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Aufgabe EXP-1: Photoeffekt

a) Germanium (Ge) hat eine Grenzwellenlänge von λ0 = 248 nm. Berechnen Sie die
Austrittsarbeit der Photoelektronen in eV.

b) Natrium (Na) hat eine Grenzwellenlänge von λ0 = 451 nm. Berechnen Sie die maximal
mögliche Bremsspannung bei Bestrahlung mit Licht der Wellenlänge λ = 400 nm.

Aufgabe EXP-2/TH-1: Compton Streuung

a) Ein Photon γ mit dem Viererimpuls kµ = (E, E, 0, 0) wird an einem ruhenden Elektron
e− mit Masse me gestreut. Nach der Streuung hat das Photon den Viererimpuls
k′µ = (E ′, E ′ cos Θ, E ′ sin Θ, 0). Man zeige, daß die Energie E ′ des gestreuten Photons
gegeben ist durch

E ′ =
E

1 + E
me

(1 − cos Θ)
.

Geben sie auch die kinetische Energie des Elektrons nach dem Stoß an.

b) Ein 37Cs Isotop emittiert γ-Strahlen einer Wellenlänge von 1.878 pm. Diese werden an
einem NaCl Kristall gestreut. Unter einem Winkel von 60◦ wird gestreutes Licht mit
einer Wellenlänge von 3.091 pm gemessen. Berechnen Sie die Compton Wellenlänge
des Elektrons, sowie die Plancksche Konstante ~.

Aufgabe EXP-3/TH-2: Hohlraumstrahlung

In einem Hohlraum mit Wandtemperatur T herrscht im thermodynamischen Gleichgewicht
ein elektromagnetisches Strahlungsfeld mit der spektralen Energiedichte

u(ν, T ) =
8π

c3

hν3

ehν/kT − 1
.

a) In einer Wand des Hohlraums befindet sich ein kleines Loch der Fläche ∆A, und im
Winkel Θ zur Flächennormalen geneigt ist in großem Abstand ein Detektor aufgestellt.
Der Detektor überdeckt nur eine kleine Raumwinkelöffnung ∆Ω � 4π. Während der
Zeit ∆t wird im Frequenzintervall [ν, ν + dν] die Strahlungsenergie

∆Edν = L(ν, T )dν∆A∆Ω∆t

registriert.



Wie hängt L(ν, T ) mit u(ν, T ) zusammen? Stellen Sie auch einen Zusammenhang für
die in den gesamten Halbraum ∆Ω = 2π ausgestrahlte Energie her, d.h. bestimmen
Sie Lges(ν, T ).

b) Das Wiensche Verschiebungsgesetz besagt, daß die Wellenlänge λmax, bei der maximale
Strahlungsemission des schwarzen Körpers erfolgt, umgekehrt proportional zur Tem-
peratur T ist. Bestimmen Sie zunächst u(λ, T ) und daraus die Proportionalitätskonstante
in Abhängigkeit von ~.

c) Zeigen Sie ausgehend vom Planckschen Strahlungsgesetz die Gültigkeit des Stefan-
Boltzmannschen Gesetzes

S =
c

4

∫

∞

0

u(ν, T )dν = σT 4

für die gesamte Strahlungsintensität des schwarzen Körpers bei einer Temperatur T .
Bestimmen Sie die Proportionalitätskonstante σ in Abhängigkeit von ~.

d) Leiten Sie aus dem Planckschen Strahlungsgesetz das Rayleigh-Jeans, sowie das Wien-
sche Strahlungsgesetz als Grenzfälle ab.

Aufgabe EXP-4: Sonne als ”Schwarzer Strahler”

Die Sonne kann in guter Näherung als ”Schwarzer Strahler” angesehen werden (T ' 6000 K).
Berechnen Sie

a) die gesamte auf die Erde einfallende Strahlungsleistung und

b) den Prozentsatz der im sichtbaren Spektralbereich liegenden Strahlungsleistung.

Angaben: Abstand Erde-Sonne: 1.5 × 108 km, Erdradius: 6.37 × 103 km, Sonnenradius:
694.33 × 103 km, sichtbarer Spektralbereich: 4 × 1014 Hz − 7 × 1014 Hz

Aufgabe TH-4: Wiederholung: δ-Distribution

Die Diracsche δ-Distribution ist ein linearer Integraloperator, der durch seine Wirkung auf
einen geeigneten Raum von Testfunktionen f(x), die bei x = 0 stetig sind, gemäß

∫

∞

−∞

f(x)δ(x) = f(0)

definiert ist. Die Delta-“Funktion” läßt sich als Grenzfall einer Folge von Funktionen δn(x)
auffassen, die ein stark ausgeprägtes Maximum bei x = 0 aufweisen und die Eigenschaften

∫

∞

−∞

δn(x) = 1 bzw. lim
n→∞

∫

∞

−∞

δn(x) = f(0)

erfüllen.

a) Bestimmen Sie die Vorfaktoren gn, für die die Funktionenfolgen

(1) δn(x) = gn

{ 1 : −1/n ≤ x ≤ 1/n
0 : sonst

(2) δn(x) = gn/(1 + nx2)



(3) δn(x) = gn exp(−nx2)

die oben genannten Bedingungen erfüllen.

b) Sei h(x) eine Funktion mit einfachen Nullstellen xi (i = 1, . . . , n), deren Ableitung
h′(x) bei x = xi stetig ist. Zeigen Sie

δ(h(x))
n

∑

i=1

1

|h′(xi)|
δ(x − xi) .

c) Definieren Sie die Ortsableitung δ′(x) der Delta Distribution über ihre Wirkung auf
eine Testfunktion f(x).

Aufgabe EXP-5: Wirkung

a) Erklären Sie die Bedeutung der Wirkung hinsichtlich der klassischen/quantenmechani-
schen Behandelbarkeit physikalischer Probleme.

b) Entscheiden Sie damit, ob ein Federpendel der Masse m = 1 kg, maximaler Auslenkung
x = 0.2 m und Schwingungsperiode T = 1 s klassisch behandelt werden kann.

c) Was gilt in dieser Hinsicht für die Streuung eines α Teilchens mit einer Energie von
40 MeV und einer Masse von 6.7× 10−27 kg an einem Kupfer-Kern mit Radius 5.6 fm?

d) Betrachten Sie das Bohrsche Atommodell im Bereich hoher Anregungen, d.h. für L =
n~ � ~. Können Sie hier eine Parallele zur klassischen Behandlung des Elektrons auf
einer Kreisbahn und der dadurch bedingten Abstrahlung eines Photons ziehen?

Aufgabe TH-5: Wiederholung: Fourier-Transformation

Die Fourier-Transformierte f̂(k) einer Funktion f(x) ist definiert durch

f̂(k) =
1√
2π

∫

∞

−∞

f(x)e−ikxdx

(sofern dieses Integral existiert).

a) Zeigen Sie:

f(x) =
1√
2π

∫

∞

−∞

f̂(k)eikxdk .

b) Berechnen Sie die Fourier-Transformierte der Ableitung f ′(x) in Abhängigkeit der
Fourier-Transformierten f̂(k) von f .

c) Berechnen Sie die Fourier-Transformierte von h(x) = f(x)g(x) in Abhängigkeit der
Fourier-Transformierten von f und g.
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Ex. TH-2.1: Matrix representation

a) Consider two kets
∣

∣α
〉

and
∣

∣β
〉

. Suppose
〈

ai|α
〉

and
〈

ai|β
〉

are all known, where {
∣

∣ai

〉

}
form a complete set of base kets. Find the matrix representation of the operator

∣

∣α
〉〈

β
∣

∣

in that basis.

b) We now consider a spin-1/2 system and let
∣

∣α
〉

and
∣

∣β
〉

be
∣

∣sz; +
〉

and
∣

∣sx; +
〉

, respec-
tively. Write down explicitly the square matrix that corresponds to

∣

∣α
〉〈

β
∣

∣ in the usual

(Ŝz diagonal) basis. What if
∣

∣α
〉

=
∣

∣sy;−
〉

and
∣

∣β
〉

=
∣

∣sx;−
〉

?

Ex. TH-2.2: Null and projection operators

Consider a ket space spanned by the eigenkets {
∣

∣ai

〉

} of a Hermitian operator Â. There is
no degeneracy.

a) Prove that
∏

i

(

Â − ai

)

is the null operator.

b) What is the significance of
∏

j 6=i

(

Â − aj

)

(ai − aj)
?

c) Check that the operator P̂i =
∣

∣ai

〉〈

ai

∣

∣ is a projection operator, i.e. is Hermitian and

idempotent (P̂ 2
i = P̂i).

d) Illustrate (a) and (b) using Â set equal to Ŝz of a spin-1/2 system.

Ex. TH-2.3: Commutation relations

Let’s introduce the shorthand notation
∣

∣±
〉

≡
∣

∣sz;±
〉

. Using the orthonormality of
∣

∣+
〉

and
∣

∣−
〉

, prove
[

Ŝx, Ŝy

]

= i} Sz.

Ex. TH-2.4: Spin operator in arbitrary direction

Find the eigenkets of the spin operator in an arbitrary direction, i.e. the operator Ŝ ·n, where
Ŝ is the vector operator (Ŝx, Ŝy, Ŝz) and n is the unit vector (sin θ cos φ, sin θ sin φ, cos θ).



Ex. TH-2.5: Energy levels of a simple two-state system

A two-state system is characterized by the Hamiltonian

Ĥ = H11

∣

∣1
〉〈

1
∣

∣ + H22

∣

∣2
〉〈

2
∣

∣ + H12

(∣

∣1
〉〈

2
∣

∣ +
∣

∣2
〉〈

1
∣

∣

)

where H11, H22, H12 are real numbers with the dimension of energy, and
∣

∣1
〉

and
∣

∣2
〉

are

eigenkets of some operator different from Ĥ. Use the results of the previous question to find
the energy eigenvalues and eigenstates.

Ex. TH-2.6: Dispersion

A spin-1/2 system is prepared in an eigenstate of Ŝ·n, where n is the unit vector (sin θ, 0, cos θ).

a) Suppose sx is measured. What is the probability of getting +}/2?

b) Evaluate the dispersion in sx on an ensemble of identically prepared states, i.e.

〈(

Ŝx − 〈Ŝx〉
)2〉

.

Ex. TH-2.7: Sequence of Stern-Gerlach magnets

A beam of spin-1/2 atoms goes through a series of Stern-Gerlach-type magnets with the
following setup:

a) The first magnet is oriented in the +z direction, and the −}/2 component of the beam
is directed into a beam dump.

b) The second magnet is aligned at an angle θ with respect to the z axis and the −}/2
component is dumped.

c) The third magnet is oriented in the +z direction, and the +}/2 component is dumped.
What is the intensity of the final sz = −}/2 beam with respect to the initial beam
intensity? How must the second magnet be oriented in order to maximize the intensity
of the final sz = −}/2 beam?

Ex. TH-2.8: Schwarz inequality and uncertainty principle

a) In the lecture we left out the proof of the uncertainty relation

〈

(∆Â)2
〉〈

(∆B̂)2
〉

≥ 1

4

∣

∣

〈

[Â, B̂]
〉∣

∣

2
.

Work out the proof with the help of Sakurai (Sec. I.4). Provide also a proof of the
Schwarz inequality

〈

α|α
〉〈

β|β
〉

≥ |
〈

α|β
〉

|2.

b) Show that the equality sign in the uncertainty relation holds if the state
∣

∣α
〉

satisfies

∆Â
∣

∣α
〉

= λ∆B̂
∣

∣α
〉

with λ purely imaginary.



