ANSI X3J3/90.4

1. INTRODUCTION
1.1 Purpose

This standard specifies the form and establishes the interpretation of programs
expressed in the FORTRAN language. The purpose of this standard is to promote
portability of FORTRAN programs for use on a variety of data processing
systems.

1.2 Processor

The combination of a data processing system and the mechanism by which
programs are transformed for use on that data processing system is called a
processor in this standard.

1.3 Scope
1.3.1 Inclusions. This standard specifies:
(1) The form of a program written in the FORTRAN language
(2) Rules for interpreting the meaning of such a program and its data

(3) The form of writing input data to be processed by such a program
operating on data processing systems

(4) The form of the output data resulting from the use of such a program on
data processing systems

1.3.2 Exclusions. This standard does not specify:

(1) The mechanism by which programs are transformed for use on a data
processing system

(2) The method of transcription of programs or their input or output data to
or from a data processing medium

(3) The operations required for setup and control of the use of programs on
data processing systems

(4) The results when the rules of this standard fail to establish an
interpretation

(5) The size or complexity of a program and its data that will exceed the
capacity of any specific data processing system or the capability of a
particular processor

(6) The range or precision of numeric quantities and the method of rounding
of numeric results

(7) The physica properties of input/output records, files, and units
(8) The physical properties and implementation of storage
1.4 Conformance

The requirements, prohibitions, and options specified in this standard generally
refer to permissible forms and relationships for standard-conforming programs
rather than for processors. The obvious exceptions are the optional output forms
produced by a processor, which are not under the control of a program. The
requirements, prohibitions, and options for a standard-conforming processor
usualy must be inferred from those given for programs.

An executable program (2.4.2) conforms to this standard if it uses only those
forms and relationships described herein and if the executable program has an

FORTRAN 77 Full Language Page 1-1

INTRODUCTION ANSI X3J3/90.4

interpretation according to this standard. A program unit (2.4) conforms to this
standard if it can be included in an executable program in a manner that allows
the executable program to be standard conforming.

A processor conforms to this standard if it executes standard-conforming programs
in a manner that fulfills the interpretations prescribed herein. A standard-
conforming processor may alow additional forms and relationships provided that
such additions do not conflict with the standard forms and relationships.
However, a standard-conforming processor may allow additional intrinsic
functions (15.10) even though this could cause a conflict with the name of an
external function in a standard-conforming program. |f such a conflict occurs, the
processor is permitted to use the intrinsic function unless the name appears in an
EXTERNAL statement within the program unit. A standard-conforming program
must not use intrinsic functions that have been added by the processor. Note that
a standard-conforming program must not use any forms or relationships that are
prohibited by this standard, but a standard-conforming processor may allow such
forms and relationships if they do not change the proper interpretation of a
standard-conforming program.

Because a standard-conforming program may place demands on the processor that
are not within the scope of this standard or may include standard items that are
not portable, such as externa procedures defined by means other than FORTRAN,
conformance to this standard does not ensure that a standard-conforming program
will execute consistently on all or any standard-conforming processors.

1.4.1 Subset Conformance. This standard describes two levels of the FORTRAN
language, referred to as FORTRAN and subset FORTRAN. FORTRAN is the
full language. Subset FORTRAN is a subset of the full language.

An executable program conforms to the subset level of this standard if it uses
only those forms and relationships described herein for that level and if the
executable program has an interpretation according to this standard at that level
and would have the same interpretation in the full language. A program unit
conforms to the subset level of this standard if it can be included in an executable
program in a manner that allows the executable program to be standard
conforming at that level.

A subset level processor conforms to the subset level of this standard if it
executes subset level standard-conforming programs in a manner that fulfills the
interpretations prescribed herein for subset FORTRAN. A subset level processor
may include an extension that has a form and would have an interpretation at the
full level only if the extension has the interpretation provided by the full level. A
subset level processor may aso include extensions that do not have forms and
interpretations in the full language.

