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Abstract: This is the documentation of a project performed at the chair
of Prof. Schäfer in Regensburg. The aims were the calculation of the lowest
eigenvalues of the QED overlap operator on a 124 lattice in quenched ap-
proximation close to the phase transition at β ≈ 1.01 and the analysis of the
eigenvalues and eigenvectors with statistical methods. The gauge �eld was
created by a Monte-Carlo algorithm, whereas the eigenvalues were determined
using an algorithm based on the Arnoldi method.
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1 Introduction
Lattice simulations are a non-perturbative approach to quantum �eld theory. Especially
in QCD, where the coupling constant αs is of the order of 1, they allow us to determine
numerical results for calculations, which cannot be performed analytically because of a
non-convergent perturbation series. In QED lattice calculations may mainly serve as a
possibility to verify analytical results or as a playground for beginners in lattice QCD.
But there are also some problems in QED that can only be handled by lattice simula-
tions. Additionally the lattice can serve as a regularization procedure of UV divergencies,
because it generates an upper limit for possible momenta.

With this background I have done my �rst steps in this interesting wide �eld by
performing some basic simulations with Monte-Carlo methods and calculating the eigen-
values of the overlap Dirac operator. In this document you will �nd a short introduction
to the theoretical background (if you want to go into details, I would suggest to read
an introductory paper like [GU]), an overview of the practical work I have done for the
calculations including some important tests and �nally the analysis of the results.

1.1 Lattice simulations
QED lattice simulations are based on the path integral formalism, which allows us to
calculate the expectation value of an arbitrary observable in the following way:

〈O〉 =
1
Z

∫
D

[
Ψ(x), Ψ̄(x), Aµ(x)

]
O

[
Ψ(x), Ψ̄(x), Aµ(x)

]
eiS[Ψ(x),Ψ̄(x),Aµ(x)] (1)

with Z =
∫

D
[
Ψ(x), Ψ̄(x), Aµ(x)

]
eiS[Ψ(x),Ψ̄(x),Aµ(x)] and the QED action

S =
∫

d4xΨ̄ [iγµ∂µ − eγµAµ(x)−m]︸ ︷︷ ︸
K

Ψ +
1
4
FµνF

µν (2)

K is the well-known Dirac operator.
In Euclidian space we perform a Wick rotation x0 → −ix4, which replaces eiS → e−SE ,

where
SE =

∫
d4xΨ̄

[
/DE + m

]
Ψ +

1
4
FµνF

µν (3)

Additionally we have to discretize the space-time, because computers can only handle
a �nite number of points. For convenience one usually substitutes the gauge �eld Aµ(x)
by so-called link variables Uµ(x), which are de�ned as:

Uµ(x) = eiaeAµ(x) (4)
where a is the lattice spacing and e the positive elementary charge.

A local gauge transformation V (x) has the following e�ect on the �elds and link vari-
ables (see [GU] p. 27 f.):

Ψ(x) → V (x)Ψ(x)
Ψ̄(x) → Ψ̄(x)V †(x)

Uµ(x) → V (x)Uµ(x)V †(x + µ̂) (5)
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As we have no continuous space-time on the lattice, we have to substitute the deriva-
tives by di�erences. A convenient choice in terms of errors caused by the lattice spacing
a is the symmetrized di�erence (cf. [GU] p. 18):

∂xΨ(x) → 1
2a

(Ψ(x + a)−Ψ(x− a)) (6)

We will need these considerations in the following section, when we construct the
discretized Wilson action on the lattice.

For completeness: one often makes use of an important simpli�cation by performing
the path integral only over the gauge �eld Aµ leaving Ψ and Ψ̄ unconsidered. This
approach is called �quenched approximation� and avoids immense computational costs.

There are di�erent ways to implement the discretization as discussed in [GU]. One
possible solution, the Wilson action, is introduced in the following section 1.2.1. After the
discretization we can apply Monte-Carlo simulations to calculate the expectation value
of a wide spectrum of observables (1). These methods are well known from statistical
physics. You can �nd more details about that in [KO] or any introduction to lattice
QCD like [GU].

1.2 Dirac-Operator
In the following you will �nd two important realizations of the Dirac operator on the
discrete space-time lattice.

1.2.1 Wilson fermions
For the discretization on the lattice we have to substitute the derivatives by di�erences
(see (6)) and add appropriate gauge links to maintain gauge invariance (see (5)). So a
�rst naive approach is to transform the continuous action in equation (2) without the
gauge �eld part 1

4FµνF
µν to the following gauge formulation (see [GU] p. 30 �.):

SN = m
∑

n

Ψ̄(n)Ψ(n) +
1
2a

∑
n

Ψ̄(n)γµ

[
Uµ(n)Ψ(n + µ̂)− U †

µ(n− µ̂)Ψ(n− µ̂)
]

(7)

The problem of this naive discretization of the Dirac action is the so-called Fermion
Doubling (see [GU] p. 41 f.). To avoid this trouble Wilson introduced an additional
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irrelevant operator. The Wilson action can then be formulated as ([GU]):

SW = m
∑

n

Ψ̄(n)Ψ(n)

+
1
2a

∑
n,µ

Ψ̄(n)γµ

[
Uµ(n)Ψ(n + µ̂)− U †

µ(n− µ̂)Ψ(n− µ̂)
]

− r

2a

∑
n,µ

Ψ̄(n)
[
Uµ(n)Ψ(n + µ̂)− 2Ψ(n) + U †

µ(n− µ̂)Ψ(n− µ̂)
]