Ex. EXP-2.1: Wave-packet

The normalized one-dimensional wave-packet of a free particle of mass m is given by

Ψ (x, t) =

√

m∆k√
π (m + i}t∆k2)

e
− x

2
m∆k

2

2(m+i}t∆k2) .

Determine the width ∆k in such a way that the probability density |Ψ (x, t)|2 is limited to
a region of ∆x = 10−8cm at t = 0. How long does it take until ∆x is equal to the distance
between earth and sun for an electron?

Ex. EXP-2.2: Group velocity dispersion

Given is the electromagnetic wave packet (e.g. a laser pulse)

Ψ (x, t) =
1√
2π

∫ +∞

−∞
A (k) ei[kx−ω(k)t]dk,

the function A (k) being non-zero only in a small region ∆k around a mean wavenumber-
vector k0.

a) Express the wave-packet Ψ (x, t) by the Fourier transform A (y) ≡ 1√
2π

∫

A (k) eikydk of

the function A (k). Use the dispersion relation ω (k) for photons in the vacuum. How
does the shape of the wave-packet change with time?

b) With the help of optical spectral analysis the width of a laser pulse was measured to be
∆λ = 200nm (around a mean wave length of λ0 = 800nm). What is the duration ∆t of

the pulse, assuming a Gaussian shape A (k) = e−(k−k0)2/(∆k)2? What is the connection
between ∆λ and ∆k?

c) Propagating through a medium, each spectral component of of the pulse has a different
velocity (dispersion). Assuming a quadratic dispersion relation

ωD (k) = ω0 + ω1 (k − k0) + ω2 (k − k0)
2

with the constants ω0 = ω (k0), ω1 = vg (k0) and ω2 = 1
2
dvg(k)/dk|k=k0

(“group velocity

distribution”, GVD), compute Ψ (x, t) for the Gaussian profile of b).

d) What is the time-dependence of the laser pulse in c) for non-zero ω2?

e) Discuss the problems for transmitting short pulses in the presence of GVD. Try to find
an arrangement of two prisms which can remove the GVD.

Ex. EXP-2.3: Hydrogen atom and uncertainty principle

Classically, an atom in its ground state is treated as point-like particle. Using the uncertainty
principle, calculate its dimensions in the ground state by first proving the equation

〈

p2
〉

= (∆p)2

and assuming 〈r〉 ≈ ∆r (small values of r).



Ex. EXP-2.4: Stern-Gerlach with electrons?

Is it possible to use electrons in a Stern-Gerlach like experiment? Discuss with the help of
information from publications and the Internet!

Ex. EXP-2.5: Quantization of angular momentum

Show
~J2 = j (j + 1) }

2

from
〈

J2
z

〉

=
1

2j + 1

m=j
∑

m=−j

(m})2

and
~J2 = J

〈

J2
z

〉

Ex. EXP-2.6: Paramagnetic gas

The ground state of the Sodium atom (Z=11) has the angular momentum quantum number
j = 1/2 and the g-factor g = 2. The sodium gas is located in a homogeneous magnetic field
B applied in the z-direction.

a) Calculate ~J2 and J⊥ and present the m-states of the sodium atom in the vector model.

b) Calculate the energy Em of the Zeeman-states (in eV) for B = 1T .

c) Calculate the magnetization ~M (mean magnetic moment per volume) of the sodium
gas in thermal equilibrium at temperature T , as a function of B and particle number
density n (mean number of particles per volume). Express the result by the parameter

b ≡ µBB

kT

with the Bohr Magneton µB and the Boltzmann constant k.
Hint: The mean Besetzungszahl of a m-state is proportional to e−Em/kT .

d) Give the limits of c) for the cases kT � µBB and kT � µBB.
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Ex. TH-3.1: Operators depending on a parameter

Consider an Operator Â which depends on a real parameter η (for instance, time). Then we
can define the derivative w.r.t. η as

dÂ(η)

dη
= lim

ε→0

Â(η + ε) − Â(η)

ε
.

Let the operators Â = Â(η) and B̂ = B̂(η) both depend on η. Show that

a)
d

dη
(Â B̂) =

dÂ

dη
B̂ + Â

dB̂

dη

b)
d

dη
Ân =

n
∑

i=1

Âi−1dÂ

dη
Ân−i where n = 1, 2, 3, . . .

c)
d

dη
Â−1 = −Â−1dÂ

dη
Â−1 .

Ex. TH-3.2: Functions of operators

In general a function f(Â) of an operator Â can be defined as a power series (fn denotes the
coefficients of the expansion)

f(Â) =
∞

∑

n=0

fnÂ
n

(we shall not consider the problems concerning the convergence of the series, etc.). When
|a〉 is an eigenket of Â with eigenvalue a, |a〉 is also an eigenket of f(Â) with the eigenvalue

f(a). For example, the function eÂ of the operator Â is defined by

eÂ =
∞

∑

k=0

1

k!
Âk .

Consider, for the moment, two operators Â and B̂ which fulfil

[Â, [Â, B̂]] = 0 and [B̂, [Â, B̂]] = 0 .

Show that

a) eÂB̂e−Â = B̂ + [Â, B̂] (this is a special case of the Baker-Hausdorff relation).

b) eÂeB̂ = eÂ+B̂e[Â,B̂]/2 (this is the so-called Glauber formula).



c) From now on we do not assume that [Â, [Â, B̂]] = 0 and [B̂, [Â, B̂]] = 0. Show by
induction that

[Â, . . . [Â, [Â, B̂]] . . .] =
n

∑

l=0

(−1)l
(n

l

)

Ân−lB̂Âl

for the n-fold commutator.

d) Start with the series expansion of esÂB̂e−sÂ around s = 0, s is a real parameter, to
prove that

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + . . . +

1

n!
[Â, . . . [Â, [Â, B̂]] . . .] + . . . .

(standard version of the Baker-Hausdorff relation).

Ex. TH-3.3: Trace of operators

Prove that

a) tr(X̂Ŷ ) = tr(Ŷ X̂), where X̂ and Ŷ are operators

b) tr(X̂) of an operator X̂ is independent of the representation.

Ex. TH-3.4: Commutators of three linear operators

Â, B̂, Ĉ are linear operators with [Â, B̂] = 0 and [B̂, Ĉ] = 0.
Does this imply that also [Â, Ĉ] = 0?

Ex. TH-3.5: Anticommuting operators

Two Hermitian operators anticommmute:

{Â, B̂} = ÂB̂ + B̂Â = 0 .

Is it possible to have a simultaneous eigenket of Â and B̂? Prove or illustrate your assertion!

Ex. TH-3.6: Dispersion and uncertainty relation

Find the linear combination of |+〉 and |−〉 kets that maximize the uncertainty product
〈

(∆Ŝx)
2
〉 〈

(∆Ŝy)
2
〉

.

Verify explicitly that for the linear combination you found, the uncertainty relation for Ŝx

and Ŝy is not violated.

Ex. TH-3.7: Two-dimensional ket space

Consider a two-dimensional ket space with base kets |φ1〉 and |φ2〉. Acting with an operator
Â on these kets gives

Â|φ1〉 = −|φ2〉 and Â|φ2〉 = −|φ1〉 .

a) Express Â with outer products |φi〉〈φj|.

b) Check if Â is Hermitian.

c) Calculate ÂÂ†, Â†Â, and Â2.

d) What are the eigenvalues and eigenkets of Â?



Ex. TH-3.8: Three-dimensional ket space

Consider a three-dimensional ket space. If a certain set of orthonormal kets, say, |1〉, |2〉,
and |3〉, are used as the base kets, the operators Â and B̂ are represented by

Â
.
=





a 0 0
0 −a 0
0 0 −a



 , B̂
.
=





b 0 0
0 0 −ib

0 ib 0



 ,

where a, b are both real.

a) Show that Â exhibits a degenerate spectrum. Does B̂ also exhibit a degenerate spec-
trum?

b) Calculate [Â, B̂].

c) Find a new set of orthonormal kets which are simultaneous eigenkets of both Â and
B̂. Specify the eigenvalues of Â and B̂ for each of the three eigenkets. Does your
specification completely characterize each eigenket?

Ex. TH-3.9: Transformation matrix

Construct the transformation matrix that connects the Ŝz diagonal basis to the Ŝx diagonal
basis. Show that your result is consistent with the general relation

U =
∑

n

|b(n)〉〈a(n)| .

Ex. EXP-3.1: Double-slit experiment and uncertainty relation

Consider the diffraction of electrons with momentum p at a double slit structure (slit distance
g). The electron source and the detector which can be moved in the y-direction are both
located at a distance a from the slit. Assume a � g.

x

y

a a

Detektor

Quelle

Doppelspalt

g

a) For a fixed double slit, determine the width of the 0th order interference maximum
(centered around y = 0), in other words the position of the 1st minima of interference.

b) Now, consider the double-slit was made moveable in the y-direction, e.g. by putting it
on rolls. Evaluating the momentum transfer of the scattered photon to the assembly,
one can thus decide through which one of the two slits the electron travelled. Calculate
the momentum transferred from the electron to the double slit assembly, and evaluate
the minimum value of the uncertainty in the position of the double slit and thus the
smearing of the central part of the interference maximum. What changes will be seen
in the interference pattern?



Ex. EXP-3.2: Einstein-Rupp experiment

The following experiment seems to indicate an inconsistence between wave- and particle
picture:

d

S

Atom

P

α

An atom in an excited state (velocity v) passes a slit S with width d parallel to a screen.
The monochromatic light of frequency ν emitted from the atom and travelling through the
slit is observed by a spectroscope at P . As the light of the atom can only reach point P in
the short period t (the time the atom requires to pass the slit), the wave train observed in
P has a finite length. Thus, its frequency will not be monochromatic any more and in P

one will detect a broadening ∆ν of the sharp line with frequency ν, in contradiction to the
description by light quanta, where the atom emits monochromatic light.
The mistake in these considerations has been found by Bohr and is linked to the neglect of
the Doppler effect and the scattering of the photon at the slit (photons travelling from the
atom to P can not only be emitted perpendicularly, but also under an angle α due to the
scattering).
Discuss quantitatively by calculating ∆ν!

Ex. EXP-3.3: Pound-Rebka experiment; Einstein’s “clock in the box”

a) The principle of equivalence is the basic principle of the theory of relativity. A conse-
quence is the equality of inertial and heavy mass. Show that the frequency of a photon
falling a distance L in a gravitational field is shifted by

∆ν

ν
=

gL

c2
.

b) Calculate this effect for a 14.4keV photon (57Fe source) and L = 22.6m. How would
you design an experimental setup (source, detector etc.)? The natural line width in
this case is Γ

ν
= 1.13 · 10−12.

c) Einstein always felt uneasy about the consequences of quantum mechanics, and thus
he proposed a number of thought experiments which should disprove the uncertainty
principle.

Discuss the following suggestion: A box filled with radi-
ation can be opened for an arbitrarily short time ∆t by
a clock inside it. The energy of the escaped photon can
be measured very accurately by weighing the box before
and after opening it, in contradiction to ∆E∆t ≥ h.
What is the problem in these considerations?
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Ex. TH-4.1: Coordinate and momentum operators

a) Let x and px be the coordinate and linear momentum in one dimension. Evaluate the
classical Poisson bracket [x, F (px)]classical

.

b) Let x̂ and p̂x be the corresponding quantum-mechanical operators this time. Evaluate
the commutator [x̂, exp (ip̂xa/})] .

c) Using the results obtained in b), prove that exp(ip̂xa/})
∣

∣x
〉

is an eigenstate of the
coordinate operator x̂. What is the corresponding eigenvalue?

