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Abstract

TheextendedROentgenSurvey with anImagingTelescopeArray (eROSITA) project is the Ger-
man contribution to the X-ray satellite Spectrum-X-Gamma.It consists of an imaging instrument
built from 7 individual Wolter telescopes, where each of them has its own CCD detector. During
its flight the data from the satellite will be monitored by aNearRealTime dataAnalysis (NRTA)
software, which is developed at the Dr. Remeis-Sternwarte in Bamberg. The NRTA will detect
hardware problems and scientificly interesting phenomena like transient X-ray sources right after
the transmission of the observation data from the satelliteto the ground station.

In order to be able to test the code of the NRTA software beforethe launch of the satellite, a
simulation for the eROSITA telescope was developed in the course of this work. It uses realistic
X-ray source distributions to generate X-ray photons with an adequate algorithm. The photon
reflection by the mirror system and the subsequent detectionwith the CCD detector are imple-
mented according to realistic models using, e.g., a simulatedPoint SpreadFunction (PSF) and a
detector specificRedistributionMatrix File (RMF). Additional detector features like split events
or pileup are also included. The final output of the simulation is an event list file with a format
similar to the future output of the real telescope.

Event lists for different scenarios like transient objects or detector defectscan be generated
by the simulation and used as input for the NRTA. Therefore, the simulation is a powerful testing
tool, that can still be extended with several additional features. It can be also used to study, e.g.,
the impact of the telescope motion during the all-sky surveyon the measured data.
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Chapter 1

Introduction

The eROSITA telescope is an X-ray telescope, which will scanthe entire sky to obtain a com-
prehensive catalog of astronomical X-ray sources. In this context this chapter provides a short
introduction to the scientific and technical background of X-ray astronomy.

1.1 X-ray astronomy

At the early stages of astronomy the universe was observed inoptical light emitted from stars
of reflected from planets or similar objects. In the 20th century the observation of additional
wavelengths in the infrared or radio band and in the high energy domain of X-rays andγ-rays
became technically possible. According to their physical background, particular regions of the
universe might look very different in these energy ranges. Many new scientific results emerged
from the new radiation detection methods (Carroll & Ostlie,1996).

Observing the universe at very short wavelengths of X-rays and γ-rays, i.e., photon energies
above 0.1 keV, makes it possible to investigate high energetic phenomena such as supernovae,
black holes,Active GalacticNuclei (AGN) or galaxy clusters (Aschenbach et al. 1998, Charles
& Seward 1995). In the case of the latter three kinds of objects a lot of mass is concentrated in
a finite volume, which results in a very strong gravitationalpotential. This potential has enough
power to heat the surrounding matter up to X-ray temperatures. The emerging radiation typically
has very short wavelengths. Additionally the K-shell transition of most chemical elements also
lies in the range of X-ray energies (Dmitriev et al., 2005). As these transitions usually produce
strong lines, they can be observed quite well even over largedistances and provide information
about the emitting material.

A big disadvantage of visible light is its absorption by dustand gas clouds in the universe.
In contrary the very short and the very long wavelengths can penetrate these obscuring clouds
(Dmitriev et al., 2005). Due to this property they can provide very deep insight into the universe.
Therefore, the research in global properties of the universe, like cosmological investigations or
the search for dark matter, can gather information from X-ray observations.

Among the current astronomical issues particularly the quest for dark matter is a popular
scientific goal. In this field of interest the mass distribution in the universe and several cosmo-
logical constants play an important role. Many astronomershope to find out more about these
unknown quantities by investigating large-scale cosmological objects like galaxy clusters, which
create diffuse X-ray radiation. Therefore, one of the destinations of many current X-ray missions
are surveys of clusters and super-clusters (Squires et al. 1996, MPE, et al. 2007, Dmitriev et al.
2005).

Apart from the diffuse light emitted by galaxy clusters there are many different compact ob-
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1.2. X-RAY TELESCOPES CHAPTER 1. INTRODUCTION

jects generating short wavelength radiation. The most popular among them are X-ray binaries
consisting of a compact object, like a neutron star or a blackhole, and a companion star ”feeding”
the compact object (Carroll & Ostlie 1996, Charles & Seward 1995). Usually the companion fills
its Roche-lobe, i.e., it is extended to such a degree, that matter can be transferred to the compact
object. As the latter one has a very deep gravitational potential, a lot of energy is released by this
process. In fact mass accretion is the most efficient physical energy creation processes (Wilms,
2002). The accretion of matter with massmonto a black hole with the Schwarzschild radius

RS =
2GM

c2
(1.1)

releases an energy up to

∆Eacc=
GMm

RS
=

1
2

mc2 (1.2)

i.e., theoretically about 50% of the rest mass can be released as energy. Of course, there has to be
some radiation production mechanism, otherwise∆Eaccwould be transformed into kinetic energy
without any X-ray emission. According to a closer mathematical analysis the fraction of released
energy depends on the rotation of the compact object. For a maximum rotating black hole it can
be up to 40% of the rest mass. In comparison to that the fusion of hydrogen to helium only has
an efficiency of 0.7% (Wilms, 2002).

A further X-ray emitting phenomenon are AGN (Wilms, 2006). These are high-mass black
holes in the center of galaxies, which accrete matter of up toseveral solar masses per year. Due
to angular momentum conservation the matter forms an accretion disk instead of directly falling
onto the black hole. According to the current scientific models a very hot corona envelopes the
accretion disk. The gas atoms in the corona perform inverse compton scattering with the photons
emitted from the disk, i.e., they transfer energy to the photons. This mechanism creates a power
law spectrum of X-ray photons.

Compact objects with accretion disks are usually located atvery large distances from the
Earth, so they can be observed as point like X-ray sources in contrary to galaxy clusters, which
are extended sources with diffuse emission. Previous X-ray surveys (see Sec. 1.3) have shown,
that the major part of theCosmicX-Ray Background (CXRB), which was observed by the first
X-ray missions as diffuse X-ray radiation originating from all directions of the sky (Giacconi
et al., 1962), can be resolved into discrete sources. Most ofthem have been identified as AGN
(Brandt & Hasinger, 2005). It is supposed that a comprehensive survey of AGN can reveal new
information about the evolution of the universe.

1.2 X-ray telescopes

It turns out that the atmosphere of the Earth is quasi-opaquefor high energetic electromagnetic ra-
diation in the energy domain of X-rays andγ-rays (Aschenbach et al. 1998, Carroll & Ostlie 1996,
Charles & Seward 1995), as shown in Fig. 1.2. Although this fact is quite advantageous for the
health of any living creatures on this planet, it complicates the observation of the corresponding
astronomical sources with ground based instruments.

The only way to detect X-ray light from the ground is to measure its interaction with molecules
in the upper parts of the atmosphere. The Cherenkov light produced by these processes can,
e.g., be observed by theMajor AtmosphericGamma-RayImaging Cerenkov (MAGIC) tele-
scope on La Palma, Canarian Islands (Petry & The MAGIC Telescope Collaboration, 1999).
Another well-known telescope built for this particular part of astronomical science is theHigh
EnergyStereoscopicSystem (H.E.S.S.) in Namibia (Bernlöhr et al., 2003). But theobservation
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CHAPTER 1. INTRODUCTION 1.2. X-RAY TELESCOPES

Figure 1.1: Microquasar accreting matter from a companion star: due to angular momentum con-
servation the matter is not falling on the compact object in astraight line, but forms an accretion
disk (artist’s view,http://www.spacetelescope.org).

of Cherenkov light is only applicable for very high photon energies of the order of several GeV,
i.e., in the domain of hardγ-rays.

In order to avoid atmospheric absorption, during the early stages of X-ray astronomy detectors
were mounted on rockets and launched a few hundred kilometers into the upper atmospheric
layers. Of course, due to the quite short flights only snapshot measurements were possible with
this method. For long term observations, most X-ray experiments are performed on satellites
today with a more or less static orbit around the Earth.

Apart from the atmospheric absorption a further problem in high energy astronomy is the
fact that X-rays andγ-rays cannot be focused by conventional optical methods such as lenses or
mirrors. Due to their quasi-constant index of refraction inmost materials they simply penetrate
the lens or mirror without being deflected. Therefore, it is quite difficult to build an imaging
telescope for this high energetic radiation.

Basically there are two common methods used for X-ray telescopes on satellites (cf. Wilms
2008). The first possibility, which is also realized for eROSITA, are the so-calledWolter tele-
scopesproposed by Wolter (1952). They are based on the total reflection of X-ray photons on a
metal surface like gold under a very small angle of incidence. In order to obtain an adequate light
collecting area the imaging system is built from several mirror shells assembled inside of each
other. The individual mirror shells actually are a combination of a paraboloid and a hyperboloid
focussing the light, which originates from a particular point source, onto a spot in the focal plane.

Each mirror shell has a particular weight, so the number of individual mirrors cannot be too
large, as the entire telescope still has to be launched into space. To achieve good optical perfor-
mance, the quality of the mirrors has to fullfill high standards, which complicates the manufactur-
ing. Additionally the focal length of a Wolter telescope tends to be of the order of several meters,
whereas the space available on satellites is very limited.

7



1.2. X-RAY TELESCOPES CHAPTER 1. INTRODUCTION

Figure 1.2: Absorption of radiation by the atmosphere: the line indicates the height in the atmo-
sphere at which half of the cosmic electromagnetic radiation is absorbed. For visible light the
atmosphere is transparent, whereas X-rays andγ-rays are almost completely absorbed (Charles &
Seward, 1995).

Apart from telescope weight and dimension problems Wolter telescopes are only applicable
for quite low photon energies of up to about 10 keV, because higher energetic photons would
require very long focal lengths of more than 10 m. Therefore appropriate telescopes are difficult
to be mounted on satellites. Additionally theField Of View (FOV) of a Wolter telescope is
usually quite narrow, of the order of only a few degrees. All in all Wolter telescopes represent a
possible and common technique to build an imaging system forsoft and intermediate X-rays, but
the production of the necessary optics is quite challenging.

The second approach to determine the direction of an X-ray source is to put a mask with
a particular pattern of transparent and opaque pixels in front of a CCD detector, measure the
resulting shadow pattern, and obtain the direction of the incident photons from the shift of the
shadow pattern on the detector with respect to the mask pattern, as indicated in Fig. 1.4. From
the mathematical point of view the shadow is the result of theconvolution of the source function
with the mask function, thus the position of the sources can be determined from the measured
image data by applying adequate mathematical deconvolution methods, which is, e.g., explained
in Groeneveld (1999).

These so-calledCoded-Mask telescopesare capable of higher photon energies than Wolter
telescopes and usually have a very wide FOV of up to∼ 15◦. They also do not bring along the
problems of long focal lengths, but their angular resolution is worse. As this kind of telescopes
is based on a completely different imaging technology than the Wolter technique, which is used
for eROSITA, there will be no further information given in this text. For more details about

8



CHAPTER 1. INTRODUCTION 1.3. X-RAY MISSIONS

Figure 1.3: Focussing of X-rays under grazing incidence in aWolter telescope by double re-
flection on a paraboloid and a hyperboloid (numbers for Chandra observatory, image from
NASA/CXC/SAO,http://chandra.harvard.edu/ ).

Coded-Mask telescopes see, e.g., Groeneveld (1999).
Imaging instruments for soft or medium radiation energies are usually operated with CCD

detectors. In comparison to other X-ray radiation detectors like proportional counters they have
a very good spatial and temporal resolution. Apart from the optical quality of the mirror system
the detector resolution has the biggest influence on the telescope resolution. Therefore, CCDs are
much more convenient for imaging telescopes than proportional counters (Fiorucci et al., 1990).

In terms of the energy resolution CCDs exhibit no disadvantages in comparison to other de-
tectors. For eROSITA, with aFull Width atHalf Maximum (FWHM) of 140 eV at 5.9 keV, the
resolution is even up to∆E/E ≈ 2.4% (Meidinger, 2008). The quantum efficiency of this detector
is very good with values of≥ 90% for the photon energy range from 0.3 keV to 11 keV.

The main disadvantage of CCD detectors are their temperature requirements. Usually they
have to be cooled down to∼ −100◦C, so a complex cooling system is necessary to provide
the required temperatures. For eROSITA the operating temperature of−80◦C is achieved by
a combination of variable-conductance heat pipes and two radiators. The temperature is kept
stable by alatent cold storage unit(Fürmetz, 2007), which is based on a chemical substance with
melting temperature close to−80◦C. The substance is in equilibrium with a frozen and a liquid
phase, so variations in thermal energy are absorbed by the latent heat at the phase transition.

Although the energy resources on satellites are usually quite limited, the cooling problem can
be solved by adequate methods. Due to the advantages of theirgood spatial and energy resolution,
and due to their small size most X-ray instruments for the soft and intermediate energy range,
including eROSITA, use CCDs for radiation detection.

1.3 X-ray missions

The first astronomical X-ray experiments had to be mounted onrockets or balloons in order to be
launched into the upper parts of the atmosphere for avoidingthe absorption of the radiation by the
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Figure 1.4: Technique of Coded-Mask telescopes (ISDC/Univ. Geneva,
http://isdc.unige.ch/Outreach/Data/ibis.gif): the incident X-ray photons are partly absorbed
by a mask with a particular pattern resulting in a shadow pattern on the CCD detector. The
direction of the X-ray source can be reconstructed from the shift of the shadow pattern with
respect to the mask.

atmosphere (Wilms 2008, Charles & Seward 1995). Their initial goals were the observation of
X-rays emitted by the Sun. During a rocket flight aimed to detect fluorescent radiation from the
Moon, a bright galactic X-ray binary and the CXRB were discovered by Giacconi et al. (1962).
Later missions revealed a high degree of isotropy in the CXRB, which resulted in the suggestion
that the corresponding sources have to be extragalactic (Brandt & Hasinger, 2005).

One of the milestones in X-ray astronomy was the satelliteROentgenSATellite (ROSAT)
launched to a 580 km orbit in 1990. The primary destination ofthis experiment, which is based
on a Wolter telescope, was an all-sky survey in the soft energy range from 0.1 keV to 2.4 keV
to obtain an X-ray source catalog for the entire sky. During its survey the satellite discovered
105 924 sources in total (Voges et al., 2000). ROSAT was able to resolve 75% of the CXRB
into discrete sources with limiting fluxes down to∼ 10−15 erg cm−2 s−1, where most of them have
been identified as AGN with a sky density of∼ 780 – 870 deg2 (Brandt & Hasinger, 2005). It is
commonly supposed that almost the entire CXRB is created by emission from discrete sources,
but in order to verify this statement more sensitive observations have to be performed.

According to observations of the spectrum of the CXRB, whichhas a maximum at about
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30 – 40 keV (Marshall et al. 1980, Brandt & Hasinger 2005, MPE,et al. 2007), most AGN must
be heavily obscured by gas and dust in the center of the galaxies. Therefore it is important to
observe the universe in the intermediate and hard X-ray regime, as high energetic photons above
2 keV can penetrate these clouds.

The three satellites ESA’sX-ray Multi-M irror Mission Newton (XMM-Newton) (Jansen
et al., 2001), NASA’sChandra (Weisskopf et al., 2000), both launched in 1999, and JAXA’s
Suzaku(Mitsuda et al., 2007), launched in 2005, are the currently most important X-ray tele-
scopes. They can perform observations in the intermediate energy range of≤ 10 keV and have
focal lengths of the order of 7.5 m, 10 m, and 4.75 m respectively. Opposite to ROSAT they are de-
signed for pointed observations of particular small sections of the sky. One of the most common
surveys is theChandra Deep Field-North, a 2.0 Ms exposure in a region with low intra-galactic ab-
sorption. Although XMM-Newton andChandraare quite suitable for deep pointed observations,
their instrumental layout is not adequate for wide field surveys, which are necessary to perform
statistics of X-ray sources.

In order to provide a larger sample of sources for statistical examinations the ROSAT catalog
should be enlarged by the later ABRIXAS mission (cf. MPE, et al. 2007). Unfortunately this
satellite lost its main battery immediately after its launch in 1999 due to an error in the technical
design, and therefore could never be operated in scientific mode. The successive mission ROSITA
was proposed in 2002 as a module on the ISS, but further investigations revealed that the contam-
ination in the direct neighborhood of the space station is too high for this kind of telescope. In
April 2003 a proposal for the missionDark UniverseObservatory (DUO) was submitted to the
NASA, but after initial selection for a phase A study, the final implementation was rejected for
financial reasons. Despite of this setback, the technology of the DUO CCDs developed during the
analysis study, can be used for the current eROSITA detectors.

11



12



Chapter 2

eROSITA

Basically eROSITA is a successor to ROSAT in terms of performing an all-sky survey in the X-ray
regime. This chapter provides a short overview of the eROSITA mission.

2.1 Mission design

The eROSITA mission consists of an X-ray telescope for photon energies in the range from
0.5 keV to 10 keV. It is developed under the control of theMax-Planck-Institut fürExtraterrestrische
Physik (MPE) in Garching in cooperation with theInstitute forAstronomy andAstrophysics
Tübingen (IAAT), theAstrophysicalInstitutePotsdam (AIP), the Sternwarte Hamburg, and the
Dr. Remeis-Sternwarte Bamberg (Astronomical Institute ofthe University of Erlangen-Nuremberg),
and represents the German contribution to the Russian scientific satellite Spectrum-X-Gamma
(Predehl et al. 2006, Predehl et al. 2007).

2.1.1 Targets

In the first years of its flight eROSITA will perform an all-skysurvey of the X-ray sky in the low
and intermediate energy band from 0.5 keV to 10 keV. By this observation, the source catalog
obtained from the survey of the earlier ROSAT mission, will be extended to the intermediate
energy band. As the radiation of most X-ray sources is absorbed by gas and dust in the galaxies,
these obscured sources can only be observed at very short wavelengths. Therefore the extension
of the ROSAT soft-energy survey to the eROSITA survey is an important aspect of this mission.

Additionally the sensitivity of eROSITA is at least 10 timeshigher than the sensitivity of the
earlier ROSAT mission (see Fig. 2.1). Therefore, a large number of new sources will probably
be found in the course of this survey. According to estimates(MPE, et al., 2007) the eROSITA
survey will discover up to 3.2 million AGN in the energy band from 0.5 – 2 keV and about 100 000
galaxy clusters. In comparison to the 105 924 sources in the RASS-FSC this will be a much larger
sample for statistical investigations. Especially from the number of galaxy clusters, astronomers
hope to gather information about dark matter and important cosmological constants.

The eROSITA telescope is the successor to ABRIXAS, which failed due to technical prob-
lems in space, ROSITA, which abandoned because the environment of the space station proved
inadequate for X-ray astronomical experiments, and DUO, which was rejected by NASA for fi-
nancial reasons following a successful phase A study. Although all of these forerunners were not
successful, technical know-how from the development and engineering of the instruments can be
reused for the construction of eROSITA. For example, the inner 27 mirror shells are the same as
in the ABRIXAS telescope, so the mandrels built by Carl Zeiss, can be replicated easily. The de-
tector chips result from the further development of the XMM-Newton and DUO CDD detectors,
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Figure 2.1: Comparison of several X-ray missions with respect to their flux limit and observed
solid angle (Dmitriev et al., 2005). Like ROSAT the eROSITA mission will perform an all-sky sur-
vey. But the achieved sensitivity will be much better. Besides the all-sky survey some additional
observations of smaller sections of the sky are planned for eROSITA.

thus a considerable amount of money and time can be conserved, in comparison to a completely
new design.

2.1.2 Spectrum-X-Gamma

The Russian satellite Spectrum-X-Gamma provided by the Russian space agency Roscosmos, is
a platform for several X-ray andγ-ray measurement devices (Predehl et al. 2006, Predehl et al.
2007, Dmitriev et al. 2005). Among them eROSITA is the major scientific instrument. In the
initial design of the satellite further X-ray devices have been designated, namely the wide field
X-ray monitorLobsteras contribution from the UK, the Russian coded-mask telescopesART, and
the international collaborationSXC. The arrangement of the several instruments on the satellite
platform is displayed in Fig. 2.2. According to the current status, some of these instruments, like,
e.g., Lobster, may have been taken out of the mission.

As on the one hand eROSITA is the biggest instrument on the satellite and on the other hand
the simulation of its measurement process is in the focus of this diploma thesis, the satellite itself
might sometimes also be referred to as eROSITA in this text. But of course this is actually only
the name of the particular telescope as a part of the Spectrum-X-Gamma mission.

The launch of Spectrum-X-Gamma was originally planned to beat the end of 2011 from
Baikonur or Kourou (MPE, et al., 2007). As possible launchers several types of the Russian
Soyuz rocket are taken into account (Dmitriev et al., 2005).The subsequent transfer to its orbit
will be performed using a FREGAT payload assist module. The orbital parameters of the initially
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eROSITA

SXC

Lobster

ART

Figure 2.2: Satellite layout of Spectrum-X-Gamma according to Predehl (2008b). eROSITA is
the major instrument on the satellite.

Table 2.1: Orbital parameters of the Spectrum-X-Gamma satellite according to Dmitriev et al.
(2005).

altitude 600 km
inclination 29◦

orbital period 96 min
maximum shadow duration 35 min

intended operation orbit of Spectrum-X-Gamma are listed intable 2.1.2.