=
ma + 4r

a

∑
n

Ψ̄(n)Ψ(n)

+
1
2a

∑
n

Ψ̄(n)
[
(γµ − r)Uµ(n)Ψ(n + µ̂)− (γµ + r)U †

µ(x− µ̂)Ψ(x− µ̂)
]

=
∑
n,m

Ψ̄L(n)MW
nmΨL(m) (8)

with the interaction matrix

MW
nma = δn,m − κ

∑
µ

[
(r − γµ)Uµ(n)δn,m−µ̂ + (r + γµ)Uµ(n− µ̂)†δn,m+µ̂

]
(9)

and the rescaled terms

κ =
1

2ma + 8r
(10)

ΨL =
√

ma + 4rΨ =
Ψ√
2κ

(e.g. see [GU] p. 46). The Wilson parameter is set to r = 1.
One big disadvantage of the Wilson action is the fact, that it breaks chiral symmetry.

1.2.2 Overlap fermions
Overlap fermions have an exact chiral symmetry on the lattice, which avoids additive
renormalization of the quark masses ([LU]). The overlap operator, we want to examine
in this project, is de�ned as ([TA], [IA], [NE1], [NE2]):

D ≡ ρ


1 + γ5

HW√
H2

W


 = ρ [1 + γ5sgn(HW )] (11)

where HW is the hermitian Wilson Dirac operator HW = γ5DW (DW is the Wilson
Dirac operator), and the negative mass ρ ∈ (0, 2). The overlap operator full�lls the
Ginsparg-Wilson identity (see section 2.3.6).

Apart from the conservation of chiral symmetry a related aspect of the overlap operator
is the possibility to determine the topological charge via the index theorem ([HA], [IA],
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[BE]), as we do in section 3.1. However, the calculation of the overlap operator consumes
much more CPU power than for the Wilson operator.

For numerical calculations the sgn-function on right hand side of (11) is computed as
([IA], [NE3]):

sgn(HW ) =
N∑

i=1

sgn(λi)ΨiΨ
†
i + PN

⊥ sgn(HW ) (12)

where Ψi are known eigenvectors of the Wilson Dirac operator and λi the according
eigenvalues. The �rst part of the right hand side of (12) is treated exactly, whereas the
second part is approximated by a polynomial. The degree of this polynomial is chosen
proportional to the condition number κc, which is de�ned as the squared ration of the
biggest eigenvalue of the Wilson operator to the N +1th lowest Wilson eigenvalue ([IA]):

κc =
µ2

max

µ2
N+1

(13)

So to improve the computation time for the overlap operator by lowering the condition
number κc, we �rst determine N eigenvectors of the Wilson Dirac operator.

1.3 Arnoldi method
The program I have used for the numerical calculation of the eigenvalues and eigenvectors
of the Dirac operator is based on the Arnoldi method. This algorithm is especially
suitable to determine the eigenvalues and eigenvectors of a large n× n-matrix with few
non-zero entries and some kind of structure, which reduces the costs for a matrix-vector-
product ([ARP]). The latter aspect is important, because the algorithm does not access
the individual matrix elements directly, but deals with the change of a vector under
repeated multiplication with the matrix ([WI], [KR]).

An intuitive approach to obtain eigenvalues of a matrix A ∈ Cn×n numerically is the
power iteration. Starting with an arbitrary vector v the series Av, A2v, A3v, ... Am−1v
converges to the eigenvector belonging to the dominant eigenvalue λl (greatest absolute
value), if this eigenvalue is simple and v is not orthogonal to the according eigenvector.

If we calculate an orthonormal basis of the Krylov-space, de�ned as

Km(A, v) = span
{
v, Av,A2v, ..., Am−1v

}
(14)

these basis vectors can be used as an approximation of the eigenvectors corresponding
to the m largest eigenvalues of A ([WI]).

The problem with this method is, that for large k →∞ the vectors Ak−1v and Akv are
nearly parallel, i.e. linearly dependent. So the calculation of an orthonormal set of basis
vectors of Km according to Gram-Schmidt is badly conditioned and therefore instable.

The Arnoldi method avoids this problem by doing the orthonormalization of vk accord-
ing to span{v, v1, ..., vk−1} directly after each matrix multiplication vk = Avk−1. The
resulting vectors are called Arnoldi vectors. Basically they are used to reduce the eigen-
value problem of A to the determination of eigenvalues of a Hessenberg-matrix, which
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can be done e.g. with the QR-algorithm because of the convenient form of this kind of
matrix. If you want to know more details or the explicit algorithm, see [KR].

As already mentioned the Arnodli method is convenient to handle a matrix with some
kind of structure and many zero-entries like the Dirac operator. Additionally the algo-
rithm converges to the extremal eigenvalues of a matrix, so it is perfectly applicable to
our problem.

2 Implementation
For the determination of the eigenvalues of the overlap operator, I used the following
existing programs:

• a Monte-Carlo simulation to create the gauge �eld con�gurations Aµ(n) or link
variables Uµ(n) (written by Sonja Koller [KO])

• Arnoldi routines from the overlap package to calculate the eigenvalues of the overlap
operator for the speci�c gauge con�gurations (written by Thomas Streuer [ST])

Especially the overlap package contains many programs, which have been optimized
using assembler commands. It was quite convenient to be able to use this package,
because numerical routines to calculate the eigenvalues of a huge matrix like the Dirac
operator on a 124 lattice consume a lot of time, and it would have been impossible to
develop such a high-performance code on my own in an acceptable amount of time.