1.5 Notation Used in This Sandard

In this standard, "must" is. to be interpreted as a requirement; conversely, "must
not" is to be interpreted as a prohibition.

In describing the form of FORTRAN statements or constructs, the following
metal anguage conventions and symbols are used:

(1) Specia characters from the FORTRAN character set, uppercase letters,
and uppercase words are to be written as shown, except where otherwise
noted.

(2) Lowercase letters and lowercase words indicate general entities for which
specific entities must be substituted in actual statements. Once a given

FORTRAN 77 Full Language Page 1-2

INTRODUCTION ANSI X3J3/90.4

lowercase letter or word is used in a syntactic specification to represent
an entity, all subsequent occurrences of that letter or word represent the
same entity until that letter or word is used in a subsequent syntactic
specification to represent a different entity.

(3) Brackets, [], are used to indicate optional items.

(4) An dlipsis, ... , indicates that the preceding optiona items may appear
one or more times in succession.

(5) Blanks are used to improve readability, but unless otherwise noted have
no significance.

(6) Words or groups of words that have specia significance are underlined
where their meaning is described. Titles and the metalanguage symbols
described in 1.5(2) are also underlined.

An example illustrates the metalanguage. Given a description of the form of a
Statement as:

CALL sub [([a [.a]..])]
the following forms are allowed:

CALL sub
CALL sub ()

CALL sub (a)
CALL sub (a, a)
CALL sub (a, a, a)
etc

When an actua statement is written, specific entities are substituted for sub and
each a; for example:

CALL ABCD (X,1.0)
1.6 Subset Text

The section titles in the subset description are identical to the section titles in the
full language description.

There are some instances in which a general situation occurs in the full language
but only a restricted case applies to the subset. For example, in 3.6, the
"nonexecutable statements' that may appear between executable statements may
only be FORMAT statements in the subset. In most of these instances, the more
general text of the full language description has been retained in the subset
description, even though it is to be interpreted as covering only the restricted case.

To help find differences between the full and subset languages, vertical bars have
been added in the margins where the text of the full and subset languages differ.
For example, this sentence does not appear in the subset language text.

FORTRAN 77 Full Language Page 1-3

CONTENTS

1. INTRODUCTION .

11
12
13

14

15
16

Purpose

Processor

Scope .

1.3.1 Inclusions. .

1.3.2 Exclusions.
Conformance . .o
1.4.1 Subset Conformance.
Notation Used in This Standard
Subset Text

1-1
1-1

1-1
1-1

1-1
1-2
1-2
1-3

ANSI X3J3/90.4

2. FORTRAN TERMS AND CONCEPTS

This section introduces basic terminology and concepts, some of which are
clarified further in later sections. Many terms and concepts of more specialized
meaning are also introduced in later sections. The underlined words are described
here and used throughout this standard.

2.1 Sequence

A sequence is a set ordered by a one-to-one correspondence with the numbers 1,
2, through n. The number of elements in the sequence is n. A sequence may be
empty, in which case it contains no elements.

The elements of a nonempty sequence are referred to as the first element, second
dement, etc. The nth element, where n is the number of elements in the
sequence, is caled the last element. An empty sequence has no first or last
element.

2.2 Syntactic Items

Letters, digits, and special characters of the FORTRAN character set (3.1) are
used to form the syntactic items of the FORTRAN language. The basic syntactic
items of the FORTRAN language are constants, symbolic names, statement labels,
keywords, operators, and specia characters.

The form of a constant is described in Section 4.

A symbolic name takes the form of a sequence of one to six letters or digits, the
first of which must be a letter. Classification of symbolic names and restrictions
on their use are described in Section 18.

A statement label takes the form of a sequence of one to five digits, one of which
must be nonzero, and is used to identify a statement (3.4).

A keyword takes the form of a specified sequence of letters. The keywords that
are significant in the FORTRAN language are described in Sections 7 through 16.
In many instances, a keyword or a portion of a keyword also meets the
requirements for a symbolic name. Whether a particular sequence of characters
identifies a keyword or a symbolic name is implied by context. There is no
sequence of characters that is reserved in all contexts in FORTRAN.