2.1.3 Survey geometry

The FOV of the eROSITA telescope has a diameter of 61.9′ (MPE, et al., 2007). In order to per-
form the intended all-sky survey, the satellite has to scan the sky in individual strips. Afterwards
the measured data from these bands can be combined to obtain an all-sky map. Due to several
restrictions on the telescope pointing direction, like, e.g., forbidden regions around the Sun, the
Earth or the Moon, and additional scientific aspects the survey geometry has to be designed in
detail.

According to the original mission definition, the satellitewill have a circular orbit in an alti-
tude of 600 km and with an inclination ofi = 29◦. For this low orbit the gravitational potentials of
the Sun, the Moon or other planets apart from the Earth can be neglected. Due to the oblateness
of the Earth, the orbital plane will be precesssing around the Earth’s rotational axis, i.e., the right
ascension of the satellite’s ascending node is not fixed in time. This aspect of orbit perturbations is
analyzed in Sec. 5.2.7. According to Eq. (5.72) the change ofthe right ascension of the ascending
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Figure 2.3: Rotation of the satellite around its scan axis during one orbit revolution (Fürmetz &
Friedrich, 2008).

node is of the order of
(

dΩ
dt

)

2
≈ −6.3◦ day−1 (2.1)

i.e., the orbital plane is precessing around 360◦ in about 57 days, and the orbit precession can be
used in order to scan the entire sky in strips intersecting atthe survey poles.

Additionally to its motion around the Earth the satellite has to rotate around its intrinsic scan
axis, as displayed in Fig. 2.3. This rotation has to be performed in such a way that the telescope
pointing axis is moving along the scan strips. During one orbit revolution the satellite in principle
performs a complete rotation around the scan axis.

The telescope should not point directly into the Sun, the Earth or the Moon (see Fig. 2.4),
as these bright X-ray sources would destroy the CCD detectors. This requirement results in
several restrictions on the pointing geometry. In fact the prohibited regions around these objects
are even larger than the objects themselves in order to prevent stray light from falling on the
detector. According to Fürmetz & Friedrich (2008) the telescope pointing axis may only point
into directions, that are at least 16◦ away from the Earth’s horizon.

Additional requirements on the satellite’s attitude emerge from the need for power supplied by
the solar panels and the demands of the cooling system. The solar panels must have a particular
solar aspect angle in order to provide the necessary electrical power, whereas the cooling system
has to guarantee the CCD detectors’ operation temperature of −80◦C and, therefore, has to get rid
of the redundant thermal energy. The latter can only be released by the radiators if they point into
a region of the sky, which contains no close and warm objects like, e.g., the Earth or the Sun. An
extensive study of the eROSITA’s thermal budget has been performed by Fürmetz (2007).

Considering all these requirements on the satellite’s attitude, an inversion of the scan rotation
is necessary in time intervals of about 30 days (Fürmetz & Friedrich, 2008). The scan geometry
for the entire sky is therefore not as simple as in the previously mentioned naive approach of
the neighboring strips, which is only valid for short intervals. In fact the inversion period also
depends on the actual season.

As a consequence of the survey geometry the observational exposure of the telescope is longer
at the survey poles, i.e., at both intersection points of thescan strips. In these regions the detection
probability for very faint sources is much higher than in theremaining sky. In order to take
an advantage of this particular property, the survey poles will be located in a region of special
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Figure 2.4: Restrictions on the scan direction with scan axis perpendicular to the orbit plane:
the left scenario if forbidden, because the telescope wouldlook directly onto the Earth (Fürmetz,
2007).

scientific interest.
It was decided to set up eROSITA’s survey geometry in such a way that the survey poles lie in

the neighborhood of the galactic poles, because this regionhas the lowest absorption by galactic
dust and therefore guarantees a deep glance into the universe (Predehl et al. 2006, Predehl et al.
2007). Within the galactic plane the X-ray absorption is so high, that a deep exposure at the
ecliptic poles, which lie in this region, would be wasteful.It is not possible to put the survey poles
directly at the galactic poles due to orbit and attitude restrictions like, e.g., the need for power
supply by the solar panels and the prohibition of pointing inthe direction of the Sun (Fürmetz,
2007). For this reason the compromise displayed in Fig. 2.5 was chosen for the mission. In this
scenario the survey poles are 30◦ away from the galactic poles, but this is still quite suitable to
obtain deep insight into the universe.

2.2 Telescope

The X-ray telescope eROSITA consists of seven individual and parallel aligned sub-telescopes of
type Wolter-I, i.e., each mirror shell is a combination of a paraboloid with a hyperboloid (Wolter,
1952). The mirrors are coated with gold and focus the incident high energy photons onto a CCD
detector, where they create a charge cloud, which can finallybe measured.

2.2.1 Layout

The seven telescope subsystems are identical and aligned inparallel direction, and can therefore
be used individually. Each mirror system has its own detector in contrary to the former ABRIXAS
mission, where one detector CCD was located at the common focus of the seven slightly tilted
mirror systems. In the eROSITA configuration, due to this redundancy concept, if one or several
telescopes fail, the remaining can be operated without modifications.

The basic configuration of eROSITA with the seven sub-telescopes is shown in Fig. 2.6. Of
course, apart from the mirror system and the CCD detectors there are many additional items in
the telescope structure. The most important can be found in the following list.
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Figure 2.5: The survey poles of the eROSITA all-sky survey are tilted with respect to the ecliptic
plane in order to achieve more exposure time at regions closeto the galactic poles, as there is
lower absorption (adapted from Fürmetz & Friedrich 2008). The yellow line in the upper sketch
represents the scan equator of the eROSITA survey, and the two yellow circles are the survey
poles. In the lower sketch the two bright spots indicate the higher exposure at the survey poles.

• Optical bench: All elements of the telescope have to be installed on the optical bench,
in order to have fixed distances between the mirrors and detectors. The corresponding
structure has a hexagonal shape and is connected to the satellite via a hexapod, which
guarantees the necessary protection against deformations.

• Electronic boxes: The detector and measurement processing electronics for each sub-
telescope are contained in an individual box.

• Cooling system:To provide the−80◦C for operating the CCD detectors, a complex cooling
system with variable-conductance heatpipes, two radiators, and a stabilizing buffer, based
on the latent heat at the phase transition of a particular chemical substance, is mounted at
the bottom of the optical bench.
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• Sun shield and mirror baffles: A big sun shield and 600 mm long baffles in front of the
individual mirror systems prevent optical and X-ray stray light from falling on the detector.

• Contamination shield: The way between the mirror systems and the detectors is sur-
rounded by a tube to avoid contamination of the detector.

• Telescope cover:To prevent contamination during the transport and satellite launch, the
telescope has a cover, which is opened in space by the force oftwo springs.

• Star trackers: The pointing direction of the telescope in orbit is determined from the
position of well-know stars, which are observed in optical light.

In the following the main items of the telescope, which are important for the simulation, are
described in detail.

2.2.2 Mirror system

The telescope consists of 7 Wolter-I telescopes (Wolter, 1952), each having 54 mirrors and its
own CCD detector (Predehl et al. 2007, Dmitriev et al. 2005).The mirrors are assembled inside
of each other and integrated in a spider wheel as shown in Fig.2.7, where the largest shells have
a diameter of 360 mm. The focal length of the mirror system is 1600 mm.

The individual eROSITA mirror systems are designed in a similar way as in the former
ABRIXAS mission, where each sub-telescope consisted of 27 mirror shells. For eROSITA 27
additional shells with larger diameters have been added, inorder to have a larger photon col-
lecting area with twice as many shells. The chart in Fig. 2.8 shows that the effective area of
eROSITA is much higher than the effective area of ROSAT and even that of XMM-Newton in the
energy range from 0.2 – 2.5 keV, thus the telescope should be able to detect additionaland so far
unknown faint sources in the specified range of low and intermediate photon energies.

Of course, the mirrors have to be manufactured very precisely, and the alignment of the differ-
ent shells on the wheel spider is also a challenging task. Thethickness of the mirror shells lies in
the range from 0.2 mm to 0.4 mm, and the entire mirror system has a length of 300 mm. The mir-
ror production for eROSITA is performed by the companiesMediaLarioandCarl Zeiss(Predehl
et al., 2007). The latter have already produced the mirror shells for the ABRIXAS mission, and
therefore have the necessary know-how for the mirror manufacturing.

The mandrels from ABRIXAS are still available and can be reused for the inner 27 shells of
eROSITA, which means a considerable reduction of the production costs. A mandrel is a negative
form of a mirror shell, which consists, e.g., of nickel. During the mirror production the mandrel
is evaporated first with gold, to create the reflection layer,and afterwards with nickel, to create
the supporting structure. After the evaporation, the shellis released from the mandrel and finally
polished, to achieve best optical performance. The entire technique is very challenging and takes
up to the order of months for a single mirror shell. By this complicated method it is possible to
manufacture such large mirrors with the required accuracy.

The mirror integration into the wheel spider and the opticalquality of the individual shells
both have a large effect on the performance of the telescope. All deviations fromthe perfect
alignment might result in a degradation of the PSF (see Sec. 4.2.4). The total angular resolution
of the telescope, i.e., considering mirror and detector deviations, should be of the order of< 15′′

at a photon energy of 1 keV (Predehl et al. 2007, Dmitriev et al. 2005). Therefore many effort is
needed for the manufacturing of the optical system.
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Figure 2.6: Configuration of eROSITA. Left: mirror systems and pn-CCD detectors surrounded
by Cu proton shields. Right: final telescope configuration with Sun shield, mirror baffles, tele-
scope tube, heat radiators etc. (Predehl, 2008b).

2.2.3 Detectors

The eROSITA detectors are composed of backside illuminatedpn-CCDs and are basically de-
signed according to the concept of the XMM-NewtonEuropeanPhotonImagingCamera (EPIC)
pn CCD (Strüder et al., 2001) and the ABRIXAS detector respectively (Dmitriev et al. 2005, Pre-
dehl 2008a, Meidinger et al. 2007, Meidinger 2008). The specified energy band of the telescope
ranges from 0.5 keV up to 10 keV with a quite good energy resolution. At the MPE there have al-
ready been some tests with the DUO CCD, which has similar properties as the eROSITA detector.
The FWHM at the energy 5.9 keV is 140 eV (Meidinger et al., 2007). The quantum efficiency of
the detector is≥ 90% in the operational energy range, as presented in Fig. 2.9.
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Figure 2.7: Mirror system of eROSITA consisting of 54 shellsnested inside of each other and
mounted in a wheel spider (Friedrich, 2008).

Each of the 7 frame store pn-CCD detectors is located in the focal plane of the mirror system
and has 384× 384 pixels, a size of 28.8× 28.8 mm2, and a 450µm thick sensitive layer, i.e., each
pixel has a width of about 75µm (Meidinger, 2008). Because of the quite small pixel size, the
fraction of split events (see Sec. 4.2.5) cannot be neglected. The entire detector array covers the
FOV, which has a diameter of 61.9′ ≈ 1◦, so each detector pixel corresponds to∼ 10′′ (MPE,
et al., 2007).

The pn-CCD detector is operated at−80◦C, whereas the detector housing, which basically
consists of a copper proton shield, has a temperature of∼ 20◦C. Therefore, the detector cooling
and the telescope’s thermal budget is quite challenging. Detailed information about the thermal
concept can be found in Fürmetz (2007).

The detectors are frame store CCDs, i.e., the charge createdby photons is collected in the
detector pixels during an integration time of 50 ms. At the end of this period the entire charge is
moved out of the pixel array to a separate storage within a very short time of 200µs (Meidinger
et al., 2007). Then the actual readout process is performed on the frame store area by the three
CAMEX chips, where each of them has 128 signal processing channels. Due to that technique
the pixel array is quasi immediately available again for measuring incoming photons, while the
collected charges are read out from the frame store. Using this technique only a few photons get
lost, if they hit the detector during the time span of the charge transfer to the frame store. The
total fraction of the out of time events is estimated to be of the order of∼ 0.4 % (Meidinger, 2008).
With an integration time of 50 ms the camera takes 20 frames per second.

Due to the finite size of the detector pixels of 75µm and an assumed charge cloud size of the
order of someµm, the charge cloud created by a single photon event might be partitioned among
several neighboring pixels, resulting in a particular fraction of split events in the measured data
(cf. Sec. 4.2.5). For larger CCD pixels this fraction would be smaller or could even be neglected,
but for the specified eROSITA detector it is necessary to perform a split analysis on the measured
data.
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Figure 2.8: Effective area of eROSITA in comparison to ROSAT and XMM-Newton(Hasinger,
2008): the effective area of eROSITA will be much larger than for ROSAT. In the low energy
range it will even exceed the effective area of XMM-Newton.

2.2.4 Technical data

To provide a quick overview, the most important technical data of the eROSITA telescope are
summarized in table 2.2.4.
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Figure 2.9: Quantum efficiency of the eROSITA CCD according to Meidinger (2008). Without
any filter the efficiency is≥ 90% in the specified energy range of the telescope.

Table 2.2: Technical specifications of the eROSITA telescope according to Dmitriev et al. (2005),
Predehl et al. (2007), Friedrich (2008), Meidinger (2008).

mirror 7 Wolter-I optics with 54 shells each
mirror diameter 358 mm
mirror length 300 mm

mirror material nickel
mirror coating gold
FOV diameter 61.9′

focal length 1.600 mm
angular resolution < 15′′

detector pn-CCD (384× 384 pixels)
detector size 19.2× 19.2 mm2

energy range 0.5− 10 keV
energy resolution 140 eV at 5.9 keV

readout mode frame store
integration time 50 ms
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Figure 2.10: Frame store pn-CCD concept for eROSITA (Meidinger, 2008): the charges in the
semiconductor material, which are created by the incident photons, are stored in the CCD pixels
until the end of the current integration period (50 ms). Thenall charges are shifted to the frame
store area within a very short time of severalµs, so the image area is ready again for the detection
of further photon events. During the integration time the charges from the previous frame, which
are now in the frame store, are read out by 3 CAMEX chips.
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Chapter 3

Software

This chapter describes context of the software implementation of the eROSITA simulation pack-
age. The program code follows the current standards in orderto guarantee portability and com-
patibility of the simulation.

3.1 Near Real Time Analysis

An important aspect of the eROSITA mission, which is mainly developed at the Dr. Remeis-
Sternwarte in Bamberg, is the setup of the NRTA of the measured data. During the all-sky survey,
this particular software especially searches for hardwareproblems, like bad pixels, and for tran-
sient objects, likeγ-ray bursts, in the observed event lists. This analysis is performed quite soon
after the download of the data from the satellite to the ground station. On the one hand, by this
method problems with the telescope can be detected in time and the integrity of the scientific
data is guaranteed. On the other hand, short-term objects can be noticed almost immediately after
their first observation (cf. Wilms & Kreykenbohm 2008). Then, in case of scientific interest, it
might be possible to take a closer look at them using different X-ray telescopes, which are more
convenient for pointed observations.

The NRTA is developed as a part of theScienceAnalysisSoftwareSystem (SASS) and is
implemented in collaboration with teams at the MPE and the AIP. The NRTA software itself
is written in Bamberg, especially by Dr. Ingo Kreykenbohm. In order to test the implemented
algorithms, the measurement process of eROSITA has to be simulated, as real data will not be
available before the satellite’s launch. The goal of this diploma thesis is the design of a realistic
simulation of the telescope measurement process. The generated event lists can be used as direct
input to the NRTA pipeline instead of the real satellite data.

3.2 HEAsoft and file formats

TheHigh EnergyAstronomysoftware (HEAsoft) suite provided by NASA consists mainly ofthe
following three parts:

• XANADU: scientific analysis software like XSPEC.

• FTOOLS: library of several programs for operations onFlexible ImageTransportSystem
(FITS) files (see Sec. 3.2.2) providing a common user interface.

• HEAdas: FITS operation programs with same interface as FTOOLS, but newer and build
around a different core.
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The simulation developed in the course of this work is designed according to the standards
of High EnergyAstronomydataanalysissystem (HEAdas) (Arnaud, 2008) in order to provide
an intuitive user interface and common code layout. According to these standards, the entire
software for the simulation is written in ANSI C. With this choice a maximum of portability and
compatibility to other software packages is guaranteed.

The code layout of HEAsoft programs follows particular standards, e.g., concerning the pa-
rameter input viaParameterInterfaceL ibrary (PIL) (Sec. 3.2.1) or the error handling strategy.
In order to produce a portable and readable code, the simulation program was designed similar
to original HEAsoft tools. One aspect, which was not retained, is the handling strategy for run-
time errors usinggotocommands, which should be avoided in higher-level applications (Dijkstra,
1968). The critical statements are surrounded by a loop instead, which is run only once. In case
of an error the loop can be interupted with abreakcommand. This way of code implementation
is considered to be much better structured and more stable than the solution usinggoto.

The HEAsoft suite provides different libraries to implement a user interface, file access, or
random number generation. The most important items used in the simulation are listed in the
following.

3.2.1 PIL

As pointed out above, the entire simulation consists of several sub-programs. Each of them has
its own set of input parameters like filenames of input and output files, orbital elements, time pa-
rameters, or telescope configuration data. For example, thewidth of the FOV can be set manually
to different values in order to keep the entire simulation portableto other telescope setups.

There are different possible ways to obtain the program parameters at start up: they could be
read from the command line at each program call or be stored ina file. TheParameterInterface
L ibrary (PIL), developed by the ISDC, is a powerful tool to handle program parameters. It pro-
vides a flexible mixture of different parameter input methods from a file or from the command
line.

The required or optional parameters are defined by the programmer in a central file, setting
the format of the parameters, the possible range, and default values. The user can either set the
specified parameters as command line arguments at the program call, or the PIL will ask for the
necessary values during runtime. For each parameter it is possible to use the value from the
previous program call, which is stored as default. There is also a possibility to define optional
parameters, which are set to their default value, if the userdoes not explicitly enter another value.

All in all the PIL provides a simple interface to read required and optional parameters from
within a C-program. The format and range of the individual parameters is automatically checked.
For filename parameters it is even possible to constrain the input to existing files. Using the PIL,
the programmer does not have to care about the way, how the parameters are actually entered by
the user.

Because of its simple handling the PIL is commonly integrated in many high energy astron-
omy software packages. The FTOOLS and HEAtools use this library to read their program pa-
rameters. Therefore, the PIL is also used in all elementary parts of this simulation, in order to
provide a common user and developer interface.

Detailed information about the PIL, the C programmers user interface, and the required format
for parameter files is given in the PIL user’s manual (Borkowski, 2002).

3.2.2 FITS

TheFlexible ImageTransportSystem (FITS) defined by NASA and IAU is a common file format
to store different kinds of scientific data in high energy astronomy. Mostsoftware packages like
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...

FITS file

header

data

header

data
(image/table)(image)

1. HDU 2. HDU 3. HDU

Figure 3.1: Schematic layout of FITS file containing severalHDUs.

FTOOLS and HEAdas work with this file format. As a consequencealmost all data sets in high
energy astronomy are stored in FITS files.

A FITS file consists of one or more HDUs, where each of them represents either an image
or an ASCII or binary table, except from the primaryHeader andDataUnit (HDU), which in
any case contains a (possibly) empty image (see Fig. 3.1). The header provides the structure of
the data set and important information about the origin of the data. The name of the telescope,
hardware settings, or the time of the observation are encoded in standardized header keywords.
Usually there are also comments about the data format or a history of previously applied software
tools stored in the headers. Therefore, header informationis essential to process and interpret the
scientific data stored in the data unit.

There are several restrictions on the number of bytes for theheaders as well as a list of required
header keywords. This detailed information will not be listed in this context, but can be found in
the FITS definition Hanisch et al. (2001).

Additionally there are several standard layouts for commontypes of FITS files containing,
e.g., event lists or spectra. The simulation software is designed according to these standards in
order to guarantee compatibility to other software packages.

3.2.3 CFITSIO

The CFITSIO is a library containing routines for easy read and write access to FITS files from C
or Fortran programs. It allows the programmer to access FITSfiles by calling the relevant routines
without caring about the actual file format specifications. Because of its simple handling the CFIT-
SIO library is the standard FITS file interface used in HEAdas. The manuals for C (HEASARC,
2007) and Fortran programmers are available at theHigh EnergyAstrophysicsScienceArchive
ResearchCenter (HEASARC) website (http://heasarc.nasa.gov/fitsio/fitsio.html).

As the simulation software is developed according to the HEAsoft standards, the different
data for input and output is mainly stored in the FITS format using the routines of the CFITSIO
library.

