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Abstract

This work gives attention to the variability of Galactic black hole binaries. In such sys-
tems, the black hole accretes matter from its companion, whose spectral type defines
the accretion mechanism to either Roche lobe overflow or (focused) stellar wind accre-
tion. Infalling matter forms an accretion disk, whose geometry strongly influences the
X-ray spectral form of the compact object. Observations show black holes’ spectral states
varying with time. Combined with information about the binary systems orbit and com-
panion, it is possible to learn more about the accretion geometry and to test the different
available models.

In the specific case of the black hole binary GRS 1758−258, the compact object’s com-
panion is yet unknown. Several candidates are proposed but none of them is confirmed.
Thus, GRS 1758−258 was monitored continually for 11 years with RXTE . During this
time, it shows seven dim soft states that exhibit a rather peculiar track in a hardness in-
tensity diagram. Information on the binary orbit could help to understand this behavior.

To determine the system’s orbital period, we search for modulations in the X-ray light
curve. This is done by applying the Fourier technique and transforming the light curve
from the time to the frequency domain. Due to the uneven sampling of the light curve, the
modified periodogram definition of Lomb (1976) and Scargle (1982) is used. Applying a
high-pass filter to the light curve reveals a 18.475± 0.017 days periodicity, however, this
period changes with time, first to lower, then back to higher values. Significances of the
power spectral density peaks are calculated to 98.15% to 99.98% . Red and white noise,
as well as filter effects as an origin to this period are excluded.

Changing with time, this signal cannot be due to an orbital modulation in the light curve.
There are other systems showing superorbital periods, and at least one system has a su-
perorbital periodicity changing with time: SMC X-1 (Clarkson et al., 2003b). For this high
mass X-ray binary, an irradiation driven warp in a precessing accretion disk is proposed
as the origin of the periodicity: if several warp modes compete with each other, we see
a modulation in the superorbital period. However, as we do not know much about the
binary system GRS 1758−258, further evidence for systems with precessing warps has to
be gathered to be able compare GRS 1758−258 to a statistical relevant sample.





It is my task to convince you not to turn away
because you don’t understand it.

(Richard P. Feynman)

1 Snacking Stardust

“O f all the conceptions of the human mind, from unicorns to gargoyles to the
hydrogen bomb, the most fantastic, perhaps, is the black hole”1 – this is
how K. S. Thorne starts the prologue to his book “Black Holes and Time

Warps”, and it is indeed a very true beginning. Black holes have fascinated astronomers
from the very first idea until today, and still they are objects of special interest in research.

One of the first theories of black holes dates back to 1783, when John Mitchell, clergyman
and amateur astronomer in England, first proposed that if light consists of particles as
proposed by Newton (1730), gravity should affect it like everything else. Thus, in case
of a very heavy star, gravity could be so strong as to prevent the light from escaping.
However, applying Newtonian mechanics (which, as we know today, is incorrect), such
a star would have had so small a radius that most astronomers considered it as mere
fantasy (Carroll & Ostlie, 2007).

The concept was reconsidered in 1939 by J. Robert Oppenheimer, George Michael Volkoff
and Hartland Snyder, who found the upper limit for neutron star masses (Oppenheimer &
Volkoff, 1939) and described the collapse of stars that exceeded this limit and collapsed
(Oppenheimer & Snyder, 1939): Black holes suddenly appeared much less fictional than
before. From that time on, they were the prime objects of interest of many theoretical
and experimental physicists. Detailed descriptions of stellar evolution and black hole
formation can be found in any basic astronomy textbook, e.g. Carroll & Ostlie (2007).

A most extensive (but by no means complete) list of research on black holes can be found
in Gallo & Marolf (2009). This section will concentrate on black hole binaries, their
accretion processes and spectral states. It is in parts based on the works of Grinberg
(2013) and Hanke (2011) as well as lectures of Jörn Wilms covering accretion as a topic,
e.g., X-ray Astronomy I in summer term 2012.

1Kip S. Thorne, 1994, “Black Holes and Time Warps: Einstein’s Outrageous Legacy”, W. W. Norton & Co,
New York/London
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1 Snacking Stardust

1.1 Accretion Disks in Black Hole Binaries: Meals on
Wheels

The first question one may ask is: If photons cannot escape from a black hole, how do
we observe it? This question is easily answered for black holes in binary systems where
the black hole’s companion is a star still burning in its core. There are ∼ 20 known black
hole binaries and some more promising candidates (Remillard & McClintock, 2006). This
is not much, especially when compared to a supposed total number of ∼ 35000 isolated
black holes in our closest neighborhood (250 pc, Fender et al., 2013).

Black hole binaries, or, in general, binaries containing one compact object, can be classi-
fied according to the type of stellar companion:

• High Mass X-ray Binaries (HMXBs): the compact object’s companion is an early
type star (O- or B-type). These stars produce strong stellar winds from which matter
can be accreted onto the compact object (Bondi & Hoyle, 1944). If the star is a
supergiant close to filling its Roche lobe (Roche, 1849, 1850, 1851), the stellar
wind can be focused onto the compact object (Friend & Castor, 1982).

• Low Mass X-ray Binaries (LMXBs): here the compact object’s companion is an
evolved, late type star filling its Roche lobe. The compact object can therefore
accrete matter directly from the star via the inner Lagrange point L1 (Lagrange,
1772, see also Fig. 1.1). Due to the conservation of angular momentum, infalling

4 Chapter I: Introduction

L5

L4

210-1

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

x

y

L5

L4

210-1

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

x

y

210-1

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

x

z

210-1

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

x

z

Figure 1.2: Roche potential in the x-y plane at z=0 (top) and in the x-z plane at y=0 (bottom) for
q = 0.1 (left) and q = 0.567 (right), respectively. Brighter colors mean higher potentials. The black solid
line shows the Roche lobes – the equipotential surfaces through the L1 point. The black dotted and
dashed lines show the equipotential surfaces through the L2 and L3 points, respectively. The blue (red)
lines show the corresponding equipotential surfaces at 0.5% lower (higher) potential. The triangular
Lagrange points L4 and L5, which are the global maxima of the Roche potential, are indicated by
labeled crosses.

Figure 1.1: Roche potential in the
x-y-plane. Brighter color indi-
cates higher potentials. Lines
show equipotential surfaces.
L1 is located at the crossing
of equipotential lines between
the two masses (Hanke, 2011,
Fig. 1.2)
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1.1 Accretion Disks in Black Hole Binaries

matter creates an accretion disk around the compact object (Shakura & Sunyaev,
1973). Usually, these sources are transient sources.

• Be-Binaries: the compact object’s companion is a fast rotating Be-type star (B-star
with emission lines), with an equatorial circumstellar gas disk. The compact object
moves on an eccentric orbit, accreting matter only when close to the companions
disk. For a long time, only neutron stars are observed as compact objects in these
systems (see Coe, 2000, for a review), however, Casares et al. (2014) recently found
a Be binary system containing a black hole.

1.1.1 Thermal Component

It is the accretion process in binary systems that betrays the black hole’s hideout. Accre-
tion is the most efficient way in physics to release large amounts of energy which is then
mostly emitted in X-rays. This and the next section are based on Hanke (2011) who gave
a comprehensive overview of the relevant processes.

Assuming a compact object of a mass M accreting matter in a spherically symmetric way
(which is wrong as we have an accretion disk, but which is OK to get a rough estimate),
there is a maximal luminosity this accretion process can produce: if the gravitational
force Fg on the accreted particles of a mass mpart is balanced by the radiation force Frad,

GMmpart

r2 =
σTS

c
(1.1)

with the Thomson cross section σT and the energy flux

S =
L

4πr2 (1.2)

containing the luminosity L, the accretion flow as a source of energy is cut off. The
corresponding luminosity is called the Eddington luminosity

LEdd =
4πGMmpartc

σT
∼ 1.3 · 1038 erg s−1 ·

M

M�
. (1.3)

Thus, in this simplified model, accretion is only possible as long as the luminosity is below
the Eddington luminosity.

As long as accretion goes on, the released energy can be estimated for a mass m accreted
from infinity to a stable circular orbit at radius r:

Erel = E(∞)− E(r) =
1

2

GmM

r
(1.4)

Accreted to the Schwarzschild radius of a black hole, i.e., the radius where the escape
velocity equals the speed of light, rS = 2GM/c2, the released energy would thus be

Erel =
1

4
mc2. (1.5)
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Figure 1.6: Spectrum (left) of an accretion disk with a T ∝ r−3/4 temperature profile (right). The
accretion disk, which is illustrated on a logarithmic scale, has been divided into ten rings, whose
blackbody-like contribution to the spectrum on the left is indicated in the same color. The composite
spectrum has a Rayleigh-Jeans tail for E ≪ kTout, a Wien tail for E ≫ kTin, and a E1/3 slope in between
(Lynden-Bell, 1969).

Active Galactic Nuclei (AGN). Although not considered in this work, ‘supermassive’ black
holes (with 105−10 M⊙) in the center of their host galaxies have to be mentioned among the
class of accreting compact objects. It was already suggested by Lynden-Bell (1969) that those,
when accreting accordingly, may cause violent events in the nuclei of galaxies (Burbidge et al.,
1963). A detailed description of the broad phenomenology of AGN – and their unification –
can be found in the reviews by Antonucci (1993) and Urry & Padovani (1995).

Accretion disks

Matter that posseses angular momentumwith respect to the compact object cannot directly fall
onto it, but moves on Kepler orbits unless the angular momentum can be transfered via inter-
actions. The standard theory of geometrically thin accretion disks (Shakura & Sunyaev, 1973;
reviewed by, e.g., Pringle, 1981) assumes some form of viscosity, whose physical origin is un-
specified within the α prescription of Shakura & Sunyaev (1973). Many mechanisms have been
suggested, including magnetohydrodynamic effects (Schramkowski & Torkelsson, 1996), and
in particular the magnetorotational instability (Balbus & Hawley, 1991, 1998; Balbus, 2003).
A steady accretion disk needs to dissipate energy at a rate

D(r) =
dE

dA dt
=

3GMṁ

4πr3



1−


r0
r



(1.33)

in order to provide a constant accretion rate ṁ (Shakura & Sunyaev, 1973, eq. 2.6; Pringle,
1981, eq. 3.10). The radius r0 is defined by the inner boundary condition of vanishing torque
and dissipation,12 e.g., r0=R⋆ for an accretion disk around a star. The disk’s total luminosity

 ∞

r0
D(r) · 2πr dr =

GMṁ

2r0
(1.34)

is just half of the total accretion power; the other part is stored in the kinetic energy of the
accreted particles, whose further fate depends on the nature of the compact object, see above.