Ex. TH-4.2: Commutators of functions of coordinate and momentum operators

a) Verify that for all functions F and G that can be expressed as power series in their
arguments

[x̂i, G(p̂)] = i}
∂G

∂pi

, [p̂i, F (x̂)] = −i}
∂F

∂xi

.

b) Evaluate [x̂2, p̂2]. Compare your results with the classical Poisson bracket [x2, p2]classical.

Ex. TH-4.3: Gaussian wave packet

Consider a Gaussian wave packet, whose position-space wave function is

〈

x
∣

∣α
〉

=
1

√

d
√

π
exp

(

ikx− x2

2d2

)

.

a) Compute the expectation values of the operator p̂ and p̂2.

b) Repeat the calculation using the momentum-space wave function

〈

p
∣

∣α
〉

=

√

d

}
√

π
exp

(

−(p− }k)2d2

2}2

)

.

Ex. TH-4.4: Coordinate operator in momentum space

a) Prove that

〈

p
∣

∣x̂
∣

∣α
〉

= i}
∂

∂p

〈

p
∣

∣α
〉

,

〈

β
∣

∣x̂
∣

∣α
〉

=

∫

dp
〈

β
∣

∣p
〉

i}
∂

∂p

〈

p
∣

∣α
〉

.

b) What is the physical significance of the operator exp (ix̂p0/}), where p0 is some number
with the dimension of momentum?



Ex. TH-4.5: Translation operator

The translation operator for a finite (spatial) displacement is given by T̂ (l) = exp

(

− i p̂ · l
}

)

.

a) Evaluate
[

x̂i, T̂ (l)
]

.

b) Demonstrate how the expectation value of x̂ changes under translation.

c) Using [x̂, T̂ (dx)] = dx and [p̂, T̂ (dx)] = 0, prove that under an infinitesimal translation
〈x̂〉 → 〈x̂〉+ dx and 〈p̂〉 → 〈p̂〉

Ex. TH-4.6: Commutator of momentum operators

Prove that [p̂i, p̂j] = 0.

Ex. TH-4.7: Ice pick in the balance

Estimate the order of magnitude of the time that an ice pick can be balanced on its point
if the only limitation is that set by the Heisenberg uncertainty principle. Assume that the
point is infinitely sharp and hard and that it is sitting on an infinitely hard and smooth
surface. Assume reasonable values for the dimensions and weight of the ice pick.

Ex. EXP-4.1: Malus’s law

With the help of a polarizer, a beam of monochromatic light is converted into a linearly
polarized beam (direction of polarization i). This beam hits an analyzer with direction
of polarization f which is rotated by an angle θ with respect to the polarizer (see figure).
Finally, a photomultiplier detects the photons in the transmitted beam.

a) Calculate the projection probability P (f ← i) as a function of the angle θ, where i
and f indicate states of photons polarized linearly in direction i or f , respectively.
Hint: Use the Poynting-vector

S (z, t) =
1

µ0

E (z, t) B (z, t) =
1

µ0c
E2 (z, t)

We now measure, for different values of the angle θ, the number Z ′ of photons detected in
the photomultiplier after a fixed time of exposition t0. The results are given in the following
table:



θ Z ′

0◦ 5056
30◦ 3750
45◦ 2598
90◦ 74

b) Using the data from the table above, calculate the ratio of the number of photons in
the incident beam and in the transmitted beam (Zf (θ) /Zi) for the angles θ = 30◦ and
θ = 45◦.
Hint: Assume Z ′ (90◦) was the mean extent of the background radiation and Z ′ (0◦)
the mean number of photons in the incident beam.

c) Determine the statistical errors for the results in b) and compare the results with the
respective projection probabilities of a).

Ex. EXP-4.2: Elliptical polarization

A monochromatic plane em-wave in free space propagates in the z-direction of a Cartesian
coordinate system. The E-field of a general wave of this kind is of the form

Ex (z, t) = E0x cos (kz − ωt)

Ey (z, t) = E0y cos (kz − ωt + ε)

Ez (z, t) ≡ 0

a) Show that E describes an ellipse in every plane z =const. (elliptically polarized wave).
Set up the equation of the ellipse in the coordinate system (x′, y′) of the principal axes
of the ellipse.

b) For what parameter values is is the wave linearly polarized?

c) For what parameter values is the wave polarized left- or rightcircularly?

d) Show that a general elliptically polarized wave can be expressed as a superposition of
two waves with polarization

- to the basis (x, y)

- to the basis (R, L).

Hint : For the case of the basis (R, L) use the coordinate system of the principal axes
of the ellipse.

e) Using the results of d), calculate the projection probabilities P (x← p), P (y ← p)
and P (R← p), P (L← p), where p is a state of elliptical polarization, and verify the
completeness relation with respect to the bases (x, y) and (R, L).

Ex. EXP-4.3: Spin ”1”

The spin quantum number of an atom in its ground state be j = 1.

a) Formulate the completeness relation with respect to the z-component Jz of the angular
momentum!

b) Formulate the respective orthogonality relations, expressed by the projection proba-
bilities!

c) Give an outline of an experiment that can be used to test the results of a) and b)!



Ex. EXP-4.4: Distance between photons in interference experiments

Assume a laser beam in a quantum interference experiments has a mean intensity of N ≈ 103

photons/sec. What is the mean distance d between two photons?
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Ex. TH-5.1: Spin precession

The Hamiltonian of a spin-1/2 particle with charge q and mass m in a static magnetic field
is given by

Ĥ = −
q

mc
Ŝ · B

Suppose B points in the z direction and that at a time t = 0 the particle is in a generic pure
state.

a) Find out the expectation values of the operators Ŝx, Ŝy, Ŝz. What happens if the

initial state is an eigenstate of Ŝz? And if it is an eigenstate of Ŝx?

b) Write down the Heisenberg equations of motions for the time-dependent operators
Ŝx(t), Ŝy(t), Ŝz(t) and solve them to obtain the expectation values.

Ex. TH-5.2: Coordinate operators at different times

Let x̂(t) be the coordinate operator for a free particle in one dimension in the Heisenberg
picture. Evaluate [x̂(t), x̂(0)].

Ex. TH-5.3: Quantum virial theorem

Consider a particle in three dimensions whose Hamiltonian is given by

Ĥ =
p̂2

2m
+ V (x̂)

By calculating [x̂ · p̂, Ĥ] obtain

d

dt

〈

x̂ · p̂
〉

=
〈 p̂2

m

〉

−
〈

x̂ · ∇V̂
〉

To identify the preceding relation with the quantum-mechanical analogue of the virial theo-
rem it is essential that the left-hand side vanish. Under what conditions would this happen?

Ex. TH-5.4: Time evolution of a two-state system

Let
∣

∣a1

〉

and
∣

∣a2

〉

be nondegenerate eigenstates of a Hermitian operator Â with eigenvalues
a1 and a2. The Hamiltonian is

Ĥ =
∣

∣a1

〉

δ
〈

a2

∣

∣ +
∣

∣a2

〉

δ
〈

a1

∣

∣,

where δ is a real number.



a) Find the energy eigenstates and eigenvalues.

b) Write down the state vector
∣

∣a(t)
〉

in the Schrödinger picture for t > 0 if
∣

∣a(0)
〉

=
∣

∣a1

〉

.

c) What is the probability of finding the system in
∣

∣a1

〉

at a time t > 0?

d) Can you think of a physical situation corresponding to this problem?

Ex. TH-5.5: Sum rule for a one-dimensional system

Consider a particle in one dimension whose Hamiltonian is

Ĥ =
p̂2

2m
+ V (x̂)

By calculating [[Ĥ, x̂], x̂] prove that

∑

j

∣

∣

〈

Ei

∣

∣x̂
∣

∣Ej

〉∣

∣

2

(Ej − Ei) =
}

2

2m

where
∣

∣Ei

〉

are the energy eigenkets.

Ex. TH-5.6: Time evolution of the variance of a wave packet

Consider a free-particle wave packet in one dimension. Initially it satisfies the minimum
uncertainty relation. Using the Heisenberg picture, obtain 〈∆x̂2(t)〉, when 〈∆x̂2(0)〉 is given.
(Hint: take advantage of the result of Ex. TH-2.8 b).

Ex. TH-5.7: Harmonic oscillator

The Hamiltonian for the single harmonic oscillator is given by

Ĥ =
p̂2

2m
+
mω2

2
x̂2

where ω is the angular frequency of the classical oscillator.

a) Recall the classical equations of motions, i.e., x(t) and p(t).

b) Derive the equations of motion for the operators x̂(t) and p̂(t) in the Heisenberg picture
and demonstrate that the expectation values fulfill the classical equations of motion.

c) Does this also hold for a potential of the form V (x) = kx4, with k = const.?

Ex. TH-5.8: One-dimensional box

Consider the one-dimensional movement of a particle in a box, x ∈ [−a, a], in position space,
described by a discrete set of Schrödinger wave functions ψn(x). What are the boundary
conditions for ψn(x) such that p̂ = −i} ∂

∂x
is a Hermitian operator?



Ex. EXP-5.1: µSR-experiment

The decay rate of muons as a function of their lifetime t is given by

Z (t) = Z0e
−t/τ

[

1 −
1

3
cos

(

∆EB

}
t

)]

with ∆EB being the splitting of the energy of the muon in the magnetic field and τ ≡ τµ its
mean lifetime.

a) Calculate the number N (E; t1, t2) of decays of the muon in the time interval t1 ≤ t ≤ t2
as a function of its energy for the cases

i) 0 ≤ t ≤ τ and

ii) τ ≤ t ≤ ∞.

b) Determine for the cases i) and ii) the probability of a decay of the muon as a function
of its energy E:

P (E; t1, t2) =
N (E; t1, t2)
∫ t2

t1
Z0 e−t/τdt

Ex. EXP-5.2: Neutrons in a magnetic field

A monochromatic beam of neutrons (de Broglie wavelength λ = 1.55 Å, spin= 1/2, g-factor=
−3.83, proton-mass mp = 938 MeV/c2 ' neutron-mass mn) is polarized by a polarizer in
x-direction and enters a region with a homogeneous magnetic field oriented in the z-direction
(B = 1.55 · 10−3T).

In the distance d from the polarizer an analyzer movable in the y-direction is permeable
for neutrons polarized in the x-direction. The passing neutrons are counted by an attached
detector as a function of the distance d.
Calculate the probability of detection P (d) of a neutron entering the magnetic field as a
function of the distance d and sketch it. The decay of neutrons may be neglected.



Ex. EXP-5.3: Quantum amplitudes and phases

In the lecture, you have learned about quantum amplitudes 〈R|r〉 between linear and circular
polarized light that form the basis of projection probabilities. Show that the quantum
amplitude

〈

R
∣

∣r
〉

=
〈

R
∣

∣x
〉〈

x
∣

∣r
〉

+
〈

R
∣

∣y
〉〈

y
∣

∣r
〉

cannot be real but must be complex. Then, show that the respective phase can be chosen
arbitrarily.



Exercises in Quantum Mechanics – Integrated Course

Prof. Dr. C. Back Summer semester 2005

Prof. Dr. M. Stratmann Sheet 6

Dr. A. Bacchetta

K. Perzlmaier

Ex. TH-6.1: Density operator (I)

a) Convince yourself that the density operator ρ for a mixed ensemble fulfills Tr(ρ2) < 1.

b) The matrix representations of the operators A, B, and C in the |±〉 basis read

A =

(

3 0
0 −1

)

, B =

(

1 1
1 −1

)

, c =

(

0 2i
−2i 0

)

.

