115 278.9942037 -31.740843 200” 260 277.3327815 -35.4744124 200”
116 279.1129533 -32.5103779 200” 261 276.3409871 -33.2532583 200”
117 279.0528811 -32.5118709 200” 262 276.0835236 -33.2468529 200”
118 278.3275322 -30.1407083 200” 263 275.7094297 -33.5949976 200”
119 278.343664 -30.2141164 200” 264 280.695876 -35.8433031 500”
120 279.2697861 -34.28529 200” 265 281.8664906 -31.2978473 200”
121 279.2460091 -34.3146822 200” 266 280.7399066 -36.3362222 200”
122 278.9786987 -34.7912189 200” 267 276.4920343 -33.4947103 200”
123 279.1867116 -36.1238446 200” 268 280.1388753 -31.8299836 200”
124 278.4295011 -33.3600564 200” 269 280.5711795 -35.5354311 200”
125 278.3982357 -33.3565475 200” 270 280.5616367 -31.397566 300”
126 277.8391971 -31.563989 200” 271 280.7630921 -33.4296156 200”
127 277.8786157 -32.0656604 200” 272 279.8768116 -32.7010379 600”
128 278.607843 -35.9862451 200” 273 280.0904773 -31.5223007 200”
129 277.5227623 -31.8503368 200” 274 279.9504659 -35.423609 200”
130 277.4443255 -32.1838982 200” 275 277.4082268 -35.8962651 200”
131 277.2050738 -31.9497981 200” 276 276.6434635 -35.7195355 200”
132 277.3574565 -32.8571622 200” 277 279.8301789 -32.1796833 200”
133 277.4494081 -33.7998074 200” 278 280.4001606 -36.0115432 200”
134 277.0164257 -32.0966441 200” 279 278.8426225 -34.8102103 200”
135 276.9220362 -32.0262804 200” 280 279.8079666 -36.2106352 200”
136 277.1299791 -33.6866012 200” 281 276.2831389 -33.329604 200”
137 276.6789678 -32.1046159 200” 282 281.1171858 -33.9841424 200”
138 276.5614546 -32.1641054 200” 283 279.6201104 -34.3268965 200”
139 277.0720004 -36.5180697 200” 284 280.4865311 -33.2345708 200”
140 276.8264726 -35.9196159 200” 285 279.8312944 -31.4866845 200”
141 276.0431039 -33.4286222 200” 286 279.5865415 -35.7643588 200”
142 275.1144094 -35.4572508 200” 287 275.997288 -33.3033541 200”
143 275.3940631 -33.7982569 1600” 288 280.2861016 -31.3981513 200”
144 277.1492069 -36.0597168 800”

Table 12: Bubbles that were detected by the network in the LMC at the [OIII]
emission line. Note that the Radius is actually the size of the box that was used to
query the network. It is not the actual size of the bubble but the bubble is contained
within the radius.