The set of specia characters is described in 3.1.4. A specia character may be an
operator or part of a constant or have some other special meaning. The
interpretation is implied by context.

2.3 Satements, Comments, and Lines

A FORTRAN statement is a sequence of syntactic items, as described in Sections
7 through 16. Except for assignment and statement function statements, each
statement begins with a keyword. In this standard, the keyword or keywords that
begin the statement are used to identify that statement. For example, a DATA
statement begins with the keyword DATA.

A statement is written in one or more lines, the first of which is called an initial
line (3.2.2); succeeding lines, if any, are called continuation lines (3.2.3).

There is aso a line caled a comment line (3.2.1), which is not part of any
statement and is intended to provide documentation.

2.3.1 Classes of Satements. Each statement is classified as executable or
nonexecutable (Section 7). Executable statements specify actions. Nonexecutable
statements describe the characteristics, arrangement, and initial values of data;

FORTRAN 77 Full Language Page 2-1

FORTRAN TERMS AND CONCEPTS ANSI X3J3/90.4

contain editing information; specify statement functions; classify program units;
and specify entry points within subprograms.

2.4 Program Units and Procedures

A program unit consists of a sequence of statements and optional comment lines.
A program unit is either a main program or a subprogram.

A main program is a program unit that does not have a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement; it may have a
PROGRAM statement as its first statement.

A subprogram is a program unit that has a FUNCTION, SUBROUTINE, or
BLOCK DATA dtatement as its first statement. A subprogram whose first
statement is a FUNCTION statement is called a function subprogram. A
subprogram whose first statement is a SUBROUTINE statement is caled a
subroutine subprogram. Function subprograms and subroutine subprograms are
called procedure subprograms. A subprogram whose first statement is a BLOCK
DATA statement is called a block data subprogram.

2.4.1 Procedures. Subroutines (15.6), externa functions (15.5), statement
functions (15.4), and the intrinsic functions (15.3) are caled procedures.
Subroutines and external functions are called external procedures. Function
subprograms and subroutine subprograms may specify one or more external
functions and subroutines, respectively (15.7). External procedures may also be
specified by means other than FORTRAN subprograms.

2.4.2 Executable Program. An executable program is a collection of program
units that consists of exactly one main program and any number, including none,
of subprograms and external procedures.

2.5 Variable

A variable is an entity that has both a name and a type. A variable name is a
symbolic name of a datum. Such a datum may be identified, defined (2.11), and
referenced (2.12). Note that the usage in this standard of the word "variable" is
more restricted than its normal usage, in that it does not include array elements.

The type of a variable is optionally specified by the appearance of the variable
name in a type-statement (8.4). If it is not so specified, the type of a variable is
implied by the first letter of the variable name to be integer or real (4.1.2), unless
the initial letter type implication is changed by the use of an IMPLICIT statement
(8.5).

At any given time during the execution of an executable program, a variable is
either defined or undefined (2.11).

2.6 Array

An array is a honempty sequence of data that has a name and a type. The name
of an array is a symbolic name.

2.6.1 Array Elements. Each of the elements of an array is caled an array
dement. An array name qualified by a subscript is an array element name and
identifies a particular element of the array (5.3). Such a datum may be identified,
defined (2.11), and referenced (2.12). The number of array elementsin an array is
specified by an array declarator (5.1).

An array element has atype. The type of al array elements within an array is the
same, and is optionaly specified by the appearance of the array name in a type-
statement (8.4). If it is not so specified, the type of an array element is implied

FORTRAN 77 Full Language Page 2-2

FORTRAN TERMS AND CONCEPTS ANSI X3J3/90.4

by the first letter of the array name to be integer or real (4.1.2), unless the initial
letter type implication is changed by the use of an IMPLICIT statement (8.5).