The following ensemble averages have been measured on a spin system:

[A] = 2 , [B] =
1

2
, [C] = 0 .

Use this information to construct the density matrix of the spin system and check if it
is a pure or a mixed ensemble.

Ex. TH-6.2: Density operator (II)

A Stern-Gerlach apparatus is oriented in the direction of

~n = (sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ) ,

i.e., it can be used to prepare spin states

|~n; +〉 =

(

cos(ϑ/2)
eiϕ sin(ϑ/2)

)

, |~n;−〉 =

(

− sin(ϑ/2)
eiϕ cos(ϑ/2)

)

(given in the usual |±〉 basis). Consider a mixed ensemble of the two spin states with
probabilities w+ and w−.

a) Show that the density matrix in the |±〉 basis is given by

ρ =
1

2

(

1 + (w+ − w−) cos ϑ (w+ − w−)e−iϕ sin ϑ
(w+ − w−)eiϕ sin ϑ 1 − (w+ − w−) cos ϑ

)

.

b) Calculate the ensemble averages

Pi ≡ [σi] = Tr(ρσi) where i = x, y, z ,

and show that ρ can be written as

ρ =
1

2

(

1 + Pz Px − iPy

Px + iPy 1 − Pz

)

=
1

2
(1 + ~P · ~σ) .



Ex. TH-6.3: Orthogonality of bound-state solutions

Ψ1(x) and Ψ2(x) are bound-state solutions (real valued) of the Schrödinger equation with
energy eigenvalues E1 and E2 6= E1, respectively. Show with the help of the Wronski
determinant that Ψ1(x) and Ψ2(x) are orthogonal.

Ex. TH-6.4: “Theorem about oscillations”

In the lecture we have discussed the “Theorem about oscillations” stating that for two bound-
state solutions of the Schrödinger equation Ψ1,2(x) with eigenvalues E2 > E1 at least one
zero of Ψ2 has to be found in the x interval spanned by two successive zeros of Ψ1. Find a
proof of this assertion (hint: proof by contradiction).

Ex. TH-6.5: Particle in a one-dimensional potential

Consider a particle of mass m in a one-dimensional potential of the form

V (x) =







V1 > 0 −∞ < x ≤ −x0

0 for −x0 < x < x0

V3 > V1 > 0 x0 ≤ x < ∞
.

Consider only energies in the range 0 ≤ E < V1 (bound-states).

a) Specify the Schrödinger equation for each of the three different regions using

k2 =
2m

~2
E , κ2

1,3 =
2m

~2
(V1,3 − E) .

Specify the conditions following from the continuity of the wave function and their first
derivative.

b) Show that the energy spectrum can be determined from the condition

1 = e−4ikx0
V3

V1

(

k + iκ1

k − iκ3

)2

(if necessary you can use Maple or Mathematica to solve the system of equations).

c) Discuss why the energy spectrum is discrete [graphical discussion of the result in b)].

Ex. TH-6.6: Double-δ-potential

Consider a particle of mass m in a potential of the form

V (x) = −V0δ(x + x0) − V0δ(x − x0) with V0 > 0 .

Compute the normalized eigenfunction for all bound-states. How many bound-states exist
as a function of V0? What happens for x0 → 0?

Ex. TH-6.7: Scattering off a combined δ/rigid wall potential

Consider an incoming wave Ψin = eik0x, k2
0 = (2m/~

2)E, from −∞ scattering off a potential
of the form

V (x) =

{

~
2V0

2m
δ(x + x0) for x ≤ 0, x0 > 0

+∞ for x > 0
.

Compute the amplitude of the reflected wave as a function of the energy E. What happens
for V0 = 0 and V0 = ∞?



Ex. EXP-6.1: two-level atom and photon

a) Inform yourselves on the concept of creation- and annihilation operators!

b) Investigate the interaction of a photon with a two-level atom with the Hamilton-
operator

H = E1a
+

1 a1 + E2a
+

2 a2 + }ωb+b + Ga+

2 a1b + Ga+

1 a2b

with E2 − E1 = }ω. a+

j , aj are the creation- and annihilation operators for electrons,
b+, b for photons, respectively. In this context it is sufficient to treat a+, a analogous
to the operators b+, b. φ0 be the combined vacuum state. For the wave function, use

ψ = c1 (t) a+

1 b+φ0 + c2 (t) a+

2 φ0.

Verify the following rules:

a+

1 a1 · a+

1 b+φ0 = a+

1 b+φ0

a+

2 a2 · a+

1 b+φ0 = 0

a+

2 a1b · a+

1 b+φ0 = a+

2 φ0

a+

1 a2b
+ · a+

1 b+φ0 = 0

a+

1 a1a
+

2 φ0 = 0

a+

2 a2a
+

2 φ0 = a+

2 φ0

a+

2 a1a
+

2 φ0 = 0

a+

1 a2b
+a+

2 φ0 = a+

1 b+φ0

Ex. EXP-6.2: Hilbert space

Prove that the spin wave functions constitute a Hilbert space!

Ex. EXP-6.3: entanglement

Show that the wave function

ψ (1, 2) =
1√
2

(|↓〉 |↓〉 + |↑〉 |↑〉)

can be written as an entanglement of the wave functions

ϕ1 (1) = d1 |↓〉1 + d2 |↑〉1 , |d1|2 + |d2|2 = 1, ϕ2 (2) = d∗

2 |↓〉2 − d∗

1 |↑〉2 .

Ex. EXP-6.4: local realistic theories; EPR experiments; Bell inequality

We try to define a local realistic theory as a substitute for quantum theories.

a) What does local-realistic theory mean in contrast to quantum theory? In what way is
quantum theory considered to be ”incomplete”?



b) In a local realistic theory we consider a source that produces particles characterized by
a set of parameters λ. Particles (e.g. photons) are produced with a probability density
ρ (λ), with

∫

ρ (λ) dλ = 1, ρ (λ) ≤ 0.

In places A and B the polarization of the emitted photons is measured, and the result
is well-defined, ±1:

Sλ
A (δ1) = (+1,−1) , Sλ

B (δ2) = (+1,−1)

The classical correlation coefficient is defined as

ε (δ1, δ2) =

∫

ρ (λ) Sλ
A (δ1) Sλ

B (δ2) dλ.

In our special case, the experimentally verified complete correlation for the special case
of identical orientation δ of the polarizers shall be fulfilled:

εkl (δ, δ) =

∫

ρ (λ) Sλ
A (δ) Sλ

B (δ) dλ = 1

Show how one can get the result

∣

∣εkl (δ1, δ2) − εkl (δ1, δ3)
∣

∣ = 1 − εkl (δ2, δ3) .

(Bell inequality) out of these assumptions!

c) Does quantum theory comply with the Bell inequality, or is there a conflict?

d) Do experimental results argue for local realistic theories or for quantum theories?
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Ex. TH-7.1: Wave packet at a potential step

Study “complement JI” of Cohen-Tannoudji on the behavior of a wave packet at a potential
step and discuss it in the tutorials.

Ex. TH-7.2: Two-dimensional infinite well and degeneracies of energy eigenvalues

Consider a particle of mass m restricted to the x− y plane inside a “square box” of edge a;
its potential energy V (x, y) becomes infinite when either x or y are outside of the interval
[0, a]. Give the energy eigenvalues and the normalized wave functions. It turns out that the
same energy eigenvalue can be obtained for different combinations of the relevant quantum
numbers, i.e., for different wave functions (degeneracy). Which of the degeneracies are caused
by the symmetry of the problem? Are there also “accidental” degeneracies?

Ex. TH-7.3: α-decay

An α particle in a nucleus approximately “feels” a potential of the form

V (r) =

{ −V0 0 < r < R
ZZαe2

4πε0r
r > R

,

where r is the distance from the centre, R denotes the radius of the nucleus, and V0 ≈
O(107 eV). Z is the charge of the nucleus and Zα = 2.

a) The decay has an exponential behavior ∼ exp(−λt) with the decay rate given by
λ = λ0T , where

T = e−
2

~

∫
b

R

√
2mα(V (r)−E)dr

(V (b) = E > 0). T is the transmission coefficient through a barrier derived in the
lecture. Discuss why λ0 ' v0/(2R), with v0 the velocity of the α particle, is a good
approximation for λ0.

b) Compute the integral in the exponent of T and expand the result in the limit of small
energies of the α particle: 0 < E ¿ V (R).

c) How does ln(λ) scale with Z and E? This is the so-called Geiger-Nuttal relation.



Ex. TH-7.4: Periodic potential a la Kronig and Penney

Consider the following one-dimensional periodic arrangement of potential wells

V (x) =
∞

∑

n=−∞

VP (x − nL) with VP (x) =

{

0 0 < x < a
V0 = const. > 0 a < x < L

.

Solutions are given by linear combinations of Bloch wavefunctions which have the property

Ψ(α)(x + L) = Ψ(α)(x)eiα

with a real phase α.

a) Show that the solutions Ψ(α)(x) for E < V0 fulfill

cos(ka) cosh(κb) − κ2 − k2

2κk
sin(ka) sinh(κb) = cos(α)

with k =
√

2mE/~, κ =
√

2m(V0 − E)/~, and b = L − a.

b) What are the energy levels E = E
(α)
n (n = 0, 1, 2, . . . ) in the limit V0 → ∞ for fixed α?

c) Compute in this limit to first non-vanishing approximation the “bandwidth” of the
energy spectrum, i.e.,

∆En = max
(

E(α)
n

)

− min
(

E(α)
n

)

for fixed n and α ∈ [0, 2π].

Ex. TH-7.5: Properties of the Hermite polynomials

The Hermite polynomials Hn(x) can be defined by their generating function F (s, x) =
exp(−s2 + 2sx):

F (s, x) =
∞

∑

n=0

sn

n!
Hn(x) .

a) First show that

H ′
n(x) = 2nHn−1(x) ,

Hn+1(x) = 2xHn(x) − 2nHn−1(x) ,

and then derive the differential equation

H ′′
n(x) − 2xH ′

n(x) + 2nHn(x) = 0

obeyed by the Hermite polynomials.

b) Show with the help of the generating function F (s, x) that

Hn(x) = (−1)nex2 dn

dxn
e−x2

and compute Hn for n = 0, 1, 2.



Ex. TH-7.6: Parity operator

Show that the operator

Π = exp

[

iπ

(

p2

2α
+

α

2~2
x2 − 1

2

)]

acts like the parity operator. α is a positive and real constant.

Ex. TH-7.7: Matrix representation of the harmonic oscillator

Give the matrix representation of the operators a, a†, x, and p for the base kets {|n〉} and
calculate [x, p].

Ex. TH-7.8: Expectation values and time development of the harmonic oscillator

a) Compute the expectation values of x, x2, p, p2, and 〈(∆x)2〉〈(∆p)2〉. Choose the most
convenient system of base kets to perform these calculations!

b) Consider now the time development of the harmonic oscillator in the Heisenberg pic-
ture, i.e., compute x(t) and p(t). Construct for t = 0 a linear combination of the
ground state |0〉 and the first excited state |1〉 such that 〈x〉 is as large as possible.
What is the state vector for t > 0. Evaluate the expectation value 〈x〉 and 〈(∆x)2〉 as
a function of t.