12 The factor (1−
√
r0/r) is often ignored, assuming r ≫ r0 or different inner boundary conditions.

Figure 1.2: Composite spectrum and temperature profile of an optically thick accretion disk
(Hanke, 2011, Fig. 1.6)

This released energy is converted to random thermal motion by the viscosity of the accre-
tion disk. Note that the molecular viscosity as we know it proves too small to affect astro-
physical disks. The actual process taking place is yet poorly understood. Theories involve,
e.g., magnetohydrodynamical instabilities amplifying magnetic field inhomogeneities in
the accretion disk (Balbus & Hawley, 1991).

The viscosity of the disk is needed to exert torques as the accreted matter has to lose its
angular momentum when moving inward (Shakura & Sunyaev, 1973; Frank et al., 2002).
If we define the amount of mass crossing radius R in the accretion disk

Ṁ =−2πR ·Σ · vR (1.6)

with the surface density of the disk Σ and the radial velocity vR of the accreted particles,
and consider that at the radius of the inner edge of the disk Rin, there has to be no torque,
we can calculate the viscous dissipation rate per unit area to

D(R) =
dE

dAdt
=

3GM Ṁ

4πR3

�

1−
�

Rin

R

�1/2
�

. (1.7)

In an optically thick medium, the dissipated energy in a two sided disk is thermalized
according to the Stefan-Boltzmann-Law

2σSBT4 = D(R) (1.8)

and the temperature profile is therefore

T (R) =

¨

3GM Ṁ

8πR3σSB

�

1−
�

Rin

R

�1/2
�«1/4

. (1.9)

Thus we know the radial dependence of the temperature

T (R)∝ R−3/4 (1.10)

10
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Figure 1.8: Klein-Nishina cross section for Compton scattering. Left: angular dependence of the scatter-
ing probability, for different photon energies, according to Eqs. (1.42) and (1.41). Right: integrated total
cross section, according to Eq. (1.43). The gray lines show the asymptotic behavior in the low-energy
and ultra-relativistic limits according to Eq. (1.44).

Equation (1.45) has the following asymptotic behavior:


ΔE

E



≈


−α + 11
5 α2 − 51

10α3 + 3931
350 α4 −O(α5) for α ≪ 1

− 6 log(2α)−5
6 log(2α)+3 for α ≫ 1

(1.46)

In the low-energy limit (α ≪ 1), the energy loss ΔE/E is therefore approximately−E/(mec
2).

Comptonization by hot electrons

It has already been suggested from the early observations of CygX-1 that the innermost region
of accretion disks in black hole X-ray binaries, due to the Lightman & Eardley (1974) instabil-
ity, contains a gas-pressure dominated optically thin plasma (Thorne & Price, 1975, see in
particular their fig. 2), with electron temperatures of ∼109 K (Eardley et al., 1975).

Photons that Compton scatter with electrons not at rest in the reference frame of the
observer, may – as opposed to the results of Eqs. (1.45) and (1.46) from the previous section
for electrons at rest – also gain energy. This process is called inverse Compton scattering. For
a thermal electron population at a temperature Te with Θ := kTe/(mec

2) ≪ 1 (where pair
production does not matter), the average amplification per scattering is (e.g., Zdziarski, 1985):

A =


E′

E



= 1+
4kTe − E

mec2
+ O(Θ2) (1.47)

The statistical change of a spectrum through Comptonization can be described by a Fokker-
Planck equation for diffusion in energy space (Kompaneets, 1956; Weymann, 1965, eq. 5). The
optical depth τ (and geometry) of the scattering medium determine the average number of
scattering acts that photons undergo. Within certain approximations, Shapiro et al. (1976) find
for unsaturated Comptonization (i.e., at y := 4Θmax(τ, τ2) ≈ 1) of a soft spectrum S(E) pro-
viding copious seed photons below Es, the emergent hard X-ray spectrum for Es<E≪Ee to
be a power-law whose index is a function of y,14 and to have an exponential Wien cutoff
for E>Ee – completely independent of S(E). Sunyaev & Titarchuk (1980) were able to find

14 For non-relativistic multiple scattering of soft radiation in an optically thin medium, the power-law spectrum
follows already from heuristic arguments (e.g., Rybicki & Lightman, 1979): For E ≪ kTe, Eq. (1.47) gives a constant
amplification A ≈ 1 + 4Θ per scattering, such that an energy E = E0 · Ak is obtained after k = log(E/E0)/ log A
scatterings, which happen (for τ < 1) with a probability ∝ τk ∝ Elog τ/ log A.

Figure 1.3: Angular dependence of scattering probability (left) and total Klein-Nishima cross
section (right) for Compton scattering (Hanke, 2011, Fig. 1.8)

As in an optical thick medium, radiation is emitted as blackbody radiation

Tbb =
�

L

4πR2σSB

�1/4

(1.11)

we can integrate over all radii Rin ≤ r ≤ Rout and get a composite spectrum (Fig. 1.2
with a Rayleigh-Jeans tail at low and a Wien tail at high energies and a slope ∝ E1/3 in
between (Lynden-Bell, 1969).

1.1.2 Comptonization and Reflection

Up to now we only considered the thermal radiation component caused by the accretion
disk directly. However, this is only one part of the final spectrum we observe from black
holes. We have not yet considered direct interaction between the photons and particles
(mainly electrons), taking place in from of Compton scattering (Compton, 1923)

λ−λ′ =
h

mec
(1− cosθ) (1.12)

or
E′

E
=

1

1+ E
mec2 (1− cosθ)

, (1.13)

the new wavelength dictated by the scattering angle θ . The cross section for this process
was calculated by Klein & Nishina (1929) and is illustrated in Fig. 1.3.

In the case of a hot electron plasma with a temperature Te, photons may thus gain energy,
referred to as inverse Compton scattering (see e.g. Rybicki & Lightman, 1979; Zdziarski,
1985; Lightman & Zdziarski, 1987, and references therein)

E′

E
∼ 1+

4kTe− E

mec2 (1.14)
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lecture “X-ray Astronomy I”)

As most photons scatter quite often before they leave the scattering region and are ob-
served, the spectral changes by can be significant (Fig. 1.4).

The exact origin of the Comptonized spectrum (e.g., Titarchuk, 1994) is yet unclear, two
possible models are discussed:

• Sandwich corona model / sphere and disk model: The Comptonization is caused by
a hot electron plasma surrounding the disk (e.g., Haardt & Maraschi, 1991; Dove
et al., 1998).

• Lamppost model: The Comptonization comes from the base of a jet (e.g., Matt et al.,
1992; Markoff et al., 2005; Miniutti et al., 2007).

Nowak et al. (2011) summarize the different possible accretion geometries (Fig. 1.5):
Soft photons emitted by the possibly truncated disk are Compton-upscattered in a spher-
ical or toroidal corona around the disk, or at the jet base, leading to a powerlaw contin-
uum. The jet itself can also produce synchrotron radiation and photons can be upscat-
tered by the same particles they are emitted from. This mechanism is called synchrotron
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Figure 1.5: Illustration of different
accretion geometries: Soft pho-
tons (red) are emitted by the
disk (brown) and upscattered
in a corona region (dark yellow)
or at the base of a jet (yellow)
(Nowak et al., 2011, Fig. 1.9).
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1.2 Spectral States

self-Compton effect. When higher energetic power law photons hit the disk, they are
again reprocessed via Compton scattering (leading to a Compton reflection hump, see,
e.g., Lightman & White, 1988; Magdziarz & Zdziarski, 1995) or fluorescent line emis-
sion.

1.2 Spectral States: Black Holes’ Digestion

The previous section talked about the different contributions to a black hole’s total spec-
trum. What was not yet considered is the amount that each of them contributes, and as
we might expect, this amount is by no means constant with time. In fact, black holes
show variability on all time scales (Fig. 1.6).

Typically, we divide the states into two main X-ray states first discovered for the black
hole binary Cyg X-1 by Tananbaum et al. (1972):

• Soft/high state: the spectrum is dominated by the thermal soft X-rays of the accre-
tion disk. There is little to no variability in the light curve.

• Hard/low state: the powerlaw component in the hard X-rays dominates the spec-
trum. The light curve may show a high variability.

Fig. 1.7 shows the different states using the example of LMC X-3 and Cyg X-1.

Fender et al. (2004) and Remillard (2005) proposed a method to classify black hole
spectral states using the hardness intensity diagram (HID, see also Fender et al., 2009;
Motta et al., 2009; Belloni, 2010; Corbel et al., 2013, and references therein). This
diagram relates the spectral hardness, i.e., the ratio of high to low energy flux or count
rate

H =
Fhard

Fsoft
, (1.15)

to the brightness of the source (total flux or count rate). Using this, we have of course to
keep in mind that spectral hardness is not a very distinct dimension. Lower hardness can
be due to either an increase in the flux of the black body disk component or a steepening
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Figure 1.7: Left: Hard and soft state of LMC X-3 (Wilms et al., 2001, Fig. 4); right: Hard and soft
states of Cyg X-1 (Wilms, lecture “X-ray Astronomy I”).

of the powerlaw or a combination of both. However, most transient sources show a
surprisingly similar behavior in an HID (Fig. 1.8, central panel).

• Starting from quiescence, they become brighter at about the same high hardness.
Radio emission can be observed. The source is now in the hard state.

• At some point, the source stops to brighten and the spectrum becomes softer. The
source enters the hard intermediate state.

• While softening, the source sometimes shows radio flares. It approaches the soft
intermediate state. At a certain point called jet line, the jet is supposed to switch
off, radio emission drops to (near) nonexistence.

• Once the source arrives in the soft state, it starts dimming again. In this process,
the softness varies much more than the hardness does at increasing brightness.