3.3 Simulation program

All programs of the simulation package are written in ANSI C according to the HEAdas stan-
dards (Sec. 3.2). The main part among the individual programs is the actual simulation software
measurement, which basically performs the following tasks:

• scanning process of the telescope over the celestial sphere

• generation of photons for the individual sources from the specified source models

• imaging and measurement of the photons according to the telescope model
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create_orbit

create_detresp

create_attitude

create_rnd_sctlg

create_spectrum

conv_rosat2fits

conv_psf2fits

measurement plot_eventlist

ftools/HEAdas

NRTA

Figure 3.2: Cooperation of the individual sub-programs of the simulation software package: the
tools on the left side generate the necessary input data for the measurement simulation. Of course,
some of these tasks can also be perform by different software packages. Particularly the orbit
and attitude files or the source spectra may originate from a different source. The event list
resulting from the simulation can be evaluated with the programs on the right side of the sketch,
including programs from the simulation package, some FTOOLS or HEAdas software, and the
NRTA software.

An overview of the relevant sub-programs of the simulation software package is given in Fig. 3.2.

3.3.1 Input data

The simulation programmeasurementneeds several kinds of input data, such as the orbit and
attitude information or the source catalogs and source spectra, to perform the actual measurement.
These data partly have to be converted from the respective file formats to an adequate format for
the simulation, partly it is actually created by sub-programs. The simulation software package
contains several tools to manage the input data for the simulation:

• conv_rosat2fits: This tool converts the RASS-FSC (Sec. 4.1.1) from the published ASCII
file format to a FITS file, which can be read by the simulation softwaremeasurement.

• conv_psf2fits: The PSF data generated by Peter Friedrich’s simulation of the eROSITA
mirror system are available in several ASCII files containing lists of photon events (see
Sec. 4.2.4). These files have to be converted to FITS files withthe information about the
PSF, i.e., the photon reflection probabilities for specific energies and off-axis angles.

• create_rnd_sctlg: Additionally to the ROSAT data the simulation uses a large set of faint
sources, which are randomly distributed on the celestial sphere with a particular flux distri-
bution (Sec. 4.1.2). The generation of this catalog is performed by this application.

• create_spectrum: The simulation requires a spectrum for the individual sources in the
source catalog. The spectra can be either created by professional spectral analysis software
like XSPEC or by this tool of the software package.

• create_orbit: At the moment, when this simulation was developed, the eROSITA mission
was at such an early stage of development that no proper orbitfiles for the satellite were
available. Therefore, realistic orbits actually had to be calculated in order to be able to
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perform the simulation. As pointed out in Chap. 5, the exact calculation of the satellite’s
orbit is quite challenging, if higher order perturbation terms are included. This part of the
simulation is separated and handled by a sub-program that produces orbit files in FITS
format, containing the position and velocity of the satellite at particular time intervals.

• create_attitude: Additionally to the orbit data the simulation also needs thesatellite’s
attitude information in order to determine the viewing direction of the telescope. As these
data were also not available at this early stage in mission development, a simple algorithm
was written to create attitude files based on the assumption that the satellite looks straight
away from the center of the Earth. In that case the telescope axis is equivalent to the
line connecting the center of the Earth with the satellite. This condition fixes two of the
three attitude angles. The third angle is determined according to the condition that the
solar panels should collect as much sunlight as possible andare aligned in an appropriate
direction.

• create_detresp:This tool creates a detector response matrix that can be usedin order to
test the simulation.

As this simulation was developed some years before the launch of eROSITA, some parameters
and important satellite or telescope data such as orbit fileswere not available. Therefore, the
necessary data had to be created as realistically as possible in order to obtain sensible results from
the simulation.

3.3.2 Measurement simulation

With the basic input data, which are created by the previously mentioned tools, the main program
measurementcan be run to simulate the satellite’s actual flight and measurement process. The
output is an event list of the measured photons, containing the time, when the photon was detected,
the detector pixel, and thePulseHeightAmplitude (PHA) value of each individual photon. The
quantity PHA is a measure for the electronic signal in the detector and is given in detector specific
PHA channels. As the simulation also creates split events (Sec. 4.2.5), a single photon might result
in several event list entries with correspondingly lower PHA values.

3.3.3 Analysis tools

One of the main targets of the simulation is the generation ofa realistic event list as input data for
the NRTA software. Apart from that it is also useful to be ableto analyze the output data in order
to verify the simulation. Therefore, there are also some tools to evaluate the event list FITS file
and to create human readable or visualized data from the simulation output. Theplot_eventlist
tool, e.g., creates images of the detector array from the individual photon events. Each image
contains all measured events during one integration period. The output format arepng image
files.

3.3.4 Testing facilities

Apart from the actual simulation software there are severaladditional tools for testing and verify-
ing the data generated by the former tools. The main programsin this context are:

• plot_psf: This is a tool to visualize the PSF that is used for the simulation.

• test_light curve: Creates light curves fromPower SpectralDensity (PSD)s according to
the algorithm described in Sec. 4.2.2.
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• test_tle_output: Implements access to NORADTwoL ineElement (TLE) data (Sec. 4.3.7).

• test_distrndsources:Verifies the proper distribution of the random source catalog, which
is created to simulate faint sources and the CXRB (Sec. 4.1.2).
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Chapter 4

Simulation

This chapter provides detailed information about the main simulation parts starting with the gen-
eration and handling of source catalogs and describing the implementation of the measurement
simulation. The calculation of the satellite’s orbit is treated separately in Chap. 5, as the simu-
lation does not require this particular program, but could also use orbit and attitude data from a
different source.

The simulation is a contribution to the development of the NRTA, which is written in the
X-ray group of the Dr. Remeis-Sternwarte in Bamberg. The NRTA on the one hand observes the
integrity of the detector during the satellite’s flight, i.e., it checks the incoming data for failed
pixels or other technical problems. By this way the current status of the telescope and, therefore,
of the measured data can be guaranteed. On the other hand the NRTA software is checking the
observation data during the all-sky survey for evidence of transient objects likeγ-ray bursts.

As the satellite will not be launched until 2011, there will be no real scientific data measured
on orbit available in the next few years. The NRTA should be working without problems from the
beginning of the satellite’s mission, so it has to be completed and tested in advance. In order to try
out different measurement scenarios during the development of the code, there has to be a source
of realistic observation data as input for the corresponding NRTA tools. Therefore, this simulation
is implemented under the aspect of performing a realistic measurement of X-ray photons, which
originate from different sources and are observed according to the intended scanning process. The
resulting event files follow the format of the actual measurement data.

As the simulation works with flexible source and detector input data, it can be easily adapted
to create appropriate test data for the NRTA. It is possible to set a detector pixel to producing
physically unreasonable output. With correct implementation the NRTA should be able to detect
this pixel failure. In order to check the recognition algorithm for transient objects, a bright new
source could be added to the existing source catalog. In thisway event lists for the different
relevant scenarios for the NRTA can be generated by the simulation.

In order to guarantee realistic observation output, the simulation is implemented according
to the actual measurement procedure of the satellite. The satellite is moving on a proper orbit
with the telescope axis pointing right away from the center of the Earth. The mirror system is
modelled according to simulated PSF data and the simulationof the CCD detector follows the
currently known technical data. Due to the high flexibility of the simulation at later steps in the
development of eROSITA new data like, e.g., a more precise model of the PSF or RMF, can be
inserted easily.
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Figure 4.1: Color-coded image of the ROSAT All-Sky Survey (red for low, greenfor intermediate,
andblue for high X-ray energies. The blue line represents the galactic plane with some bright
spots, which are mainly caused by X-ray binaries. There are also dark absorption clouds visible
close to the galactic center in the left part of the picture.
(http://www.xray.mpe.mpg.de/cgi-bin/rosat/rosat-survey).

4.1 Source catalogs

In order to obtain a realistic distribution of astronomicalX-ray sources in the sky, two different
source catalogs were chosen as input for the simulation. On the one hand theFaintSourceCatalog
(FSC) of the ROSAT all-sky survey is taken as a basic set of already known sources. But as
eROSITA is implemented to detected much more sources than ROSAT with fainter source fluxes,
an additional number of weak sources is used for the simulation.

According to Brandt & Hasinger (2005) most X-ray sources detected so far are AGN, i.e.,
point sources. In the current version the simulation deals only with point sources, as it is quite
challenging to develop physically realistic models for extended sources like galaxy clusters. This
will be done at a later development step of the simulation.

4.1.1 ROSAT All-Sky Survey

In order to provide realistic sources for the simulation program, the FSC from theROSATAll-Sky
Survey (RASS) (performed in 1990) was chosen as input. This catalog is available for download
as ASCII file on the website of the MPE (Voges et al., 2000). It consists of 105 924 sources
observed in the energy band from 0.1 to 2.4 keV. A visualization of the RASS is displayed in
Fig. 4.1.

Using the RASS-FSC as input makes it possible to test the simulation on the actual X-ray sky.
All sources contained in this source catalog should be detectable by eROSITA. In order to make
the RASS-FSC usable for the simulation program, the ASCII file containing the source data has
to be converted to FITS format (Sec. 3.2.2). This conversionis performed by the software tool
conv_rosat2fits, which was developed in the course of this diploma thesis.
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4.1.2 Random sources

The eROSITA mission as a further all-sky survey is developedto be more sensitive than ROSAT
and to observe the X-ray sky at higher photon energies, in order to discover additional, so far
unknown sources. Therefore, it is not sufficient to use the RASS-FSC as input for the eROSITA
simulation, as this contains only sources brighter than theROSAT flux limit. An additional source
catalog is created with sources distributed randomly over the celestial sphere according to a phys-
ically meaningful energy flux distribution. This algorithmis particularly used to complete the
RASS-FSC with very faint sources below the ROSAT threshold.

According to earlier X-ray surveys and especially deep extragalactic observations withChan-
dra and XMM-Newton summarized in Brandt & Hasinger (2005) the integrated number counts
of sources vs. the source energy flux (i.e., the number of sources with a flux> S is plotted vs.
S) exhibit a power law shape with a particular slope dependingon the observed energy band and
on the brightness of the sources, as shown in Fig. 4.2. Actually the source distribution can be
described by two power laws withα f ≈ −0.5 for faint sources andαb ≈ −1.6 for bright sources.
The break flux is about 10−14 erg cm−2 s−1 and 10−15 erg cm−2 s−1 for the low and high energy
band respectively.

As the universe is assumed to be isotropic, the source distribution will probably be the same
in the remaining sky as in the examined deep fields, apart fromsome statistical fluctuations. This
particular shape of the source flux distribution can be takenas basis to create additional sources
for the measurement simulation, similar to the approach forthe Simbol-X simulator described in
Puccetti et al. (2008).

In order to obtain a similar power law source flux distribution as observed in the deep fields,
a Monte Carlo algorithm, applicable for non-uniformly distributed random numbers (Deák 1990,
p. 68ff., Gould et al. 2006, p. 429ff.), was used to create source fluxes according to a proper power
law indexα extending the faint end of the RASS-FSC. The resulting integrated source distribution
for a sample of 100 000 sources and a power law indexα = −0.5 is shown in Fig. 4.3 and matches
the observed distribution for faint sources in Fig. 4.2.

An additional Monte Carlo algorithm was used to distribute the created sources on the celestial
sphere, assuming isotropy in the large-scale X-ray universe. As shown in Fig. 4.4 for a sample
with 10 000 sources, the algorithm works quite well, since there is no obvious bias in the spatial
source distribution.

As deep X-ray surveys have resolved the main part of the CXRB into discrete sources (Brandt
& Hasinger, 2005), the random distribution of a sufficient number of very faint sources should be
suitable to simulate this kind of background radiation. Therandom source catalog completes the
RASS-FSC with very faint sources to obtain a realistic X-raysky, which can be used as a sample
for the simulation program. Apart from the random source catalog with faint sources, no further
model was used for the CXRB at the current stage of the simulation development.

4.2 Measurement process

The simulation is designed according to the real measurement process of the telescope. A sketch
of the main steps in the simulation of the all-sky survey is given in Fig. 4.5. On the execution of
the code mainly these tasks are performed in a loop over the requested period.

The main part of the measurement process is the creation and procession of individual photons.
Fig. 4.6 displays the photon processing routine, which is applied to each individual photon, and
the detector readout. Detailed information about the important steps of this process will be given
in this section. Basically for each photon the following simulations have to be performed: first
there is a simple check, whether the source that has emitted the photon is actually inside the FOV.
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Figure 4.2: Source distribution observed in deep field surveys: the integral number counts to
source flux exhibit a power law shape according to Brandt & Hasinger (2005).

If this is not the case, the photon cannot be seen by the telescope. If it is inside the FOV, the
reflection in the mirror system is determined using the PSF model. Some photons may get lost
in the mirror system, the others are reflected to particular detector pixels. The charges created by
interaction with the semiconductor material are collectedin the detector pixels during one readout
cycle. The charge creation and storage may be affected by split events or pileup.

At the end of the integration period the charges are shifted to the frame store and read out
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Figure 4.3: Source distribution for 100 000 faint point sources created by the Monte Carlo algo-
rithm with a power law indexα = −0.5: the generated power law matches the observed faint-end
source flux distribution shown in Fig. 4.2. The bright sources are taken from the RASS-FSC.
The random source algorithm only creates the faint end extension of the ROSAT catalog, so the
distribution is only one power law with indexα = −0.5, as the break to the second power law is
at a higher flux of∼ 10−14 erg cm−2 s−1.

from there. Each charge cloud results in a detector specific PHA signal. The relation between
photon energy and charge cloud respectively and the PHA channel is described by the RMF model.
Finally the time of the detector readout, the detector pixel, and the PHA channel for each event
are written to an event list.

4.2.1 Source selection

One of the numerically challenging problems in the simulation of eROSITA’s scanning process
over the sky is the determination of sources that currently lie within theField Of View (FOV).
As the simulation deals with a great number of sources (according to the expectations eROSITA
will discover about 3.2 million AGN), it is worth thinking of an efficient algorithm to select these
sources out of the whole catalog with adequate numerical effort.

As previously mentioned (Sec. 2.1.3), the real telescope will be operated with a complicated
pointing strategy in order to shift the survey poles to the desired position close to the galactic
poles. In a first approach the simulation currently deals with a simplified pointing strategy, where
the telescope axis is aligned through the satellite and the center of the Earth, as attitude files for the
complex survey geometry are not available so far. In the simplified scenario the right ascension
and declination of the telescope axis are equivalent to the current position of the satellite.

In order to check, whether a source of known right ascensionθs and declinationδs is within
the FOV, with the telescope axis pointing in the direction (θt, δt), it is useful to calculate the
Cartesian coordinates of the corresponding pointsr0

s andr0
t on the unit sphere. The position of

the source in relation to the direction of the telescope axiscan be determined easily by evaluating
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Figure 4.4: Positions of randomly generated point sources on the celestial sphere: the sources
are distributed homogeneously on the sphere, i.e., the isotropy of the X-ray sky on large scales is
fullfilled.
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whereφ is the angular diameter of the FOV andδ the so-called off-axis angle. Assuming a
circular FOV, this method can be used for a fast check, whether a source or an individual photon
lies within the FOV, and to determine its off-axis angleδ (angle between source direction and
telescope axis).

Although the evaluation of the scalar product requires lesscomputational power, the scanning
of the entire source catalog involves an order of 106 scalar products. The particular orbit of the
satellite and the scanning geometry of the telescope reveala possibility to select a limited number
of sources from the entire catalog for a definite time interval of about one revolution. During that
period only a limited number of sources along the path of the telescope axis over the sky might
be visible. In the current simplified scanning geometry these possibly visible sources lie within a
band around the sky along the satellite’s orbit. The remaining sources cannot come into the FOV
and therefore can be neglected in the scanning process.

To complement this idea, at the beginning of the simulation the entire catalog has to be sorted
once in order to obtain all sources within the specified band along the orbit. After this preselection
only a subset of all available sources has to be scanned at each simulation time step to determine
the currently visible sources. As the number of sources in the preselected catalog is only a fraction
of the entire number of sources, this method can save significant amounts of computer power,
because the FOV check is a basic and often repeated part of thesimulation during the scanning
process.

As the orbit and the attitude may change over time due to perturbation effects (e.g., the orbital
plane is precessing around the Earth’s axis as mentioned in Sec. 5.2.7), the preselected catalog has
to be updated after a finite time interval. It is important to determine an adequate update period
and a proper angular widthβ of the preselection band along the orbit. Especially because of short
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scan time−ordered photon list for this interval (~ 2 s)
photon processing
detector readout each 50 ms

source preselection
updated once per orbit revolution

light curve generation for sources close to the FOV

photon generation for sources inside the FOV
according to source spectrum and light curve
for an interval of ~ 2 s (FOV check each 50 ms)

time loop over entire observation simulation

Figure 4.5: Schematic layout of the simulation of the all-sky survey: at the beginning a pres-
election of the source catalog with respect to the current telescope pointing and the motion of
the telescope axis is performed in order to reduce the numberof considered sources. For each
source close to the FOV a light curve is created using a particular Monte Carlo algorithm. For
sources that already have a light curve the latter step is skipped. If the source is within the FOV,
photons are generated for an interval of approximately 2 s inadvance according to the given light
curve and source spectrum, and are stored in a time-ordered list. During the photon generation
the search for sources inside the FOV from the preselected source catalog is updated each 50 ms.
(The telescope axis moves about 1.2 detector pixels during that time.) After the photon genera-
tion the time-ordered list is scanned and individual photonevents are simulated according to the
available imaging and detector models (PSF, detector response etc.). The events are read out from
the detector in intervals of 50 ms and stored to the event listoutput file. Finally this simulation
cycle is repeated from the beginning, whereas the preselection of the source catalog is performed
only once per satellite orbit revolution.

periodic variations of the satellite’s orbit (Sec. 5.2.8) the band should be wider than the FOV,
e.g., twice its angular diameter (β = 2φ). Assuming a bandwidthβ ≈ 2◦ the preselected source
catalog on average contains only about 2% of the entirely available sources. The update time for
the preselected source catalog could possibly be of the order of the satellite’s orbital period, i.e.,
96 min.

For the simplified survey geometry the check, whether a source from the catalog lies within
the preselected catalog, is almost as simple as the FOV checkitself. If v0

t is the unit vector in the
telescope’s direction of motion, the scalar product can be used to determine the angle between the
source direction and the normal vectorn0 of the plane defined by the middle of the preselection
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Figure 4.6: Photon processing routine: For sources close tothe FOV the simulation generates
photons according to the source spectrum and the available light curve. For each photon there is
a check, whether it is within the FOV. In that case the photon reflection by the mirror system is
modelled with an appropriate algorithm resulting in the point, where the photon hits the detector.
The detector model implements realistic features like split events, pileup, and the frame store
mode, i.e., the pixels are read out each 50 ms. The charge clouds, created by the photons in the
detector pixels during one frame store interval, result in specific PHA values. If the PHA value
of a pixel is above a certain threshold, an event is registered, and the PHA value is stored in the
event list together with the corresponding pixel coordinates and the time of the detector readout.
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β
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Figure 4.7: Preselection band: dealing with an order of several million sources requires an effi-
cient algorithm to find the sources in the FOV. Instead of checking all available sources at each
step of time, there is a preselection of sources along the path of the telescope axis over the sky.

band, which is equivalent to the orbital plane for the simplified survey geometry.
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t × v0

t (4.2)

|r0
s · n0|











≤ cos
(

90◦ − β

2

)

= sin
(

β

2

)

within the band
else outside the band

(4.3)

38



CHAPTER 4. SIMULATION 4.2. MEASUREMENT PROCESS

Applying this method on the source catalog, the relevant sources for the current revolution can be
selected in a numerically very efficient way. For a more complicated survey geometry, the source
preselection algorithm has to be adapted.

4.2.2 Light curves

During the simulation of the telescope scan over the sky, theprogram monitors the preselected
source catalog (Sec. 4.2.1). If a source comes close to the FOV, i.e., is less than twice the radius
of the FOV away from the telescope axis, the simulation generates a light curve for this particular
source, in order to have a source count rate for photon creation. The light curve is obtained from
a PSD, which could basically be specified for each individualsource. Mainly this mechanism is
used in order to produce the red-noise typical for AGN, but itcould also model the luminosity
fluctuations of time-variable objects. In order to generaterealistic time-variability in the light
curves of the different sources, the simulation could use particular PSDs forthe different sources
in the source catalogs.

The light curves are created from the corresponding PSDs using a Monte Carlo algorithm
introduced by Timmer & König (1995), which implements proper phase and amplitude random-
ization. The basic concept of this algorithm is to transforma PSD, like in Fig. 4.8, in an in-
verse Fourier transformation to obtain the light curve, which is shown in Fig. 4.9.FastFourier
Transformation (FFT) methods can be applied to reduce the amount of necessary calculation time.

In order to obtain a proper light curve with realistic variability, the PSD, i.e., the individ-
ual Fourier coefficients are multiplied with normal distributed complex random numbers. This
method also guarantees on the one hand an amplitude randomization and on the other hand also a
phase randomization, so there is no bias in the created lightcurves.

The PSD of an AGN can be modelled by a power law shape

P( f ) ∼
(

1
f

)γ

(4.4)

with the power law indexγ ∼ 1 – 2 (Benlloch et al., 2001), which results in the typical red-noise.
A sample power law with indexγ = 1 is displayed in Fig. 4.8.

After the inverse Fourier transformation has been performed, the light curve has to be normal-
ized to the desiredroot meansquare (rms)σ. The Monte Carlo algorithm is designed in such a
way, that the first Fourier coefficient must be zero (P( f = 0) = 0) such that the mean count rate
of the resulting light curve vanishes, and the desired mean count rate of the final light curve has
to be added after the inverse Fourier transformation and thenormalization.