Ex. TH-7.9: Coherent (Glauber) state

In this exercise we want to construct a superposition of energy eigenstates that most closely
imitates the classsical oscillator, i.e., we want a wave packet that bouces back and forth
without spreading in shape. This superposition is called a coherent or Glauber state and
plays an important role in laser physics.

a) Construct a normalized eigenstate

|α〉 =
∞

∑

n=0

cn|n〉

of the annihilation operator a with complex eigenvalue α, i.e., a|α〉 = α|α〉.

b) Compute the expectation values of x, x2, p, p2, and 〈(∆x)2〉〈(∆p)2〉 in the state |α〉.

c) What about an analogous construction for a†?

d) Now consider the unitary operator

D(α) = eαa†−α∗a .

Show that (recall exp(A + B) = exp(A) exp(B) exp(− i
2
[A,B]))

D(α) = e−|α|2/2eαa†

e−α∗a .

With the help of this result find the coordinate space representation of the coherent
state

Ψα(x) ≡ D(α)Ψn=0(x) = e−|α|2/2

∞
∑

n=0

αn

√
n!

Ψn(x) .



e) Express (αa† − α∗a) by x and p to show that

D(α) = exp

(

(α∗)2 − α2

4

)

exp

(

i

~
pαx

)

exp

(

− i

~
xαp

)

where

xα ≡
√

2~

mω
Re(α) and pα ≡

√
2~mω Im(α) .

f) Use the result of section e) to show that (hint: recall the translation operator)

Ψα(x) = exp

(

(α∗)2 − α2

4

)

exp

(

i

~
pαx

)

Ψ0(x − xα) .

g) For t = 0 we prepare the system to be in the coherent state Ψ(x, 0) = Ψα0
(x).

Show that for t > 0

Ψ(x, t) = Ψα(t) exp

(

− i

2
ωt

)

where α(t) = α0e
−iωt .

Plot |Ψ(x, t)|2 for ωt = 0, π/2, π (choose α0 =
√

8). Compare the behavior of |Ψ(x, t)|2
with the one of a wave packet describing a free particle.

Ex. EXP-7.1: double-step potential

A particle wave propagating from left to right hits a potential

V (q) =







0 for q ≤ 0
V0

2
for 0 < q < q0

V0 for q0 ≤ q

(see figure).

Give the wave functions in the three regions and calculate the transmission- and reflection
coefficients! Are they larger or smaller compared to a single potential step?



Ex. EXP-7.2: field emission

Inside a metal, the quasi-free conduction electrons have a smaller potential energy than
outside. Thus, the conduction electrons cannot leave the metal. Due to the Pauli-principle,
a certain energy level can be populated by no more than two electrons (with opposite spin).
At T = 0, they fill the conduction band up to the Fermi-energy εF . The energetic difference
to the outer space with potential V0 is called work function W (= V0 − εF ).

On applying a homogeneous electric field perpendicular to the metal’s surface, this field does
not enter the metal but changes the electrons’ potential outside the metal from V0 = const.
to

V (q) = V0 − eEq

(e < 0). Thus quantum mechanical tunnelling becomes possible (field emission).
What current jd can be measured outside the metal after applying the field? Assume that
due to the shortest tunnelling length only electrons from the Fermi edge participate in the
tunnelling process!

Ex. EXP-7.3: NH3

Classically, ammonia (NH3) exists in two different states, the nitrogen atom being located
either above or below the plane of the three hydrogen atoms (see figure).

a) Looking at the energy landscape (see figure below), how can the classical movement
of the nitrogen atom be described qualitatively?



A quantum mechanical treatment of the ammonia molecule is based on the potential energy
of the nitrogen atom. We approximate the potential by the one shown in the figure below.
We are looking for stationary states with energy E.

b) Obviously, the problem has a rotational symmetry relative to x = 0. What can thus
be said about the parity of the solutions?

c) We concretize the above potential by setting d = a.
Formulate the wave functions for the three different regions. Determine parameters by
taking into account boundary conditions and the normalization of the wave function.
Find equations that can be used to determine the energy states.
Hint : introduce variables

ε :=
E

U0

; 0 ≤ ε ≤ 1

and

γ :=
a

}

√

2mU0.

The mass of the nitrogen atom is 15 · 1.66 · 10−27kg. The combination of a (= d) and
U0 be chosen in a way so that γ = 5.5.

d) Determine the energy states of ammonia. The equations found in exercise c) are
somewhat difficult, thus you can solve them graphically. The graph below might help
you.



e) Now determine the wave functions of these stationary states. As the energy eigenvalues
lie closely together, it is sufficient to chose the mean value of their energy parameters.
What is the main difference between these wave functions and the classical states?

f) Formulate linear combinations of the wave functions from exercise e) that are closer
to the classical solution. What is the problem with these new states? What kind of
behavior would you thus expect for ammonia molecules?

Ex. EXP-7.4: Quantum corrals

In STM experiments it was possible to arrange 48 Fe adatoms in a ring (”corral”) on a
Cu(111) surface (see pictures). The diameter of the ring was 72Å. In the following exercise,
the quantum states of an electron in a circular 2D quantum well shall be investigated.



a) Give the 2D Laplace operator ∇2 = ∂2/∂x2 + ∂2/∂y2 in polar coordinates {r, φ} with
x = r cos φ and y = r sin φ.

b) Now investigate an electron in the 2D potential

V (r) =

{

0 for r < R
∞ for r ≥ R



What values can the quantum number of angular momentum, n, assume if one takes
the separational approach ψ (r, φ) = J (kr) einφ for a wave function to the energy
eigenvalue E = }

2k2/2m?

c) Show by insertion of this separational approach into the Schrödinger equation that
J (x) complies with the Bessel differential equation

x2J ′′ (x) + xJ ′ (x) +
(

x2 − n2
)

J (x) = 0

for x < kR. Its four first solutions are depicted in the figure below.

d) By which postulation are the discrete energy eigenvalues E = }
2k2/2m determined?

With help of the figure above, give the three lowest energy eigenvalues for n = 0.

e) What do the lines defined by ψ = 0 look like? Compare to the respective lines you
would expect if the Fe adatoms were aligned in a rectangle!

f) What changes (qualitatively) if the infinite potential walls are replaced by a finite
barrier

V (r) =







0 for r < R
V0 for R ≤ r ≤ R + d
0 for r > R + d

?
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Ex. TH-8.1: Potential well of arbitrary shape and quantum properties of a particle in an

arbitrary periodic structure

Read through complements NIII and OIII of Cohen-Tannoudji and discuss the idea of a
transmission matrix, S matrix, and iteration matrix in the tutorials.

Ex. TH-8.2: One-dimensional harmonic oscillator in thermodynamic equilibrium

Study the physical properties of a one-dimensional harmonic oscillator in thermodynamic
equilibrium with a reservoir at temperature T . Such a system is not in a pure state but can
be described as a statistical mixture of stationary states |n〉 with weights proportional to
exp(−En/kT ). Recall from the lectures that the corresponding density matrix is given by

ρ = Z−1 exp(−H/kT )

where Z is the partition function Z = Tr [exp(−H/kT )].

a) Show that the partition function is given by

Z =
e−~ω/(2kT )

1 − e−~ω/(kT )
.

b) Show that the ensemble average [H] is given by

[H] = Tr(Hρ) = kT 2 1

Z

dZ

dT
=

~ω

2
+

~ω

e~ω/(kT ) − 1
.

c) Compare the result of b) with that for a classical oscillator, [H]cl = kT , as a function
of T .

Ex. TH-8.3: Particle in a central potential

Consider a particle of mass m in a central potential of the form

V (r) =
c

r2
+

1

2
mω2r2 , c > 0 .

a) Study only the radial part of the stationary Schrödinger equation: discuss the asymp-
totic behavior for r → 0 and r → ∞ and show that

u(r) = rR(r) = rκe−γr2

g(r)

is a suitable ansatz for the radial solution.



b) Find a differential equation for g(r) and use the ansatz

g(r) =
∑

k

akr
k

to solve it.

c) Why does the series in b) terminate at some finite k = n? Determine the allowed
energy eigenvalues from this condition.

Ex. TH-8.4: Particle in a potential with cylindrical symmetry

a) Give the stationary Schrödinger equation in cylindrical coordinates, x = r cos ϕ, y =
r sin ϕ, and z = z.

b) Consider a potential of the form

V (~r) = V (r) = −
c

rα
, α > 1, c > 0

and use the ansatz Ψ(~r) = R(r)f(ϕ)g(z) to derive equations for the radial, the axial,
and the angular motion of a particle. What are the solutions for the axial and the
angular equations?

c) Consider now the radial equation: use the ansatz R(r) = rnu(r) to show that it can
be cast into the form

(

d2

dr2
+

2n + 1

r

d

dr
+

n2

r2
− F (r)

)

u(r) = 0 .

Specify F(r) and give the most convenient choice of n?

d) The potential of a molecule stretched along the z direction is approximately given by

V (~r) = V (r) = −
Ze2

r
.

Try to find the energy eigenvalues of an electron bound in this potential using the
standard steps as, e.g., in example TH-8.3.

Ex. TH-8.5: Pöschl-Teller potential

Consider the one-dimensional stationary Schrödinger equation for a potential of the form

V (x) =
V0

cos2(αx)

with a positive constant V0 = ~
2

2m
α2λ(λ − 1), i.e., λ > 1. Use y = sin2(αx) to derive a

differential equation for u(y). Demonstrate that with the help of u = (1 − y)λ/2f(y) one
arrives a hypergeometric differential equation for f :

y(1 − y)
d2f

dy2
+

[

1

2
− (λ + 1)y

]

df

dy
+

1

4

(

k2

α2
− λ2

)

f = 0

where k2 = 2mE/~
2. What is the general solution of this equation in terms of 2F1(a, b, c; z)?



Ex. TH-8.6: Virial theorem, Kramers relation, and expectation values 〈rλ〉 for the H-atom

a) The virial theorem for a Hamilton operator H = T + V with T = ~p 2/(2m) and
V = V (~r) has the form

2〈T 〉 = 〈~r · ~∇V (~r)〉

where the expectation values are taken with respect to eigenstates of H. Use this
relation to calculate the expectation values 〈1/r〉nl for the hydrogen atom.

b) Derive Kramers relation

λ + 1

n2
〈rλ〉nl − (2λ + 1)aB〈r

λ−1〉nl +
λ

4
((2l + 1)2 − λ2)a2

B〈r
λ−2〉nl = 0 ,

where aB is the Bohr radius, and use the result of a) to compute 〈r〉nl and 〈r2〉nl.

Ex. TH-8.7: Laguerre polynomials

The Laguerre polynomials are defined by

Lp(z) = ez dp

dzp

(

zpe−z
)

p = 0, 1, 2, . . .

or with the help of a generating function

1

1 − t
exp

(

−z
t

1 − t

)

=
∞

∑

p=0

Lp(z)
tp

p!
.

The associated Laguerre polynomials (which show up in the Coulomb problem) are given by

Lk
p(z) ≡

dk

dzk
Lp(z) , k ≤ p .

a) Show that Lp
p(z) = (−1)pp!.

b) Derive the recurrence relations

Lp+1(z) − (2p + 1 − z)Lp(z) + p2Lp−1(z) = 0

d

dz
Lp(z) − p

(

d

dz
Lp−1(z) − Lp−1(z)

)

= 0 .

c) Use b) to derive the Laguerre differential equations

[

z
d2

dz2
+ (1 − z)

d

dz
+ p

]

Lp(z) = 0

[

z
d2

dz2
+ (k + 1 − z)

d

dz
+ (p − k)

]

Lk
p(z) = 0 .