• Before the source dims back into quiescence, the brightness decrease pauses and
the spectrum hardens again. The source then continues dimming and completes
the hysteresis in its HID.

In practice, each source of course shows some individualities, varying more or less in
brightness or hardness, but in general, all observations seem to be compatible with this
picture.
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1.2 Spectral States

Figure 1.8: Image from http://www.sternwarte.uni-erlangen.de/proaccretion/
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In the matter of physics, the first lessons should
contain nothing but what is experimental and
interesting to see. A pretty experiment is in itself
often more valuable than twenty formulae
extracted from our minds.

(Albert Einstein)

2 Overview of Observations

A lready in my Bachelor thesis (Obst, 2011), I was able to investigate one of the
most fascinating objects in Physics, a microquasar. I was able to continue the
analysis of my previous dataset and carry it into a new field of astronomy: Time

series analysis.

The first chapter gives a short introduction to the satellite used to collect the data, RXTE ,
and to the microquasar GRS 1758−258 itself, including the previous results this work is
based on.

2.1 RXTE

The Rossi X-ray Timing Experiment (RXTE), a NASA mission launched in 1995 into a
Low Earth Orbit with an altitude of about 600 km (Bradt et al., 1993), carried three
X-ray detectors: The All-Sky Monitor (ASM) (Levine et al., 1996) consisted of three wide-
angle cameras with proportional counters monitoring the sky for sources that show an
unusual behavior. The High Energy X-Ray Timing Experiment (HEXTE; Rothschild et al.,
1998), consisted of 2×4 NaI/CsI phoswich scintillation detectors, mainly gathered timing
information for compact objects and Active Galactic Nuclei (AGN).

This work uses data taken by the third instrument on RXTE , the Proportional Counter
Array (PCA; Jahoda et al., 1996, 2006; Zhang et al., 1993). The array consisted of five
(originally) identical Proportional Counter Units (PCUs). Each of them had a geometrical
detection area of ∼ 1600cm2. If an X-ray photon wanted to be detected by one of the
PCUs, it first had to pass a mechanical collimator (see Fig. 2.1), a grid of hexagonal tubes
of beryllium copper mounted exactly perpendicular to the underlying detector surface.
The Field of View (FoV) of the collimator had a full width at half maximum (FWHM) of
about 1◦. The larger the angle between the travelling direction of the photon and the
pointing direction of the PCA, the smaller was the probability that the photon would ac-
tually reach the detector (see Fig. 2.1) and not be reflected or absorbed by the collimator
material. After the collimator, the photon would pass an aluminum coated Mylar window
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2 Overview of Observations

covering the first volume of the proportional counter.

A proportional counter consists of a chamber filled with an inert gas. An infalling pho-
ton or particle of high energy will deposit its energy in the chamber by ionizing the gas
molecules. The number of ion pairs produced by the infalling photon or particle is pro-
portional to its energy. An electric field in the chamber accelerates the ion pairs toward
cathode and anode. In this process, the electrons will gain more energy as their mass is
much smaller than the one of the ions. Shortly before reaching the anode wire where
the electric field is highest, each electron will therefore produce an ionization avalanche
which is then detected by the anode. A quench gas mixed to the inert gas makes sure
that there is no additional avalanche started e.g. if the discharging ions acquire their
electrons on higher energy levels and then decay by emitting a photon. Thus, the dead
time of the detector is limited. For details on proportional counters, see e.g. Grupen &
Shwartz (2008).

In the case of the PCUs, a multi-wire proportional counter was used (Jahoda et al., 1996,
2006; Zhang et al., 1993): the first volume contained 20 anodes separated by aluminum
wall cathodes which supported the second Mylar window. It was filled with propane
and used as a veto layer for electrons and as a front anti-coincidence shield. Behind
the second Mylar window lay the main counter filled with xenon and 10% methane as

COLLIMATOR

Fig.2 The interleaved anode connection scheme for maximum background
rejection. Each PCU has 9 independent channels of analog electronics.

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Fig. 3 Collimator transmission as a function of angle. The plateau around zero is
caused by the divergence of the beam and reflection effects.

SPIE Vol. 2006 /327

80 -60 -40 -20 0 20 40 60 80
Scan angle (80 units/degree)

Figure 2.1: Upper left panel:
Schematic drawing of
RXTE PCA (Wilms, 1998,
Dissertation); Upper
right panel: Collimator
transmission of the RXTE
PCA as a function of
angle (Zhang et al., 1993,
Fig. 3); Lower left panel:
Honeycomb collimator;
Kitchin, Astrophysical
Techniques, Fig. 1.3.5.
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2.2 Monitoring of GRS 1758−258

a quench gas, consisting of three layers with 20 anodes each. The cells were divided
by wire walls, alternate cells were connected to either the left or the right amplifier
chain. Thus the detector was basically divided in halves, which was significant for data
screening and background modeling. The response matrices for the two halves were
identical. For normal observational data analysis, both halves were combined. The back
layer was used as second coincidence shield and xenon veto layer. These layers identified
and tagged photons that came of an off-source direction as well as calibration events.
Below the main counter there was an 241Am source used for energy calibration: 241Am
decays with a half-life of 432.2 years to 237Np by an α-decay

241
95 Am−→237

93 Np+4
2 He+ γ. (2.1)

Thus, if an α-particle and a photon were measured at the same time, the photon was
most probably emitted in this decay and therefore has a known energy of 59.6 keV, and
the event was tagged as calibration event by the coincidence shield. The detector body
was constructed of aluminum and surrounded by a graded shield of tin and tantalum.

RXTE was switched off in January 2012 after a lifetime of more than 16 years. Thus, it
is not surprising that the PCA experienced some problems in the course of its life: The
first of the PCUs (PCU0) lost its propane layer after 5 years, the second (PCU1) another
6 years later, due to a micrometeorite. Both PCUs were working until the end, but with
a different gain and higher background. There are several calibration epochs between
which the high voltage was changed. In the final years, only two of the PCUs were
working at the same time, to save energy and extend the lifetime of the PCA. To avoid
problems connected to calibration, only data from the best calibrated PCU (PCU2) were
used throughout this work.

2.2 Monitoring of GRS 1758−258

The black hole candidate GRS 1758−258 (see Chapter 1 for an introduction to black hole
binaries) was monitored by RXTE periodically between 1997 and 2008. The spectral
analysis of the extensive dataset has already been done (Obst, 2011), a short introduction
to microquasars as well as detailed comments on the analysis can be found there. As
the timing analysis of the data is based on the spectral results, this section summarizes
the relevant parts of the previous work (see there for detailed spectral parameters and
interpretation). This work will shortly be submitted for publication to A&A where “we” is
the pronoun commonly used. Thus, it would be highly inconsistent to do otherwise here.
The reader is welcome to see it as “you and I”!

GRS 1758−258 is a black hole binary discovered in 1990 during observations of the
Galactic Center region (Fig. 2.2, also see Heindl & Smith, 2002, for the exact location)
by the Granat satellite (Mandrou, 1990; Syunyaev et al., 1991). As one of only three
known persistent, mostly hard state black hole binaries in our Galaxy (GRS 1758−258,
1E 1740.7−2942 and Cyg X-11), GRS 1758−258 has since been observed in various en-

1Note that Cyg X-1 has been in the soft state for more than two years now (Grinberg et al., 2013)
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2 Overview of Observations

Figure 2.2: INTEGRAL -ISGRI count rate mo-
saic image in the 20–40 keV band ob-
tained during Galactic Center Region Key
Programme observations performed in
spring 2007. (Lohfink, priv. comm.)

ergy ranges (e.g., Rodriguez et al., 1992; Cadolle Bel et al., 2006; Pottschmidt et al.,
2008; Muñoz-Arjonilla et al., 2010; Soria et al., 2011, and references therein). As ra-
dio observations showed a double-lobed counterpart (Rodriguez et al., 1992; Hardcastle,
2005), GRS 1758−258 is considered a microquasar.

Pottschmidt et al. (2008) were able to describe broad band spectra of GRS 1758−258
taken by the RXTE and INTEGRAL satellites with an absorbed powerlaw cut off at high
energies, a black body disk component in the soft X-rays and a weak neutral iron Kα
line (Fig. 2.4). Their spectra are averaged over epochs of about 3 months and, although
GRS 1758−258 is not a transient X-ray source like most of the known microquasars, it
still displays different spectral states, a behavior typical for transient sources (Pottschmidt

Figure 2.3: Radio lobes of GRS 1758−258 at three frequencies: 1.4 GHz (left), 4.9 GHz (center)
and 8.4 GHz (right) with a resolution of 9.2× 5.8 arcsec taken with the NRAO Very Large
Array (VLA) (Hardcastle, 2005, Fig. 1)
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3. Broad band spectra

3.1 Epoch averaged spectra

We have modeled the PCA and ISGRI/SPI/PICsIT broad band spectra averaged over each
epoch1, successfully using either a cutoff power law or thermal Comptonization, plus a disk black
body component when required, as well as a weak neutral iron Kα line. See [9] for an earlier
version of similar broad band fits for the first four epochs. The PCA spectra are consistent with
a column density given by interstellar absorption in the direction of GRS 1758−258, i.e., NH =

1.5 × 1022 cm−2. Typical exposures are ∼ 30 ks for the PCA and ∼ 1− 2 Ms for the INTEGRAL
instruments (due to its smaller FOV JEM-X sees much less exposure from the source than the other
INTEGRAL instruments and its data are not included here). Currently the fits for epochs 10 and
epoch 11 still contain less data than those typical values since only data from the Galactic Centre
Key Programme are included, more exposure will be available after the proprietary period. Note
that epoch 10 was the last epoch covered by RXTE monitoring.

Fig. 3 shows the counts spectrum, best fit model, and residuals for two epochs, epoch 06,
which shows a comparatively hard spectrum, and epoch 10, which is the second softest epoch after
the faint soft state of 2003 (epoch 01). During these two softer epochs (01, 10) the source is not
detected by PICsIT (for epoch 11 we do not have enough data yet). For the other epochs the most
significant PICsIT detections, i.e., measurements in the energy band around ∼300 keV, are included
in the fits.