According to Uttley & McHardy (2001) the rms observed in someflux-variable X-ray light
curves is proportional to the mean count rate apart from someconstant basic count rate. This
relation can be used to determine theσ of the Monte Carlo generated light curve according to
the corresponding source flux. The examination ofCyg X-1, a galactic black hole, and an X-ray
source showing strong variability on timescales of secondsrevealed a relation of the rms on the
mean count rate and the mean observed source fluxS̄ respectively, which has the form

σ = k · S̄ − S0 (4.5)

The proportionality factor is of the order ork ≈ 1/3, whereas the zero-fluxS0 depends on the
individual source. This value forσ can be used to roughly determine the required normalization
for the light curves generated by the Monte Carlo algorithm,which have some inadequate initial
rms. Therefore, the light curves have to be rescaled to obtain a physically meaningful value for
σ.
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Figure 4.8: Sample PSD: power law shape with indexγ = 1. The backward transformed PSD is
obtained from the light curve in Fig. 4.9 by a common PSD determination tool, which is based
on Fourier transformation. Basically the backward transformed PSD is the result of an inverse
Fourier transformation applied on the original PSD followed by a Fourier transformation. The
noise in this graph in contrast to the initial PSD originatesfrom the particular generation of the
light curve using the phase and amplitude randomization algorithm of Timmer & König (1995).

In order to verify the correct implementation of the light curve and photon generation algo-
rithm, a long-time pointed observation of a point source with the light curve displayed in Fig. 4.10
was performed. The photon events in the resulting event listwere binned in intervals of 1 s to
obtain the measured light curve, which is also shown in Fig. 4.10. Obviously the observed simula-
tion output data match the original light curve with respectto the major flux variations. There are
some minor deviations for short-term variations, which arecaused by statistical effects due to the
limited number of detected photons, which are created according to a Poisson distribution. But in
total the photon generation algorithm seems to work properly, as the Monte Carlo generated light
curve was reproduced.

4.2.3 Photon creation

The current rate of photons coming from a particular source can be determined from the light
curve of this source. The problem is the simulation of realistic photon arrival times. Of course,
the individual photons will not arrive uniformly at the telescope with a fixed time difference, but
they follow a Poisson distribution with a mean rateR, which is obtained from the current light
curve bin (Martin, 2004, p. 68). Therefore, the time intervals between two successive photons
can be determined according to an exponential distributionexp(R) with the probability density
and probability distribution

f (∆t) = Re−R∆t (4.6)

F(∆t) = 1− e−R∆t (4.7)
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Figure 4.9: Light curve created from the input PSD in Fig. 4.8using the phase and amplitude
randomization algorithm introduced by Timmer & König (1995).
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Figure 4.10: Monte Carlo generated light curve in comparison to the measured light curve ob-
tained from photon detection in the measurement simulation: the two light curves are normalized
to the same mean count rate.

According to the theinversion method(Deák 1990, p. 68ff., Gould et al. 2006, p. 429ff.), this
exponential distribution can be obtained from the uniformly distributed random numbersxi , which
are created by the HEAdas random number generator, using thefollowing transformation:

(∆t)i = F−1(xi) = −
1
R

ln(1− xi) (4.8)
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Figure 4.11: Example for a PSF: the plotted function represents the imaging probability for
incident photons. Although the PSF is sharply peaked, it is usually not a realδ-function such that
the resulting image will exhibit a smearing of the observed sources (Schroeder, 2000).

As the uniform random number distribution{xi} is equivalent to{1−xi}, the time intervals between
successive photon events can be also determined by the formula

(∆t)i = −
1
R

ln(xi) (4.9)

Additionally to the specification of the the arrival time, anenergy has to be assigned to each
incident photon according to the particular source spectrum. The spectral models are stored in
PHA files, containing the probability density (i.e., a normalized count rate) for photons in the
individual PHA channels (see Sec. 4.3.2). All spectra are read at program call and stored as cu-
mulative probability distribution. At the creation of a newphoton, its energy is chosen according
to the corresponding source spectrum using the HEAdas random number generator.

By these two methods of creating the arrival time and the photon energy it is ensured that
the simulated sources exhibit a proper physical behavior, as the emitted photons follow a realistic
Poisson distribution on short timescales and exhibit the proper long term variability and a real
spectrum.

4.2.4 Point Spread Function

The Point SpreadFunction (PSF) of an optical system describes the smearing ofan observed
point source by the imaging process. According to Schroeder(2000) it represents the normalized
intensity (time averaged absolute square of the electromagnetic wave function) at a particular
point in the image plane. Regarding light as individual photons, the PSF is the probability for
each detector pixel to be hit by a given photon, which is coming from a source at a particular
positionr in the sky with the specific energyE. A possible shape of a telescope PSF for a source
on the optical axis can be seen in Fig. 4.11.

Actually the PSF describes the spread of a point source caused by the optical imaging system.
In the case of eROSITA this means that photons from a point source are not imaged to exactly one
definite detector pixel, but there are several pixels in which the photon can arrive with a certain
probability. In mathematical terms the image can be regarded as the convolution of the source
function with the PSF (Fig. 4.12).

The PSF depends on the direction of the source and on the energy of the photon (Davis,
2001b). Usually the optical system has its best performancefor sources on the optical axis with
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PSF
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Figure 4.12: Convolution of a source function with a PSF results in the visible image: the sample
PSF is not rotationally symmetric, but exhibits a larger spread in the y-direction. These properties
can also be found in the image, where the point sources are mainly smeared in this direction.
(http://en.wikipedia.org/wiki/Point_spread_function)

moderate photon energies. At higher energy and for sources close to the edge of the FOV the PSF
peak becomes wider and less sharp.

Each individual mirror system of eROSITA is rotationally symmetric, so the PSF is a function
of the off-axis angleδ and the photon energyE. Simulations of the PSF for different discrete
values ofδ andE, performed by Peter Friedrich (MPE), show that the smearingof the photons
is of the order of±1 pixel for sources on the optical axis. At the edge of the FOV the spread is
larger.

The measurement algorithm uses the PSF to determine the hitting position of the generated
photons (cf. photon processing routine illustrated in Fig.4.6). The explicit form of the PSF can be
obtained by the simulation of the mirror reflection, which was performed by Peter Friedrich. His
simulation generates X-ray photons for some particular energies and off-axis angles. The output
are event lists, which can be used to obtain a discrete model of the PSF for these particular values
E j andδi .

The event lists created by the mirror simulation are converted to a more convenient format for
the measurement simulation. Basically the single photon events are binned to the corresponding
detector pixels. Then all entries of the resulting array aredivided by the entire number of simu-
lated photons. By this way one obtains the PSF in a more intuitive form: for each energy value
E j and off-axis angleδi one has an array with the individual entries representing the probability
that an incident photon is reflected to the corresponding detector pixel. This array can be easily
plotted as a discrete 2-dimensional function like in Fig. 4.11.

Of course, the source positions and energies of real photonsare not limited to these discrete
values, so an interpolation routine has to be applied to obtain a continuous PSF. Therefore the
off-axis angleδ has to be determined for each photon using trigonometric relations. Then the best
matching PSF is determined. Assuming that the PSF does not change too much for neighboring
off-axis anglesδi and energiesE j , for each continuous set of (δ,E) an interpolation by a step
function is applied. For a photon with continuous values (δ,E) the closest available PSF with

43



4.2. MEASUREMENT PROCESS CHAPTER 4. SIMULATION

y

x

192

192

Figure 4.13: The PSF was calculated by a computer simulationfor sources with different discrete
off-axis anglesδi (step size 5′).

(δk,El) is selected, wherek andl are chosen in such a way that:

|δ − δk| = min
i∈[1;7]

(|δ − δi |) (4.10)

|E − El | = min
j=1,2,3

(|E − E j |) (4.11)

The PSF has been simulated by Peter Friedrich so far, for the off-axis anglesδi = 0′, 5′, 10′, 15′,
20′, 25′, and 30′, and the photon energiesE j = 1 keV, 4 keV, and 7 keV. The sketch in Fig. 4.13
schematically displays the source location for the different off-axis anglesδi .

Some examples of the simulation of the photon reflection by the mirror system are given in
Figs. 4.14 – 4.19, where Figs. 4.14 – 4.19 in particular display theδ-dependence of the spot in the
PSF. For large off-axis angles (which, in Peter Friedrich’s simulation, are chosen in a direction
parallel to the x-axis of the detector array) the photons arespread over a wider range than for
δ ≈ 0′.

Each of the given plots shows the relevant section of the detector array, where the PSF is
significantly greater than 0. The position of the detector section within the entire array can be
concluded from the pixel coordinates in the figure. The height of the presented peaks describes
the probability that an incident photon with the specified energy and off-axis angle is reflected to
a particular detector pixel.

The eROSITA mirror system is designed for high precision imaging, so the sources close to
the optical axis should exhibit almost no photon spread, andthe corresponding PSF peaks for
δ ≈ 0′ are quite sharp. At the borders of the FOV the focus peak becomes broader and the
photons are spread over a wider area of pixels. Additionallythe mirror reflectivity decreases, so
the probability that an incident photon is measured in any pixel at all becomes smaller for bigger
δ. Therefore the PSF for sources near the border of the FOV is quite flat in comparison to on-axis
sources, which can be seen clearly comparing Fig. 4.19 to Fig. 4.14.

The higher the photon energy, the more photons get lost and are not focused on the detector
by the mirror system, thus the eROSITA mirror system is only adequate for low and intermediate
photon energies. This feature can be seen from the decline ofthe peak in the PSF for 1 keV in
Fig. 4.14 to the peak for 7 keV in Fig. 4.16. The imaging probability for photons in dependence
on their energy and off-axis angle is displayed in Fig. 4.20.
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Figure 4.14: Simulated photon reflection forδ1 = 0′ andE1 = 1 keV: the displayed plot is only
a section of the entire detector array with 384× 384 pixels. The x- and y-coordinate are given
in integer detector pixel coordinates, and the height of thepeak represents the probability that an
incident photon is focused to the corresponding pixel.
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Figure 4.15: Simulated photon reflection forδ1 = 0′ andE2 = 4 keV: the peak is significantly
lower than forE1 = 1 keV.

4.2.5 Split events

The basic principle of a CCD detector is to measure the chargecloud that is created by photons
in the form of electron-hole pairs in the semiconductor material. The more energy an incident
photon originally had, the more electron-hole pairs are created. In high energy astronomy usually
charge clouds originating from single photons are measured(except from pileup, Sec. 4.2.6).

45



4.2. MEASUREMENT PROCESS CHAPTER 4. SIMULATION

 160
 170

 180
 190

 200
 210

 220
x

 160
 170

 180
 190

 200
 210

 220

y

 0

 0.05

 0.1

 0.15

 0.2

p

Figure 4.16: Simulated photon reflection forδ1 = 0′ and E3 = 7 keV: due to the decrease of
reflectivity for higher photon energies the size of the peak is hardly comparable to the peaks for
E1 andE2.
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Figure 4.17: Simulated photon reflection forδ2 = 5′ andE1 = 1 keV.

Due to diffusion and Coulomb repulsion in a typical detector the chargecloud has a finite
extension of∼ 5 – 6µm (Martin, 2004). As the detector pixel size is finite, the charge cloud may
be distributed over several neighboring detector pixels, which is called a split event. Usually the
size of the charge cloud is smaller than the size of a detectorpixel, so there are mainly four basic
types of split events (graphically displayed in Fig. 4.21):

• single event:The charge cloud lies completely within one detector pixel.
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Figure 4.18: Simulated photon reflection forδ6 = 25′ andE1 = 1 keV: in comparison to the sharp
PSF peaks for on-axis sources the photons are spread over a much wider pixel area for sources
close to the edge of the FOV.
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Figure 4.19: Simulated photon reflection forδ7 = 30′ andE1 = 1 keV.

• double event:The charge cloud is spread over two neighboring pixels, which have a com-
mon border.

• triple event: Three neighboring pixels are affected forming a triangle (not a line), where
the main part of the charge cloud lies in the ”central” pixel.

• quadruple event: The four affected pixels form a square, where the pixels with the biggest
and the smallest charge fraction lie opposite to each other on diagonal positions.

47



4.2. MEASUREMENT PROCESS CHAPTER 4. SIMULATION

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 5 10 15 20 25 30

de
te

ct
io

n 
pr

ob
ab

ili
ty

 [%
]

off-axis angle [’]

Detection probability

1 keV
4 keV
7 keV

Figure 4.20: Dependence of the mirror reflectivity on the off-axis angle and photon energy: for
high energetic photons close the edge of the FOV the reflectivity decreases dramatically. For this
determination of the detection probability an ideal detector has been assumed, i.e., with quantum
efficiency= 1.

single quadrupletripledouble

Figure 4.21: The 4 basic types of split patterns. The charge cloud that is created by a photon
hitting the detector can be distributed among neighboring pixels. In the eROSITA simulation the
4 displayed pattern types are taken into account.

For the simulation the shape of the charge cloud is assumed tobe a 2-dimensional Gaussian
distribution with a certain standard deviationσcc, which can be specified by a program parameter.
The radius of the charge cloud is defined asrcc := 3σcc. If a photon hits the detector close to the
border of a pixel (distance to borderd < rcc), the part of the entire charge that is measured in the
neighboring pixel can be calculated by evaluating the Gaussian integral

G(x = −d/σcc) =
1
2π

x
∫

−∞

e−t2/2 dt (4.12)

Because the detector has 2 dimensions, one has to consider the distancesdx anddy to the next
neighboring pixels in bothx- andy-direction, and the spatial distribution of the total charge charge
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Figure 4.22: Schematic charge distribution in a quadruple event. The charge cloud is assumed to
have a Gaussian shape withrcc := 3σcc.

Q0 for the example in Fig. 4.22 can be determined as:

Q1 =
(

1−G(−dx/σcc)
) (

1−G(−dy/σcc)
)

· Q0 (4.13)

Q2 = G(−dx/σcc)
(

1−G(−dy/σcc)
)

· Q0 (4.14)

Q3 =
(

1−G(−dx/σcc)
)

G(−dy/σcc) · Q0 (4.15)

Q4 = G(−dx/σcc)G(−dy/σcc) · Q0 (4.16)

where the Gaussian integral (4.12) is calculated numerically using the error function of thespecial
functionspackage in theGNU Scientific L ibrary (GSL).

If, e.g., the charge fractionQ4 is below the detector threshold (Sec. 4.2.8), no event will be
registered in the detector pixel No. 4 (provided that no other photon hits the pixel during the
same integration period, which would result in pileup, cf. 4.2.6), and the pattern in Fig. 4.22 will
effectively be a triple.

Split events can be reconstruct from the measured data by searching for the possible split
pattern with the particular charge distribution. After this analysis the several events that contribute
to the same split event can be summarized as one event with a particular grade, which specifies
the split pattern (see Ehle et al. 2007). In the current simulation this analysis is not performed, so
the events in output event list are designated as singles. The split pattern recognition has to be
implemented in an additional algorithm.

The ratio of single events and split events with more than oneaffected pixel basically depends
on the relative size of the charge clouds to the size of the detector pixels. As long as the extent of
the charge clouds is small in comparison to the width of the detector pixels, most detected events
are singles. But if the radius of the charge cloud is of the same order as the pixel width, a split
event will occur, if the distance between the point, where the photon hits the detector, and the
nearest pixel edge is smaller than the extension of the charge cloud:

dedge< rcc (4.17)

Therefore the ratio of split events and total number of photons

Rsplits =
Nsplits

Nphotons
(4.18)
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can be estimated by comparing the corresponding fractions of pixel area

Rsplits = 1− Rsingles=̂ 1−
(

a− 2rcc

a

)2

(4.19)

wherea denotes the width of a pixel. For a pixel size ofa = 75µm and an estimated charge cloud
radiusrcloud = 6µm the area ratio in (4.19) is aboutRsplits ≈ 29.4%. This value is consistent with
the simulated ratio ofNsplits/Nphotons≈ 28.6% for a sample ofNphotons≈ 1700 photons.

4.2.6 Pileup

Photon events on the detector are not continuously read out,but the created charges are stored
in the detector pixels during the integration time and measured at the end of this period. For
eROSITA the integration time is 50 ms. Especially for very bright sources it might happen that
two or more photons hit the same detector pixel during the oneintegration period. In this case the
detector measures approximately the sum of the individual charge clouds (Davis 2001a, Ehle et al.
2007), which is then interpreted as a single photon with correspondingly higher energy. Usually
there is no possibility to distinguish between these two scenarios of a single or multiple photon
event.

Of course, this has also some effects on the measured data. Particularly the spectrum is
slightly shifted to higher energies, because two or more photons can add up to an event with an
energy corresponding to a higher energetic photon (Davis, 2001a). If the observed source has a
line spectrum, the measured spectrum might contain multiples of the characteristic lines (Martin,
2004, p.49). In the same way the count rate of totally registered events decreases.

For very bright sources it is even possible that so many photons hit the same detector pixel
during one integration period that the resulting charge cannot be hold within the pixel. In that case
a fraction of the charge cloud flows to the neighboring pixels, which might result in the detection
of additional events with an almost arbitrary energy depending on the transferred charge. This
kind of extreme pileup can be identified by, e.g., the occurrence of strange split patterns (Davis,
2001a). This phenomenon is only observed for looking at really bright sources, and the resulting
data usually are not very useful due to the corruption of the registered events by these strong
pileup effects.

All in all pileup has negative effects on the quality of the measured data. But for bright
sources at least some fraction of pileup events cannot be excluded, as the detector has a finite
integration time. Therefore, the pileup of charge clouds, which are created by two or more photons
in the same detector pixel (without charge transfer to neighboring pixels), is implemented in the
simulation in order to obtain a realistic model of the eROSITA CCD detector for the commonly
observed sources.

4.2.7 Detector background

Basically there are two different kinds of background radiation for X-ray telescopes (Ehle et al.
2007, Guainazzi 2008, Puccetti et al. 2008). On the one hand there is the CXRB. Photons originat-
ing from the CXRB are detected by the telescope in the same wayas photons from different X-ray
sources. In the simulation this background is modelled by the extension of the source catalog to
a large number of very faint point sources, according to the observed source flux distribution in
the deep field surveys (Sec. 4.1.2). Up to now the major fraction of the CXRB has been resolved
to discrete sources, so the large sample of very faint sources available in the simulation seems to
model that kind of background radiation properly.

Additionally to this X-ray background that is reflected to the CCD by the mirror system there
is a different kind of detector background originating from high energetic radiation passing the
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Figure 4.23: Simulation of a pointed observation with duration of 1 s: the left hand picture is
the simulated measurement of a point source located directly on the optical axis. The right hand
picture shows the same observation with the additional simulation of detector background events
(0.001 counts s−1 pixel−1). Of course, background events also occur in the detector pixels that lie
outside the FOV.

detector shield. The eROSITA CCD is mainly shielded by a copper housing against cosmic
radiation. But the telescope mass is limited due to the mounting on the satellite, so the shield
is only a compromise between reducing weight and reducing background events. The detector
background is caused by protons, electrons and other particles close to the radiation belts of the
Earth. Although the eROSITA orbit is lower than thevan-Allenbelts (the lower one starts at about
700 km), there is a certain amount of radiation in this height, too.

In the simulation the detector background is modelled by single photon events that are ran-
domly distributed on the CCD detector. The count rate and theenergy spectrum of these back-
ground events are program parameters and can be adapted to the results of closer examinations
of the expected background. An example for the effect of the background radiation is shown
in Fig. 4.23, where simulated detector images for an observation with and without background
events are displayed.

In contrary to the CXRB this kind of background events can also occur in pixels that lie
outside the actual FOV, because the high energetic particles penetrate the shield from arbitrary
directions. The resulting events can be located anywhere onthe detector. This particular property
makes it possible to measure the true detector background during the flight of the satellite and to
take it into consideration in the analysis of the observed events (cf. MPE, et al. 2007).

4.2.8 Detector response

When a photon hits a particular CCD detector pixel it createsa charge cloud by interaction with
the semiconductor material. The charge is stored inside thepixel during the integration time
(50 ms for eROSITA) and shifted to the frame store area at the end of that period. From the frame
store the charge is finally read out and results in a pulse signal, which can be processed by the
subsequent electronics. The height of the pulse corresponds to the amount of measured charge
and, therefore, to the photon energy, as the charge is usually created by a single photon, provided
that there is no pileup. This relation makes it possible to perform spectroscopy on the X-ray
photons that are measured by a CCD detector.
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An ideal detector would have a linear dependence between thephoton energy and the resulting
pulse signal, the so-calledPulseHeightAmplitude (PHA). As a real detector has a finite energy
resolution with a particular number of discrete PHA channels, the resulting relation between
photon energy and PHA channel has approximately the form of aGaussian function with the
following energy resolution (Wilms, 2006):

∆E
E
∝

√
E (4.20)

Depending on the detector material, there are several additional features mainly originating
from atomic emission lines, which have an effect on the charge creation by the incident X-ray
photons. Usually these features disturb the clear linear dependence between photon energy and
measured PHA channel. Especially at the absorption edges ofthe CCD material an incident
photon might be measured in one out of a major number of PHA channels according to a particular
probability distribution.