Ex. EXP-8.1: non-destructive detection of a photon in a cavity resonator

Normally, a photon is destroyed upon detection. Thus it is impossible to detect the same
photon twice. Nevertheless, by manipulating atomic states in a cavity resonator it was
possible to detect a photon without destroying it, making use of a very strong interaction
between matter and radiation.
In a cavity resonator, only specific modes with discrete energy can exist. Such a mode can
be occupied by n = 0, 1, 2, ... photons. Here, we regard such a mode C, and n = 0 or n = 1.
The investigated atom has three energy levels, e, g, i, where the transition between e and g
be resonant with the mode C but not with the transition between g and i (see figure).

The system performs a Rabi oscillation between the states |g, 1〉 and |e, 0〉. At time t, the
system is in the coherent superposition state

ψ = cos (Ωt/2) |g, 1〉 + sin (Ωt/2) |e, 0〉 .

a) What behavior do you expect for an interaction of duration t = 2π/Ω, in the cases
that a photon is present or not?

b) What happens by including the states |i, 1〉 and |i, 0〉 into your considerations?

c) Now two fields are applied that change the ”angle” of the superposed states between
the states g and i (see figures). Explain what happens here and how this behavior can
be used for the non-destructive detection of a photon.



d) In exercise Exp-6.1 you have investigated a two-level atom. How can the states and
rules studied in that exercise be applied to the system examined here?



Exercises in Quantum Mechanics – Integrated Course

Prof. Dr. C. Back Summer semester 2005

Prof. Dr. M. Stratmann Sheet 9

Dr. A. Bacchetta

K. Perzlmaier

Ex. TH-9.1: Electron-positron system in a uniform magnetic field

The spin-dependent Hamiltonian of an electron-positron system in the presence of a uniform
magnetic field in the z-direction can be written as

H = A~Se · ~Sp +

(

eB

mc

)

(Se
z − Sp

z ) .

Suppose the spin function of the system is given by χe
+χp

−. Note that the operator ~Se acts

only on the electron state spinor χe
+, and similarly, the operator ~Se acts only on the positron

state spinor χp
−.

a) Is this an eigenfunction of H in the limit A → 0 and eB/mc 6= 0? If it is, what is the
energy eigenvalue? If it is not, what is the expectation value of H?

b) Same problem when eB/mc → 0 and A 6= 0.

Ex. TH-9.2: Infinitesimal rotation of an angular-momentum eigenstate (optional)

An angular-momentum eigenstate |j,m = mmax〉 is rotated by an infinitesimal angle ε about
the y-axis. Obtain an expression for the probability for the new rotated state to be found
in the original state up to terms of order ε2.

Ex. TH-9.3: Particle in a spherically symmetric potential

The wave function of a particle subjected to a spherically symmetric potential V (r) is given
by

Ψ(~r) = (x + y + 3z)f(r) .

a) Is Ψ an eigenfunction of ~L2? If so, what is the l value? If not, what are the possible

values of l we may obtain when ~L2 is measured?

b) What are the probabilities for the particle to be found in various ml states?

c) Suppose it is known somehow that Ψ(~r) is an energy eigenfunction with eigenvalue E.
Indicate how we may find the potential V (r).



Ex. TH-9.4: Recurrence relations for |j,m〉 (optional)

Verify the following recurrence relations for the angular momentum states |j,m〉:

a)

|j,m〉 =

√

(j + m)!

(2j)!(j − m)!

(

1

~
J−

)j−m

|j, j〉 ,

b)

|j,m〉 =

√

(j − m)!

(2j)!(j + m)!

(

1

~
J+

)j+m

|j,−j〉 .

Ex. TH-9.5: Expectation values for Jx and Jy

Consider a system prepared in an eigenstate of ~J2 and Jz: |j,m〉. Compute the expectation
values 〈Jx〉, 〈Jy〉, 〈J2

x〉, 〈J2
y 〉, and verify the uncertainty relation.

Ex. TH-9.6: Quantum mechanical rotator

Consider a molecule which has only two rotational degrees of freedom characterized by the
polar and azimuthal angles ϑ and ϕ, respectively. The Hamiltonian for such a system is
given by

H =
1

2I
~L2 , I = const (moment of inertia) .

a) Specify the eigenvalues (degeneracies?) and eigenfunctions of the system.

b) Suppose the system is prepared in the state

Ψ(ϑ, ϕ) = N(cos2 ϑ + sin2 ϑ cos(2ϕ)) , N = const .

What are the probabilities the find 6~
2, 2~

2, and 0 in a measurement of ~L2?
Hint: you don’t have to compute integrals here; try to express Ψ(ϑ, ϕ) by a suitable
combination of spherical harmonics Ylm first!

Ex. TH-9.7: Spin 3/2 state

A spin-3/2 system is prepared in a state |α〉 characterized by

〈α|Sz|α〉 =
3

2
~ .

Find out if |α〉 is an eigenstate of Sz.



Ex. TH-9.8: Nuclear magnetic resonance (NMR)

Consider a neutral spin-1/2 particle (e.g. a neutron) in a time-dependent magnetic field

~B(t) = (b cos(ωt), b sin(ωt), B0)

with b, B0 constant (we have already discussed the case b = 0). The Hamiltonian is given
by

H = −µ~σ · ~B(t) ,

where µ is the magnetic moment of the spin-1/2 particle.

a) Show that the ansatz (“rotating axis representation” by Rabi, Schwinger, and Van
Vleck)

(

Ψ+(t)

Ψ−(t)

)

=

(

e−iωt/2χ+(t)

eiωt/2χ−(t)

)

leads to a Schrödinger equation with a time-independent Hamiltonian

i~
d

dt

(

χ+(t)

χ−(t)

)

=

(

E V
V −E

)(

χ+(t)

χ−(t)

)

.

Determine E and V .

b) Suppose |Ψ(t = 0)〉 = |−〉. What is the probability to find the system at a time t > 0
in the state |+〉? Discuss your result!

Ex. TH-9.9: Runge-Lenz operator and “hidden” dynamical symmetries (optional)

In the lectures we have discussed the degeneracies of the energy eigenvalues En of the
Coulomb problem. From the symmetry properties of the problem (rotational symmetric po-
tential ⇔ SO(3) symmetry) we would expect a smaller degeneracy. Therefore the Coulomb
problem has to have some “hidden” symmetry. A “hidden” symmetry generated by an oper-
ator ~C is characterized by [H, ~C] = 0. For a rotational symmetric problem the generator of
the symmetry commutes with the kinetic and potential term of the Hamiltonian separately.

a) Show that the dimensionless, hermitean Runge-Lenz operator (known from the Kepler
problem in Classical Mechanics!)

~C =
~r

r
+

1

2Ze2m

[

(~L × ~p) − (~p × ~L)
]

is a hidden symmetry of the Coulomb problem V (r) = −Ze2/r.

b) To better understand the properties of the symmetry generated by ~C, try to show how

the energy spectrum En can be derived from the algebraic properties of ~C (i.e., without
solving the Schrödinger equation). Follow these steps:

i) Compute the commutation relations for the set of six operators defined by {L1, L2,

L3, C1, C2, C3}, i.e., [Lk, CL] and [Ck, Cl] (~L is the angular momentum operator,
so you know the commutator already). You will find that the six operators form
a closed algebra but the Ci are not angular momentum operators.



ii) Symmetrize the commutation relations obtained in i) by a suitable rescaling of
~C, i.e., ~N ≡ ~C/

√
a. You should obtain something like

[Lk, Ll] = i~εklmLm , [Lk, Nl] = i~εklmNm , [Nk, Nl] = i~εklmLm .

Don’t be scared to divide by the Hamiltonian H. Since H commutes with ~L and
~C we can always replace H by its eigenvalue En.

iii) Now we are almost there. Consider the linear combinations

~N± =
1

2
(~L ± ~N)

and show that both behave like angular momentum operators, i.e., you immedi-
ately know their spectrum of eigenvalues!

iv) Try to rewrite H in terms of these new operators and derive the eigenvalues En.

To do so, take into account that ~N · ~L = 0.

Remarks: Since ~L = ~N+ + ~N− the actual symmetry group of the Coulomb problem turns
out to be SO(3) ⊗ SO(3) (more precisely its SU(2) ⊗ SU(2)), i.e., SO(4) – the rotational
group in four dimensions. The Coulomb wave function can be expressed as a function on
a 3-sphere and obeys an integral equation which is rotational invariant in four dimensions.
Now it should be obvious why such a symmetry is called a “hidden symmetry”!

Ex. EXP-9.1: Dipole Matrix Elements

In quantum mechanics, dipole matrix elements between two states with wave functions ψ1

and ψ2 are defined by

D =

∫

ψ∗

1 erψ2 dx dy dz .

a) Why is D a vector?

b) Calculate the components of D for the cases

i) ψ1 = ψ2 = ψ1,0,0 ,

ii) ψ1 = ψ1,0,0 , ψ2 = ψ2,0,0 ,

iii) ψ1 = ψ1,0,0 , ψ2 = ψ2,1,0 ,

iv) ψ1 = ψ1,0,0 , ψ2 = ψ2,1,±1 ,

where ψn,l,m is the hydrogen wave-function with quantum numbers n, l,m.

Ex. EXP-9.2: Variational Principle in Quantum Mechanics

We take the ground state of the hydrogen atom as an example to illustrate the variational
principle in quantum mechanics.
Generally, this principle says that the wave-function ψ of the ground state of a Schrödinger-
equation Hψ = Eψ can (besides a direct solution of the Schrödinger-equation) be found by
bringing the expectation value of the energy to a minimum by a proper choice of ψ:



E =

∫

ψ∗ Hψ dx dy dz = Min .

In addition, ψ must satisfy the constraint
∫

ψ∗ψ dx dy dz = 1.

This principle can also be used to approximately determine wave functions and energies.

a) Start from ψ = N e−r2/r2

0 . Determine the normalization factor N . Then, calculate E
as a function of r0. By a proper choice of r0, bring the value of E to a minimum.

b) Do the same calculation again, this time starting from ψ = N e−r/r0 .

c) Compare the results from a) and b) with the exact value of the energy!

Exotic Hydrogen Atoms

Ex. EXP-9.3: Muonium

Muonium is a hydrogen atom whose electron is replaced by a muon. In the following exercises,
calculate quantum mechanically!

a) What is a muon?

b) Calculate the binding energy of a muon and a proton!

c) Calculate the expectation value of the radius of the orbit with n = 1!

d) Assume a transition of the muon from n = 2 to n = 1. Calculate the frequency of the
emitted photon!

Ex. EXP-9.4: Rydberg Atoms

a) What are Rydberg atoms? What properties do they have?

For the excitation of Rydberg Atoms, the additive absorption of the light of two lasers is
used. The first is a laser with a (fixed) photon energy of E = 11.5 eV.

b) What wave-lengths are required for the second laser to reach the states n = 20, n = 30,
n = 40, n = 50?

c) What are the radii and the binding energies for these states?

d) What is the maximum of the spectral linewidth required to excite only one n-state?

Ex. EXP-9.5: Revolutions of Electrons in an Excited Hydrogen Atom

Estimate the number of revolutions an electron performs in an excited state n before it falls
back to the state n = 1. Assume a mean lifetime of 10−8s. Calculate the velocity of the
electrons in Bohr’s picture. Calculate the number of revolutions for

a) n = 2 and

b) n = 15.

Compare to the number of revolutions the earth has performed around the sun in the 4.5
billion years since its formation.



Ex. EXP-9.6: Wannier Excitons

A Wannier Exciton is a bound state of an electron and a hole in solid state. They can also be
regarded as exotic hydrogen atoms. The dielectric constant of the medium and the effective
masses of electron and hole have to be taken into account.

a) What are holes in solid state, esp. semi conductors?

b) Calculate the energies of the excited states 2 ≤ n ≤ 5!

c) What does the absorption spectrum of these excitons look like?