To use the former programs for my purpose I in principle had to adapt the provided
codes, implement an interface between the di�erent programs, run them with the proper
input parameters and �nally evaluate the output using some self-developed tools.

2.1 Gauge con�gurations
In order to create the U(1) gauge con�gurations Aµ(n) or link variables Uµ(n) on the lat-
tice I extended a Monte-Carlo simulation developed by Sonja Koller in a former project
at the chair of Prof. Schäfer ([KO]). Sonja's program generates several gauge con�gura-
tions using the Metropolis algorithm in order to determine the expectation value of some
signi�cant observables namely the plaquette, the free energy and the Wilson loops.

This method is based on path integrals and the importance sampling method according
to the Boltzmann distribution in statistical physics (cf. section 1.1). Sonja described this
elementary idea for her calculations quite well in the documentation of her project [KO],
so I will not discuss the details of that method.

In order to get suitable data for the overlap calculation routine I basically had to
modify the three following points in Sonja's program:

• To use memory e�ciently Sonja did not work with an array of all link variables
Uµ(n) but instead used the plaquette values Uµν(n).
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The plaquette is the smallest possible Wilson loop built of 4 link variables and is
de�ned as:

Uµν(n) = Uµ(n)Uν(n + µ̂)U †
µ(n + ν̂)U †

ν (n)
= exp {iae [Aµ(n) + Aν(n + µ̂)−Aµ(n + ν̂)−Aν(n)]} (15)

Although this provided enough data to obtain her desired observables, the infor-
mation did not su�ce for my purpose, because I needed the values of Uµ(n) as
input data for the routine, which calculates the eigenmodes. So I had to adjust
the code in the Monte-Carlo step, which updates the gauge con�guration, in such
a way, that it uses Uµ(n) instead of the plaquette.

• After producing a gauge con�guration I had to write the array with the link vari-
ables Uµ(n) into an output �le using the correct format for the eigenvalue algorithm.
One of the major problems in this context was, that the overlap package of Thomas
Streuer was implemented for QCD calculations, i.e. SU(3) �elds. I tried out two
di�erent ways to integrate the U(1) data into the SU(3) procedure. (You can �nd
more about this in section 2.3.1.) As it seems to be convenient to combine three
U(1) gauge con�gurations to one 3 × 3 con�guration, I had to write the values
U i

µ(n) at each lattice point into the same output �le, where i = 1, 2, 3 represents
three di�erent con�gurations created by the Monte-Carlo algorithm.

With these modi�cations I could use Sonja's program to generate gauge con�gurations
as a basis for the calculation of eigenvalues of the overlap operator. As I wanted to
perform statistical studies of the lowest eigenvalues on both sides of the phase transition,
I created ∼ 50 con�gurations for each value of β = 0.99 and β = 1.03.

2.2 Overlap package
After generating a gauge con�guration with the Monte-Carlo algorithm the main step was
the calculation of the eigenvalues of the overlap operator for this speci�c con�guration.
This part needs lots of time and computer power, because we are dealing with a matrix
which has (12N)2 entries (3 colors and 4 spinor components), where N is the number of
lattice sites, i. e. in our case N = 124.

Because of the complexity of this problem I didn't implement the numerical calculation
of the eigenvalues and eigenvectors on my own, but used a program package developed by
Thomas Streuer, which is based on the Arnoldi method. These applications are mainly
written in C++ and assembler and are therefore highly optimized for the determination
of the eigenvalues for di�erent lattice actions (Wilson, overlap etc.). The most important
data required by the programs are the gauge con�guration Uµ(x) and the parameters,
which determine the mass, the number of desired eigenvalues, their accuracy etc. (see
[ST]).

Unfortunately there are hardly any comments in the code, so many calculations did
not work at �rst try because of wrong input parameters. I had to invest some time
to become familiar with the overlap package, until I could start my actual calculations.
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First I worked on small lattices of 44 and 84 sites respectively, to reduce the time needed
for the di�erent attempts, later calculations were done on a 124 lattice.

As input parameters the fermion mass and lattice constant were chosen as ma = −1.6,
which according to (10) results in a value of

κ =
1

2ma + 8r
= 0.2083̄

with r = 1.
For my purpose I basically had to perform the following steps to calculate the smallest

overlap eigenvalues for each gauge con�guration created by the Monte-Carlo algorithm
of Sonja Koller's simulation:

• Save the gauge con�guration in a �le combining three U(1) con�gurations to one
3× 3 con�guration (see section 2.3.1).

• Convert this plain-number �le to a suitable format, using the program �conv_cdv�
of the overlap package.

• Calculate the N lowest Wilson eigenvalues for the gauge con�guration using �con-
dition�.

• Calculate the lowest overlap eigenvalues using �arnoldi� and the N formerly deter-
mined Wilson eigenvectors.

• Extract the overlap eigenvalues of the output data using �arn_evec� and convert
them to plain number format using �conv_cdv�.

As the eigenvectors of the Wilson operator are used to calculate the overlap opera-
tor (see section 1.2.2), it is necessary to run �condition� before calculating the overlap
eigenvalues with �arnoldi�.

Among the input settings of �condition� there is a parameter for the maximum absolute
value of the desired eigenvalues. With this information the program can perform some
transformations, before the actual calculation is carried out ([NEF]), which reduces the
computation time for the Wilson eigenvectors on the 124 lattice from initially more than
2 days to ∼ 1h 10min (!). Of course I had to perform the calculation without this option
at the beginning. After that I could use this advantageous reduction of computation
time, as I then knew the magnitude of the eigenvalues approximately.