This probability distribution is usually modelled by thedetector responsefunction R(c,E),
which represents the probability, that an incoming photon with energyE is measured in the PHA
channelc. The count rate in a particular PHA channelh can theoretically be obtained according
to Wilms (2006), Davis (2001b), or Davis (2001a) as

n(c) =

∞
∫

0

R(c,E) A(E) F(E) dE (4.21)

whereA(E) is the effective area (see Fig. 2.8 in Sec. 2.2.2), andF(E) is the source flux in the
corresponding energy band.

Converting the continuous functionR(c,E) to a discrete function with finite energy bins for
the photon energy results in the detectorresponse matrix

RD(c, j) =
1

E j − E j−1

E j
∫

E j−1

R(c,E) dE (4.22)

as pointed out by George et al. (1998).RD(c, j) describes the probability that a photon with energy
E in the binE j−1 < E < E j is measured in the PHA channelc, thus usually

∑

c
R(c, j) = 1 for each

photon energy binj. The response matrix is sometimes also referred to asredistribution matrix,
because each row of the matrix represents the redistribution of a monochromatic photon input to
the individual PHA channels (Guainazzi, 2008).

The response matrix for a particular detector is usually stored (in a compact format) in the
RMF, which also contains the lower threshold for detected events. Below this threshold, the
signal created by the charge is too weak for measuring and is therefore neglected.

The simulation uses the RMF to determine the measured PHA channel for the amount of
charge, which has been created by the incident photons afterthey have been reflected by the
mirror system. Values below the detector threshold are simply neglected. This method is similar
to the procedure described in Puccetti et al. (2008), exceptfor the fact that the mirror properties of
Simbol-X are implemented in the additionalAncillary ResponseFile (ARF), which also describes
the imaging probabilities and energy-dependent effective area of the mirror system (George et al.,
1998). The eROSITA simulation uses an explicit model for thePSF (Sec. 4.2.4) instead of the
ARF.

In Fig. 4.24 the response matrix for the EPIC pn-CCD on the satellite XMM-Newton (Strüder
et al., 2001) is visualized. Apart from the main diagonal, which represents the desired linear
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Figure 4.24: RMF matrix of EPIC pn-CCD (XMM-Newton): apart from the ideal linear depen-
dence between photon energy and PHA channel, the RMF exhibits additional features due to
the properties of the CCD material. The eROSITA detector is based on the EPIC camera, and,
therefore, might have a similar shape.

relation between photon energy and PHA channel energy, the matrix has some additional features.
For example, there is a weaker line running parallel to the main diagonal. This means that photons
with, e.g.,∼ 3 keV might be either detected at a channel corresponding to∼ 3 keV or at a lower
energy of∼ 1 keV. For different detectors there might be even more side peaks. Unfortunately
these material-dependent effects destroy the unambiguous relation between the photon and the
measured energy, which is assumed for the ideal case, and, therefore, complicate spectral analysis.

Currently there is no proper RMF available for the eROSITA CCD, so the simulation was
tested with the EPIC pn response matrix. (The eROSITA camerachip is basically a successor of
the EPIC CCD.) On reading out the individual detector pixels, the contained charge is converted
to a PHA channel according to the probability distribution respresented by the RMF, and taking
into account the lower threshold for the detector signals. As the RMF data are stored in a file with
standardized format (George et al., 1998), it can be replaced easily, when adequate data for the
eROSITA RMF are available.

4.3 File formats

The different input and output data of the simulation, presented in the previous part of this chapter,
have to be stored in different FITS files. The format of the individual file types is presented in the
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Table 4.1: The essential columns of the binary table in a source catalog file.

Name Data type Content
R_A_ Float right ascension of the source
Dec_ Float declination of the source

src_cps Double source count rate
E_min, E_max Double minimum and maximum value of

the regarded energy band
SrcModel String source model, specifies the name of a

FITS file containing the spectrum

following.

As far as possible, standardized file formats were used in order to guarantee a maximum of
portability. Depending on the individual mission, there might be slight differences in the contained
table columns of the individual FITS files, although the column names themselves are usually
clearly defined. Therefore, the design of the file formats forthe simulation follows the given
standards as far as available, and defines new formats if required. The simulation specific formats
should be intuitively accessible.

4.3.1 Source catalogs

The X-ray sources from the RASS-FSC are transformed from theASCII file, which is published
in the internet, to a FITS file (Sec. 4.1.1). The randomly generated sources (Sec. 4.1.2) are also
stored in a binary table in FITS format. The FITS tables contain all information required by
the simulation for generating photons for the individual sources. An overview of the essential
columns is given in Table 4.1. The FITS file for the RASS-FSC contains additional information
from the originally published file, but this data is not used by the simulation.

Currently the simulation deals with the right ascension, the declination, and the source count
rate. Additional fields are implemented for the spectral model and the minimum and maximum
value of the energy range for the source as in a similar simulator for Simbol-X (Puccetti et al.,
2008), but are not used in the current implementation of the program. Their usage is one of the
future development steps of the simulation. Of course, there are also further possible parameters
like a light curve model for each individual source, which could also be implemented, if required.

4.3.2 PHA files

For the generation of photons the simulation requires spectra of the individual sources (and the
detector background model). These data are stored in several FITS files, where each file contains
one particular spectrum. The binary table in each file has basically two columns. The first column
gives the PHA channel, i.e., the energy bin of the photon energy, and the second column contains
the count rate in the corresponding channel (cf. Table 4.2).

Simple spectra for testing the simulation can be created easily with a few lines of code (sub-
programcreate_spectrum), whereas real source spectra for the execution of the simulation can be
obtained from spectral analysis software like XSPEC. Similar to the sources detector background
has a particular spectrum, which is also stored in a PHA file for input in the simulation.
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Table 4.2: The individual columns of the binary table in a PHAfile.

Name Data type Content
CHANNEL Long PHA channel
COUNTS Float count rate in this channel, normalized to

∑

c
counts(c) = 1

Table 4.3: The individual columns of the binary table in a PSFfile. This file format is not a
standard, but designed in particular for the simulation.

Name Data type Content
OFFAXANG Float off-axis angleδ

ENERGY Float photon energyE in keV
X, Y Integer offset of then×m sub-matrix

(n andmare stored in header keywords)
PSF_DATA Float-Array matrix entries ofn×msub-matrix

with lengthn ·m stored in a 1-dimensional array

4.3.3 PSF files

The imaging properties of the mirror system are modelled by the PSF. Mathematically it can be
described by aN×N matrix for each available off-axis angle and energy combination (Sec. 4.2.4),
whereN is the width of the detector in pixels. The individual matrixentriesPx,y(δ,E) represent
the probability, that an incident photon with energyE at the off-axis angleδ is reflected to the
detector pixel with coordinatesx andy.

Usually most matrix entries are equal to zero, so eachN×N matrix can be reduced to an×m
sub-matrix, withn ≤ N, which consumes less memory. These sub-matrices are storedin a FITS
binary table, which can be read by the simulation.

4.3.4 RMF files

Similar to the PSF of the mirror system the measurement probabilities of a detector are described
by the detector response function and the detector responsematrix respectively. The exact mean-
ing of these terms is described in Sec. 4.2.8.

Basically the detector response matrix is a hugen×mmatrix, wheren is the number of energy
bins for incident photons, andm is the number of possible PHA output channels. The matrix entry
(RD) j,i represents the probability that an incident photon with energy E j is measured in the PHA
channeli, which corresponds to the energyEi (George et al., 1998).

The necessary information for modelling a particular detector is stored in FITS format in
the RMF. This file contains two binary tables. One of them is called MATRIXor SPECRESP
MATRIXand contains the actual detector response matrix includingthe definition of the energy
binsE j for the incident photons. The relation between the PHA channel i and the corresponding
measured energy valueEi is given in the additional tableEBOUNDS.

Apart from that the RMF contains header keywords with information about the number of
PHA channels and the lower detector threshold. The detailedlayout of the FITS file is presented
in George et al. (1998).
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Table 4.4: The individual columns of the binary table in an orbit file.

Name Data type Content
TIME Float timet (refers to header keywordMJDREF)
X, Y, Z Float position of the satellite at timet

Vx, Vy, Vz Float velocity of the satellite at timet

Table 4.5: The individual columns of the binary table in an attitude file.

Name Data type Content
VALTIME String time t in format yyyy-mm-ddThh:mm:ss

TIME Float timet (refers to header keywordMJDREF)
VIEWRA Float right ascension of telescope axis at timet

VIEWDECL Float declination of telescope axis at timet
ROLLANG Float roll-angle at timet
ASPANGLE Float solar aspect angle at timet

4.3.5 Orbit files

Orbit files are stored as FITS files and contain a binary table with the position and velocity of
the satellite at particular points of time (cf. Table 4.4). Usually the time statements in the dif-
ferent FITS files refer to a reference date specified by the header keywordMJDREF. Position
and velocity are given in Cartesian coordinates, which can be easily processed by the simulation
algorithm.

At the time when the simulation was developed, no real orbit data were available for eROSITA,
so the orbit files had to be created by an orbit propagation algorithm according to the methods
described in Chap. 5. The resulting files are used as input forthe measurement simulation and
the attitude calculator, which requires the orbit information to determine the telescope’s pointing
direction.

As the data are only available for discrete points of time with steps of several seconds or
minutes, the simulation software has to perform an interpolation in order to obtain the satellite’s
position and velocity for intermediate points of time.

4.3.6 Attitude files

Attitude files specify the satellite’s orientation in 3-dimensional space at particular points of time.
Basically the attitude can be given by defining three different angles. For convenience in the
context of the simulation two of them are the right ascensionand declination of the telescope axis
respectively. The third angle, specified asroll-angle is the rotation angle of the satellite around
the telescope axis. An overview is given in Table 4.5.

Using the orbit files created by the orbit propagation algorithm, attitude information can be
determined easily, assuming that the telescope always points straight away from the center of the
Earth. Actually the survey geometry is more complicated (cf. Sec. 2.1.3), but the attitude files
for this complex pointing strategy will be provided at latersteps of the development of eROSITA.
With the assumption of the simplified survey geometry the right ascension and declination of the
telescope axis are equal to the satellite’s right ascensionand declination. Theroll-angle, i.e., the
rotation angle around the telescope axis, is still not fixed and can be determined according to the
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requirement that the solar panels should collect as much sunlight as possible. Therefore, theroll-
anglecan be directly calculated from the position of the Sun, which is obtained from an algorithm
presented in Meeus (1998).

According to this attitude model the satellite’s orientation is determined from a given orbit file.
The resulting attitude file contains the time, the right ascension and declination of the telescope
axis, theroll-angle, and, as additional information, the solar aspect angle. Reading this attitude
file, the simulation software can easily determine the telescope viewing direction.

4.3.7 TLE

TheTwo L ineElements (TLEs) are a commonly used format to describe a satellite’s orbit param-
eters. As the name already suggests, they basically consistof two lines with a fixed length of 69
characters each and a specific data format. There might also be a zeroth line with the satellite’s
common or human readable name, but the important data are contained in the subsequent two
lines.

Apart from different identifiers and classifications a TLE provides drag parameters and the
satellite’s orbital elements for a specified point of time. Therefore, TLEs are usually used to
predict the orbit for a short period assuming Keplerian motion, maybe including perturbation
theory up to first order. As the exact orbit perturbations by gravitational and atmospheric effects
cannot be given over a long span of time, the TLE elements haveto be updated regularly.

A detailed description of the TLE format is given in Steiner &Schagerl (2004, p. 148ff). with
a list of the meaning of the individual bytes in each line. As the orbit determination program,
which was developed in the course of this simulation, neglects atmospheric effects, mainly the
second line of the TLEs is important, because it contains information about the Keplerian orbital
elements. Although an interface for input and output of TLEswas implemented for the orbit prop-
agation algorithm, usually orbit files containing the satellite’s positions and velocities in Cartesian
coordinates are preferred as input for the simulation.

There are several orbit prediction programs on the web usingTLE input files to calculate,
e.g., the ground tracks of the ISS or some well-known satellites. Unfortunately the calculations in
these programs are not accurate enough to determine the eROSITA orbit for the simulation, as they
usually neglect perturbation effects or implement only first order perturbation theory. Therefore,
a separate algorithm had to be developed for this purpose.

4.3.8 Event lists

The result of the simulated measurement process is an event list with the detected photons (or
multi-pixel events). The corresponding FITS output file contains a binary table with the time of
the measurement, the PHA channel, the so-called grade (cf. Sec. 4.2.5), and the pixel coordi-
nates of each individual event. The individual columns in the table are listed in Table 4.6. The
columns are implemented according to George et al. (1994). Of course, there is a large number
of additional columns that can be added if required.

As the detector is not read out continuously but in time intervals of 50 ms, the time in the
event list is usually not equal to the time, when the photon has actually hit the detector. The
time difference might be up to the integration time. The PHA channel represents the measured
detector energy, where the relation between channel and energy is given in theEBOUNDStable
of the RMF (Sec. 4.3.4), and the grade should designate the split pattern. As the simulation
implements no recognition of split events, all events are regarded as singles. Therefore, the grade
is not used and set to zero in this context.
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Table 4.6: The individual columns of the binary table in an event list file.

Name Data type Content
TIME Float time of the detection, i.e., readout time of the frame
PHA Long number of detector PHA channel

GRADE Integer number that specifies the split type
RAWX, RAWY Integer raw detector pixel coordinates of the event
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Chapter 5

Satellite orbits

It is commonly known that satellites move around the Earth onelliptic or in many cases even
circular orbits. Similar to the motion of the planets aroundthe Sun these orbits can be described
by Kepler’s laws. If the simplification of a purely two point mass gravitational system is not
postulated, the satellite’s motion becomes more complicated and perturbation theory has to be
applied.

This chapter treats the mathematical background of simple Kepler orbits and provides an
introduction to orbit perturbation theory up to second order. Effects from the particular shape of
the Earth’s gravitational potential on close Earth orbits are taken into account, particularly with
regards to eROSITA, which was originally designed for a 600 km orbit because of the low particle
background in this height. Formulas for the semi-analytical solution of the mathematical problem
of close Earth orbits are given in Appendix A.

The effects of atmospheric drag are neglected, because they are smaller than the gravitational
effects and would result in even more complicated mathematicaleffort. As the atmospheric pa-
rameters usually cannot be predicted with the required accuracy, the resulting model would be
insufficient for long term orbit calculations anyhow.

5.1 Issue

In order to simulate the measurement process of eROSITA, onehas to know the position of
the satellite and the pointing of the telescope on the satellite’s orbit (see Chap. 4). The latter
is particularly important to determine the visible sourcesinside the FOV from the given source
catalogs.

As this simulation was developed at quite an early stage of the eROSITA mission preparation,
there was no realistic orbit data available for Spectrum-X-Gamma, and its motion around the
Earth had to be calculated for the simulation. One of the simulation’s targets is the generation
of detector event lists as input for the NRTA software, whichaffords quite accurate position and
attitude data. The orbit propagation algorithm can also be used later during the flight of eROSITA
to determine the position of the satellite, when the data from the spacecraft is not available or
unreliable.

The orbit calculation had to be developed completely, as actually no program code or complete
tools were available for the desired purpose. Most programsand references with explicit formulas
do either only work with Keplerian orbits or first order perturbation theory, or perform a numerical
integration. In this work a semi-analytical approach was implemented, which provides on the
one hand a quite good understanding of the mathematical background and on the other hand the
possibility to determine the influence of particular parameters on the satellite’s orbit. Therefore,

59



5.2. MATHEMATICAL BACKGROUND CHAPTER 5. SATELLITE ORBITS

the semi-analytical method was preferred to the purely numerical approach.

5.2 Mathematical background

Before discussing the particular implementation of the orbit calculation for the simulation, the
following section will provide a short overview of the mathematical background. First the pure
Keplerian satellite motion is regarded, including the introduction of the necessary formalism, later
perturbation effects are discussed with respect to their importance for close Earth orbits.

5.2.1 Two-body system

First the gravitational interaction of two point masses in atwo-body system is considered using
Newton’s laws. As this is a popular problem, it is treated in many books about astrodynamics.
This section will follow the approach of Steiner & Schagerl (2004).

According to Newton, the force between the massesm1 andm2 located atr1 andr2 is

F =
Gm1m2

r2
(5.1)

with r = r1 − r2 andr = |r |. Form1 = const. andm2 = const. one obtains:

r̈ = −
G (m1 +m2)

r3
r (5.2)

This non-linear differential equation describes the relative motion of the two point masses. The
motion of the center of mass is just a straight line, as there are no external forces.

This general formula can be applied to the particular situation of a satellite on its orbit around
the Earth, wherem1 is chosen as the mass of the Earth andm2 as the mass of the satellite. For
convenience the origin of the coordinate systemΓ′ is set into the center of the Earth (r1 = 0) and
the following approximation is performed, asm1 ≫ m2:

G (m1 +m2) ≈ Gm1 =: µ (5.3)

Because of the huge mass difference the center of mass coincides approximately with the center
of the Earth:

R =
m1r1 +m2r2

m1 +m2
≈ r1 = 0 (5.4)

The position of the satellite isr2 = r , asr1 = 0. To determiner (t) as a function of time, the
following equation of motion has to be solved, which is obtained from Eq. (5.2) using (5.3):

r̈ = −µ r
r3

(5.5)

As already mentioned above, this equation describes the relative motion of the two masses, i.e.,
in this particular case the motion of the satellite around the Earth. Scalar multiplication of (5.5)
with ṙ yields:

r̈ · ṙ + µ r · ṙ
r3
= 0 (5.6)

Taking into account the following relations:

r̈ · ṙ =
d
dt

(

1
2

ṙ
)

=
d
dt

(

1
2

v2
)

(5.7)

r · ṙ = d
dt

(

1
2

r2
)

=
d
dt

(

1
2

r2
)

= rṙ (5.8)
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one obtains
d
dt

(

1
2

ṙ2
)

+ µ
ṙ

r2
=

d
dt

(

v2

2
−
µ

r

)

= 0 (5.9)

which means that

C :=
v2

2
− µ

r
= const. (5.10)

is a constant of motion. Often it is referred to asspecific energyof the relative motion.
The conservation of angular momentum can also be derived from Eq. (5.5) by calculating the

vector product withr :

r × r̈ =
d
dt

(r × ṙ ) = 0 (5.11)

⇒ h :=r × ṙ = const. (5.12)

Choosing thez′-axis of the coordinate systemΓ′ to point in the direction ofh, the vectorsr andṙ
lie in the x′-y′-plane. Kepler’s second law can easily be derived from the conservation of angular
momentum

h dt = he0
z′ dt = r × ṙ dt = 2dAe0

z′ (5.13)

wheree0
z′ is the unit vector along thez′-axis of Γ′, anddA = 1/2 r2dθ is the half area of the

parallelogram spanned byr andṙdt, i.e.,dA is the area the vectorr is wandering over during the
time intervaldt. As h = |h| = const., Kepler’s second law is proven:

Ȧ =
1
2

r2dθ =
1
2

h = const. (5.14)

With the choice ofh ‖ e0
z′ , r andṙ lie in thex′-y′-plane and can be expressed in polar coordinates.

Introducinger = (cosθ, sinθ, 0)T andeθ = (− sinθ, cosθ, 0)T with the angleθ betweenr and the,
at the moment, arbitraryx′-axis, one can write

r = rer (5.15)

ṙ = ṙer + r θ̇eθ (5.16)

In this representation the angular momentum is

h = (rer ) × (ṙer + r θ̇eθ) = r2θ̇e0
z′ (5.17)

aser × eθ = e0
z′ .

To determine the geometry of the orbit, it is useful to define the quantityq := ṙ × h − µer ,
which is also a constant of motion. With (5.5)×h⇒

0 = r̈ × h +
µ

r3
r × h

=
d
dt

(ṙ × h) +
µ

r3
(rer ) ×

(

r2θ̇e0
z′

)

=
d
dt

(ṙ × h) − µθ̇eθ

=
d
dt

(ṙ × h − µer )

(5.18)

where the relatioṅer = θ̇eθ has been used. The vectorq lies in thex′-y′-plane, becauseq · h = 0,
and the direction of thex′-axis of the coordinate systemΓ′ can be defined ase0

x′ := q/q, thus one
obtains:

cosθ =
q · r
qr
=

r · (ṙ × h) − µr
qr

(5.19)
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After performing the cyclic permutationr · (ṙ × h) = h · (r × ṙ ) = h · h = h2 this results in:

cosθ =
h2

qr
−
µ

q
(5.20)

r (θ) =
p

1+ ecosθ
(5.21)

with p = h2/µ ande= q/µ.
This equation describes conic sections (Steiner & Schagerl, 2004, p. 21f.). Depending on

e the corresponding orbit is a circle (e = 0), an ellipse (0< e < 1), a parabola (e = 1), or a
hyperbola (e > 1). The so-called eccentricitye must be positive, becauseq = |q| ≥ 0 andµ > 0.
The casese ≥ 1 will be neglected in the following, as only closed satellite orbits are taken into
account. For eROSITA one even has an almost circular orbit with e≈ 0.