Number Galactic l Galactic b Radius Number Galactic l Galactic b Radius

0 277.8788092 -32.3563761 1600” 134 279.2533934 -35.9480564 500”
1 278.8121635 -36.4146535 1600” 135 280.9130512 -32.8982827 400”
2 277.8012408 -32.3685006 1600” 136 275.7597452 -33.0826329 400”
3 277.8155471 -32.4340166 1600” 137 282.7065049 -32.6067898 300”
4 276.243532 -31.386411 1600” 138 282.6218896 -35.2860796 300”
5 280.5400999 -30.7249053 1400” 139 279.7948831 -31.2156203 300”
6 281.4451486 -34.7936835 1400” 140 279.6082466 -35.7534356 300”
7 276.5928778 -32.0243939 1400” 141 277.7715582 -33.9418677 300”
8 277.1521331 -36.0255169 1400” 142 276.9333337 -32.9504853 300”
9 281.400838 -32.4112009 1200” 143 276.9916765 -33.6860968 300”
10 275.8920994 -32.291137 1200” 144 281.788937 -32.2304781 200”
11 278.345439 -36.2665204 1000” 145 281.3256765 -31.2824217 200”
12 276.2838185 -33.186519 1000” 146 280.1814927 -31.0185383 200”
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13 281.4504876 -35.3149574 900” 147 280.2964185 -31.4699845 200”
14 279.7386121 -34.2452205 900” 148 280.4483928 -33.4763068 200”
15 279.5978024 -34.4207308 900” 149 280.0435582 -32.4198279 200”
16 278.4326435 -33.3589904 900” 150 280.3910209 -34.2015445 200”
17 277.4170093 -33.0625576 900” 151 279.8247712 -32.0797549 200”
18 276.8457051 -35.9411159 900” 152 280.5862628 -35.5424608 200”
19 282.3625193 -35.6215823 800” 153 279.6648775 -33.1908165 200”
20 281.0297458 -32.3545256 800” 154 280.0592552 -35.2794622 200”
21 280.2243759 -33.8264396 800” 155 279.4611828 -33.2337228 200”
22 279.5271626 -35.5086318 800” 156 279.1433677 -32.3394546 200”
23 277.9206279 -31.3903265 800” 157 279.4699204 -35.4036684 200”
24 278.3368474 -35.0537676 800” 158 278.6434697 -33.1221296 200”
25 276.458517 -32.5928747 800” 159 278.6001493 -33.2394234 200”
26 276.2365875 -32.0846501 800” 160 278.4128084 -33.2185131 200”
27 282.3300491 -32.2264564 600” 161 278.3578134 -33.2442258 200”
28 282.5864071 -33.380997 600” 162 278.1246462 -32.7469956 200”
29 282.3047695 -33.0254006 600” 163 278.1179819 -32.9220881 200”
30 280.157938 -31.5017319 600” 164 277.8720878 -32.9515195 200”
31 279.9242043 -35.3719255 600” 165 277.1358802 -31.1914047 200”
32 277.6731388 -32.8569349 600” 166 277.0232932 -32.1040649 200”
33 276.1994649 -34.0877748 600” 167 275.7245699 -33.7340598 200”
34 281.3846339 -31.3900447 500” 168 279.2465493 -31.3115712 600”
35 280.531467 -31.4205713 500” 169 277.5268918 -35.1493272 400”
36 280.3988826 -31.3814341 500” 170 282.6404726 -32.4631302 300”
37 280.1615247 -31.2140573 500” 171 279.5698982 -31.7430455 300”
38 280.7779794 -35.6401368 500” 172 279.3208268 -31.5557674 300”
39 277.8623044 -31.5575192 500” 173 279.4780871 -36.8851527 300”
40 277.7102265 -32.1032968 500” 174 281.8759205 -32.3402455 200”
41 277.1565736 -33.6905642 500” 175 282.0473119 -34.2470874 200”
42 276.6982686 -35.8204981 500” 176 281.1037247 -31.3678842 200”
43 282.583007 -33.797497 400” 177 280.0065562 -31.0772214 200”
44 280.7856163 -32.2398869 400” 178 280.6453739 -35.9388038 200”
45 280.3438721 -31.7574341 400” 179 279.2216397 -33.3886975 200”
46 280.1256941 -31.8470396 400” 180 278.4625072 -33.4837437 200”
47 279.7152851 -31.1372178 400” 181 277.8756904 -33.1418746 200”
48 280.891695 -35.9004623 400” 182 277.7866543 -34.0559056 200”
49 280.0521613 -32.7784253 400” 183 277.7754966 -34.1468347 200”
50 279.9200317 -33.3967374 400” 184 277.3098046 -32.1497693 200”
51 279.8526697 -33.9526456 400” 185 281.7661111 -31.9744151 300”
52 279.8577961 -35.5501617 400” 186 280.6064569 -31.5482476 300”
53 279.4118392 -34.9273935 400” 187 280.6378298 -35.635609 300”
54 278.9824702 -34.6915764 400” 188 278.4031974 -33.1346593 300”
55 278.1958894 -36.3907293 400” 189 277.4846029 -31.341551 300”
56 276.7537031 -36.2279405 400” 190 281.9526838 -31.0910562 200”
57 275.4896012 -33.7686249 400” 191 281.7739183 -34.3448571 200”
58 281.9581957 -32.031718 300” 192 280.9452779 -31.3142148 200”
59 281.3057243 -31.5046789 300” 193 281.5496319 -33.674285 200”
60 281.9705906 -34.069729 300” 194 280.1481959 -34.0733645 200”
61 281.1826506 -31.2528476 300” 195 279.8157318 -36.1997329 200”
62 281.046195 -31.2905556 300” 196 279.4543 -34.8750982 200”
63 281.3945218 -33.6636244 300” 197 278.6032102 -33.1880187 200”
64 280.6317887 -32.6768347 300” 198 279.2032829 -36.1257152 200”
65 280.7490125 -33.4304257 300” 199 277.7101567 -33.1928357 200”
66 280.3232885 -31.7956766 300” 200 278.0175541 -36.4017029 200”