Finally with the output data of �condition� I could run the �arnoldi�-program to obtain
the eigenvalues of the overlap operator. Although using the Wilson eigenvectors for the
representation of the sgn-function (equation (12) in section 1.2.2) reduces the computa-
tion time for the calculation of the overlap operator, this was one of the most expensive
parts of my work. In section 2.3.7 you will �nd more information about the consumed
time.
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2.3 Test-runs
Before I present the overlap eigenvalues on the 124 lattice, which are the main results
of my analysis, I will give you an insight in the most important tests of the calculation
routine, as this was a major part of my work.

2.3.1 Embedding U(1) con�gurations into 3× 3-matrices
The overlap package of Thomas Streuer was developed for QCD calculations, i.e. for
SU(3). As my analysis should be done for U(1), I had to �nd a way to embed the U(1)
gauge con�gurations into 3× 3-matrices.

In QCD each quark has three color components, which are represented by Dirac spinors:

Ψ =




Ψred

Ψblue

Ψgreen


 (16)

where each Ψi with i = red, green, blue is a Dirac spinor with four components.
The interaction between the quarks is mediated by eight gluons. If we set the coupling

constant g = 1, the coupling term of the gluons is:

Aa
µ

(
λa

2

)
(17)

which is a 3 × 3-matrix for each µ ∈ {0, 1, 2, 3}, where the λa's are the generators of
the su(3) Lie algebra in the fundamental representation. When (17) is acting on (16),
you can see, that in general quarks with di�erent color can interact via gluons, as the
3× 3-matrix in (17) may have non-zero o�-diagonal elements.

In QED the coupling of the photon to a charged Dirac particle is simply proportional
to Aµ and the Dirac particle is represented by only one spinor Ψ.

In lattice calculations we are not working with Aµ, but with the link variables Uµ(n) =
eiaeAµ(n) in the U(1) case. In SU(3) gauge theory the link variables are represented by
3× 3-matrices.

I tried out di�erent concepts to embed the U(1) link variables Uµ(n) into the 3 × 3-
matrix. The �rst approach was to identify the gauge �eld with one single diagonal
element of the former matrix Aa

µ

(
λa

2

)
, set the other two diagonal elements to one and

the remaining entries to zero:

U3×3
µ (n) =




U
U(1)
µ (n) 0 0

0 1 0
0 0 1


 (18)

When you use this input format for the overlap package, you can expect to get the
desired eigenvectors for the U(1) gauge con�guration Aµ and the eigenvalues for the free
case, because of the other two diagonal elements Uµ(n) = 1 or Aµ(n) = 0 ∀µ ∈ {0, 1, 2, 3}
∀n.
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As this matrix has only zero o�-diagonal elements, there should be no interaction
between the di�erent colors, i. e. the subspace spanned by the eigenvectors belonging to
the con�guration with Uµ(n) 6= 1 is expected to be orthogonal to the subspace spanned
by the eigenvectors of the free case and should lie completetly in the subspace of one
color (see 2.3.3). Additionally the eigenvalues belonging to the free case should be twofold
degenerate.

I also calculated the eigenvalues for the following input formats:

U same
µ (n) =




U
U(1)
µ (n) 0 0

0 U
U(1)
µ (n) 0

0 0 U
U(1)
µ (n)


 (19)

with three times the same gauge con�guration and

Ufree
µ (n) =




1 0 0
0 1 0
0 0 1


 (20)

Indeed for these two con�gurations all eigenvalues were threefold degenerate. Calcu-
lations for the lowest eigenvalues also showed, that the set of lowest eigenvalues of the
approach (18) is a subset of the set union of the lowest eigenvalues of U same

µ (n) and
Ufree

µ (n).
So in principle we can use the ansatz (18) to calculate the desired eigenvalues. We

just have to extract the eigenvalues for the gauge con�guration Uµ(n) 6= 1 from the
output of the overlap algorithm. This can be done by regarding the components of the
corresponding eigenvectors.

To avoid this sorting of eigenvalues we could also use U same
µ (n) as input data and

consider each resulting, threefold degenerate eigenvalue only once.
In both of the former scenarios we can handle one gauge con�guration in each call of

the overlap code. As this costs a lot of time, I tried another approach, which combines
three di�erent U(1) gauge con�gurations to one 3 × 3 con�guration. The elementary
input matrix is given by:

U3conf
µ (n) =




U
U(1),1
µ (n) 0 0

0 U
U(1),2
µ (n) 0

0 0 U
U(1),3
µ (n)


 (21)

where U
U(1),i
µ (n) represent three di�erent gauge con�gurations (i = 1, 2, 3).

As discussed above, there is no mixing between the di�erent con�gurations, as all
o�-diagonal elements of the matrix are set to zero. This input format reduces the com-
putational costs nearly by a factor of 3, because the computation time for the formats
and is approximately the same.

As we only could use very limited computer resources, the reduction of computation
time was one of the major problems in this project, so I chose the latter ansatz to transfer
the gauge con�gurations created by the Monte-Carlo algorithm to the overlap programs,
which calculate the eigenvalues of the overlap operator.
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2.3.2 Plaquette
For the generation of the gauge con�gurations I used the Monte-Carlo simulation written
by Sonja Koller (see section 2.1). As I had to modify several points in the original code
in order to use it for my purpose, I did some checks to assure, that it still works properly.
E. g. I calculated the plaquette (15) close to the phase transition from the con�ned to
the Coulomb phase at the critical coupling βc = 1.0111331(21). (Strictly speaking there
is no phase transition for the �nite lattice.)