1ISGRI and SPI products were obtained with OSA 7.0, for PICsIT see [5], for the PCA see [6].

4

Figure 2.4: Broadband spectra of GRS 1758−258 (Pottschmidt et al., 2008, Fig. 3)

et al., 2008), making more detailed observations necessary for further information. Usu-
ally GRS 1758−258 is found in the hard state. The soft state, however, is peculiar:
GRS 1758−258 dims significantly while the spectrum is softening. Pottschmidt et al.
(2008) suggested a “p”- rather than a “q”-shaped track in the hardness intensity dia-
gram (HID, see 1.2). However, looking at the complete data available now, we conclude
that GRS 1758−258 as a persistent source just skips the quiescent state and only moves
on the upper part of the usual “q” in its HID (Obst, 2011). There, taking a short cut
from the hard (intermediate) directly to the soft state, it shows a clear hysteresis in state
transitions (Fig. 2.5).

GRS 1758−258 has been observed by the RXTE PCU in 1.0–1.5 ks long pointed snapshots
(Smith et al., 2001, 2002). These snapshot observations were done in monthly intervals
in 1996, weekly through 2000, and twice a week from 2001 March to 2007 October. Each
year there is a gap from November to January as the Sun was too close to the Galactic
Center, i.e., the pointing direction to GRS 1758−258 (Obst, 2011).

Because of its location only 0.◦66 away from the very bright X-ray binary GX 5−1 (Fig. 2.2,
GRS 1758−258 is a difficult source to observe with RXTE . The monitoring could therefore
only be realized using offset pointings away from GX 5−1 (Smith et al., 2001, 2002),
i.e., using the triangular response of PCA’s collimator to reduce the influence of GX 5−1
further. Response matrices were built such that they take the effect of the offset pointings
into account (Obst, 2011).

As GRS 1758−258 is faint and located in the Galactic Plane, close to the Galactic Cen-
ter, RXTE spectra of the source also contain a strong background component caused by
the Galactic Ridge emission. To distinguish between source counts and Galactic Ridge
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counts, background observations totaling 13 ks, 1.◦5 offset from GRS 1758−258, were
performed by RXTE in 1999. All spectral analysis was done using the Interactive Spec-
tral Interpretation System (ISIS; Houck & Denicola, 2000; Houck, 2002; Noble & Nowak,
2008). We were able to model the local Galactic Ridge emission with two bremsstrahlung
components and an iron line complex (Obst, 2011) according to high resolution Suzaku
observations of the Galactic Ridge (Ebisawa et al., 2007). We assume that there is no
local variation of the Galactic Ridge emission, and then added this model with all param-
eters fixed to the spectral model of GRS 1758−258 (Obst, 2011). See Fig. 2.6, left, for
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Figure 2.6: Left: Spectrum for the 2007 July 23 observation of GRS 1758−258 from the source
position, i.e., including the source contribution and the Galactic Ridge emission (blue), and
spectrum for the Galactic ridge emission alone (red). Right: example of an instrument back-
ground subtracted spectrum taken by RXTE on 2007 July 23, containing the absorbed power-
law component (dash-dotted line), the disk (dashed line), and the iron line (green solid line).
For clarity the constant Galactic Ridge model part is not shown.
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Figure 2.7: Spectral parameters from RXTE monitoring observations of GRS1758−258: flux in
keVs−1 cm−2 in the 3–20 keV band, fitted to the spectra, photon index, temperature, and nor-
malization of the disk component, total flux of the additional iron line in 10−3 phs−1 cm−2 and
the reduced χ2. Soft states are highlighted for episodes reaching a photon index softer than 2.
The Figure is based on Obst (2011, Fig. 2.7).

the amount of the Galactic Ridge emission in the GRS 1758−258 data, as well as (Obst,
2011) for the Galactic Ridge spectral parameters.

All spectra were then modeled using an empirical model consisting of an absorbed power-
law (phabs × powerlaw) and an additional iron line (egauss) (Obst, 2011). As Soria
et al. (2011) do not report an iron line for their XMM analysis, we simulated XMM spec-
tra based on some of our best fit models: A relatively broad iron line (σ ∼ 800 eV) as seen
in our fits appears to be so smeared in a highly resolved XMM spectrum that for XMM it
is not required in the model. Some softer spectra also require an additional black body
disk (diskbb) for improving the fit. For each spectrum, the source flux (i.e., not contain-
ing the Galactic Ridge background) was calculated from the best fit spectra (Obst, 2011).
As shown in Fig. 2.7, flux and powerlaw photon index show a clear anti-correlation with
a Spearman rank coefficient of 0.46: with increasing photon index the flux decreases,
i.e., the spectrum of GRS 1758−258 dims and softens. We classified as soft state all data
from where GRS 1758−258 starts softening up to photon indices softer than 2, to where
it is back in the hard state (Obst, 2011). Between 1997 and 2008, we found 7 dim soft
states (highlighted in Fig. 2.7). During the 2001 soft state, the source almost turned off
completely. The blackbody disk emission appears only during these soft states where the
low flux increases the uncertainties of the best fit parameters (Obst, 2011).
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The roots of education are bitter, but the fruit is
sweet.

(Aristotle)

3 Timing Techniques

F or studying X-ray binaries, it is important to find the companion star of the com-
pact object. The orbital parameters of a binary system play a major role in the
production of the X-rays observed by mankind. Stellar type and distance of the

companion influence the accretion mechanism of the compact object and thus the spec-
trum emitted in this process as well as the short and long-term variations in the X-ray
light curve: In the case of a low mass companion, accretion via Roche lobe overflow
might cause a hot spot on the accretion disk. Many such systems are transient sources,
being in quiescence most of the time while the accretion disk is filling, and going into
outburst once the disk becomes too massive. If the donor star is massive and produces
a strong, maybe clumpy stellar wind, many absorption lines can be seen in the X-ray
spectrum (Sako et al., 1999; Fürst et al., 2011; Kühnel, 2011; Oskinova et al., 2013;
Sundqvist & Owocki, 2013, and references therein). If the compact object is an X-ray
pulsar, a correction for the binary orbit has to be applied to the light curve in order to
find its pulse period.

The usual way to find out about the orbital parameters is looking at the light curve:
The binary orbit causes a slight, periodic modulation on the light curves of each of the
two objects. Timing analysis of the 11 years RXTE monitoring light curve therefore is a
promising ansatz.

There are various methods to determine periodicities in a dataset in general. This chapter
shortly describes the easiest way, epoch folding, as well as the more difficult Fourier
techniques.

3.1 Epoch Folding

The easiest method to test a dataset for periodicities is epoch folding (Leahy et al., 1983b;
Schwarzenberg-Czerny, 1989). A detailed description can be found in Kühnel (2011),
this section contains a short summary: For a certain set of test periods ptest, the light
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3 Timing Techniques

curve of length L is folded to the period length:

ρ(t) =
N−1
∑

n−0

F(t + nptest)⊗ R(t) (3.1)

with N = L/ptest and the rectangular function

R(t) =

(

1, for 0≤ t ≤ T,

0, otherwise.
(3.2)

This results in a “pulse profile” ρ. If the periodicity p in the dataset is different from ptest,
the pulse profile is relatively flat as the peaks and dips are averaged out. If p = ptest,
the pulse profile shows a distinct variation with phase. Doing this for many test periods
and comparing the resulting pulse profiles against a constant using a χ2- or z2-test, the
correct periodicity can be found, even if the pulse shape is not sinusoidal.

While gaps in the dataset do not affect the results, however, this method cannot be
applied to very short or coarsely sampled light curves: A minimum length of about
dt ≥ 20 × p is necessary to obtain reasonable results when folding the light curve, as
well as a binning better than tres ≤ p/10. With a mean sampling of tres ∼ 14 days of
the GRS 1758−258 light curve, we could thus look for periods above p ∼ 140 days, cor-
responding to a very wide binary system. As we cannot assume this to be the case for
GRS 1758−258, epoch folding is not applicable for our dataset.

3.2 (Fast) Fourier Transform

In cases where epoch folding cannot be used, the Fourier technique is applied. This
summary of the Fourier method is based on the more detailed works of van der Klis
(1989), Pottschmidt (2002) and Grinberg (2013). We will closely follow van der Klis
(1989) in the remaining section.

The (continuous or discrete) Fourier transform (Fourier, 1822) allows to transform sig-
nals from the time (or spatial) domain into the frequency domain: It decomposes a signal
into sine waves. An infinitely extended continuous function x(t) is transformed to

a(ν) =

∫ +∞

−∞
x(t)e−2πν itdt (3.3)

and the other way round,

x(t) =

∫ +∞

−∞
a(ν)e2πν itdν (3.4)

where i2 =−1.

For many cases this transform can be calculated analytically. For example, transforming
a sine wave returns a delta function at the respective frequency. Thus, theoretical predic-
tions concerning the shape of a Fourier transform are usually based on the continuous
transform.
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3.3 The Power Spectrum

However, what we usually deal with in astronomy are time series of fluxes xk: For a time
bin k a flux x has been observed in a certain energy band. We therefore use the discrete
Fourier transform to get from an equally spaced time series of length N to a series of N
equidistant frequencies. Equations 3.3 and 3.4 then look the following:

a j =
N−1
∑

k=0

xke−2πν j itk j =−
N

2
, . . . ,

N

2
− 1 (3.5)

or

xk =
1

N

N/2−1
∑

j=−N/2

a je
2πν j itk k = 0, . . . , N − 1 (3.6)

For uncorrelated flux values x l the frequency values a j are also uncorrelated. A complete
description of the discrete signal is obtained. One may now be puzzled about the imagi-
nary component of the a j, but on the second look, we see that positive as well as negative
frequencies are considered. This makes the imaginary components cancel out, and we
get a real number as a final result. In practice, the real component of the a j describes
the amplitude of the respective sinusoid, whereas the imaginary component denotes the
phase.

However, with a discrete time series we are not able to observe any frequency we want
to: there is an upper limit at half the sampling frequency:

νN/2 =
1

2

N

T
(3.7)

where T denotes the total length of the time series. This frequency is called Nyquist
frequency (Nyquist, 1928; Shannon, 1949).

