Simulating the Detector Performance

T. Dauser, T. Brand, J. Wilms for the WFI e2e team

WFI proto-consortium meeting, MPE, Garching, 02 Mar 2016

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Detector Performance: High Count Rate Capabilities

focus on fast chip for high count rate science requirements

- 80% throughput @1 Crab
- < 1% pile-up fraction @1 Crab

studied options:

- defocusing
- gateable DEPFET
- multi line readout
- macro pixel array

 \rightarrow full SIXTE e2e simulations of the fast chip

2

Previous Results: Defocusing of the Fast Chip

defocusing necessary to fulfill high count rate science requirements

(see bright source report ECAP-WFI-BSR-04)

35mm is optimal deplacement for maximal high count rate efficiency

(see defocusing report ECAP-WFI-DEF0C-20150727)

3

4

• 1st integration

- 1st integration
- clear

- 1st integration
- clear
- settling

- 1st integration
- clear
- settling
- 2nd integration

- 1st integration
- clear
- settling
- 2nd integration

misfits: photon hit during readout \Rightarrow wrong energy or invalid event

solution: gateable DEPFET (global charge transfer to shield the readout)

misfits: photon hit during readout \Rightarrow wrong energy or invalid event

4

The DEPFET Readout: resulting events

non-gateable DEPFET

gateable DEPFET

	Δt	1st frame	2nd frame		Δt	1st frame	2nd frame<
transfer (global)				transfer (global)	0.2 μs	$\Delta t_{p,0} E_p$	$\Delta t_{1,p} E_p$
1st settling	0.1 μs	E p	0	1st settling	0.1 µs	E p	0
1st integ	$1.0\mu\mathrm{s}$	$\Delta t_{1,p} E_p$	0	1st integ	$1.0 \mu s$	E p	0
clear	0.3 μs	< 0	$\Delta t_{0,\rho} E_{\rho}$	clear	$0.2\mu{ m s}$	0	$\Delta t_{p,0} E_p$
2nd settling	0.1 μs	< 0	E p	2nd settling	0.1 μs	E p	0
2nd integ	$1.0\mu\mathrm{s}$	< 0	E _p	2nd integ	1.0 μs	E p	0

time of the photon hit determines the measured event energy

fraction of *misfits* increased by more frequent readout (negligible for large chip)

5

Comparing gateable vs. non-gateable DEPFET

Line and Crab spectrum show only small differences

ightarrow 2.1% (non-gateable) and 0.75% (gateable) misfits expected for the *defocused 64x64 mode*

6

Comparing gateable vs. non-gateable DEPFET

Line and Crab spectrum show only small differences

 \rightarrow 2.1% (non-gateable) and 0.75% (gateable) misfits expected for the defocused 64x64 mode

misfit fraction does **not** depend on count rate \rightarrow possible calibration?

The WFI Bright Source Performance

- 130 μ m pixel size
- 2 halves of 32x64 pixels
- frame time: $80 \mu s$

- 550 μ m pixel size
- single pixel readout
- frame time: $2.5 \mu s$

(both configurations are defocused by 35 mm)

The WFI Bright Source Performance

Characterize the performance: Throughput and Pile-up Fraction

(throughput is the ratio between valid events and incident photons)

8

The WFI Bright Source Performance: Only Single Events

selecting only single patterns reduce pile-up, but also throughput

due to the large pixels mainly singles for the $\texttt{mpix} \rightarrow \texttt{much}$ larger throughput at low pile-up fraction

9

The WFI Bright Source Performance: Spectral Stability

mpix has larger problems with DEPFET misfits \rightarrow calibration?

Pattern Recombination: Intra-Frame Splits

line-wise readout can split doubles and higher order patterns \rightarrow not taken into account in the pattern analysis

Pattern Recombination: Intra-Frame Splits

line-wise readout can split doubles and higher order patterns \rightarrow not taken into account in the pattern analysis

combining intra-frame split events results in increased pile-up

11

Summary

- full e2e simulations of fast chip
- defocusing needed for bright source capabilities
- misfits in DEPFET readout:
 - \rightarrow gateable version marginally better
 - \rightarrow linear effect (calibration?)
- 64x64 fast and 16x16 macro pixel array
 - \rightarrow fulfill science requirements

Next Steps

- user documentation
- study DEPFET calibration for macro pixel configuration
- construct new RMFs with MC approach (geant not sufficient ⇒ better cross sections, charge diffusion, ...)
- simulation of calibration uncertainties (ARF, energy resolution, ...)