67 280.3640696 -32.911644 300” 201 275.6925178 -33.6119199 200”
68 280.1631294 -32.1607604 300” 202 275.487706 -33.5845587 200”
69 280.6798966 -34.7419332 300” 203 277.4637827 -34.3868499 400”
70 280.1504552 -34.8710646 300” 204 277.0261028 -34.1614615 400”
71 279.6369016 -34.0849079 300” 205 282.4186873 -32.435794 300”
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72 279.4657204 -33.6896778 300” 206 281.2937987 -31.7067532 300”
73 278.8306519 -34.8149507 300” 207 281.2123219 -31.8467772 300”
74 278.9504477 -35.3807183 300” 208 279.632891 -35.639602 300”
75 278.6181014 -34.4256514 300” 209 276.8650544 -33.4734837 300”
76 278.3992895 -33.7386502 300” 210 276.7560165 -34.2597217 300”
77 278.6336344 -35.6545869 300” 211 279.9847737 -31.5827879 200”
78 278.1348593 -34.2899545 300” 212 280.9816049 -35.9170103 200”
79 276.4829493 -33.4931928 300” 213 279.8997187 -32.5298407 200”
80 276.1494857 -32.3519486 300” 214 280.6868582 -35.9871822 200”
81 282.0401721 -31.9097038 200” 215 280.5904178 -35.6999652 200”
82 281.6590433 -32.2549707 200” 216 280.1477838 -33.9843644 200”
83 281.3309346 -31.6515823 200” 217 280.0495088 -33.634255 200”
84 281.7893878 -34.0393348 200” 218 279.0082263 -31.196882 200”
85 281.8346278 -34.585575 200” 219 278.7520088 -31.2215417 200”
86 280.6805763 -31.3709754 200” 220 279.3256728 -34.5734422 200”
87 280.2486168 -31.1934975 200” 221 278.6406831 -32.2176267 200”
88 280.2336225 -31.4171081 200” 222 278.40536 -33.1857716 200”
89 280.2333685 -31.7827012 200” 223 278.1679826 -33.4160927 200”
90 279.9908848 -30.9079126 200” 224 277.8783546 -34.2864675 200”
91 279.9170847 -30.9718272 200” 225 277.6629362 -34.1684246 200”
92 280.0927663 -31.7394805 200” 226 277.9514971 -36.2007062 200”
93 280.1693184 -32.1341573 200” 227 277.5358519 -35.0001979 200”
94 280.4483404 -33.3361055 200” 228 280.3874652 -34.0795717 400”
95 279.9003464 -31.356861 200” 229 281.9519225 -31.9754841 200”
96 281.007957 -35.7325126 200” 230 280.482908 -33.2363459 200”
97 279.997474 -31.8411889 200” 231 279.5464306 -31.6610195 200”
98 279.9994548 -31.8493426 200” 232 278.3536305 -33.190045 200”
99 279.9898528 -31.8510211 200” 233 278.0328632 -35.1795235 200”
100 279.8380676 -31.5121201 200” 234 278.1579141 -36.7053783 300”
101 279.7648412 -31.4144405 200” 235 281.559865 -31.2634724 200”
102 279.5990588 -31.6808577 200” 236 280.5049593 -32.5342808 200”
103 279.5411703 -31.5209805 200” 237 280.2575174 -32.0437674 200”
104 280.7383651 -36.3410223 200” 238 279.799147 -33.4911229 200”
105 279.3725624 -30.8880959 200” 239 278.3384552 -32.8249731 200”
106 279.8873262 -34.0374804 200” 240 278.0866854 -34.2493748 200”
107 278.6333103 -29.8872601 200” 241 273.8052911 -31.7558679 200”
108 279.0187676 -32.3222812 200” 242 280.253333 -31.7173802 200”
109 279.410264 -34.3980671 200” 243 275.5963177 -34.5860816 300”
110 278.9787289 -33.0590334 200” 244 279.2790518 -34.3749511 200”
111 278.7830218 -32.3017887 200” 245 278.7222446 -34.7292636 200”
112 279.2336714 -34.6055107 200” 246 277.5571726 -34.2645195 200”
113 278.8572646 -34.8022125 200” 247 277.4438071 -35.213472 200”
114 278.489583 -33.8001192 200” 248 276.3446687 -35.4564774 200”
115 278.2143946 -33.3517076 200” 249 280.3968594 -31.4486749 200”
116 278.1769437 -33.2304228 200” 250 278.9261059 -32.9782388 200”
117 277.5877088 -32.0602599 200” 251 276.5600737 -33.3170977 200”
118 277.7435312 -33.0098262 200” 252 276.0877753 -33.2479449 200”
119 277.9850497 -34.2350954 200” 253 282.2754363 -35.2335373 200”
120 278.1655721 -35.0293421 200” 254 280.3138966 -32.9028791 200”
121 277.5596145 -32.5808787 200” 255 277.6531935 -36.2014225 200”
122 277.3945162 -31.996976 200” 256 282.0346435 -31.1576584 600”
123 277.3852744 -32.2352433 200” 257 275.1096427 -35.4539296 200”
124 277.3755873 -32.2367238 200” 258 279.5811071 -31.5577034 200”
125 278.1925679 -35.9568503 200” 259 281.9902409 -33.9004267 200”
126 278.1604643 -36.2240553 200” 260 280.2917319 -30.7769497 200”
127 278.0181278 -36.0170365 200” 261 280.7170871 -35.8600334 200”
128 277.5886609 -34.574752 200” 262 281.259862 -31.3650578 200”
129 277.4777232 -34.2103868 200” 263 280.821579 -35.916126 200”
130 277.0619971 -35.7089551 200” 264 277.9602849 -36.4147468 200”
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131 275.5870512 -33.8876007 200” 265 281.8838767 -31.3007735 200”
132 282.4899754 -32.1993549 500” 266 277.6343972 -34.5306416 200”
133 279.8994967 -32.7277404 500” 267 280.4091962 -33.0836022 200”