There are algorithms that allow to efficiently compute a discrete Fourier transform: the
Fast Fourier Transform (FFT, Cooley & Tukey, 1965). This method dates back as early
as Carl Friedrich Gauss who used it around 1806. His work was not published in his
lifetime but only about thirty years after his death (Gauss, 1866; Press et al., 1992). The
first official publication was by Runge (1903) and Runge (1905). By reusing intermediate
results, the operation time to compute a discrete Fourier transform can be reduced from
O (N2) to O (N log N) which results in a significantly faster calculation especially for large
N.

3.3 The Power Spectrum

According to Parseval’s theorem (Parseval des Chênes, 1806), the total power in a signal
stays the same whether we compute it in the time (or space) or frequency domain:

N−1
∑

k=0

|xk|2 =
1

N

N/2−1
∑

j=−N/2

|a j|2 (3.8)
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This can be applied to the total variance of the dataset:

Var(xk) =
∑

k

(xk − x̄)2 =
∑

k

x2
k −

1

N

 

∑

k

xk

!2

(3.9)

=
1

N

∑

j

|a j|2−
1

N
a2

0 =
1

N
=

N/2−1
∑

j=−N/2,
j 6=0

|a j|2 (3.10)

Now the power spectrum, giving the fraction of the total light curve variance at the
respective frequency, can be defined as

Pj =
2

NPh
|a j|2 j = 0, . . . ,

N

2
(3.11)

or

P(ν) =
2

NPh

�

�

�

�

�

N0
∑

k=1

xke−2πν j itk

�

�

�

�

�

2

(3.12)

=
2

NPh







 

∑

k

xk cos(2πν tk)

!2

+

 

∑

k

xk sin(2πν tk)

!2





(3.13)

using the normalization after Leahy et al. (1983a). This normalization is usually applied
to keep statistics as simple as possible. If the noise in the (equally spaced) time series
follows a Poisson distribution (Poisson, 1837), then the distribution of the Pj,noise equals
the χ2 distribution (Helmert, 1876) with 2 degrees of freedom (exponential distribution).
The mean power as well as the standard deviation equals 2. In practice we find that this
is approximately the case for almost all types of noise. There are also other normalization
methods, e.g. by a regularly used one by Miyamoto et al. (1992).

3.4 Problems in Timing Analysis

Now that we have a definition of both the theoretical, continuous Fourier transform and
the discrete transform of our observed time series, we also have to consider the caveats of
this step in our analysis: when going from the infinite, continuous light curve x(t) emitted
by the light source to our finite, in single observations discretely sampled observation of
it, we basically have the product of x(t), a “window function”

w(t) =

(

1, 0≤ t < T,

0, otherwise
(3.14)

and a “sampling function”

i(t) =
∞
∑

k=−∞
δ

�

t −
kT

N

�

(3.15)
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3.4 Problems in Timing Analysis

Figure 3.1: Windowing and sampling problems, van der Klis (1989), Fig. 2.2

with the Dirac delta function δ(t) (Fig. 3.1, left).

Thus, we need the Fourier transform not of a single function x(t) but of the product
x(t)w(t)i(t) with its individual Fourier transforms a(ν), W (ν), and I(ν). The convo-
lution theorem states that the Fourier transform of the product of two functions is the
convolution of the Fourier transforms of the individual functions. In this case, this means
a double convolution of a(ν) with both

W (ν) =

∫ ∞

−in f t y

w(t)e2πν i tdt =
sinπνT

πν
(3.16)

for a symmetric window and

I(ν) =

∫ ∞

−∞
i(t)e2πν i tdt =

N

T

∞
∑

l=−∞
δ

�

ν −
lN

T

�

. (3.17)

As a final “windowed and sampled” Fourier transform (Fig. 3.1, right) we get then

aW I(ν) = a(ν)⊗W (ν)⊗ I(ν) =

∫ ∞

−∞
x(t)w(t)i(t)e2πiν tdt (3.18)

=

∫ ∞

−∞
x(t)

N−1
∑

k=0

δ

�

t −
kT

N

�

e2πiν tdt =
N−1
∑

k=0

x
�

kT

N

�

e2πiν kT
N . (3.19)

The effects of these convolutions can be summarized as spectral leakage: The convolution
with the window function transform makes all features in a(ν) become wider, especially
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3 Timing Techniques

the delta functions that become a wide peak with side lobes (leakage to nearby frequen-
cies). The convolution with the sampling function transform makes all features repeat
every N/T frequency units (leakage to distant frequencies). Thus, the simple fact that
we are looking at a source only at certain times for a certain length of time makes the
periodogram considerably more difficult.

To make things even worse, there is also leakage from high to low frequencies: The
power spectrum being symmetric around ν = 0, the power spectrum of the convolution
a(ν)⊗ I(ν) is reflected at the Nyquist frequency. All features with a frequency higher than
νN/2 are also found in the power spectrum below νN/2. This effect is called aliasing.

As in practice our sampling of x(t) is not in delta functions but rather in time bins of a
finite width δt, and thus the time series is “averaged” over the time bins, high frequency
features are damped from the beginning and the aliasing problem is less serious.

In order to keep a power spectrum as simple as possible in the region of interest, there
are several methods that can lessen the effects of frequency leakage. The probably most
basic method is to apply a low- or high-pass filter to the time series prior to calculating
the Fourier transform and thus eliminating influence of unwanted frequencies. This can
be achieved using a moving average: Each average value is calculated by subsequent
subsets of the time series. Taking the averages is a low-pass filter, subtract the averages
from the original values and only taking the high frequency residuals is a high-pass filter.
There are simple as well as weighted forms of a moving average.

Another method is called tapering: to lessen the leakage to nearby frequencies caused
by the windowing effect, it is possible to use a window function different from the basic
rectangular version given in eq. 3.14. Different forms of window functions (e.g., windows
that just smooth the corners of a rectangular window, triangular or bell-shaped windows
etc.) result in different sidelobe levels and forms in the Fourier transform. However,
tapering data also can lead to loss in sensitivity and resolution and should be applied
only with special care.

3.5 Lomb-Scargle Method

In astronomy we often have to deal with (more or less) unevenly sampled time series.
For such datasets, the simple statistics as in Sec. 3.3 do not hold. Scargle (1982) there-
fore proposed a modified definition of a periodogram to obtain the same exponential
distribution:

P(ν) =
1

2







�
∑

k xk cos(2πν(tk −τ))
�2

∑

k cos2(2πν(tk −τ))
+

�
∑

k xk sin(2πν(tk −τ))
�2

∑

k sin2(2πν(tk −τ))






(3.20)

where

τ=
1

4πν
tan−1

�∑

k sin(4πν tk)
∑

k cos(4πν tk)

�

. (3.21)
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3.5 Lomb-Scargle Method

He states that though the outer form of the definition seems to be changed significantly,
the actual values of the periodogram are typically not changed much. This modified form
of the classical periodogram now is equivalent to the least square fitting of sine waves of
the frequencies ν to the data as presented by Lomb (1976). The complicated formula is
time translation invariant and can be reduced to the classical periodogram for the case of
even sampling. Computing the modified periodogram is not substantially more difficult
than is its classical version as there exist similar O (N log N) algorithms, e.g. by Press &
Rybicki (1989).

This makes the algorithm perfectly suitable to be applied to data from monitoring cam-
paigns where observations are made only on a semi-regular basis. It was implemented to
the Interactive Data Language (IDL) by Jörn Wilms in 2000 and transcribed by myself for
use in ISIS in the course of this work. It is publicly available in the isisscripts, a collection
of software distributed by the ECAP at www.sternwarte.uni-erlangen.de/isis.
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If I can’t picture it, I can’t understand it.

(Albert Einstein)

4 Probing Periodograms

A s the companion star of GRS 1758−258 is not known and the spectral behavior
of the compact object is in some points rather peculiar, it seems obvious to use
the monitoring data for time series analysis. Information about the binary com-

panion as might be gained of an orbital period might give constraints on the accretion
geometry and thus help to find an explanation for the unusual dim soft states the source
is showing.

For the time series analysis we used the flux light curve of GRS 1758−258 as shown in
Fig. 2.7: as opposed to the count rate, flux values are independent of the respective
spectral shape of GRS 1758−258. Due to the many gaps and uneven spacing of the data
points, we used the Lomb and Scargle algorithm as described in the previous section.

This analysis was performed before by Smith et al. (2002) on a less extensive dataset.
They applied a high-pass filter to the dataset and found a modulation with a period of
18.45± 0.10 days. To test the significance of this period, they analyzed 1000 different
permutations of their dataset, none of them showing a so high a peak in the power
spectrum. They justify the usage of a high-pass filter by analyzing light curves containing
artificial signal with the same amplitude as the real ones and finding a peak in the PSD
only after filtering.

Smith et al. (2002) find their result compatible with the companion proposed by Marti
et al. (1998), a K0 III giant almost exactly filling its Roche lobe (Smith et al., 2000;
Rothstein et al., 2002). However, newer astrometric solutions suggest the companion to
be an early A-type main sequence star with unusual colors (Muñoz-Arjonilla et al., 2010).
As this identification is still ambiguous (Smith, 2010) and, however unlikely, Muñoz-
Arjonilla et al. (2010) do not exclude an extra-galactic origin of GRS 1758−258, and as
there is a much larger dataset available now as it was for Smith et al. (2002), a new
analysis might shed light on this inconsistency.
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Figure 4.1: Left: power spectrum of the complete, unfiltered light curve; right: power spectrum
of the unfiltered 1997–2001 data already used by Smith et al. (2002).

4.1 The Flux Light Curve and its Periodogram

Applying the Lomb Scargle algorithm to the unfiltered flux light curve, as expected, led to
a power spectrum without any prominent peaks. As Smith et al. (2002) reported a 18.45±
0.10 days period for the data between 1997 and 2001, we calculated a periodogram also
for this part of the dataset. Again, there are no prominent peaks in the power spectral
density (Fig. 4.1). The large luminosity variations between hard and soft spectral states
can decrease the significance of period measurements and therefore cause the lack of
such peaks (Smith et al., 2002).