Use the following data: Semi-Conductor Cu2O, εr ≈ 10, reduced mass µ ≈ 0.7me
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Ex. TH-10.1: Total angular momentum eigenstates for an electron

Calculate the eigenstates of the total angular momentum of an electron

~J = ~L + ~S , s =
1

2
, l ≥ 1 ,

in, e.g., a hydrogen atom, i.e., proof that

∣

∣

∣

∣

j = l ± 1

2
, m, l, s =

1

2

〉

=

√

l ± m + (1/2)

2l + 1

∣

∣

∣

∣

l, s =
1

2
, ml = m − 1

2
, ms =

1

2

〉

±
√

l ∓ m + (1/2)

2l + 1

∣

∣

∣

∣

l, s =
1

2
, ml = m +

1

2
, ms = −1

2

〉

.

Ex. TH-10.2: Clebsch-Gordan coefficients for j1 = 1 and j2 = 1

Compute all Clebsch-Gordan coefficients for the coupling

~J = ~J1 + ~J2 , j1 = 1, j2 = 1 ,

and compare your results with the table of Clebsch-Gordan coefficients.

Ex. TH-10.3: Inconsistencies if a half-integer l were possible for orbital angular momentum

In the lectures we used the fact that ~L is the generator of rotations to show that the quantum
number l has to be integer. Suppose Ylm with half-integer l were possible. From

L+Y 1

2

1

2

(θ, ϕ) = 0 ,

we may deduce
Y 1

2

1

2

(θ, ϕ) ' eiϕ/2
√

sin θ .

Now try to construct Y 1

2
−

1

2

(θ, ϕ) by

a) applying L− to Y 1

2

1

2

(θ, ϕ) and by

b) using
L−Y 1

2
−

1

2

(θ, ϕ) = 0 .

Show that the two procedures lead to contradictory results. This gives an argument against
half-integer l values for orbital angular momentum.



Ex. TH-10.4: Useful identity for spherical harmonics (optional)

In the lectures we have left out the proof for
∫

dΩ Y ∗

lm(θ, ϕ) Yl1m1
(θ, ϕ) Yl2m2

(θ, ϕ) =

√

(2l1 + 1)(2l2 + 1)

4π(2l + 1)
〈l1, l2, 0, 0|l, m = 0, l1, l2〉〈l1, l2, m1, m2|l, m, l1, l2〉 .

Proof this identity starting from

D
(j1)
m1m′

1

(R)D
(j2)
m2m′

2

(R) =
∑

j,m,m′

〈j1, j2, m1, m2|j, m, j1, j2〉〈j1, j2, m
′

1, m
′

2|j, m′, j1, j2〉D(j)
mm′(R) .

Find a proof for the latter identity first!

Ex. TH-10.5: Proof of the Wigner-Eckart and projection theorems (optional)

Work through the proof of the Wigner-Eckart and the projection theorem given in Sakurai
and discuss it in the tutorials.

Ex. TH-10.6: Quadrupole moment (optional)

a) Write xy, yz, and (x2 − y2) as components of a spherical irreducible tensor of rank 2.

b) The expectation value

Q ≡ e〈n, j, m = j|(3z2 − r2)|n, j, m = j〉
is known as the quadrupole moment. Evaluate

e〈n, j, m′|(x2 − y2)|n, j, m = j〉
where m′ = j, j−1, j−2, . . . in terms of Q and appropriate Clebsch-Gordan coefficients.

Ex. TH-10.7: Harmonic oscillator with a linear perturbation

A simple, one-dimensional harmonic oscillator is subjected to a perturbation V = bx where
b is a real constant.

a) Calculate the energy shift of the ground-state to lowest non-vanishing order.

b) Solve the problem exactly and compare with your result obtained in a).

Ex. TH-10.8: Anharmonic oscillator

A simple, one-dimensional harmonic oscillator is subjected to a perturbation

V = α
m2ω2

~
x4

where α is a real constant. Calculate the energy shift in the first order perturbation theory.

Ex. TH-10.9: Non-pointlike nucleus

So far we have considered the nucleus to be pointlike, e.g., the proton in the hydrogen atom.
To first order the proton can be considered as a homogeneously charged sphere of radius R.
From Electrodynamics we know the potential of a homogeneously charged sphere to be

V (r) =

{

−e2

R

(

3
2
− 1

2
r2

R2

)

for 0 ≤ r ≤ R

−e2

r
for r ≥ R

.

Compute to first order perturbation theory the energy shift of the ground-state.



Ex. EXP-10.1: Mean Lifetime of Excited Atomic States: Semiclassical Treatment

In the lectures, you have been given an expression of the overlap integral pif for the spon-
taneous emission of a photon,

pif = q

∫

rψi (r)ψf (r) d3r .

This can be used to define the quantum mechanical electrical dipole moment:

p (t) = q

∫

r |ψ (r, t)|2 d3r = 2Re
{

ai (t) bf (t)pife
iω0t

}

In this exercise, a semi-classical approximation of the mean lifetime of an excited state shall
be derived.

a) For simplicity, assume |ai (t) bf (t)| ' 1 for 0 < t ≤ τ and ai (t) bf (t) = 0 else.

b) Estimate the mean power radiated off by the excited atom by treating the quantum
mechanical dipole moment given above as a classical dipole, oscillating with frequency
ω0.

c) Use the assumption from a) to link the total energy emitted from the oscillating dipole
during the period of time τ to the energy difference between the two atomic states.

d) Derive the expression for τ .

Ex. EXP-10.2: Laser

a) What does population inversion mean?

b) How is population inversion normally achieved?

c) Is there a possibility to build a two-level laser?



Exercises in Quantum Mechanics – Integrated Course

Prof. Dr. C. Back Summer semester 2005

Prof. Dr. M. Stratmann Sheet 11

Dr. A. Bacchetta

K. Perzlmaier

Ex. TH-11.1: Gauge transformation

The Schrödinger equation for a particle in an electromagnetic field can be obtained by the
standard one

[

−
}

2

2m
~∇2 + V

]

ψ(~x, t) = i}
∂

∂t
ψ(~x, t).

by replacing the momentum operator

−i}~∇ → −i}~∇−
e

c
~A(~x, t)

and using the scalar potential V = eΦ(~x, t). Show that under a gauge transformation

~A→ ~A′ = ~A+ ~∇Λ, Φ → Φ′ = Φ −
1

c

∂

∂t
Λ

the wavefunction has to acquire a position- and time-dependent phase factor in order to
fulfill the Schrödinger equation.

Ex. TH-11.2: Van der Waals’ interaction

A system is composed of two hydrogen atoms with their protons separated by a fixed distance
r and their electrons at displacements ~r1 and ~r2 from the protons.

a) Show that the Hamiltonian can be written as the sum of the two Hamiltonians of the
two noninteracting atoms plus a term

V =
e2

r
+

e2

|~r + ~r2 − ~r1|
−

e2

|~r + ~r2|
−

e2

|~r − ~r1|

.

b) For r � a0 expand the perturbation V in powers of ri/r, show that the first-order
correction to the ground-state energy vanishes and that the second order correction
goes as 1/r6.

Ex. TH-11.3: Normalization of a perturbed ket

Reproduce the proof of Eq. (5.1.48b) of Sakurai giving the normalization constant of a
perturbed ket.

Ex. TH-11.4: Two-dimensional square well with perturbation

Consider a particle in a two-dimensional infinite square well:

V =

{

0 if 0 ≤ x ≤ a, 0 ≤ y ≤ a,

∞ otherwise.

a) What are the energy eigenvalues of the three lowest states? Is there any degeneracy?



b) We now add a weak perturbating potential

V1 = λxy if 0 ≤ x ≤ a, 0 ≤ y ≤ a.

Obtain the energy shifts of the three lowest states accurate to order λ.

c) Draw an energy diagram with or without the perturbation (specifying which unper-
turbed state is connected to which perturbed state).

Ex. TH-11.5: Two-dimensional harmonic oscillator with perturbation

Consider an isotropic harmonic oscillator in two dimensions. The Hamiltonian is given by

Ĥ =
p2

x

2m
+

p2
y

2m
+
mω2

2
(x2 + y2).

a) What are the energy eigenvalues of the three lowest states? Is there any degeneracy?

b) We now add a weak perturbating potential

V1 = δω2xy.

Find the zeroth-order eigenkets and the corresponding first-order energy shifts of the
three lowest states.

c) Solve the problem exactly and compare with the result in b).

Ex. TH-11.6: Stark effect

Work out the Stark effect to lowest nonvanishing order for the n = 3 level of the hydrogen
atom. Ignoring the spin-orbit force and relativistic correction (Lamb shift), obtain not only
the energy shifts but also the corresponding zeroth-order eigenkets.

Ex. TH-11.7: Zeeman effect for an arbitrary magnetic field

In the presence of a uniform magnetic field B along the z axis, the Hamiltonian for a hydrogen
atom becomes

H = H0 +
µBB

}
(Lz + 2Sz) +

2W

}2

~L · ~S,

where µB is the Bohr magneton, and W is a constant of order µBe
2
}

2/(4πm2
ea

3
0).

a) Show that

~L · ~S =
1

2
(L+S− + L−S+) + LzSz.

b) For an electron in a state with l = 1, working in the basis of the three eigenfunctions of
Lz and the two eigenfunctions of Sz, give a matrix representation of the Hamiltonian
and the corresponding eigenvalues.

c) Plot the energy eigenvalues as a function of B and discuss the weak field (µB � W )
and strong field (µB � W ) approximations.

Ex. EXP-11.1: Spin-Orbit Coupling

Give the relative splitting due to spin-orbit interaction of the different levels of a L-S-J
multiplet for the multiplets 3F and 3D. Sketch their energy levels and indicate the allowed
transitions!



Ex. EXP-11.2: Fine Structure

The spin-orbit splitting in a Cs atom between the states 6P 1

2

and 6P 3

2

leads to a difference

on the wavelength of ∆λ = 422Åfor the first pair of lines in the main series. The line with
shorter wavelength has a wavelength of λ = 8521Å.
Calculate the fine structure constant!

Ex. EXP-11.3: Sodium Triple Line

In the emission spectrum of sodium, the following three neighboring lines have been found:

1. 32D → 22P 1

2

2. 32D → 22P 3

2

3. 32D → 22P 3

2

a) Taking into account the transition rules, give the quantum numbers of the total angular
momentum of the initial D-states and calculate the splitting of the states in eV!

b) Compare the splitting to the mean kinetic energy of gas atoms at 20◦C!

Ex. EXP-11.4: Fine Structure of Hydrogen-like Ions

The fine structure of hydrogen-like ions (ions with only one electron) is described by the
additional term

EFS = −
hcRZ4α2

n3
·

(

1

j + 1

2

−
3

4n

)

,

(α = 1/137 is Sommerfeld’s fine structure constant, R the Rydberg constant and Z the
atomic number) which takes into account relativistic effects and spin-orbit coupling. Thus,
the total energy is given by En,l,j = En,l + EFS.

a) Can n and j be chosen in a way so that the additional term disappears? What effect
has this on the total energy?

b) In how many different energy levels do the levels n = 3 and n = 4 of simply ionized
helium split due to the fine structure interaction?

c) Give the amount of the displacement of the energies relative to the ”original” energies.

d) Determine the allowed transitions taking into account the selection rules!
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Ex. TH-12.1: Time ordering operator

Convince yourself that the formula for the time-evolution operator in the interaction picture

UI(t, t0) = T exp

(

− i

}

∫ t

t0

V (t′) dt′
)

is correct.

a) First expand the formula to the second order and explicitly check that it corresponds
to the second-order expansion of

UI(t, t0) = 1 − i

}

∫ t

t0

V (t′) UI(t
′, t0) dt′.

b) Discuss by induction the validity of the formula to any order.