In �gure 1 you can see the mean plaquette determined with the program �pq� of the
overlap package for each three U(1) con�gurations embedded in one 3 × 3-matrix and
averaged over 48 con�gurations for each value of β. The data agrees quite well with other
measurements like in [TA].
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Figure 1: Evolution of the plaquette at the phase transition

So the creation of the gauge con�gurations and the combination of three con�gurations
to one 3 × 3 con�guration seem to work correctly, as the data was obtained from the
embedded 3× 3 gauge con�gurations.

2.3.3 Orthogonal subspaces
As we have discussed in section 2.3.1, there should be no interaction between the three
combined gauge con�gurations. Therefore the eigenvectors belonging to di�erent con�g-
urations should span a subspace, which corresponds to exactly one color in the SU(3)
space, i.e. 


|Ψred|
|Ψblue|
|Ψgreen|


 =




1
0
0


 ,




0
1
0


 ,




0
0
1


 (22)

but may not be a mixed state of two or three di�erent color vectors.
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This condition is full�lled by the eigenvectors resulting from the overlap algorithm
with the input data speci�ed in equation (2.3.1), which is another indication that the
input format is correct and that the code is working properly.

2.3.4 Check eigenvectors
The overlap program package contains an algorithm (�check_ev�) to check, whether the
�nally calculated eigenvectors are really eigenvectors of the Dirac operator speci�ed by
the input data. This algorithm acts with the Dirac operator on the eigenvectors and
compares them with the resulting vector.

The results of this test show, that the overlap eigenvectors calculated in this project
have the desired accuracy of at least 10−8, which is enough for our purpose.

2.3.5 Free case
In section 2.3.1 I mentioned, that I have calculated the eigenvalues for the case of zero
gauge �eld Aµ(n) = 0 ⇒ Uµ(n) = 1. There is also an analytical solution for this scenario,
which is described e.g. in [WE], p. 55 f.. In that document the calculations are done on
a lattice of size N = 44. For that reason and because of the shorter computation time I
also chose this lattice size for the free case.

In order to test the eigenvalue algorithm I compared the numerically calculated eigen-
values of the Wilson Dirac operator on a 44 lattice with the analytical values, which we
will obtain in the following.

If we consider the Wilson Dirac operator Mnm (equation (9)) in the case Uµ(n) = 1
(with r = 1), we obtain

MW,free
nm a = δn,m − κ

∑
µ

[(1− γµ)δn,m−µ̂ + (1 + γµ)δn,m+µ̂]

︸ ︷︷ ︸
D(n,m)

(23)

.
The eigenvalues of this matrix can be calculated according to [WE] p. 55 f., if we use

the Fourier representation of the δ-function:

δn,m−µ̂ =

π∫

−π

d4p

(2π)4
eip(n+µ̂−m)

So D(n,m) simpli�es to:

D(n,m) =
∑

µ

π∫

−π

d4p

(2π)4
[(

eipµ̂ + e−ipµ̂
)
− γµ

(
eipµ̂ − e−ipµ̂

)]
e−ip(n−m)

= 2
∑

µ

π∫

−π

d4p

(2π)4
[cos(pµ)− iγµ sin(pµ)] e−ip(n−m) (24)
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To obtain the eigenvalue equation, we apply D(n,m) to a vector Φe−ikm, where Φ only
depends on the spinor indizes:

∑
m

D(n,m)Φe−ikm =
∑
m

∑
µ

π∫

−π

d4p

(2π)4
[2 cos(pµ)− 2iγµ sin(pµ)] Φe−ipne−i(k−p)m

=
∑

µ

[2 cos(kµ)− 2iγµ sin(kµ)] Φe−ikn ≡ λD(kµ)Φe−ikn (25)

Here we have used:
1

(2π)4
∑
m

e−i(k−p)m = δ(k − p)

To simplify expression (25), consider the Cli�ord-Algebra of the γ-matrices:

(aγµ + bγν)2 = a2γ2
µ + b2γ2

ν + ab {γµ, γν}︸ ︷︷ ︸
δµν

µ 6=ν
= a2 + b2

(∑
µ

aµγµ

)2

=
∑

µ

a2
µ

So we obtain:

λD(kµ) =
∑

µ

2 cos(kµ)± 2i

√√√√
(∑

µ

γµ sin(kµ)

)2

=
∑

µ

2 cos(kµ)± 2i

√∑
µ

sin2(kµ) (26)

All in all the eigenvalues of (23) are:

λ(kµ) = 1 + 2κ


∑

µ

cos(kµ)± i

√∑
µ

sin2(kµ)


 (27)

with kµ = 2πnµ

s , nµ ∈ IN for µ = 1, 2, 3, 4.
When you compare the analytically calculated eigenvalues for κ = 1 in �gure 2 with

the numerical solution in �gure 3, you will see, that they perfectly agree, up to the fact
that numerically not all eigenvalues were calculated.