4.2 The Detrended Flux Light Curve and its Periodogram

To avoid any influence of the seven dim, almost off soft states on our periodogram, we
only used data points where GRS 1758−258 was in the hard state, i.e., with a photon
index Γ< 2 (see Sect. 2.2). However, this step alone is not sufficient to remove long-term
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Figure 4.2: Left: smoothed light curve and right: residual flux in keV s−1 cm−2 of the model flux
light curve (see Fig. 2.7) after application of the high-pass filter.
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Figure 4.4: Upper panel: power
spectrum of the 1997–2001
data as used by Smith et al.
(2002) as in Fig. 4.5. We are
able to reproduce their pre-
vious results. Lower panel:
power spectrum obtained by
Smith et al. (2002). The
coarse PSD represents the high-
est values achieved by ana-
lyzing scrambled data (Smith
et al., 2002, Fig. 2c).

variations. The according PSD still does not show a signal. To avoid lower significances
of our measurements caused by large luminosity variations and to be able to compare our
results to those of Smith et al. (2002), a high-pass filter was then applied to the data by
subtracting a smoothed version of the light curve. The residual flux light curve is shown
in Fig. 4.2. All following time series analysis was performed on these high frequency
residuals.

To generate the smoothed light curve, for each data point we fitted a straight line to all
data within the range of n = 14 days before and after. Then we only used the high fre-
quency residual, i.e., the difference between the data point and the value of the straight
line to obtain a high-pass-filtered light curve. This method was already applied by Smith
et al. (2002) who used a range of n = 10 days before and after the data point. We ex-
tended this range to reduce the degrees of freedom of the smoothing fit (Fig. 4.3): For
too short a range, the many degrees of freedom result in a line at zero. Choosing too
large a range reduces the power in the PSD peak, probably due to a beat between period
and range. n = 14 days appears to be the best compromise in not too many degrees of
freedom and large PSD peak height.

Using data from 1997 to 2001, thus, in the same time range as Smith et al. (2002) , we
are able to reproduce the peak they found at 18.45± 0.10 days within the uncertainties
(Fig. 4.4): although we did not exclude the low energy flux where no modulations are
expected, we find a peak at 18.475± 0.017 days.

However, when using the whole 11 years of data, this peak is shifted in period by
0.32 days (Fig. 4.5, left). Analyzing the data from 2002–2008, i.e. all data after the
interval used by Smith et al. (2002) and therefore statistically independent from their
sample, the shift increases to 0.33 days. This difference is indicative for a quasi-periodic
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Figure 4.5: Power spectrum of the 1997–2001 data as used by Smith et al. (2002) (red) and
power spectrum of the whole light curve (black, left panel) and of the 2002–2008 light
curve (black, right panel). The peaks show a difference in period of 0.32 days and 0.33 days,
respectively.

oscillation (QPOs, Smith, priv.comm.). To study the evolution of the quasi periodic signal,
we calculated a dynamic power spectrum (Fig. 4.6 Benlloch et al., 2001): based on the
5 years interval of data originally used by Smith et al. (2002), slices of the same length
of 5 years were cut out of the light curve and analyzed separately. Each time the starting
time of the slice was shifted by 30 days, and each resulting power spectrum is shown as
a color-coded line in Fig. 4.6. Note that the 83 individual slices are overlapping and thus
not statistically independent.

As expected, the first few lines of the dynamic periodogram show a peak at 18.475 ±
0.017 days. The maximum of this peak, however, is drifting with time, first to lower
values to a minimum of 18.043± 0.005 days in 2003. Towards the end of the light curve,
the period of the main peak is rising again. In addition, there seems to be a split in period
between 2000 and 2002.

4.2.1 Period Uncertainties

The period uncertainties were calculated by Monte Carlo simulations of light curves con-
taining Poisson noise and an artificial signal close to 18 days to get comparable results
but not close enough to interfere with the variability on the original time scale. We chose
a sinusoid with a period of 16 days.

First, only this artificial sinusoid was added to the long-term trend of the light curve. The
resulting light curve was then filtered and analyzed as above. The amplitude of the 16-
day sinusoid was adapted so the resulting peak in the periodogram matches in height the
peak of the original data periodogram. The centroid value of the 16-day peak was then
determined by fitting a Gaussian to the region immediately around the peak.

Then, for 1000 times an extra set of Poisson fluctuations was added to each data point of
the light curve containing the artificial 16-day signal. The light curve was analyzed again
and the centroid value of a Gaussian fit to the artificial signal peak was determined. The
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Figure 4.6: Dynamic Lomb-Scargle periodogram for the entire 11 year model flux light curve of
GRS 1758−258. The periodogram is calculated in five year intervals (centered on the middle
in the time axis), stepped in intervals of 30 days.

38



4.2 The Detrended Flux Light Curve and its Periodogram

Ta
bl

e
4.

1:
Pe

ri
od

,u
nc

er
ta

in
ty

an
d

si
gn

ifi
ca

nc
e

fo
r

ea
ch

sl
ic

e
of

th
e

dy
na

m
ic

po
w

er
sp

ec
tr

um
.

D
at

e
[M

JD
]

Pe
ri

od
[d

ay
s]

Si
gn

ifi
ca

nc
e

[%
]

D
at

e
[M

JD
]

Pe
ri

od
[d

ay
s]

Si
gn

ifi
ca

nc
e

[%
]

50
47

0.
95

5–
51

84
4.

41
1

18
.4

75
±

0.
01

7
99

.1
8

51
71

5.
80

8–
53

16
7.

24
0

18
.0

77
±

0.
02

8
99

.3
6

50
48

4.
69

4–
51

84
4.

41
1

18
.4

64
±

0.
01

7
99

.1
7

51
74

4.
59

9–
53

19
8.

49
8

18
.0

66
±

0.
00

4
99

.9
4

50
51

3.
17

9–
51

84
4.

41
1

18
.4

64
±

0.
01

4
99

.2
7

51
77

1.
22

3–
53

22
9.

45
4

18
.0

43
±

0.
00

7
99

.8
2

50
54

1.
52

4–
51

99
6.

67
2

18
.4

64
±

0.
01

4
99

.3
0

51
82

1.
22

9–
53

25
5.

38
8

18
.0

54
±

0.
01

0
99

.7
5

50
57

6.
74

0–
52

02
7.

62
9

18
.4

52
±

0.
00

7
99

.5
4

51
84

4.
41

1–
53

28
6.

01
6

18
.0

54
±

0.
00

6
99

.8
4

50
60

4.
22

8–
52

05
8.

72
0

18
.4

52
3
±

0.
00

23
99

.7
4

51
97

0.
94

8–
53

31
9.

47
3

18
.0

54
1
±

0.
00

14
99

.9
5

50
63

3.
36

4–
52

08
9.

01
4

18
.4

41
±

0.
01

0
99

.4
8

51
97

0.
94

8–
53

33
1.

01
6

18
.0

54
1
±

0.
00

12
99

.9
3

50
66

3.
64

6–
52

11
8.

41
4

18
.4

52
±

0.
01

4
99

.3
5

51
97

0.
94

8–
53

33
1.

01
6

18
.0

54
1
±

0.
00

12
99

.9
3

50
69

4.
25

6–
52

14
5.

35
6

18
.4

3
±

0.
04

98
.6

8
51

97
0.

94
8–

53
40

7.
89

7
18

.0
54

1
±

0.
00

13
99

.9
6

50
72

1.
67

4–
52

17
6.

55
8

18
.4

2
±

0.
04

98
.6

6
51

98
1.

87
9–

53
43

9.
17

5
18

.0
54

1
±

0.
00

15
99

.9
4

50
75

6.
89

1–
52

20
9.

27
2

18
.4

3
±

0.
05

98
.1

5
52

01
1.

05
9–

53
46

2.
43

0
18

.0
42

8
±

0.
00

16
99

.9
2

50
83

5.
98

4–
52

23
5.

39
6

18
.4

3
±

0.
05

98
.1

8
52

04
1.

68
5–

53
49

8.
68

3
18

.0
43
±

0.
00

5
99

.8
2

50
83

5.
98

4–
52

23
5.

39
6

18
.4

3
±

0.
05

98
.1

8
52

07
2.

43
2–

53
52

8.
51

0
18

.0
54
±

0.
01

1
99

.5
9

50
84

2.
11

8–
52

29
7.

68
6

18
.4

2
±

0.
05

98
.2

3
52

09
9.

60
2–

53
55

8.
61

8
18

.0
54
±

0.
01

2
99

.6
6

50
87

0.
52

4–
52

32
8.

29
2

18
.3

84
±

0.
02

9
98

.9
1

52
12

9.
34

0–
53

58
7.

85
2

18
.0

54
±

0.
00

4
99

.7
6

50
89

9.
21

0–
52

35
9.

58
5

18
.3

73
±

0.
02

9
99

.1
8

52
16

1.
59

9–
53

61
0.

38
8

18
.0

54
1
±

0.
00

10
99

.9
6

50
93

1.
88

5–
52

38
7.

51
7

18
.3

7
±

0.
04

98
.6

4
52

18
9.

21
5–

53
64

2.
77

2
18

.0
54

1
±

0.
00

09
99

.9
7

50
96

1.
82

4–
52

41
9.

30
3

18
.3

61
±

0.
02

8
99

.2
1

52
21

9.
79

9–
53

67
9.

90
1

18
.0

65
5
±

0.
00

18
99

.9
7

50
99

4.
69

7–
52

44
5.

50
7

19
.0

21
±

0.
02

2
99

.4
2

52
29

4.
64

7–
53

69
6.

21
3

18
.0

76
9
±

0.
00

20
99

.8
7

51
01

9.
15

6–
52

47
9.

39
1

19
.0

33
±

0.
02

9
99

.2
4

52
29

4.
64

7–
53

69
6.

21
3

18
.0

76
9
±

0.
00

20
99

.8
7

51
05

4.
36

9–
52

50
9.

20
6

19
.0

21
±

0.
02

8
99

.2
7

52
31

1.
32

2–
53

76
2.

47
4

18
.0

76
9
±

0.
00

14
99

.9
8

51
08

0.
02

7–
52

53
8.

55
7

19
.0

09
8
±

0.
00

26
99

.8
2

52
33

9.
26

6–
53

76
2.