At any given time during the execution of an executable program, an array
element is either defined or undefined (2.11).

2.7 Substring

A character datum is a nonempty sequence of characters. A substring is a
contiguous portion of a character datum. The form of a substring name used to
identify, define (2.11), or reference (2.12) a substring is described in 5.7.1.

At any given time during the execution of an executable program, a substring is
either defined or undefined (2.11).

2.8 Dummy Argument

A dummy argument in a procedure is either a symbolic name or an asterisk. A
symbolic name dummy argument identifies a variable, array, or procedure that
becomes associated (2.14) with an actual argument of each reference (2.12) to the
procedure (15.2, 15.4.2, 1552, and 15.6.2). An asterisk dummy argument
indicates that the corresponding actual argument is an alternate return specifier
(15.6.2.3, 15.8.3, and 15.9.3.5).

Each dummy argument name that is classified as a variable, array, or dummy
procedure may appear wherever an actual name of the same class (Section 18) and
type may appear, except where explicitly prohibited.

2.9 Scope of Symbolic Names and Satement Labels

The scope of a symbolic name (18.1) is an executable program, a program unit, a
statement function statement, or an implied-DO list in a DATA statement.

The name of the main program and the names of block data subprograms, external
functions, subroutines, and common blocks have a scope of an executable
program.

The names of variables, arrays, constants, statement functions, intrinsic functions,
and dummy procedures have a scope of a program unit.

The names of variables that appear as dummy arguments in a statement function
statement have a scope of that statement.

The names of variables that appear as the DO-variable of an implied-DO in a
DATA statement have a scope of the implied-DO list.

Statement labels have a scope of a program unit.
2.10 List

A list is a nonempty sequence (2.1) of syntactic entities separated by commas.
The entities in the list are called list items.

2.11 Definition Satus

At any gi ven time during the execution of an executable program, the definition
status of each variable, array element, or substring is either defined or undefined
(Section 17).

A defined entity has a value. The value of a defined !entity does not change until
the entity becomes undefined or is redefined with a different value.

If a variable, array element, or substring is undefined, it does not have a
predictable value.

FORTRAN 77 Full Language Page 2-3

FORTRAN TERMS AND CONCEPTS ANSI X3J3/90.4

A previoudy defined variable or array element may become undefined.
Subsequent definition of a defined variable or array element is permitted, except
where it is explicitly prohibited.

A character variable, character array element, or character substring is defined if
every substring of length one of the entity is defined. Note that if a string is
defined, every substring of the string is defined, and if any substring of the string
is undefined, the string is undefined. Defining any substring does not cause any
other string or substring to become undefined.

An entity is initially defined if it is assigned a value in a DATA statement
(Section 9). Initialy defined entities are in the defined state at the beginning of
execution of an executable program. All variables and array elements not initially
defined, or associated (2.14) with an initially defined entity, are undefined at the
beginning of execution of an executable program.

An entity must be defined at the time a reference to it is executed.
2.12 Reference

A variable, array element, or substring reference is the appearance of a variable,
array element, or substring name, respectively, in a statement in a context
requiring the value of that entity to be used during the execution of the executable
program. When a reference to an entity is executed, its current value is available.
In this standard, the act of defining an entity is not considered a reference to that
entity.

A procedure reference is the appearance of a procedure name in a statement in a
context that requires the actions specified by the procedure to be executed during
the execution of the executable program. When a procedure reference is executed,
the procedure must be available.

2.13 Sorage

A storage sequence is a sequence of storage units. A storage unit is either a
numeric storage unit or a character storage unit.

An integer, rea, or logical datum has one numeric storage unit in a storage
sequence. A double precision or complex datum has two numeric storage units in
a storage sequence. A character datum has one character storage unit in a
storage sequence for each character in the datum. This standard does not specify
a relationship between a numeric storage unit and a character storage unit.

If a datum requires more than one storage unit in a storage sequence, those
storage units are consecutive.