2.3.6 Ginsparg-Wilson Circle
The overlap operator de�ned in (11) full�lls the Ginsparg-Wilson equation ([WE], [LU],
[NE2]):

{γ5, D} = γ5D + Dγ5 = aDγ5D (28)
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Figure 2: Analytically calculated eigenvalues of the Wilson Dirac operator on a 44 lattice
for the free case Aµ(n) = 0

-6

-4

-2

 0

 2

 4

 6

-10 -8 -6 -4 -2  0  2  4  6  8  10

Im
(λ

)

Re(λ)

numerical solution

Figure 3: Numerically calculated eigenvalues of the Wilson Dirac operator on a 44 lattice
for the free case Aµ(n) = 0

From (28) and the γ5-hermicity of D we obtain for an eigenvector |v〉 of D:

(γ5D + Dγ5) |v〉 = aDγ5D|v〉 = aγ5D
†D|v〉 = aλ∗λγ5|v〉 (29)
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On the other hand the eigenvalue equation of the overlap operator reads:

(γ5D + Dγ5) |v〉 =
(
γ5D + γ5D

†
)
|v〉 = (λ + λ∗) γ5|v〉 (30)

These two equations imply:

aλ∗λ = λ + λ∗ ⇔ |λ|2 =
2
a
<(λ) (31)

If we choose λ = x + iy with x, y ∈ IR, we obtain

x2 + y2 =
2
a
x ⇒

(
x− 1

a

)2

+ y2 =
1
a2

(32)

which means, that the eigenvalues λ of the overlap operator lie on a circle with radius 1
a

and center at x = 1
a , y = 0 in the complex plane.

In �gure 4 you can see, that the theoretical prediction is full�lled by the numerically
calculated eigenvalues of the overlap operator on a 44 lattice. This fact asserts the correct
implementation of the eigenvalue algorithm.

-1
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eigenvalues of overlap operator on 44 lattice

Figure 4: Eigenvalues of the overlap operator for β = 1.03 on a 44 lattice lying on the
Ginsparg-Wilson circle in the complex plane

The density of the eigenvalues on the right side of the circle in �gure 4 is higher than
on the left side. In the case a → 0, the center of the circle would move to the right and
the radius would become in�nitely large, so that the eigenvalues on the left side of the
circle would move towards the imaginary axis.
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2.3.7 Computation time
For most lattice simulations the available computer time is a major constraint. In my
project the most time consuming part was the calculation of the eigenvalues. I spent a
lot of e�ort on reducing these computational costs, because they are the limiting factor
for the number of analysed con�gurations and therefore determine the quantity of our
statistical data.

The eigenvalue calculations were mainly performed on an Intel Pentium D with 3.40
GHz and 2 GB memory. So the following numbers refer to the computation time on a
comparable computer.

First in �gure 5 you can see the time consumed to determine the Wilson eigenvalues
using �condition� for di�erent lattice sizes. For these runs I have used the already men-
tioned reduction of calculation costs by �xing the maximum absolute value of the desired
eigenvalues as an input parameter. The polynomial �t shows that the computation time
is proportial to L16/3 = (L4)4/3 = N4/3, where L is the length of the lattice and N = L4

the volume.
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Figure 5: Computation time for the Wilson eigenvalues at di�erent lattice sizes (44, 84

and 124) scales as t ∼ L16/3

In �gure 6 you can see, that the computation time for the overlap eigenvalues is much
higher than for the Wilson eigenvalues and furthermore is proprotional to L8 = N2. The
problem for the overlap operator especially at large lattice size is the limited amount
of memory. So the algorithm has to swap data to the hard disc, which costs a lot of
additional time.

All in all the reduction of the consumed computation time was a major problem in
my project. At the beginning it seemed to be impossible to perform the calculations on
an ordinary PC. But after all improvements it is now possible to determine the overlap
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Figure 6: Computation time for the overlap eigenvalues at di�erent lattice sizes (N = 44,
84 and 124) scales as t ∼ L8

eigenvalues of all 2 · 48 = 96 con�gurations within about one month on three PCs.
Working on a powerful cluster, of course, reduces this span of time.

2.3.8 Number of Wilson eigenvectors
As explained in section 1.2.2 one has to determine N eigenvectors of the Wilson Dirac
operator to speed up the calculation of the overlap operator. Exactly speaking the
eigenvectors are needed for the polynomial approximation of the sgn-function (12). Ac-
cording to (13) the condition number κc for the polynomial approximation depends on
the squared ratio of the biggest eigenvalue of the Wilson operator to the N +1th Wilson
eigenvalue. So for larger N the condition number κc becomes better, and therefore the
computation time for the verlap operator is expected to be shorter.

After trying several values of N the best number of Wilson eigenvectors for the cal-
culation of 200 overlap eigenvalues seemed to be N ≈ 200. Although larger N means a
better κc, the program also has to swap more Wilson eigenvectors to the hard disc, so
this �nally does not result in a shorter computation time.

3 Lowest eigenvalues of the overlap operator on a 124 lattice
In the following you will �nd a presentation of the results of my main task, the numerical
calculation of the lowest eigenvalues and eigenmodes of the overlap operator on the 124

lattice using the overlap program package, which was the largest possible lattice with the
available computer power.
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The lowest eigenvalues determine the longe-range properties of the overlap operator for
distances > 0.5fm (see [IA]). If one replaces the full operator by the truncated operator
generated by the lowest eigenvectors, one obtains some kind of an infrared �lter, which
suppresses ultraviolet noise.

For my calculations I determined the eigenvalues and eigenvectors for 48 gauge con�g-
urations at each value of β = 0.99 in the con�ned phase and β = 1.03 in the Coulomb
phase. In each case three U(1) gauge con�gurations were combined to one 3×3 con�gura-
tion as described in section 2.3.1, and the 200 smallest eigenvalues for this con�guration
were obtained numerically using the overlap package written by Thomas Streuer.

As shown in [WE] p. 41 �. the eigenvalues of the Dirac operator in the Euclidian con-
tinuum limit (in the following called λ) are purely imaginary, whereas the discretization
on the lattice destroys this property. So the eigenvalues of the overlap operator come in
complex conjugated pairs (in the following λlat and λ∗lat respectively) and lie on a circle
in the complex plane, which was already discussed in subsection 2.3.6.