47
4

18
.0

76
9
±

0.
00

21
99

.8
3

51
10

9.
29

7–
52

56
8.

91
1

18
.4

75
±

0.
01

6
99

.5
7

52
38

2.
17

0–
53

82
5.

82
1

18
.0

76
9
±

0.
00

13
99

.9
8

51
20

1.
72

7–
52

59
8.

25
3

18
.1

79
±

0.
00

4
99

.8
6

52
40

2.
69

9–
53

85
9.

86
7

18
.0

76
9
±

0.
00

21
99

.8
8

51
20

1.
72

7–
52

60
0.

01
5

18
.1

79
±

0.
00

6
99

.7
4

52
43

0.
60

5–
53

88
8.

96
6

18
.0

77
±

0.
00

7
99

.7
8

51
20

1.
72

7–
52

65
9.

85
0

18
.1

79
±

0.
00

7
99

.7
3

52
46

1.
47

9–
53

91
7.

70
5

18
.0

88
3
±

0.
00

12
99

.9
6

51
23

0.
63

7–
52

68
9.

21
1

18
.1

67
9
±

0.
00

22
99

.8
6

52
49

3.
25

6–
53

94
8.

75
6

18
.0

88
±

0.
00

8
99

.7
7

51
26

0.
02

5–
52

69
4.

87
5

18
.1

45
2
±

0.
00

13
99

.9
3

52
52

1.
98

7–
53

97
5.

98
5

18
.0

88
3
±

0.
00

09
99

.9
6

51
29

4.
07

1–
52

69
4.

87
5

18
.1

45
2
±

0.
00

23
99

.8
4

52
55

2.
18

9–
54

00
7.

04
0

18
.0

10
±

0.
00

6
99

.8
2

51
32

1.
66

8–
52

77
9.

85
9

18
.5

32
±

0.
00

5
99

.8
3

52
58

0.
72

7–
54

03
6.

95
4

18
.1

45
2
±

0.
00

17
99

.9
4

51
35

1.
91

2–
52

80
9.

23
8

18
.5

32
±

0.
00

6
99

.8
1

52
65

9.
85

0–
54

06
1.

38
4

18
.1

57
±

0.
00

4
99

.8
0

51
38

5.
01

1–
52

83
9.

96
1

18
.1

45
±

0.
01

3
99

.6
4

52
65

9.
85

0–
54

06
1.

38
4

18
.1

57
±

0.
00

4
99

.8
0

51
41

0.
78

3–
52

86
8.

35
9

18
.1

34
±

0.
01

4
99

.5
9

52
67

6.
05

4–
54

12
6.

93
4

18
.1

56
5
±

0.
00

27
99

.7
6

51
44

1.
01

5–
52

89
8.

73
2

18
.1

11
±

0.
00

8
99

.7
4

52
75

5.
52

1–
54

15
4.

23
6

18
.1

67
9
±

0.
00

30
99

.7
8

51
46

9.
44

5–
52

92
8.

01
9

18
.1

11
0
±

0.
00

12
99

.9
2

52
75

5.
52

1–
54

18
8.

91
6

18
.1

79
±

0.
01

0
99

.6
0

51
50

4.
24

2–
52

95
8.

20
0

18
.1

22
±

0.
01

6
99

.5
7

52
75

9.
74

5–
54

21
4.

72
6

18
.1

91
±

0.
00

4
99

.8
3

51
56

4.
80

7–
52

96
2.

64
8

18
.1

22
±

0.
02

0
99

.4
4

52
79

1.
30

2–
54

24
9.

48
5

18
.1

90
7
±

0.
00

27
99

.8
5

51
56

4.
80

7–
52

96
2.

64
8

18
.1

22
±

0.
02

0
99

.4
4

52
82

1.
88

6–
54

26
9.

19
0

18
.1

91
±

0.
00

4
99

.8
3

51
58

9.
96

6–
53

04
7.

18
2

18
.1

11
±

0.
02

1
99

.5
6

52
84

9.
82

7–
54

30
4.

27
6

18
.2

02
±

0.
00

8
99

.7
6

51
62

4.
53

6–
53

07
8.

18
7

18
.1

22
±

0.
02

6
99

.1
5

52
87

9.
80

4–
54

33
9.

07
8

18
.2

02
±

0.
01

0
99

.5
4

51
65

1.
75

1–
53

10
7.

39
4

18
.1

11
±

0.
02

9
99

.1
8

52
91

1.
28

2–
54

36
7.

42
3

18
.1

91
±

0.
00

4
99

.7
3

51
68

0.
66

6–
53

13
8.

05
3

18
.0

88
±

0.
03

0
99

.2
4

39



4 Probing Periodograms
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Figure 4.7: Two examples for the distribution of peaks of the 1000 fake signal light curves
(black histogram). In both cases, the distribution has a Gaussian shape (red histogram).

standard deviation of the distribution of the 1000 simulated peaks around the center of
the peak calculated before adding noise is a measure for the uncertainty in the period.
Fig. 4.7 shows two examples of the distribution of these peak values. The filtering process
seems to slightly shift the peak period values with respect to the original fake signal, de-
pending on the light curve slice. However, this shift is by definition within the calculated
uncertainty. The process leads to conservative uncertainties that are slightly overesti-
mated, as it adds Poisson fluctuations to a light curve that already contains Poisson noise.
The significance level of these uncertainties is calculated next.

4.2.2 Period Significances

To estimate the significance of the period, we simulated 10000 light curves consisting of a
white noise component with the same standard deviation as the original short-term resid-
uals. For each light curve, a dynamic power spectrum with 83 overlapping light curve
slices was calculated in the same way as in Sect. 4.2. We find the period of the highest
peak for each light curve slice of the dynamic power spectrum for all of the 10000 simu-
lated light curves. For each slice, we then use the percentage of the simulated light curves
that show no peak in the range of the previously found period and its uncertainty in the
respective slice as a measure for the significance of said period. We find significances for
the drifting peak varying between 98.15% and 99.98% (see Table 4.1).

4.2.3 Systematic Effects

Although our high-pass filter works well for detecting periodic signals in the data, it is
not ideal: when calculating uncertainties for the period (see Sect.4.2), we found that the
long-term trend the filter is supposed to remove still contains part of periodic signals in
the range of 14 to 25 days. As the period found by Smith et al. (2002) falls in this range,
we took a closer look into the origin of this effect.

The light curve in which the residual signal appears was produced in the following way:
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4.2 The Detrended Flux Light Curve and its Periodogram
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Figure 4.8: Distribution of highest peak periods for the power spectra of 10000 simulated pure
white noise light curves for a filter n= 14 (top) and n= 20 (bottom).

we took a Gaussian noise light curve using the same dates as in the original light curve.
We added a primary sinusoidal signal with a period in the range of 14 to 25 days and
filtered the light curve to determine the long-term trend. To this trend, we added an
additional test signal of a different period, e.g. 12 days, filtered again and applied the
Lomb-Scargle technique as in Sect. 4.2. The resulting periodogram shows a main peak
at the period of the test signal and a second peak at the period of the primary sinusoidal
period.

As in this analysis we initially used a pure noise light curve and not the long-term trend
of the data, the residual signal is not connected to the flux values in our light curve.
Neither changing the period of the test signal nor changing the length of the light curve
section we use has any influence on this effect. Using only randomly selected two thirds
of the data points in the light curve lessens the effect but also reduces the height of the
test signal peak in the periodogram. The distribution of time intervals between individual
observations does not show an excess for intervals between 14 and 25 days. We therefore
exclude that the periodicity found in the data is the result of the sampling of our light
curve.

However, the range in which the residual signal appears shifts according to the filter
range n, and is always located between n and 2n (Fig. 4.9). Thus, we conclude that this
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4 Probing Periodograms
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4.2 The Detrended Flux Light Curve and its Periodogram
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4 Probing Periodograms
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Figure 4.11: Dynamical power spectrum of a simulated red noise light curve with (left) and
without (right) the original long-term trend.

residual signal is left because the filter is not an ideal high pass. But as we find a signifi-
cant peak in the periodogram although the filter removes part of the signal together with
the long-term trend, this filter effect does not impair the main results of our analysis.

In addition, we tested if the drifting peak in the periodogram could be caused by the
filtering process: we took a pure white noise light curve with the original sampling. The
standard deviation of the white noise random numbers equals the standard deviation in
the original residual light curve. We filtered out the “long-term trend” and calculated a
dynamic power spectrum of the short term residuals. Fig. 4.8 shows the distribution of
the highest peaks in the simulated power spectra. For a filter with n = 14 days, 8.97%
of the simulated white noise light curves show their largest peak in the power spectrum
between 18 and 19 days. This is expected as the filter is supposed to be sensitive to
exactly these periods: taking a closer look at these power spectra (Fig. 4.10) we see
that these peaks are not nearly as prominent as the one we found in the original data.
However, when using a filter with n = 20 days for comparison, the accumulation moves
from between 15 and 20 days to above 20 days (Fig. 4.8). Thus, what we see here is the
approximate filter response.

To determine whether the shifting peak is real, we also tested for red noise effects: red
noise values were taken out of the middle of a simulated red noise light curve (Tim-
mer & Koenig, 1995) with 100000 data points to avoid windowing effects of the simula-
tion routine. These values were then added as a red noise component to the smoothed
GRS 1758−258 light curve. This final simulated red noise light curve was then ana-
lyzed in the same way as the real data, again using a high-pass filter before applying the
Lomb Scargle algorithm. The dynamical power spectrum of the light curve containing
the long-term trend and additional red noise (Fig. 4.11, left) shows the period residuals
as explained above. Simulating just the red noise without the original long-term trend,
the resulting dynamic power spectrum (Fig. 4.11, right) does not show any peak at all in
the period range we are interested in. We therefore can exclude a red noise origin for the
drifting peak.
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An expert is a person who has made all the
mistakes that can be made in a very narrow field.