5.2.2 Spherical approximation

In the previous section a system consisting of two point masses has been considered. The satel-
lite’s extension is negligible in comparison to the distance between the satellite and the center of
the Earth, and one can approximately describe the satelliteas a point mass.

But the radius of the Earth is of the same order as the distancebetween the center of the Earth
and the satellite. Therefore, it must be proven explicitly that the same formulas can be used for
the satellite problem as for a system of two point masses. This will be done by showing that for
distances greater than the radius of the Earth our planet hasapproximately the same gravitational
potential, as if all its mass would be concentrated in its center.

For this calculation it is assumed that the Earth is a perfectsphere with radiusRe and its mass
Me is distributed uniformly inside the sphere. The gravitational potential for a test massm at a
positionr above the surface (|r − r1| = |r | = r > Re) is:

V (r ) = −Gm
∫

Me

dM
s
= −Gm

Re
∫

0

π
∫

0

2πρ(r′)
s

sin(ψ) dψdr′ (5.22)

with s= |r − r ′|, ρ(r′) = ρ = const., and the infinitesimal mass elementdM = 2πρr′2 sinΨdr′ dΨ
(see Fig. 5.1). Using the cosine identityr2 = r2 + r

′2 − 2rr ′ cos(ψ) ⇒ sds= rr ′ sin(ψ) dψ the
integration variable can be replaced:

V(r ) = −2πGm

Re
∫

0

r+r ′
∫

r−r ′

ρr′

r
ds dr′ = −4π

Gm
r

Re
∫

0

r
′2ρdr′ = −GmMe

r
(5.23)

In other words the Earth has indeed the same potential, as a point source with the same mass at
the center of the Earth would have, and the formalism developed in Sec. 5.2.1 can be used for the
calculation of a satellite’s orbit.

5.2.3 Kepler orbits: Kepler elements

In Sec. 5.2.1 it was concluded from Eq. (5.21) that the orbit of a satellite around the Earth is an
ellipse (or a circle), if only finite systems withe< 1 are considered. The Earth and, therefore, the
origin of the coordinate system is located in one of the two focal points of the ellipse, as Kepler’s
first law claims.

To describe the motion of the satellite on its orbit around the Earth, it is useful to switch from
the coordinate systemΓ′ introduced in Sec. 5.2.1 to the geocentric equator systemΓ with the
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Ψd

earth

Figure 5.1: Integration over the total volume of the Earth according to Steiner & Schagerl (2004).

z-axis pointing in the direction of the north pole, thex-axis to the First Point of Aries (a fixed
direction with respect to the background of stars), and they-axis perpendicular to both of them.

This coordinate system is moving around the Sun along the path of the Earth, but the directions
of its axes are fixed in reference to the cosmic background. Asthe satellite’s motion is almost
entirely dominated by the gravitational potential of the Earth, influences from the Sun or other
planets can be neglected, and the coordinate system can be regarded as an inertial system. The
geocentric equator system is a common choice for astronomical problems. It is more convenient
for this purpose thanΓ′, which depends on the attitude of the orbital plane.

To characterize the orbit and the position of the satellite,the ellipse can be defined, e.g., by
the length of its semimajor axisa and its eccentricitye. But, of course, there are also different
possible sets of parameters to describe an ellipse. For example, a common choice is to define the
parameterp of the ellipse instead of the semimajor axisa, where

p = a(1− e2) (5.24)

Having specified the ellipse, the actual position of the satellite is given by the angleθ, which is
calledtrue anomaly, as shown in Fig. 5.2.

Therefore, one needs a set of three parameters such as (a, e, θ) to describe the position of the
satellite within the orbital plane. But the alignment of this plane in 3-dimensional space is still
arbitrary. In order to designate a particular orbital plane, usually the three additional anglesi, Ω
andω are introduced.

The first parameteri is called theinclination and is defined as the angle between the orbital
plane and the equatorial plane of the Earth. Its possible values lie in the interval from 0◦ to 180◦,
where orbits withi < 90◦ are calledprograde, i = 90◦ means apolar, andi > 90◦ a retrograde
orbit.

The value ofΩ designates the right ascension of the ascending node, i.e.,the direction, where
the satellite’s orbit crosses the equatorial plane coming from the southern hemisphere. From the
geometrical point of view the ascending node is defined by theintersection line of the equatorial
with the orbital plane. Possible values lie in the interval from 0◦ to 360◦.

To determine the position of the perigee, the so-calledargument of perigeeω is used, which
specifies the angle between the vector from the center of the Earth (i.e., the origin of the coordinate
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p
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a ae
E

x

y

θ

Figure 5.2: Parameters of an ellipse according to Flury (1991): the ellipse is clearly defined by its
semimajor axisa and its eccentricitye. The position of the satellite on the ellipse can be specified
by the eccentric anomalyE or the true anomalyθ.

system) to the perigee of the ellipse (the satellite’s closest position to the Earth) and the vector
from the center of the Earth to the ascending node. The argument of perigee has possible values
between 0◦ and 360◦.

Fig. 5.3 shows the parameter set (i,Ω, ω) describing the attitude of the orbital plane according
to the geocentric equator system. Specifying the six Keplerian orbital elements (a, e, i,Ω, ω, θ)
is a common choice to define the complete orbit of a satellite.It is quite suitable for analytical
calculations and is used, e.g., as basis for the NORAD TLE format (Sec. 4.3.7).

5.2.4 Kepler orbits: equations of motion

This section will describe how the position and velocity of asatellite can be obtained from its
Keplerian elements. The most difficult part of this calculation is the determination of the true
anomalyθ depending on the time. It is shown below that there is no explicit analytical function
θ(t). But it is possible to calculate a quantityM called themean anomaly, which is defined as

M = n(t − tπ) (5.25)

with the mean motion

n =

√

µ

a3
=

2π
T

(5.26)

andtπ the time, when the satellite was in the perigee position.

T = 2π

√

a3

µ
(5.27)

is the time for one revolution, son can be regarded as the mean angular velocity of the satellite.
The motion is not uniform (e.g., the satellite is faster at perigee and slower at apogee according
to Kepler’s second law), and, therefore, the mean anomaly isnot equal toθ or E. This would only
be valid for a circle, i.e.,e= 0. In that special case the equalityn = E = θ holds.
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Figure 5.3: The attitude of the orbital plane in 3-dimensional space is defined by three angles: the
inclination i, the right ascension of the ascending nodeΩ, and the argument of perigeeω (North
Carolina State University/ Department of Physics,http://www.physics.ncsu.edu).

Considering Kepler’s second law and using some geometric relations, one can derive the
Kepler equation(Steiner & Schagerl, 2004, p. 68ff.):

M = E − esin(E) (5.28)

This relation between the mean and the eccentric anomaly is abasic element of orbit calculations.
Unfortunately it cannot be solved forE, so there is no possibility to obtain the eccentric anomaly
as a function of time. Instead of that for a given timet the mean anomalyM can be calculated
according to Eq. (5.25). The result is put in the Kepler equation to determine the corresponding
eccentric anomalyE using numerical methods like the Newton algorithm. KnowingE, it is quite
simple to obtain the actually required true anomalyθ by using (Steiner & Schagerl, 2004, p. 71)

tan
(E

2

)

=

√

1− e
1+ e

tan
(

θ

2

)

(5.29)

The positionr of the satellite according to the coordinate systemΓ′ can then be expressed in terms
of E or θ (Fig. 5.2) by using some geometric relations. As shown by Flury (1991, p. 20):

r = a (cosE − e) e0
x′ + a

√

1− e2 sinEe0
y′ (5.30)

Taking into account (Flury, 1991, p.20)

Ė =

√

µ

a
1
r

(5.31)

Differentiation of Eq. (5.30) yields:

ṙ = v = −
√
µa

r
sinEe0

x′ +

√
µp

r
cosEe0

y′ (5.32)
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The remaining problem that still has to be solved is the transformation fromΓ′ to the equatorial
coordinate systemΓ. For that purpose the vectorse0

x′ ande0
y′ have to be expressed in terms of

e0
x = (1, 0, 0)T , e0

y = (0, 1, 0)T , ande0
z = (0, 0, 1)T :

e0
x′ =





















cosω cosΩ − sinω sinΩ cosi
cosω sinΩ + sinω cosΩ cosi

sinω sini





















(5.33)

e0
y′ =





















− sinω cosΩ − cosω sinΩ cosi
− sinω sinΩ + cosω cosΩ cosi

cosω sini





















(5.34)

Knowing the orbital elements of a satellite, its position and velocity can be determined for any
given point of time following the previous method. Therefore, the parameter set(a, e, i,Ω, ω, t) or
(a, e, i,Ω, ω,M) can be used to define the position and velocity.

A similar method for calculating this data is based on theargument of latitude

u := ω + θ (5.35)

and can be found, e.g., in Flury (1991, p. 38). In principle itis the same approach using the true
anomalyθ instead of the eccentric anomalyE.

5.2.5 Oblateness of the Earth

In the previous sections (especially in Sec. 5.2.2) the Earth was assumed to have a perfectly
spherical shape with uniform mass distribution. With that assumption it is possible to replace the
Earth’s gravitational potential by the potential of a pointmass with the same total mass, so the
two-body formalism developed in section 5.2.1 can be applied.

The resulting orbits for eccentricitye < 1 are periodic, i.e., the satellite remains in its orbit
over the time, and after each revolution around the Earth it returns to its initial position. This
approximation is quite suitable for satellites at high altitudes, i.e., several 1000 kilometers above
the Earth’s surface.

For lower orbits the Earth’s particular shape has to be regarded more closely. Due to its
rotation the equatorial radius is about 21.4 km larger than the distance of north and south pole.
The resulting shape can be approximated by a rotational ellipsoid, which is schematically shown
in Fig. 5.4.

Additionally to the oblateness there are further deviations from a perfect spherical potential by
inhomogeneous mass distribution. All these effects are small in comparison to the gravitational
force on the satellite (the oblatenessf = 21.4 km/6378 km ≈ 0.34% is the most noticeable
deviation), so perturbation theory can be applied to calculate the effects of deviations from the
perfectly spherical shape.

For that purpose the description of the Earth’s gravitational potential has to be approximated
by a more realistic equation (Flury 1991, Steiner & Schagerl2004). The simplified form used in
section 5.2.1 was:

V0 = −
µ

r
(5.36)

This potential satisfies the Laplace equation, which generally holds outside of any body with
arbitrary shape:

∇2V0 = 0 (5.37)
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Figure 5.4: The equatorial diameter of the Earth is about 42 km greater than the distance of north
and south pole. Therefore, the shape can be approximated by arotational ellipsoid (Walter, 2007).

Expressing the∇ operator in some kind of spherical coordinates with the latitudeϕ and the longi-
tudeλ

x = r cosϕ cosλ (5.38)

y = r cosϕ sinλ (5.39)

z= r sinϕ (5.40)

yields the following form of the Laplace equation for a general potentialV:

∇2V =
1

r2

[

∂

∂r

(

r2∂V
∂r

)

+
1

cosϕ
∂

∂ϕ

(

cosϕ
∂V
∂ϕ

)

+
1

cos2 ϕ

∂2V

∂λ2

]

= 0 (5.41)

A general ansatz for solving this differential equation is the following product:

V (r, ϕ, λ) = R(r) P (ϕ) L (λ) (5.42)

with

R(r) = Arn + Br−n−1 (5.43)

P (ϕ) = Pnm(sinϕ) (5.44)

L (λ) = C cos(mλ) + D sin(mλ) (5.45)

Due to the conditionV(∞) = 0 one obtainsA = 0. The functionsPnm are the associated Legendre
polynomials:

Pnm(x) = (1− x2)m/2 dm

dxmPn(x) (5.46)

with the Legendre polynomials:

Pn(x) =
1

2nn!
dn

dxn (x2 − 1)n (5.47)
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Table 5.1: Jeffrey coefficients (from Goddard Earth Model) and Legendre polynomialsfor n =
2, 3, 4 according to Flury (1991).

n Jn · 106 Pn(x)

2 1082.6268 1
2

(

3x2 − 1
)

3 −2.5356 1
2 x

(

5x2 − 3
)

4 −1.6234 35
8

(

x4 − 30x2 + 3
)

equator

JJ JS

N

2 43

φ
r

Figure 5.5: Equipotential surfaces forV(r, ϕ) = V0(r) + Vn(r, ϕ) = const., withVn(r, ϕ) =
µ

r Jn

(

Re
r

)n
Pn(sinϕ) = const. (dotted lines) in comparison toV0(r) = −µr = const. (circles) (pic-

tures taken from Steiner & Schagerl 2004 withφ denoting the latitude).

Therefore the Earth’s potential can be written in the form:

V = −
µ

r

















1+
∞
∑

n=1

n
∑

m=0

(Re

r

)n

Pnm(sinϕ) (Cnmcos(mλ) + Dnmsin(mλ))

















(5.48)

For the current purpose it is sufficient to regard the special casem= 0. With this particular choice
the potential can be simplified:

V = −
µ

r















1−
∞
∑

n=1

Jn

(Re

r

)n

Pn(sinϕ)















(5.49)

whereJn = −Cn0. The Jeffrey coefficient J1 = 0 vanishes, as the center of mass of the Earth
coincides with the origin of the coordinate system (Steiner& Schagerl, 2004, p. 120). The
coefficients forn = 2, 3, 4 taken from the Goddard Earth Model (GEM-10, cf. Flury 1991,p. 70),
which have been determined by exact measurements of satellite orbits, and the corresponding
Legendre polynomials are listed in Table 5.2.5.

In Fig. 5.5 the effect of the individual spherical harmonics in the expansion of the gravitational
potential is displayed. The coefficientsJ2 andJ4 mainly describe the effects of the oblateness of
the Earth (see Sec. 5.2.7), whereas theJ3 term is caused by asymmetry between the northern and
southern hemisphere.

As discussed in Sec. 5.2.1 fore< 1, the relative motion of two point masses is a closed orbit.
Therefore a satellite’s motion around the Earth would be periodic in the coordinate systemΓ, if
the Earth’s potential had a perfectly spherical and uniformmass distribution, i.e.,V ≡ V0, as
assumed in Sec. 5.2.2, and if there was no atmospheric drag.

The additional terms forn > 1 in the expansion of the gravitational potential (5.49), however,
result in a variation of the orbital elements. For example they cause a precession of the orbital
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plane around the Earth’s axis, which will be explained below. In comparison to the gravitational
effects the atmospheric drag mainly results in a continuous reduction of the semimajor axisa and
the eccentricitye (Steiner & Schagerl, 2004, p. 131ff.). The influence by the atmosphere does not
exert a conservative force on the satellite and its calculation is mathematically more challenging.

5.2.6 Perturbation theory

In order to calculate the perturbation effects on the orbital elements, a system of differential equa-
tions for the parameter set (a, e, i,Ω, ω,M) has to be found. The derivation of these equations
affords some mathematical effort, so the exact procedure will not be presented in this text, espe-
cially as it is described in almost any book on orbit calculations that deals with perturbation theory
(e.g., Steiner & Schagerl 2004, ch. 4 or Flury 1991, ch. 3). Finally one obtains the following
Lagrange perturbation equations:

da
dt
= −

2
na
∂W∗

∂M
(5.50)

de
dt
= −

1− e2

na2e

∂W∗

∂M
+

√
1− e2

na2e

∂W∗

∂ω
(5.51)

di
dt
= − coti

na2
√

1− e2

∂W∗

∂ω
+

1

na2
√

1− e2 sini

∂W∗

∂Ω
(5.52)

dΩ
dt
= − 1

na2
√

1− e2 sin i

∂W∗

∂i
(5.53)

dω
dt
= −
√

1− e2

na2e

∂W∗

∂e
+

coti

na2
√

1− e2

∂W∗

∂i
(5.54)

dM
dt
=

1− e2

na2e

∂W∗

∂e
+

2
na
∂W∗

∂a
(5.55)

These differential equations describe the temporal change of the orbital elements due to the per-
turbation potentialW∗, which can be obtained from

W (r ) = V(r) − V0(r) =
∑

n>1

Vn(r) (5.56)

All perturbation forces can be derived from this potential.After a coordinate transformation
(r , v)→ (a, e, i,Ω, ω,M) the perturbation potential can be expressed in terms of Keplerian orbital
elements:

W(r )→W∗ (a, e, i,Ω, ω,M) (5.57)

With W∗ the Eqs. (5.50) – (5.55) can be used to determine the effect of the gravitational perturba-
tion on the orbital elements.

As the calculation of the atmospheric drag is quite challenging due to the number of parame-
ters for a proper model of the atmosphere, it will not be explained in this thesis. For the explicit
mathematical calculation see Klinkrad (1983) or Liu & Alford (1979). According to Liu & Alford
(1979) for satellites above 200 km it is a valid approximation to neglect atmospheric drag due to its
magnitude in comparison to gravitational effects. Therefore, in the following only perturbations
that are caused by the shape of the Earth’s gravitational potential will be considered.

5.2.7 Perturbations due to oblateness

To determine the contribution of theJ2 terms in the expansion of the gravitational potential, one
has to regard the following perturbation potential according to Eq. (5.49) and Table 5.2.5 (Steiner
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Figure 5.6: Trigonometric relations between the inclination i, the argument of perigeeu := θ + ω
and the latitudeϕ according to Steiner & Schagerl (2004).

& Schagerl, 2004):

W2 = V2(r, ϕ) = −µ
r

J2

(Re

r

)2 (

1
2
− 3

2
sin2 ϕ

)

(5.58)

It can be shown that sinϕ = sin(ω + θ) sin i (see Fig. 5.6 and Steiner & Schagerl 2004, p. 124).
Therefore the perturbation potential in terms of orbital elements reads:

W∗2 = −
µJ2R2

e(1− ecosθ)3

a3(1− e2)3

(

1
2
−

3
4

sin2 i +
3
4

sin2 i cos(2θ + 2ω)

)

(5.59)

where the geometrical relation 2 sin2(θ + ω) = 1− cos(2θ + 2ω) and Eq. (5.21) have been used.
Eq. (5.59) is based on the true anomalyθ instead of the mean anomalyM, which is needed

for the Lagrange perturbation Eqs. (5.50) – (5.55). As explained in Sec. 5.2.3, the Kepler equa-
tion (5.28) cannot be solved with respect toE, thus there is no way to expressE and, therefore,θ
analytically in terms ofM.

It is possible, though, to apply an averaging process to determine themean perturbation
effects on the satellite’s orbit. The idea is to regard the satellite’s motion as a quasi-static Kepler
orbit and average the perturbation potentialW∗ over the time intervalT that is needed for one
revolution, i.e., one complete orbit around the Earth:

W̄∗(a, e, i,Ω, ω) =
1
T

∫ T

0
W∗(a, e, i,Ω, ω,M(t)) dt (5.60)

Instead of integrating over the time
T
∫

0

dt one can calculate the integral over the true anomaly for

one revolution, i.e.,
2π
∫

0

dθ. The integration variablesdt anddθ are related to each other through
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Kepler’s second law (5.14) and the following relations (Steiner & Schagerl, 2004, p. 126):

T = 2π

√

a3

µ
(5.61)

h =
√

µa(1− e2) (5.62)

Therefore the relation between the integration variables is

1
T

dt =
r2

hT
dθ =

1
2π

( r
a

)2 dθ
√

1− e2
(5.63)

Using the following integrals (Steiner & Schagerl, 2004, p.126)

1
2π

2π
∫

0
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1− e2

dθ =
1

1− e2
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1
2π

2π
∫

0

1+ ecosθ
1− e2

cos(2θ + 2ω) dθ = 0 (5.64)

the average perturbation potential can finally be calculated as:
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µJ2R2

e
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4
sin2 i
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(5.65)

The differential equations for the orbital elements can be obtainedfrom Eqs. (5.50) – (5.55) by
evaluating the derivatives:

∂W̄∗2
∂a
=

3
2

µJ2R2
e

a4(1− e2)3/2

(

1− 3
2

sin2 i

)

(5.66)
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)

(5.67)

∂W̄∗2
∂i
=

3
2

µJ2R2
e

a4(1− e2)3/2
sini cosi (5.68)

The remaining three derivatives with respect toΩ, ω and M are zero, thus Eqs. (5.50) – (5.55)
read:

(

da
dt

)

2
= 0 (5.69)

(
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dt

)

2
= 0 (5.70)

(
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= 0 (5.71)
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(5.74)
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The index “2” means that the equations describe the change ofthe orbital elements due to the
J2 terms in the perturbation theory. Of course, additionally to the J2 contribution the temporal
change ofM also has a contribution due to the motion of satellite itself. Therefore, the time
derivative forM actually has an extra termn = 2π/T, which is not a result of perturbation theory,
but anyhow can be combined with (5.74):

dM
dt
= n+

(

dM
dt

)

2
+

∞
∑

k=3

(

dM
dt

)

k
(5.75)

As the mean perturbation potential̄W∗ does not depend onΩ, ω, and M, the three orbital
elementsa, e, and i are independent of time according to Eqs. (5.50), (5.51), and (5.52). This
means that they are constant during the entire flight of the satellite, if only mean perturbation with
J2 contributions is considered. (For higher order perturbation theory or regardingW∗ instead of
W̄∗, this is not valid.)