Table 13: Bubbles that were detected by the network in the LMC at the [SII]
emission line. Note that the Radius is actually the size of the box that was used to
query the network. It is not the actual size of the bubble but the bubble is contained
within the radius.
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Figure 29: Complete process of applying the Blobscan model to a fits file. On the
left side the help output from the command line interface is depicted. On the right
side an exemplary application is depicted. The red marked area is a mandatory
input, orange marked areas are optional inputs and the green marked area is the
expected outcome. The script counts all tiles that the network needs to predict and
how many tiles were already predicted. In the lower right side the outcome in the
folder of the analysed fits file is depicted.

A.2.4 Instructions

The Blobscan algorithm can be downloaded from URL https://www.sternwarte.

uni-erlangen.de/gitlab/ramsteck/blobscan. It can be used with the command
line interface. Therefore, navigate into the folder where the Blobscan program was
saved and execute it with python blobscan.py -h . In Figure 29 the complete process
is depicted. In Table 14 all arguments that can be given to the command line
interface are listed.
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A.2 Blobscan

Argument Importance Description

fit path mandatory
The complete path to the fits file that should be analysed.
E.g. C : /Dokumente/LMC ha.fits

-merge optional
True or False. Default is True. If it is True, all individual
box sizes are merged as described in Section 5.1.2 and
saved as an additional region file.

-save bubbles optional

”all”, ”merged” or ”none”. Default is ”none”. For ”all”,
all boxes that were classified as bubbles are saved as an
image. A folder for every box size is created. The images
are enumerated in the same order as the region file. img 0
is the first line of the associated region file.

-stride factor optional

]0,1]. Default is 0.5. In general the striding, that defines
the increment of the box walking over the fits file, is 1/2
of the box size. The stride factor is multiplied to that:
1/2 · box size · stride factor. A small value essentially
means that objects in the fits file are analysed by the
network in many different positional variations, improv-
ing the probability for it to be detected. It increases the
sensibility (Section 5.1.1).

-scaling optional

”individual” or ”global”. Default is ”individual”. In or-
der to analyse a cutout of the fits file the pixel values of
the cutout have to be values between 0 and 255. There-
fore, either the pixel values are scaled with the global
maximum value of the fits file or with the individual max-
imum value of the cutout area.

-box sizes optional

Integer values separated by a comma. Default is
100,150,200,250,300,350,400,500,600,700,800. It defines
the pixel size of the quadratic cutouts from the fits file
that are analysed by the neural network. Too small val-
ues leads to the problem that also stars are predicted as
bubble-like structures.

-model
weights path

optional
Default is the folder model in the folder where the script is
located. The complete path to the neural network model
weights.

Table 14: All possible arguments that can be given to the command line interface
of the Blobscan program.
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