(Niels Bohr)

5 Concerning Conclusions

U sing the model flux light curve for timing analysis, we are not able to detect
any orbital modulation in the dataset. However, calculating a dynamic power
spectrum based on the modulation found by Smith et al. (2002) reveals a peak

drifting between 18.47±0.11 and 18.04±0.50 days with a significance between 96.2 and
99.95%. Even though we did not find a constant orbital period, a time-varying peak in
the dynamical PSD could still be close to the orbit if it is caused by superhump behavior of
the accretion disk. An introduction to the formation of superhumps can be found, e.g., in
Frank et al. (2002, but see also Pringle; Maloney & Begelman; Ogilvie & Dubus; Haswell
et al.):

In X-ray binaries, the accretion disk will be heated by irradiation by the central object.
Assuming that central object to be a point source radiating with luminosity L in a spher-
ically symmetric way, the effective temperature TPt of the disk due to heating at a radius
R can be calculated to (Frank et al., 2002)

T4
Pt =

L

4πR2σSB

�

H

R

��

d ln H

d ln R
− 1
�

(1− β), (5.1)

with the Stefan-Boltzmann constant σSB, the local scale height H = R tanΦ (see Fig. 5.1)
and an albedo β of the disk. For the special case of a black hole binary, this temperature
looks slightly different as the source of radiation is not a point source in the center of the
disk but rather the inner disk itself, leading to a smaller solid angle and thus an extra
factor ∼ H/R (Frank et al., 2002): in such systems, the irradiation effect is weaker.

Figure 5.1: Irradiated disk ge-
ometry (Frank et al., 2002,
Fig. 5.16)
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5 Concerning Conclusions

The strong dependence of the temperature on the radius leads to a large range of temper-
atures in the disk. Thus, in some regions of the disk the temperature can rise above the
local hydrogen ionization temperature TH, removing the thermal-viscous instability (see
Frank et al., 2002, Section 5.8 for more details): for temperatures below TH hydrogen is
only partly ionized and the material tends to clump into rings, leading to variations in
the accretion flow and thus in luminosity, as seen, e.g., in dwarf novae (Smak, 1982). If
the whole disk is heated above TH, the instability is totally suppressed and we expect a
persistent source. If at outer radii the disk temperature stays below this threshold, the
source shows outbursts and is classified as a soft X-ray transient (Frank et al., 2002).

However, the heating is not the only effect to consider: as accretion disks are supposed to
have an optically thick surface, the irradiated luminosity will be re-emitted or scattered
from the disk, resulting in radiation pressure exerting a force

dF =
2

3

L

4πR2c
dA (5.2)

on an element of area dA, directed along the disk normal n (Fig. 5.1). As long as the disk
is ideally symmetric respective to the orbital plane, the forces on both its surfaces equal
each other, but as soon as the symmetry is even a little disrupted, a torque is applied
on disk material, allowing a net torque leading to precession (Frank et al., 2002, as
well as Petterson, 1977, and Iping & Petterson, 1990 ). If the radiation induced torque
outbalances the viscous torque resisting it, this precession then increases the asymmetry
and thus the net torque: a warp is formed.

Applying a perturbation analysis as done, e.g., by Pringle (1996) (but see also Maloney
et al., 1996; Maloney & Begelman, 1997; Maloney et al., 1998; Wijers & Pringle, 1999;
Ogilvie & Dubus, 2001) shows that warping will occur if

L ¦ 12π2ν2ΣvΦc (5.3)

with the vertical viscosity ν2, the surface density Σ and the azimuthal disk velocity vΦ
(Pringle, 1996, ep. 4.1). Defining the ratio of the vertical viscosity to the radial viscosity
ν as

η= ν2/ν (5.4)

and introducing the mass accretion rate for a steady disk

Ṁ = 3πνΣ (5.5)

as well as the accretion efficiency

ε=
L

Ṁ c2

�

'
R∗
RS

�

(5.6)

we can simplify 5.3 to
vΦ
c
®

ε

4πη
(5.7)

(Pringle, 1996). To see the radial dependence of the instability, we can approximate

vΦ
c
=

1
p

2

�

R

RS

�−1/2

(5.8)
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Figure 5.2: Surface plots of different warp modes obtained from numerical calculations (Mal-
oney & Begelman, 1997, Fig. 3).

with the Schwarzschild radius RS, and see that (Pringle, 1996, eq. 4.3)

R

RS
¦
�

2
p

2πη

ε

�2

(5.9)

or, using equation 5.7
R

R∗
¦ 8π2η2 R∗

RS
(5.10)

We can see that the instability to warping depends on several factors, some of which
we can only make assumptions for, e.g., the viscosity (which is however an important
quantity as it makes all orbits slightly aperiodic (Frank et al., 2002). Putting in typical
numbers for a black hole (R∗ = RS, η∼ 1), we find warping possible at

R¦ 8πRS ∼ 2.34 · 105m ·
M

M�
(5.11)

In addition, the above calculations can only tell about the initiating of a warp. Its evo-
lution has to be calculated numerically. Figure 5.2 shows an example by Maloney &
Begelman (1997) whose calculations also include the influence of an external torque,
e.g., by the companion star, but see also Maloney et al. (1998) for nonisothermal disks.

The first observational evidence for such warps are so-called superhumps occuring in
SU UMa systems, a class of dwarf novae. These systems from time to time undergo

47



5 Concerning Conclusions
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Figure 5.3: Dynamic power spectrum of SMC X-1 observed by the RXTE ASM (soft X-rays) and
the CGRO BATSE (hard X-rays) (Clarkson et al., 2003b)

superoutbursts of a rather long time span (see Warner, 2003, for a review of SU UMa
systems and other cataclysmic variables). During such superoutbursts, many sources
were observed to show periodic optical oscillations, called superhumps, with a period
slightly longer than the systems’ orbital periods. These superhumps are due to a 3:1
orbital resonance within the accretion disk, causing the disk to be eccentric and to slowly
precess. The luminosity modulation is then caused by periodic variations of the efficiency
of dissipative processes in the accretion disk (Whitehurst, 1988; Whitehurst & King, 1991;
Lubow, 1991a,b).

Masetti et al. (1996), Haswell et al. (2001) and Charles (2002) review observations of
superhumps also in soft X-ray transients and LMXBs. Masetti et al. (1996) suggest another
origin for the modulations: with an elliptical disk shape, the accretion flow impacts the
outer disk at varying distances from the central object and thus at different gravitational
potentials, leading to modulations in the released energy. Other possible mechanisms
include a variation in the uncovered area in the direction of the observer or varying
absorption by a disk warp.

Based on this, Clarkson et al. (2003b) suggest a similar mechanism to explain the third
period of the HMXB SMC X-1, consisting of a neutron star and the B0 I optical companion
Sk 160 (Reynolds et al., 1993). Wojdowski et al. (1998) detected a superorbital period in
this persistent source. When analyzing a more extensive dataset, Clarkson et al. (2003b)
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Figure 5.4: (Clarkson et al., 2003a, Fig. 14)

found this period to be varying between 40 and 60 days. They performed an analysis
similar to ours, and also their dynamic power spectrum looks quite similar (Fig. 5.3).
They suggest the modulation being due to a bright spot at the intersection of accretion
flow and accretion disk. This mechanism can support variations in the superorbital period
(Clarkson et al., 2003b).

In the subsequent paper, Clarkson et al. (2003a) present the analysis of a sample of other
sources showing superorbital periods and put up a scheme, showing the evolution of
disk warping with respect to the binary radius (Fig. 5.4). With regard to the predictions
of Ogilvie & Dubus (2001) they propose that for very close binaries, warping due to
irradiation of the disk is not possible, whereas with increasing separation of the binary
components there is one stable warp mode as seen, e.g., in Her X-1 or LMC X-4. Near the
boundary to the region with two stable modes, two modes start to compete, resulting in
an unstable superorbital period as observed in SMC X-1. Once that boundary is crossed,
several strong periodicities interact, e.g., in Cyg X-2.

The result of Clarkson et al. (2003b,a) raises the question whether a similar mechanism
is applicable to GRS 1758−258. Both Her X-1 and LMC X-4 accrete via Roche lobe over-
flow, whereas SMC X-1 is a wind accretor. If the companion of GRS 1758−258 is indeed
the A-type star proposed by Muñoz-Arjonilla et al. (2010), the system would probably
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be somewhere in between. Thus, we would expect the range of the varying period of
GRS 1758−258 accordingly much smaller.

As warping is driven by radiation, we can also compare the luminosities of GRS 1758−258
and SMC X-1. Here, we come to a different result: For SMC X-1 we find an X-ray flux1 of
F1 = 4.15 · 10−10 erg s−2 cm−2 (Baumgartner et al., 2013) and a distance d1 of 60 kpc to
65 kpc (Naik & Paul, 2004; Neilsen et al., 2004, respectively). For GRS 1758−258, the
flux is given as F2 = 13.63 · 10−10 erg s−2 cm−2 (Baumgartner et al., 2013).

If both sources have the same intrinsic luminosity, from the flux ratio we find that
GRS 1758−258 would be located at d2 = 33.1 . . . 35.9 kpc. This would mean that GRS 1758−258
is situated far behind the Galactic Center and we would expect a very high hydrogen col-
umn density in our line of sight. Soria et al. (2011) observe a total column density
NH = 1.66 · 1022 cm−2 toward GRS 1758−258, whereas the LAB survey (Kalberla et al.,
2005) finds only NH = 7.51 ·1021 cm−2 in this direction. Thus, due to its higher absorption
column, GRS 1758−258 could indeed be located at such a distance, or else, could have a
companion emitting stellar wind.

However, as we have seen above, there are many factors that influence the formation of
warps in an accretion disk, and many mechanisms that lead to an observable variability
in the light curve, so that we cannot finally conclude this special mechanism of a warped
disk to be the origin of the variable periodicity in GRS 1758−258. Further observations
of such systems are needed to have a statistical relevant sample of different superorbital
periods and to be able to fit in the scheme sources as GRS 1758−258 where we do not
know much about the distance, the companion or the binary separation and orbit.

But for all that, we can at least draw one concrete conclusion from our analysis: The vari-
ability on timescales of days as we see it rules out an extra-galactic origin of GRS 1758−258,
which was not possible before (Muñoz-Arjonilla et al., 2010).

1 http://swift.gsfc.nasa.gov/results/bs70mon/
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