To obtain λ we have to project λlat stereographically to the imaginary axis via Möbius
transformation (see [TA]):

λ =
λlat

1− λlat/2
(33)

In this chapter all eigenvalues are the continuum values λ calculated by this transfor-
mation.

3.1 Zero-modes
The �rst point, we want to analyse, is the number of zero-modes in the spectrum of the
overlap operator. From the zero-modes of a gauge con�guration one can determine its
topological charge. Each zero-mode Ψ0 has a de�nite positive or negative chirality ([IA]):

γ5Ψ0 = +Ψ0 or γ5Ψ0 = −Ψ0 (34)

(The non-zero modes may have di�erent chirality at di�erent lattice sites x.)
If we call n+ the number of zero-modes of a gauge con�guration with positive chirality

and n− with negative chirality, the topological charge is

Q = n− − n+ (35)

As mentioned in [IA] in practical calculations the zero-modes for each gauge con�gu-
ration all had either positive or negative chirality. In the following we do not distinguish
between both cases. Figure 7 con�rms the approximately Gaussian shape of the dis-
tribution of the absolute value of the topological charge |Q|. Note that you have to
divide the number of con�gurations with |Q| > 0 by two in comparison to the number of
con�gurations with |Q| = 0.

In my project I have created 48 gauge con�gurations at β = 0.99 and β = 1.03 and cal-
culated the lowest eigenvalues. In table 1 you can see the number of con�gurations which
have 0, 1, 2 or 3 zero-modes. If you want to consider the chirality of each eigenmode,
you have to use equation (34) and act γ5 on each eigenvector.
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number of zero-modes β = 0.99 β = 1.03
0 17 48
1 18 0
2 12 0
3 1 0

Table 1: Number of con�gurations with de�nite number of zero-modes, taken out of 48
con�gurations for β = 0.99 and β = 1.03

Obviously there is a di�erence between the con�ned phase (β < βc), where there are
several con�gurations with zero-modes, and the Coulomb phase (β > βc), where there
are absolutely no zero-modes.

The approximately Gaussian shape of the distribution of the topological charge, which
I have mentioned above, can be seen in �gure 7.
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Figure 7: Gaussian distribution of the number of zero-modes for each individual con�g-
uration

3.2 IPRs
The inverse participation ratio (IPR) is de�ned as

I(λ) = V
∑

x

ρIPR(x)2 (36)

with ρIPR(x) ≡
∑

a

|Ψλ(x)|2 (37)
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where V = 124 is the system volume and
∑
a

is the sum over all spinor components of
the eigenvector Ψλ(x) (see [TA], [IA]).

The IPR is a measure for the spatial distribution of an eigenmode. I(λ) = 1 means that
Ψλ(x) spreads maximally over the entire system, whereas for I(λ) = V the eigenvector
Ψλ(x) is concentrated on one single site x.

 0

 1

 2

 3

 4

 5

 6

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

IP
R

 a
t β

=
0.

99

eigenvalues -iλ

Figure 8: IPR for β = 0.99 (48 gauge con�gurations)
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Figure 9: IPR for β = 1.03 (48 gauge con�gurations)

In �gures 8 and 9 you can see again, that there are zero-modes for β = 0.99 but not
for β = 1.03, i.e. above the phase transition in the Coulomb phase. Additionally �gure
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8 tells us, that zero-modes are more localized than non-zero-modes, because they have a
higher IPR.

The average IPR Ī (average taken over all eigenvalues λ) for β = 1.03 is lower than for
β = 0.99 as is displayed in �gure 10. This means, that for higher β the single eigenmodes
Ψλ(x) are more uniformly spread over the lattice.
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Figure 10: Average IPR for β = 0.99 and β = 1.03 (average taken over 48 gauge con�g-
urations for each value of β)

You can also see, that the density of the smallest eigenvalues becomes higher with
increasing β: for β = 0.99 we get |λmax| ≈ 0.68 whereas for β = 1.03 we only have
|λmax| ≈ 0.55. So for higher β the eigenvalues λ are less spread in the IPR diagram, i.e.
the density increases with β. (Be carefull: λmax is not the biggest eigenvalue, but the
biggest one of the 200 lowest eigenvalues.)

3.3 Histograms
The IPRs in the former subsection gave us a feeling for the degree of localization of an
eigenmode. Now we want to analyse the particular form of such an eigenmode. For this
reason we regard histograms HΨ of the eigenfunction-density ρΨ(x) ≡ ρIPR(x), which is
de�ned in (37) (cf. [TA]).

If the eigenfunction Ψ maximally spreads over the entire system, HΨ will have one
sharp peak at ρΨ = 1/V ≈ 0.00005. In contrast a highly localized eigenfunction will
have two peaks: a strong one at ρΨ ≈ 0 and a very small one at large ρΨ.

Let us now take a look at the three following histograms in �gures 11, 12 and 13. Each
of these three histograms is taken as average over 5 eigenmodes.

From the comparison of �gure 11 with �gure 12, we can see, as in the section before,
that zero-modes are more localized than near-zero-modes, because the main peak in
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Figure 11: Density of ρΨ for zero-modes at β = 0.99
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Figure 12: Density of ρΨ for near-zero-modes at β = 0.99

�gure 11 is at lower values of ρΨ than in �gure 12. Furthermore the peak for near-zero-
modes is wider than the one for exact-zero-modes, which gives also a hint to the higher
localization of zero-modes.