Solving the differential equations, perturbation theory up to orderJ2 yields (Steiner & Schagerl
2004, p. 128, Keller 2002, p. 28):

Ω(t) = Ω0 −
3
2

J2R2
e

p2
0

n0 cosi0(t − t0) (5.76)
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(t − t0) (5.78)

with n0 =

√

µ/a3
0 andp0 = a0(1− e2

0) being the initial values at timet0.

Taking a closer look at Eqs. (5.76) – (5.78), the meanJ2 perturbations cause a slow change of
the three orbital elementsΩ, ω andM. Additionally to the Keplerian motion of the satellite, the
perturbation terms, e.g., alter the attitude of the orbitalplane in 3-dimensional space, as Eq. (5.76)
describes a precession of the line of nodes along the equator, which is displayed in Fig. 5.7. The
reason for this effect is explained in Fig. 5.8: the equatorial bulge exerts a torque on the satellite’s
orbit. Therefore, the angular momentum vector performs a precession around the Earth’s axis,
which means a precessing line of nodes.

Additionally to the precession of the orbital plane, in firstorder perturbation theory the ar-
gument of perigee is not constant any more, and the mean anomaly is not only changing due to
the mean motionn. However, the change of the orbital elements due toJ2 perturbations is much
smaller than the change ofM caused by the satellite’s mean motion, e.g., the precessionof the
line of nodesΩ̇2 is usually of the order of a few degrees per day (see Sec. 5.4).But, of course,
this effect cannot be neglected for the prediction of a satellite’s orbit over a period of more than a
single revolution.

5.2.8 Secular and periodic variations

The exact calculation of perturbation effects is quite difficult due to the non-analytical relation
between the mean anomalyM, which is needed for the Lagrange equations (5.50) – (5.55),and
the true anomalyθ and eccentric anomalyE respectively, which describe the actual position of
the satellite. This problems can be solved by regarding the orbital parametersa, e, i, Ω, andω
as constant during one revolution and taking the average perturbation potentialW̄∗ by integration
(cf. Eq. (5.60)).
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∆Ω

Figure 5.7: Precession of the orbital plane around the Earth’s rotational axis due to orbit perturba-
tion effects.

Figure 5.8: Equatorial bulge exerts a torque on the satellite’s orbit (Bate et al., 1971).

This method results in a constant time derivative of the orbital elements (5.72) – (5.69). But
due to the motion of the satellite around the Earth, it is exposed to the gravitational potential at
different positions. Therefore, in general the perturbation potentialW∗ is not constant on the orbit.
Actually it can be written as a combination of a mean potential and some short-term deviations:

W∗ = W̄∗ + ∆W∗ (5.79)

The periodicity of the satellite’s orbit is transferred to the deviations∆W∗. Therefore the change
of the orbital parameters also has to be split in a constant part, which was calculated by the
averaging method in section 5.2.7, and additional periodiccontributions, which are more difficult
to be calculated.

The different perturbation effects can be classified assecular(from the Latin wordsaeculum,
which means century) perturbations, long period and short period variations (Keller, 2002, p.
26f.). A schematic superposition of the different perturbations is displayed in Fig. 5.9.
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Figure 5.9: Superposition of different perturbation terms on the orbital parameterq (Keller, 2002):
the total perturbation is a composition of secular, short, and long period effects.

According to Escobal (1965, p. 361f.) and Kozai (1959), the long period variations are caused
by trigonometric functions ofω, whereas the short period variations are caused by trigonometric
functions of the argument of latitudeu = ω+ θ. The difference in the period of these variations is
caused by the fact that on the satellite’s orbit the true anomaly θ is varying much faster between
0 and 2π than the argument of perigee, which is mainly changing due tosecular variations. The
true anomaly is sometimes referred to as afast variable, whereas the first 5 Keplerian elements,
namelya, e, i, Ω, andω are calledslow variables(Liu, 1974).

The total change of the orbital elementq can be qualified as (Escobal, 1965, p. 362):

q = q0 + q̇0(t − t0) + K1 cos(2ω) + K2 sin(2θ + 2ω) (5.80)

whereq̇0 is the secular change, andK1 andK2 are the amplitudes of the long and short period
variations respectively.

5.2.9 Higher order perturbations

In the previous sections (particularly in Sec. 5.2.7) only contributions up toJ2 have been consid-
ered for the perturbation potentialW = V − V0. As the higher Jeffrey coefficientsJn, with n > 2,
are at least about three magnitudes smaller thanJ2, there are only very small differences between
J2 and higher order perturbation theory, as can be seen in Fig. 5.12. Therefore calculations includ-
ing J2 contributions are good enough to describe the evolution of the satellite’s orbit qualitatively
during a short span of time. But for closer examinations and accurate orbit predictions over sev-
eral days, as required for the NRTA, higher order perturbation theory has to be applied.

The expansion of the gravitational potential given by Eq. (5.49) up ton = 4 yields additional
terms with the coefficientsJ2

2, J3 and J4. In this context theorder of the perturbation theory is
commonly defined in the following way: all terms that containonly first order factors ofJ2 are
summarized asfirst order terms. The contributions to the perturbation potential with J2

2, J3, or J4

factors are denoted assecond orderdue to their magnitude (Escobal, 1965, p. 366).
As can be seen from the explicit calculation of the perturbation contributions, the first order

coefficientJ2 mainly results in secular and short period variations, whereas the second order terms
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J2
2, J3, andJ4 have noticeable effects on long period oscillations of the orbital elements (see Kozai

1959).
As the determination of the higher order perturbation contributions is quite lengthy, the results,

which can be found, e.g., in Flury (1991), Klinkrad (1983), Liu (1974), or Liu & Alford (1979),
are used in this text without explicit derivation. The explicit form of these terms is given in
Appendix A. The interested reader may take a look at Brouwer (1959) or Kozai (1959) for the
relevant mathematical background.

Using the formulas for the time derivatives of the mean orbital elements ˙q (secular+ long
period variations) and the short period oscillations∆q for q ∈ {a, e, i,Ω, ω,M}, one can calculate
the set{q(t)} at the required timet from the initial orbital elements{q0} at t0 by integration:

q(t) = q0 +

t
∫

t0

q̇ dt+ ∆q (5.81)

In general ˙q depends on the slow variablesa, e, i,Ω andω. The fast variableM is eliminated
from q̇ by using the mean perturbation potentialW̄∗ instead ofW∗. Anyhow, the integration
in Eq. (5.81) cannot be done analytically, as the slow variables are time-dependent, too. The
numerical solution for this problem is to regard the slow variables as constant over a short time
interval∆t (e.g.,∆t ≈ 1 s) and to perform the integration in an iterative process:

q̄(t + ∆t) = q̄(t) + q̇ ({q̄(t)}) · ∆t (5.82)

q(t + ∆t) = q̄(t + ∆t) + ∆q ({q̄(t + ∆t)}) (5.83)

Knowingq(t), the position and velocity of the satellite,r (t) andv(t) respectively, can be calculated
easily using the formulas in Sec. 5.2.3.

5.2.10 Singularities for small eccentricity

Taking a closer look on the perturbation terms in Appendix A,there are some expressions with
the eccentricitye in the denominator. As a result, fore→ 0 the corresponding quantities become
singular. For the secular and long period variations theJ3 terms ofω̇ andṀ are affected by this
problem.

Considering the actual meaning of these two Keplerian orbital elements, the reason for the
divergences is quite obvious: in the special casee = 0 the satellite’s orbit is a special kind of
ellipse, namely a circular orbit. As a circle has no perigee,there is no way to define the argument
of perigeeω. In the same way the true anomaly becomes undefined. The divergences of ˙ω andṀ
are, therefore, just a mathematical but not a physical problem. As the position and velocity of the
satellite are still well defined even on a circular orbit, thesumω̇ + Ṁ should be finite fore = 0
(Henrard, 1974).

In fact, the explicit calculation exhibits that theJ3 contribution to this sum still contains the
eccentricitye in the denominator. But due to the particular form of the enumerator the limit is
well defined:

lim
e→0

(

ω̇ + Ṁ
)

J3
= 0 (5.84)

That means that the mathematical description of orbits using Keplerian orbital elements is inappli-
cable for small eccentricity, and therefore a different way has to be found to determine the position
of the satellite. Fortunately, small modifications of the theory introduced above are sufficient to
make it suitable even fore→ 0. There are two similar approaches to avoid divergences forsmall
eccentricity and additionally for small orbit inclinations. The basic idea is a transformation to
a different set of orbital elements, as, e.g., explained by Kozai (1959) or Lyddane (1963). One
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disadvantage of the presented methods is that the perturbation potential still is given in Keple-
rian orbital elements. For each calculation step the alternative set of orbital elements has to be
transformed back to Keplerian orbital elements to obtain the perturbation terms for the next step,
which results in additional computation time. A further transformation was introduced by Hoots
(1981), which should avoid this transformation problem.

As the orbit of Spectrum-X-Gamma has nearly no eccentricity, it is important to choose one
of these transformations to avoid divergences at the numerical integration of the orbital elements
(Eqs. 5.82 and 5.83). The inclination ofi ≈ 30◦ does not cause any problems. Therefore, the
following transformation, proposed by Flury (1991), was chosen to handle the low-eccentricity
contributions in perturbation theory. It follows the approach of Kozai (1959) and Lyddane (1963):

h := ecosω (5.85)

k := esinω (5.86)

u′ := ω + M (5.87)

Here the quantityu′ is used instead of the argument of latitudeu = ω+ θ, as the perturbation term
Ṁ is well known in contrary tȯθ. The numerical effort of this implementation is kept as small as
possible by optimization of the necessary calculations.

It turns out that the limits ofh, k andu′ for e→ 0 are indeed finite. Therefore, the calculation
of the perturbation terms for the orbit propagation according to Eqs. (5.82) and (5.83) is well
defined for the parameter set (a, i,Ω, h, k, u′). To determine the satellite’s position and velocity
using the formulas in Sec. 5.2.3, the variablesh, k andu′ are transformed back toe, ω andM. The
numerical effort for this latter transformation is negligible in comparison to the calculation of the
perturbation terms ˙q and∆q. In contrast to the method of Hoots (1981) this algorithm wasgiven
in more detail. Therefore, the negligible effort for the additional transformation is accepted with
regard to the reliability of the procedure.

The mathematical terms used for the calculation of perturbation effects on this new parameter
set are summarized in Appendix A, as they are not explicitly displayed in the required form in
any of the references cited above.

5.3 Implementation

The orbit calculation is implemented in a separate program which creates an orbit file as input for
the measurement simulation. The format of the orbit file is described in Sec. 4.3.5. In order to
obtain the satellite’s position and velocity as exact as possible, perturbation theory up to second
order, i.e., with contributions fromJ2, J2

2, J3, andJ4 has been applied.
For testing purpose a similar algorithm with first order perturbation theory was implemented,

which is based on the formulas in Eqs. (5.76), (5.77), and (5.78). Although this algorithm is no
capable of computing small orbit variations, and is, therefore, not usable for long term calcula-
tions, the code is quite simple and the satellite’s orbit, except from periodic variations, can be
determined for one or a few revolutions with a limited degreeof accuracy. For the actual simula-
tion second order perturbation theory was applied, so only this latter method is explained in detail
in the following.

The most important input parameters for the orbit calculations are the initial set of Keplerian
orbital elements (¯a0, ē0, ī0, Ω̄0, ω̄0, M̄0) at the start timet0, the calculated span of time, and the iter-
ation step width∆t. From these values the necessary data for the calculation can be obtained, and
the iterative computation of the orbit data according to thepreviously mentioned mathematical
methods is performed.
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Starting with the initial parameter set{q̄0} of Keplerian orbital elements, the iteration step
t → t+∆t is performed according to Eq. (5.82) with ˙q given by the formulas in Appendix A.1. The
critical parts ofq̇ that might be divergent fore→ 0 and originate especially fromJ3 contributions
are calculated in terms of the alternative set of orbital elementsh, k, u′ and afterwards transformed
back and added to the Keplerian elementse, ω,M. More information about this method and the
explicit formulas is given in the appendix. In a similar way as the secular and long period changes
of the orbital elements the short period variations are determined according to Eq. (5.83) with∆q
given in Appendix A.2.

To obtain the orbit over the entire span of time, the previouscalculations are repeated contin-
uously: first the secular and long period iteration of the Keplerian orbital elements is performed
({q̄(t)} → {q̄(t + ∆t)}), then the short period variations are added. The latter ones are only im-
portant for the determination of the satellite’s current position, but they do not contribute to the
perturbation terms ˙q or ∆q, i.e., the short period variations have no impact on the secular or long
period orbit evolution. But, of course, the short period terms∆q are affected by ¯q.

For the output of the satellite’s position and velocity to the generated orbit file these quantities
have to be calculated in Cartesian coordinates according toEqs. (5.30) and (5.32). For that pur-
pose the Kepler equation (5.28) has to be solved to obtain theeccentric anomalyE and finally the
true anomalyθ. With θ the position and velocity can be determined by trigonometric calculations.

5.4 Verification

Several checks have been performed in order to verify the output of the orbit propagation algo-
rithm. Besides comparison of the calculated orbits to values from literature, the program has been
run with parameters of theRossiX-ray Timing Explorer (RXTE) satellite, which is actually in
space, and the resulting data have been compared to the available orbit files.

5.4.1 Ground track

As the orbit files that are created by the eROSITA orbit propagation program have the common
file format, standard orbit visualization tools can be applied to obtain graphical output for the
generated orbits. In order to illustrate the eROSITA orbit and to verify the implemented algorithm,
an InteractiveDataLanguage (IDL) routine written by Felix Fürst (Dr.Remeis-Sternwarte) was
used to create a picture of the ground track during 2 revolutions. It is displayed in Fig. 5.10.

The effects of perturbation theory are not noticeable for this short period, so basically the orbit
consists of two circular revolutions around the Earth. Due to the rotation of the Earth during the
time span of 96 min, which is needed for one revolution, the ground track is not a closed line.

5.4.2 Change of orbital elements

For the program verification the perturbation effects in the orbit determination can be restricted
to J2 terms (Sec. 5.2.7). The resulting temporal changes of the orbital elements can be compared
with values from literature or with analytically determined quantities, according to Eqs. (5.76) –
(5.78) (see, e.g., Bate et al. 1971, p. 157f., Keller 2002, p.29f., Flury 1991, p. 75f., Steiner &
Schagerl 2004, p. 128).

The computational results for∆Ω/day and∆ω/day in Fig. 5.11 can be compared to the ana-
lytical values obtained from Eqs. (5.76) and (5.77) as well as to the figures in Bate et al. (1971,
p. 157f.). (In this section∆q does not designate a short period perturbation, but a difference in
the parameterq after a specific interval.) The perturbation effects for some real satellites given
in Keller (2002, p. 30) can also be reproduced by the orbit calculation program, as shown in
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Figure 5.10: Ground track of eROSITA orbit.

Table 5.2: Comparison of the secular perturbation effects determined by the calculation program
with the data of real satellites taken from Keller (2002, p. 30).

satellite Iridium Globalstar ICO GPS
a [km] 7158.173 7782.173 16732.173 26562.173

e 0 0 0 0
i [◦] 86.4 52 45 55

T [min] 101 114 360 718
J2 perturbations according to Keller (2002)
∆Ω/day -0.4178 -3.0519 -0.2409 -0.0388
∆ω/day -3.2612 2.2188 0.2556 0.0218
J2 perturbations according to orbit calculation program
∆Ω/day -0.4178 -3.0574 -0.2409 -0.0388
∆ω/day -3.2612 2.2228 0.2556 0.0218
J2, J3 + J4 perturbations according to orbit calculation program
∆Ω/day -0.4165 -3.0585 -0.2410 -0.0388

Table 5.2. These comparisons exhibit a very good agreement of the calculated orbit data with
the values obtained from the different independent sources. Although onlyJ2 contributions are
considered in the presented computations, this may anyhow confirm the correct implementation
of the orbit propagation algorithm.

As pointed out in Sec. 5.2.10, the argument of pergeeω is not well defined for orbits with
low eccentricitye ≈ 0. For these orbits one has to regard the argument of latitudeu instead.
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The change of the argument of perigee∆ω cannot be calculated for the zero-eccentricity orbits in
Table 5.2 by the second order algorithm, so for second order perturbation theory the corresponding
row for ∆ω is missing in the table. As first order perturbation theory contains no 1/e terms, there
are no divergences, and the quantity∆ω can be specified for this method.

Taking a closer look at Table 5.2, the data for second order perturbation theory have more
aberrations from the satellite data given by Keller (2002) than the first order perturbation theory.
In contrary the comparison of the data of RXTE in Sec. 5.4.3 and particularly in Fig. 5.16 exhibits
a better agreement with the second order perturbation theory than with first order. This fact
suggests that the actual satellite data in Table 5.2 were probably obtained for onlyJ2 contributions,
which would explain this discrepancy.

The plots in Fig. 5.12 verify the statement from Sec. 5.2.9, that there is almost no noticeable
difference in the secular change of the orbital elements based onfirst and second order perturba-
tion theory due to the difference of about 3 magnitudes inJ2 vs. J3 andJ4.

5.4.3 Comparison with RXTE

The most obvious way to verify the proper orbit prediction isto compare the calculations of
the algorithm with the actually measured orbit data of a truesatellite. For this purpose orbit
files of RXTE have been analyzed, and the contained orbit positions and velocities have been
transformed to Keplerian orbital elements. The RXTE satellite is quite suitable for a verification
of this algorithm, because it also has a close Earth orbita ≈ 6956 km with a low eccentricity
e≈ 0.0008 and an inclination ofi ≈ 23◦. Therefore its orbit is quite similar to the eROSITA orbit.

The determination of the orbital elements includes perturbation effects withJ2, J3, and J4

contributions and starts att0 = 0 Ms. (In this section all time values refer tot0.) As the following
Figs. 5.13 and 5.14 show for some of the Keplerian orbital elements, the actual deviation between
the predicted and the true orbital elements keeps within an acceptable range.

The deviations of the semimajor axisa, e.g., lie in a range of±0.005%, i.e., they are quite neg-
ligible. The right ascension of the ascending nodeΩ is also predicted quite precisely. Figs. 5.13
and 5.14 also show that even after a timespan of 5 Ms ˆ≈ 58 days the semimajor axisa still is de-
termined quite well, whereas the calculated value ofΩ deviates from the proper value for about
0.4%.

Although the aberration ofΩ and also of the remaining angles like the inclination is quite
small, the deviations of the individual angles sum up to a considerable deviation in the calculation
of the actual position. Figs. 5.15 and 5.16 show that the implemented orbit prediction methods
are only applicable over a time span of a few days. Some of these deviations may also be caused
by different initial parameters{q̄0} for the orbit propagation algorithm and the RXTE orbit. The
orbital elements of RXTE are not provided by the orbit files, but had to be obtained from a fit
to the given orbit. The short period oscillations in the distance, which are displayed in Fig. 5.16,
also suggest that the fit of the Keplerian elements to the initial parameters of RXTE might have
a better solution. Therefore, there might be a possibility to improve the agreement of both orbits.
Anyhow the orbit prediction accuracy of about±30 km over short periods is sufficient for the
current purpose of the simulation. For the NRTA, predictions over a longer period are usually not
necessary.
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Figure 5.11: Secular change of the right ascension of the ascending node and the argument of
perigee respectively per day in dependence on the orbit inclination, due to meanJ2 perturbation
theory.
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Figure 5.12: Secular change of the right ascension of the ascending node and the argument of
perigee respectively per day in dependence on the orbit inclination, regarding perturbation theory
with different combinations of Jeffrey coefficientsJn.
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Chapter 6

Simulation results

This chapter will give some general results obtained from the simulation. Many data have already
been presented in the context of previous chapters. Especially some light curve and spectra mea-
surements are shown in Chap. 4, where the corresponding algorithms are treated. The data in this
chapter are more general and do not fit into a particularly oneof the previous chapters.

6.1 PSF effects

In Sec. 4.2.4 the PSF of the eROSITA mirror system was introduced. According to Peter Friedrich’s
simulations the PSF has a particular shape and, therefore, some characteristic effects on the mea-
sured data. This section will present some data from the simulation that demonstrate these fea-
tures.

Of course, the energy dependence of the mirror reflectivity,which is displayed in Fig. 4.20,
has an impact on the measurement of source spectra. The higher the photon energy, the more
photons get lost at the reflection in the mirror system. For example, a source spectrum with
constant count rate for the different energy bands will result in a measurement with decreasing
count rate in the higher PHA channels. This effect can be actually observed for the simulation
and is displayed in Fig. 6.1.

At the current state of the simulation, the model of the PSF asa function ofδ andE has a
step function like shape, whereas, of course, the real PSF iscontinuous. The step features in the
simulation are caused the fact, that so far there is no properinterpolation for intermediate off-axis
angles or photon energies. As there is only simulated PSF data available for some discrete values
of δ andE (see Sec. 4.2.4), the current model results in the observed step function. This aspect
will be improved at one of the next development steps.