Ex. TH-12.2: Hydrogen atom in time-dependent electric field

A hydrogen atom is subject to a time-dependent homogeneous electric field

E(t) =
Aτ

eπ

1

t2 + τ 2

where A, τ are constants. Compute the probability to find the atom at time t = +∞ in a
2p-state if it was initially (t = −∞) in the ground state.

Ex. TH-12.3: Adiabatic approximation (optional)

Two states of an unperturbed atom are denoted by
∣

∣m
〉

and
∣

∣n
〉

. The atom is subject to a
perturbation

V (t) =

{

V (t) if 0 ≤ t ≤ τ ,

0 otherwise.

a) Show that the probability for a transition
∣

∣m
〉

→
∣

∣n
〉

is very small if the adiabatic
approximation

ω−1

nm

d

dt

〈

n
∣

∣V (t)
∣

∣m
〉

� |En − Em|

is fulfilled [ωnm = (En − Em)/}].

b) What happens in the opposite case (sudden change) where

ω−1

nm

d

dt

〈

n
∣

∣V (t)
∣

∣m
〉

� |En − Em|

in the short time interval when the perturbation turns on from zero to its maximum
value?



Ex. TH-12.4: Harmonic oscillator with time-dependent perturbation

A one-dimensional harmonic oscillator is in its ground state for t < 0. For t ≥ 0 it is
subjected to a time-dependent but spatially uniform force in the x-direction

F (t) = F0 e−t/τ .

a) Using time-dependent perturbation theory to first order, obtain the probability of
finding the oscillator in its first excited state for t > 0. Show that the t → ∞ (τ finite)
limit of your expression is independent of time. Is this reasonable or surprising?

b) Can we find higher excited states?
[

You may use
〈

n′

∣

∣x
∣

∣n
〉

=
√

}/2mω (
√

n δn′,n−1 +
√

n + 1 δn′,n+1).
]

Ex. TH-12.5: Spin-spin interaction

Consider a composite system made up of two spin-half objects. For t < 0, the Hamiltonian
does not depend on spin and can be taken to be zero. For t > 0, the Hamiltonian is given
by

H =
4∆

}2
S1 · S2.

Suppose the system is in
∣

∣+−
〉

for t ≤ 0. Find, as a function of time, the probability for
being found in each of the following states

∣

∣++
〉

,
∣

∣+−
〉

,
∣

∣−+
〉

,
∣

∣−−
〉

:

a) By solving the problem exactly.

b) By solving the problem assuming the validity of first-order time-dependent perturba-
tion theory with H as a perturbation switched on at t = 0. Under what condition does
b) give the correct result?

Ex. TH-12.6: WKB approximation

Compute the energy eigenvalues En of a one-dimensional harmonic oscillator using the WKB
approximation.

Ex. EXP-12.1: Zeeman Splitting

Sodium vapor with a temperature of T = 573K enclosed in a glass container, emits light due
to electron impact. In the visible range, the two Na-D-lines are observed at λ1 = 588, 995nm
and λ2 = 589, 592nm.

a) Sodium has 11 electrons. In the ground state, how are these electrons distributed to
the individual shells s,p,d,f (notation: 1s2,...)?

b) What is the spectroscopic denotation multiplicityXJ for the ground state of sodium?

c) From what excited states do the Na-D-lines emanate?

d) Calculate the energetic splitting in cm−1 from the wavelength. What determines this
splitting?

e) In a magnetic field B, the energy of a state J,L,S is described by an additional energy
term. The Landé-factor is

gJLS = 1 +
J (J + 1) + S (S + 1) − L (L + 1)

2J (J + 1)

Calculate the g-factors for the three levels that take part in the formation of the Na-
D-lines!



f) Sketch the energy levels with the calculated Zeeman splitting. Plot the allowed electric
transitions. Denote the relevant quantum numbers unambiguously in the sketch.

g) Calculate the Zeeman splitting in cm−1 for B = 2T for the three terms.

h) In this case, do we observe the normal or the anomalous Zeeman splitting? What is
the difference between the two?

Ex. EXP-12.2: Electron Spin Resonance (ESR)

Electron Spin Resonance is the transition between electron states with different values of the
magnetic quantum number. The degeneracy of these states is commonly broken by applying
an external magnetic field. Thus, the transition frequencies are found in the microwave
region.

a) What transitions can be observed with ESR? Compare to optical spectroscopy! What
kind of transitions are observed in these two cases?

b) In an ESR experiment, microwaves interact with the electron in an atomic state. Cal-
culate the resonance frequency in dependence on the microwave radiation!

c) With an external field of 10−1T, what frequency is required to induce a reversal from
parallel to antiparallel orientation in an electron pair, or vice versa?

Ex. EXP-12.3: Double Resonance, Optical Pumping

The different polarizations that occur in the normal Zeeman effect can be used to selectively
”pump” electrons into different Zeeman levels, even if one does not have the required spectral
resolution. In mercury vapor, one can excite the state 3P1 from the ground state 1S0 with
linearly polarized light. The light emitted from this state is now also linearly polarized.
However, using microwaves, one can now induce transitions between the different Zeeman
levels. The light emitted from these states can now be used to detect the resonance of the
microwave radiation with the transition between the Zeeman states.

a) Sketch the energy levels and the transitions that are described above!

b) How can this principle be applied to detect the Zeeman splitting of Sodium investigated
in exercise 12.1? Sketch the energy levels and the respective transitions!

Ex. EXP-12.4: Doppler-free Spectroscopy

In gases, the spectral lines are broadened due to the Doppler effect. This broadening is
generally larger than the natural line width. In the following, two possibilities to avoid this
broadening shall be treated.

a) Doppler-free Saturation Spectroscopy:

Inversion in the occupation numbers of atomic states is a prerequisite for laser activity.
Once lasing has started, this inversion is reduced by the process of stimulated emission.
We now assume that the atoms in a gas laser have different axial velocities. The
different atoms of velocity v now have their own occupation numbers N1,v and N2,v.

i) Taking into account the Maxwell distribution for the velocity in one direction,
what does the distribution of occupation numbers depending on velocity look
like?



ii) Now assume laser light with frequency ω and the natural line width γ hits the
gas atoms. With what types v of atoms will it interact (ω0 be the transition fre-
quency of the resting atom)? How will this change the distribution of occupation
numbers?

iii) How can this effect be used to determine the exact value of ω0?

b) Doppler-free two-Photon Absorption:

In very intense laser fields it is possible that an atom absorbs tho photons at a time
where the energetic difference between the two participating states corresponds to the
double photon energy, i.e.

∆E = 2hν ≡ 2}ω.

How can this be used to avoid the Doppler effect? What geometry of the incident laser
beams is required?
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Ex. TH-13.1: Green function for scattering problem

Show that
(

∇2 + k2
)

G(~x, ~x′) = δ(3) (~x − ~x′)

leads to

G±(~x, ~x′) = −
1

4π

e±ik(~x−~x′)

|~x − ~x′|
.

Ex. TH-13.2: Cross section

Show that
dσ

dΩ
=

∣

∣

∣
f(~k,~k′)

∣

∣

∣

2

using

dσ =
r2|~jscatt.|dΩ

|~jincid.|
.

Ex. TH-13.3: Yukawa potential

Compute dσ/dΩ and σtot for

V (r) = V0
e−µr

µr
, µ > 0.

What happens in the limit µ → 0 and V0/µ fixed?

Ex. TH-13.4: Scattering in Born approximation

a) Compute the scattering amplitude f(θ) for

V (r) = ae−λr2

, λ > 0.

b) Compute the total cross section.

Ex. TH-13.5: Expansion of plain wave (optional)

Reproduce the derivation of the formula

ei~k·~r =
∑

l

il(2l + 1)jl(kr)Pl(cos θ),

valid when ~k = kêz.



Ex. TH-13.6: Hard sphere scattering and partial wave method

Compute σtot for the scattering off a hard sphere, i.e., off the potential

V (r) =

{

∞ if r ≤ a,

0 otherwise,

in the limit ka � 1 (small energies) and ka � 1 (large energies). In the latter case, express
sin δl by the spherical Bessel and Neumann functions at ρ = ka. For ρ � 1 we have

jl(ρ) ≈ sin

(

ρ −
lπ

2

)

1

ρ
,

nl(ρ) ≈ − cos

(

ρ −
lπ

2

)

1

ρ
.

Combine the sum of trigonometric functions in a smart way!

Ex. TH-13.7: S-wave scattering

Suppose we have measured
dσ

dΩ
= a, a > 0.

Assume pure s-wave scattering and derive the complex scattering amplitude f(θ).

Ex. TH-13.8: Path-integral formalism (optional)

a) Write down an expression for the classical action for a simple harmonic oscillator for
a finite time interval.

b) Construct
〈

xn, tn
∣

∣xn−1, tn−1

〉

for a simple harmonic oscillator using Feynman’s pre-
scription for tn − tn−1 = ∆t small. Keeping only terms up to order (∆t)2, show that it
is in complete agreement with the t − t0 → 0 limit of the propagator

K(x′′, t : x′, t0) =

√

mω

2πi} sin [ω(t − t0)]
exp

{

imω

2} sin [ω(t − t0)]

×
[

(x′′2 + x′2) cos [ω(t − t0)] − 2x′′x′
]

}

.

Ex. EXP-13.1: Energy-Levels of Helium-like Atoms

The energy levels of He-like atoms with one electron in the ground state (n = 1) and the
other one in an excited state (n > 1)can be described by

E = −RhcZ2 −
Rhc (Z − 1)2

n2
.

In this expression it is assumed that the electron in the ground state complete shields the
charge of the nucleus. Discuss the plausibility of this expression. Calculate the energy levels
of He for n = 2, 3, and 4 and compare to the experimental results. Why does the accuracy
of the above expression rise with rising n?

Ex. EXP-13.2: Sum over Quantum Numbers

Show that the sum
∑

(2J + 1) over all possible values of J is equal to the product (2L + 1) (2S + 1)!
Is this product of any physical relevance? Why (not)?



Ex. EXP-13.3: LS- versus JJ-Coupling

Discuss a two-electron-system with one 2p and one 3d electron for the case of jj-coupling
and show that the number of allowed states and their total angular momentum j are the
same as for the case of ls-coupling.

Ex. EXP-13.4: Term Schemes

a) Determine the number of allowed terms of an excited carbon atom with electron con-
figuration 1s22s22p3d. Do not take care of spin-orbit-coupling.

b) Calculate the effective magnetic moment of an atom in the ground state 1s22s22p63s64s23d3

if in the ground state L has the largest value that is compatible with Hund’s rule and
the Pauli principle.

c) Determine the ground state of atoms with electron configuration 4d5s2 (Y) and 4d25s2

(Zr). [Note that completed electron shells are not noted and L is determined as in b). ]

d) In its ground state, manganese (Z = 25) has a sub-shell that is just filled to the half
with 5 atoms. Give the electron configuration and the ground state of the atom!

Ex. EXP-13.5: Stern-Gerlach experiment

a) Determine the maximum number of the components of the magnetic moments of vana-
dium (4F ), manganese (6S) and iron atoms(5D) in the direction of an external mag-
netic field, if the atomic beams in a Stern-Gerlach experiment are split into 4, 6, and
9 beams.

b) What term symbol has the singlet state whose overall splitting in an external magnetic
field B0 = 0.5 T is ν = 1.4cm−1?