In both �gures the peak is not at ρΨ ≈ 5 · 10−5 but at 7 · 10−6 (�gure 11) and 18 · 10−6

(12) respectively. This means that the corresponding eigenmodes are neither perfectly
localized nor maximally delocalized, but something in between.

For a higher value of β = 1.03, i.e. in the Coulomb phase, the eigenmodes are more
delocalized, as we have already seen in the former section about IPRs. This can be seen

23



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  5e-05  0.0001  0.00015  0.0002  0.00025  0.0003

H
Ψ

 [n
ea

r 
ze

ro
 m

od
e]

 β
=

1.
03

ρ(Ψ)

Figure 13: Density of ρΨ for near-zero-modes at β = 1.03

in the histogram in �gure 13, where the peak is now wider and shifted in the direction
of the value for a uniformly spread eigenmode at ρΨ,unif ≈ 0.00005. The tail on the
right side of the histogram is also vanishing faster than in the other two diagrams, which
means that there are almost no highly-localized contributions to ρΨ.

3.4 Eigenmodes
In �gures 14, 15 and 16 you can see slices of the local density ρΨ(x) of several eigenmodes
at di�erent values of β. For each diagram the �xed values of z and t are chosen in such
a way, that the point xmax, at which the density of the eigenmode achieves its global
maximum ρΨ(xmax) >= ρΨ(x)∀x, lies within the presented slice of space-time.

In the former sections (3.2 and 3.3) we have learned that eigenmodes for β = 0.99 tend
to be more localized than eigenmodes in the Coulomb phase at β = 1.03. You will also
realize that fact, when you compare �gures 14 and 15 with �gure 16. The eigenmode in
the latter one is more uniformly spread over the volume.

The peak in �gure 14 has almost the same height as the peak in �gure 15. This is not
surprising, as the tails on the right sides of the histograms 11 and 12 also seem to have
the same extension. The tail in 13 goes much faster to zero, which is re�ected in �gure
16, as there is no prominent peak.

4 Summary
The basic challenge of this project was the calculation of the eigenvalues of the overlap
Dirac operator on a 124 lattice. Because you have to deal with huge matrices, the numer-
ical treatment of the eigenvalue problem is very ambitious. I performed the calculations
using an existing program package for the determination of QCD overlap eigenvalues.
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Figure 14: Slice of the local density ρΨ(x, y) of a zero-mode at β = 0.99 for constant z
and t

non-zero-mode for β = 0.99
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Figure 15: Slice of the local density ρΨ(x, y) of a non-zero-mode at β = 0.99 for constant
z and t

In order to do this I had to embed the QED U(1) gauge �eld into the 3 × 3 matrices
of the QCD algorithm. As I wanted to exclude any errors caused by this embedding,
I performed several checks to verify the resulting data. All tests con�rmed that the
embedding is justi�ed and does not cause any interactions between the individual gauge
con�gurations. So I could use the program for my purpose.
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non-zero-mode for β = 1.03
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Figure 16: Slice of the local density ρΨ(x, y) of a non-zero-mode at β = 1.03 for constant
z and t

After tuning the computation costs to an acceptable span of time by �xing appropri-
ate input parameters I could perform the calculations of the lowest eigenvalues of the
overlap operator. In the former chapter you have seen the results, namely the number
of con�gurations with zero-modes, which correspond to the topological charge, and some
diagrams displaying the localization of particular eigenmodes.

Last but not least I want to thank Prof. Schäfer and Dr. Gürtler for their patience and
helpful explanations. Without their support I would not have mastered the problems in
the context of this project. But with their guidance I have learned a lot about lattice
calculations and the problems in practical programming, e.g. the need of optimization
due to limited computer power.

5 Appendix: Input parameters
In tables 2 and 3 you can �nd the input parameters that I used for the programs of the
overlap package. For additional information see also [ST].
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parameter value remark
version 3
con�g converted.inf gauge con�guration inf-�le (required format: 5)
rho 1.6 negative mass of the operator ρ
nev 200 number of eigenvectors to be computed
tol 1.0E − 14 requested tolerance for the smallest eigenvalues
tol 1.0E − 14 requested tolerance for the largest eigenvalues

l_min 0.026 must be larger than the nevth eigenvalue
l_max 2.6 upper bound for the largest eigenvalue
deg 150 degree of polynomial approximation

deg_l 0 not used
lev 0 calculate the largest eigenvalue

lev_g 2.47 tight lower bound for the largest eigenvalue
bc p periodic boundary conditions

swap 0 no swapping (available memory was 2 GB)
bs 0 ignored

data_fn condition output �le
evec_fn condition_ev output data-�le

Table 2: Input parameters for �condition� (calculation of the eigenmodes of the Wilson
Dirac operator)

parameter value remark
operator overlap requested operator
gaugeconf converted.inf gauge con�guration inf-�le (required format: 5)
evec�le arnoldi_ov_ev output �le
ov�le condition input �le with Wilson eigenvalues and eigenvectors (output of �condition�)

ov_type m Minmax
nev 200 number of eigenvectors to be computed
ncv 400 size of the arnoldi factorization

swap_level 2 necessary swap-level for 2 GB memory
kappa 0.20833333333 κ
tol 1.0E − 10 requested tolerance

ov_error 1.0E − 9 error in the overlap approximation
ov_mass 0.0 overlap mass
boundary p periodic boundary conditions
which SM calculate smallest eigenvalues (capital letters!)

Table 3: Input parameters for �arnoldi� (calculation of the eigenmodes of the overlap
operator)
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