The visualization of a sample data set from a pointed observation with three sources close
the optical axis is displayed in Fig. 6.2. As the measurementwas performed without detector
background noise, the effects of the PSF can be clearly seen in this plot: each of the three peaks
is extended over several neighboring detector pixels, and there are also several additional events
outside the main peaks due to scattered photons. As the imagedisplays a detector section around
the center of the detector, except for some neglegible spread the peaks are quite sharp due to the
high quality of the eROSITA PSF for on-axis sources.

At the border of the FOV the PSF becomes worse, as can be concluded from Fig. 6.3, which
shows the measured photons for several sources aligned on two lines through the center of the
detector: one parallel to the detector’s y-axis and one diagonal line. The photons on the optical
axis are focused to a very limited number of about 4 pixels, whereas for larger off-axis angleδ
the photons are spread over a wide range of several pixels, i.e., the detected events are not located
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on-axis source with flat input spectrum (equal photon count rate for all PHA channels at 1 keV,
4 keV, and 7 keV respectively): the absolute detection probability of the PSF is reproduced. (For
the displayed measurement an ideal detector has been assumed, i.e., with quantum efficiency= 1.)
As the mirror properties become worse for higher photon energies, the fraction of photons that are
really imaged onto the detector decreases for higher PHA channels. The step function like shape
of the PSF is caused by the fact, that the mirror reflection simulation has only been performed for
three discrete valuesE j so far. Of course, the real PSF is a continuous function ofδ andE, and
not a step function. The shape of the PSF can be easily improved by further simulations or more
complex interpolation for intermediate photon energiesE j .
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Figure 6.2: Sample measurement for a pointed observation with three sources close to the tele-
scope axis (without detector background noise): the countsper detector pixel are displayed for a
small section of the detector close to its center. Due to the PSF the three main peaks have a final
extension, and there are some additional single events outside the main peaks caused by scattered
photons.
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Figure 6.3: Sample measurement simulation with photons originating from several bright sources
aligned on two lines (without detector background noise): the white circle marks the FOV and the
red points represent single photon events. The source images close to the center of the detector
are quite sharp, whereas the photons are widely spread for sources close to the border of the FOV.

directly on the vertical and diagonal line respectively.

6.2 Detector effects

To point out the effects of the detector response on the measured photon energies, a source with
a constant spectrum was observed in a long-time pointed observation. The result is displayed in
Fig. 6.4. Due to the energy dependence of the PSF model the constant input spectrum has a step
function like shape after reflection of the generated photons on the mirror shells. This property
has been discussed previously in Sec. 4.2.4 and Sec. 6.1.

As the detector response function is not a linear relation between the incident photon energy
and the measured PHA channel, the finally measured spectrum is even more altered. The EPIC
detector response matrix shown in Fig. 4.24 has significant features and side peaks for low en-
ergies, and the photons below. 1 keV tend to be measured at lower energy than they actually
had. This additional feature besides the PSF effects can be clearly seen in the finally measured
spectrum in Fig. 6.4.

For higher energies the relation between photon energy and measured PHA channel is approx-
imately linear. Therefore, in this region the spectrum of measured energies is basically equal to
the spectrum of photons after the reflection in the mirror system.

6.3 Exposure time

In order to point out the effects of the integration time, two detector images can be compared in
Fig. 6.5, which have been taken with exposure times of 10 ks and 100 ks respectively. The image
with the longer exposure time contains additional sources that cannot be identified in the other
picture. Of course, the background radiation is higher for the longer integration time, but the
logarthmic intensity scale of the pictures also has to be taken into account.
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the PSF less photons are detected for higher energies than for lower energies. For the latter (with
energy≤ 1 keV) the RMF with its particular features, which are displayed in Fig. 4.24, results in a
shift of some events to even lower PHA channels. This effect can be clearly seen in the spectrum.
The simulation was performed for infinitely small charge cloud size, so there are no split events.

The analysis of the detector images may be improved by using adequate software tools, e.g.,
for subtraction of the background events. But even from these simple pictures one can see the
additional sources that become visible after a longer exposure time.

6.4 Scanning the sky

The primary goal of the simulation is the generation of eventfiles for the all-sky survey of
eROSITA. Many of the previously presented results have beenobtained from pointed observa-
tions of very bright sources, as this situation is more convenient for measuring, e.g., the light
curve of a source during a longer period. In order to analyze asource spectrum, it is also im-
portant that the source remains at a fixed position in the FOV.Otherwise the spectrum would be
influenced by the position dependency of the PSF, which has different ratios of imaging probabil-
ities for the individual energy bands at different off-axis angles (cf. Sec. 4.2.4).

But, of course, the simulation is actually designed for the implementation of the all-sky survey.
The pictures in Fig. 6.6 are taken from this scenario and display the images of several sources at
particular points of time during the scan over the sky. The telescope axis is moving according
to the satellite’s orbit such that for an observer fixed to thetelescope axis the sources seem to be
wandering through the FOV with a velocity of

384 pixel
61.9′

·
360◦

96 · 60 s
≈ 23 pixel s−1 (6.1)

This point of view is adopted in the following.
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Figure 6.5: Comparison of different exposure times: the left image was taken with an exposure
time of 10 ks, the right with 100 ks. The images display the photon counts in the individual pixels
for pointed observations in a logarithmic scale. The detector background count rate was set to
0.00015 counts s−1 pixel−1. Several weak sources that are not visible in the left image can be seen
in the right one due to the longer integration time.

Observing the highlighted source on its path through the FOV, clearly reveals the particular
properties of the modelled eROSITA PSF, which is much sharper at the center than a the edge of
the FOV (cf. Sec. 4.2.4). This spread can be very well seen in Fig. 6.7, too, which is a detector
image taken with an integration time of 60 s. Due to this long exposure time and the motion of
the telescope axis the individual point sources are smearedto stripes over the entire width of the
FOV with a particularly wide photon spread at the edges.

The satellite’s orbit has a period of about 96 min and the FOV has a diameter of 61.9′, so the
time for a transverse passage of a source through the FOV can be determined according to

tpassage=

(

61.9
60

)◦
·
(

360◦

96 · 60 s

)−1

≈ 16.5 s (6.2)

which matches the observed passage time for the highlightedsource in Fig. 6.6. Of course,tpassage

is a maximum value, only valid for sources passing through the center of the FOV. For sources at
the edge of the FOV the interval of visibility is usually shorter.

Regarding the motion of source images on the detector, the implementation of the motion of
the telescope axis on the satellite’s orbit during the simulation of the all-sky survey seems to work
properly.

89



6.4. SCANNING THE SKY CHAPTER 6. SIMULATION RESULTS

Figure 6.6: Source wandering through the FOV during the scanning process in a simulation of the
all-sky survey. Due to the particular shape of the PSF the image of the highlighted source (marked
with a blue circle) becomes sharper, when it approaches the center of the detector, whereas at the
edge of the FOV the photons are spread over a wider area of pixels. Starting in the upper left
corner the pictures are taken at timet0, t0 + 1.75 s, t0 + 6.50 s, t0 + 7.60 s, t0 + 12.35 s, and
t0 + 14.90 s.

90



CHAPTER 6. SIMULATION RESULTS 6.4. SCANNING THE SKY

Figure 6.7: Detector image taken with an exposure time of 60 sfor several very bright sources.
Due to the motion of the telescope axis, the individual sources are smeared as stripes over the
entire width of the FOV. Close to the center the PSF has a high accuracy, whereas at the edges
the photons are spread over a wide area.
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Chapter 7

Conclusion

The eROSITA mission is intended to be an extension of the former ROSAT experiment. Its main
destination is a comprehensive source catalog obtained from an all-sky survey of the X-ray sky.

The simulation for eROSITA, which was developed in the course of this work, is a powerful
tool for the simulation of individual photon events observed by an X-ray telescope. It provides a
possibility to specify individual source properties like aparticular spectrum or a light curve for the
sources in the RASS-FSC or in the catalog of randomly createdsources. The latter are generated
according to a flux distribution observed in deep surveys of particular regions of the sky.

The CXRB is simulated by a large number of very faint, discrete X-ray sources. An extension
of the program code for the simulation of extended sources isplanned as one of the next steps in
the development of the simulation. This is necessary, as eROSITA is also intended to discover
galaxy clusters, which create diffuse X-ray radiation in major sections of the sky.

In order to obtain the pointing of the telescope’s FOV along the satellite’s orbit during the
all-sky survey, the satellite’s motion is calculated by an orbit propagation algorithm developed for
this purpose. The algorithm includes second order perturbation theory and is designed for low-
earth orbits with a small eccentricity. The achieved accuracy and agreement with real satellite
data is sufficient for the simulation.

The measurement process of X-ray photons by the telescope and the resulting detection of
single photon events was the main subject of this work. The implementation of this process is
based on realistic models, e.g., of the mirror system and theCCD detector. The corresponding
technical input data are obtained from files with a standardized format, and can therefore be
modified easily, when more precise data for the properties ofthe individual components will be
available in the future.

From the detected events the simulation program creates an event list similar to the measure-
ment data from other X-ray satellites. This list can be evaluated by standard spectral analysis
software or can be used as input for the NRTA software. In thisway the latter can be tested on
simulated measurements of different critical scenarios with, e.g., transient X-ray sources or detec-
tor defects. This verification method is necessary, as real satellite data will not be available before
the launch of Spectrum-X-Gamma, but the NRTA has to be fully operational at this point of time.

Apart from that purpose the simulation is also applicable for experiments, whether some
particularly weak sources will be visible for the telescope, or whether they are overwhelmed by
the background radiation. It is possible to study the impactof the motion of the telescope axis
on the measured data during the all-sky survey. Due to the finite integration intervals this motion
will cause a smearing of the sources in the direction of motion. This effect has to be considered in
the image reconstruction, and the necessary mathematical methods for the analysis of these data
can be studied by using event lists from the simulation.

So far the basic functions of the telescope can be simulated properly by the program. Light
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curves and spectra used as input for simulated observationscan be reproduced from the result-
ing event lists. The implementation of the mirror and the detector model have also been tested
separately and seem to work in the right way. Particularly the simulation of the all-sky survey pro-
duces realistic output. Thus the program can be regarded as successfully verified, and its output
can be used for testing the NRTA.

Of course, there are several aspects in the simulation that can be implemented in more detail.
For example, the already mentioned implementation of extended sources is necessary for proper
simulations of photons from galaxy clusters or diffuse galactic radiation. This diffuse X-ray radi-
ation may emerge from major sections of the sky, which usually have irregular shapes. Therefore,
the description of this kind of sources is much more challenging than the simulation of point
sources. The implementation of the diffuse radiation from extended sources is one of the future
steps in the further development of the simulation.

Apart from that there are further improvements to make the effects, which have to be con-
sidered in the simulation, more realistic. For example, themodel of the detector background,
which is at the moment implemented by events distributed randomly on the entire detector, can
be improved. As the background mainly originates from protons passing the detector shield, the
resulting events are usually aligned in stripes on the detector. This particular property will be in-
cluded in the background model, because it is necessary for testing the background reconstruction
algorithms on the output event lists.

To obtain realistic data, it is also necessary to improve especially the implemented model of
the PSF. Due to the lack of a proper interpolation algorithm for values between the different
available discrete off-axis angles and photon energies, the shape of the PSF as a function ofδ and
E currently is a step function. Of course, in contrast the realPSF is a continuous function. There-
fore, the model has to be upgraded by designing a better interpolation method and by enlarging
the number of available off-axis angles and energies with additional PSF simulations.

The image reconstruction itself is an important future stepin the development of the NRTA.
For this purpose many individual aspects like source smearing due the PSF or the telescope mo-
tion, or detector effects due to the RMF, split events, pileup, or background effects have to be
considered to obtain a precise image reconstruction from the measured data. Of course, this de-
velopment can be done by using the simulation as test facility for understanding the impact of
these effects on the measurement.

At an advanced stage of in the development there will also be asimulation of an entire all-sky
survey. Therefore, the individual aspects of the program have to be improved to obtain more
realistic data. As the input of the software is quite flexible, the simulation may be adapted easily,
when more precise data about the individual telescope components is available. For example, orbit
and attitude data according to the real survey pointing geometry can be used for the simulation of
the whole all-sky survey. In order to achieve this compatibility, it is important that the program is
designed according to the current standards of HEAsoft.

Due to this flexibility the simulation can be even modified andadapted for different X-ray
telescopes than eROSITA. For example, it might also be interesting to simulate measurements of
the future satellite Simbol-X. These data could be comparedto the existing simulation described
by Puccetti et al. (2008), which is based on a different concept. It should be possible to reconstruct
the imaging and detection properties like the PSF, the ARF, or the RMF of Simbol-X.

Although many further developments are necessary, with itshigh degree of flexibility and
compatibility the current eROSITA simulation program is a promising basis for comprehensive
and detailed simulations of the imaging and measurement process of X-ray telescopes.
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Appendix A

Orbit perturbations

To calculate a close Earth satellite’s orbit according to second order perturbation theory (Eqs. (5.82)
and (5.83)), the explicit form of the contributions ˙q ({q̄}) and∆q ({q̄}) for the orbital elements
q ∈ {a, i,Ω, h, k, u′} has to be known. Unfortunately most references dealing withsecond order
perturbation theory (e.g., Flury 1991, Klinkrad 1983, Liu 1974 or Liu & Alford 1979), use Keple-
rian orbital elementsq ∈ (a, e, i,Ω, ω,M). Additionally the formulas in some of these references
contain typos, which may have emerged from the lengthy mathematical expressions for ˙q ({q̄})
and∆q ({q̄}), thus it is difficult to find a reliable source for the necessary perturbationterms.

In the following an overview over the perturbation contributions for the transformed param-
eter set (a, i,Ω, h, k, u′) is given, withh, k, andu′ defined by equations (5.85), (5.86) and (5.87)
respectively. The mathematical expressions have been summarized from the references mentioned
above. Several typos found in the sources have been eliminated. Because of the lengthy expres-
sions most calculations have been performed withMaple (Redfern & Bartram, 1995). But as
Maple uses some inconvenient geometrical transformations during the calculation, some results
had to be modified afterwards in order to achieve a better computer performance for running the
implemented orbit propagation algorithm. Finally the codewas tested according to different veri-
fication procedures (see Sec. 5.4), but still there is no guarantee for the correctness of the different
mathematical expressions. Almost all available references contain more or less discrepancies, so
there is no absolutely reliable source.

As the perturbation terms ˙qand∆qare given in terms of Keplerian orbital elements (a, e, i,Ω, f ),
a transformation from the system (a, i,Ω, h, k, u′) to Keplerian orbital elements has to be per-
formed before the iteration steps (5.82) and (5.83), in order to be able to calculate the changes
of the low-eccentricity orbit parametersa, i,Ω, h, k, u′. That means, in order to be independent of
the Keplerian coordinates and to avoid this transformation, the formulas in the following sections
A.1 and A.2 have to be rewritten in the new parameter space. The computational effort for the
transformation between the different parameter systems is negligible in comparison to the com-
putation ofq̇ and∆q. Therefore, the explicit mathematical transformation of equations (A.4) to
(A.28) was not performed in this work.

A.1 Secular and long period

The following contributions ˙q ({q̄}) describe the long term evolution of the satellite’s orbit (secular
and long period changes) in second order perturbation theory. In Flury (1991), Klinkrad (1983),
Liu (1974) or Liu & Alford (1979)) one can find these perturbations on the set of Keplerian orbital
elements. The simulation deals with the modified parameter set presented in Sec. 5.2.10 in order
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to avoid divergencies, so some transformations have been applied usingMaple:

ḣ = ė cosω − esinω ω̇ (A.1)

k̇ = ė sinω + ecosω ω̇ (A.2)

u̇′ = ω̇ + Ṁ (A.3)

The contributions ˙e, ω̇, andṀ can be obtained from the given literature. The possibly divergent
terms, which are theJ3 contributions, have been summarized in such a way, that there are no
infinities throughout the numerical calculation of the perturbations:

ȧ = 0 (A.4)
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A.2 Short period

In addition to the long term contributions to the changes of the orbital elements there are also short
period variations depending on the position of the satellite on its orbit, i.e., basically on the true
anomalyf . Like the long term contributions they are given in terms of Keplerian orbital elements
according to Flury (1991), Klinkrad (1983), Liu & Alford (1979). The same transformations have
been applied as for the secular and long periodic contributions.

∆a = + J2a
(Re

a

)2 [

(a
r

)3
(

1− 3
2

sin2 i +
3
2

sin2 i cos(2ω + 2θ)

)

−
(

1− 3
2

sin2 i

)

(

1− e2
)−3/2

]

(A.16)

∆i = +
3
8

J2

(

Re

p

)2

sin(2i)
[

ecos(2ω + θ) + cos(2ω + 2θ) +
e
3

cos(2ω + 3θ)
]

(A.17)

∆Ω = −
3
2

J2

(

Re

p

)2

cosi

[

θ − M + esinθ −
e
2

sin(2ω + θ) −
1
2

sin(2ω + 2θ) (A.18)

−
e
6

sin(2ω + 3θ)
]

(A.19)

∆h = (∆e)finite cosω − esinω (∆ω)finite + (∆h)0 (A.20)

∆k = (∆e)finite sinω + ecosω (∆ω)finite + (∆k)0 (A.21)

∆u′ = (∆ω)finite + (∆M)finite +
(

∆u′
)

0 (A.22)

with

(∆e)finite =
1
2

J2

(

Re

p

)2 (

1− 3
2

sin2 i

) [

3
2

e+ 3

(

1+
e2

4

)

cosθ +
3
2

ecos(2θ)
e2

4
cos(3θ)

]

+
3
8

J2

(

Re

p

)2

sin2 i

[(

1+
11
4

e2
)

cos(2ω + θ) +
e2

4
cos(2ω − f ) + 5ecos(2ω + 2θ)

+
1
3

(

7+
17
4

e2
)

cos(2ω + 3θ) +
3
2

ecos(2ω + 4θ) +
e2

4
cos(2ω + 5θ) +

3
2

ecos(2ω)

]

(A.23)

(∆ω)finite =
3
4

J2

(

Re

p

)2 [

(

4− 5 sin2 i
)

(θ − M + esinθ) −
3
4

sin2 i sin(2ω)

]

+
3
2

J2

(

Re

p

)2 (

1−
3
2

sin2 i

) [

e
4

sinθ +
1
2

sin(2θ) +
1
12

esin(3θ)

− e
2

(

1− 15
8

sin2 i

)

sin(2ω + θ) − e2

16
sin2 i sin(2ω − f )

−
1
2

(

1−
5
2

sin2 i

)

sin(2ω + 2θ) −
e
6

(

1−
19
8

sin2 i

)

sin(2ω + 3θ)

+
3
8

sin2 i sin(2ω + 4θ) +
e
16

sin2 i sin(2ω + 5θ)

]

(A.24)

102



APPENDIX A. ORBIT PERTURBATIONS A.2. SHORT PERIOD

(∆M)finite = −
3
2

J2

(

Re

p

)2
√

1− e2

[(

1−
3
2

sin2 i

) (

−
e
4

sinθ +
1
2

sin(2θ) +
e

12
sin(3θ)

)

+
1
2

sin2 i

(

−5
8

esin(2ω + θ) − e
8

sin(2ω − θ) − 7
168

esin(2ω + 3θ)

+
3
4

sin(2ω + 4θ) +
e
8

sin(2ω + 5θ)

)

− 3
8

sin2 i sin(2ω)

]

(A.25)

(∆h)0 =
1
4e

J2

(

Re

p

)2 [

(

1− 3 cos2 i
)

(

−1+
(

1− e2
)3/2

)

cosω

+
e
2

sinω
(

12
(

1− 3 cos2 i
)

sinθ + 6
(

1− cos2 i
)

sin(2ω + θ)

− 14
(

1− cos2 i
)

sin(2ω + 3θ)
)]

(A.26)

(∆k)0 = −
1
4e

J2

(

Re

p

)2 [

(

1− 3 cos2 i
)

(

1−
(

1− e2
)3/2

)

sinω

+
e
2

cosω
(

12
(

1− 3 cos2 i
)

sinθ + 6
(

1− cos2 i
)

sin(2ω + θ)

− 14
(

1− cos2 i
)

sin(2ω + 3θ)
)]

(A.27)

(

∆u′
)

0 = −
1
8e

J2

(

Re

p

)2 (

1−
√

1− e2
)

[(

6− 18 cos2 i
)

sinθ −
(

1− cos2 i
)

(3 sin(2ω + θ) + 7 sin(2ω + 3θ))
]

(A.28)

To evaluate these expressions, the mean local radiusr and the true anomalyθ can be de-
termined according to equations (5.21), (5.24) and (5.29) using the following low-eccentricity
approximation forE according to Flury (1991) p. 80:
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2
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3
8
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In contrary to the Kepler equation (5.28) this formula givesa numerically less expensive estima-
tion, which is sufficient for the current purpose.
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