The concept of a storage sequence is used to describe relationships that exist
among variables, array elements, arrays, substrings, and common blocks. This
standard does not specify a relationship between the storage sequence concept and
the physical properties or implementation of storage.

2.14 Association

Association of entities exists if the same datum may be identified by different
symbolic names in the same program unit, or by the same name or a different
name in different program units of the same executable program (17.1).

Entities may become associated by the following:

(1) Common association (8.3.4)

FORTRAN 77 Full Language Page 2-4

FORTRAN TERMS AND CONCEPTS ANSI X3J3/90.4

(2) Equivalence association (8.2.2)
(3) Argument association (15.9.3)
(4) Entry association (15.7.3)

FORTRAN 77 Full Language Page 2-5

CONTENTS

2. FORTRAN TERMS AND CONCEPTS

21
22
23

24

25
2.6

2.7
2.8
29
2.10
211
212
2.13
2.14

Sequence .

Syntactic Items .

Statements, Comments, and Lmas
2.3.1 Classes of Statements. .
Program Units and Procedures
2.4.1 Procedures. .
2.4.2 Executable Program.
Variable .
Array . .

2.6.1 Array Elements
Substring . .

Dummy Argument .

Scope of Symbolic Names and Statement Labels

List .
Definition Status
Reference
Storage
Association

2-1
2-1

2-1
2-1

2-2
2-2

2-2
2-2

2-3
2-3

2-3
2-4
2-4
2-4

ANSI X3J3/90.4

3. CHARACTERS LINES, AND EXECUTION SEQUENCE
3.1 FORTRAN Character Set

The FORTRAN character set consists of twenty-six letters, ten digits, and thirteen
special characters.

3.1.1 Letters. A letter is one of the twenty-six characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
3.1.2 Digits. A digit is one of the ten characters:

0123456789

A string of digits is interpreted in the decima base number system when a
numeric interpretation is appropriate.

3.1.3 Alphanumeric Characters. An alphanumeric character is a letter or a digit.

3.1.4 Special Characters. A special character is one of the thirteen characters:

O O O
IE*C:haracter EName of Character S
O O O
O O Blank O
U——=—= U Equds 0
D e :
o - 0 Minus 0
o * O Asterisk 0
a 0 Sash O
o U Left Parenthesis U
E) B Right Parenthesis E
o 0 Comma 0
o $ 0 Currency Symbol
g - O Apostrophe g
H H Colon H

3.1.5 Collating Sequence and Graphics. The order in which the letters are listed
in 3.1.1 specifies the collating sequence for the letters; A is less than Z. The
order in which the digits are listed in 3.1.2 specifies the collating sequence for the
digits; O is less than 9. The digits and letters must not be intermixed in the
collating sequence; al of the digits must precede A or all of the digits must
follow Z. The character blank is less than the letter A and less than the digit O.
The order in which the special characters are listed in 3.1.4 does not imply a
collating sequence.

Except for the currency symbol, the graphics used for the forty-nine characters
must be as given in 3.1.1, 3.1.2, and 3.1.4. However, the style of any graphic is
not specified.

3.1.6 Blank Character. With the exception of the uses specified (3.2.2, 3.2.3,
3.3, 4.8, 4.8.1, 135.1, and 13.5.2), a blank character within a program unit has no
meaning and may be used to improve the appearance of the program unit, subject
to the restriction on the number of consecutive continuation lines (3.3).

3.2 Lines

A line in a program unit is a sequence of 72 characters. All characters must be
from the FORTRAN character set, except as described in 3.2.1, 4.8, 12.2.2, and

FORTRAN 77 Full Language Page 3-1

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3J3/90.4

13.2.1.

The character positions in a line are called columns and are numbered
consecutively 1, 2, through 72. The number indicates the sequential position of a
character in the ling, beginning at the left and proceeding to the right. Lines are
ordered by the sequence in which they are presented to the processor. Thus, a
program unit consists of a totally ordered set of characters.

3.2.1 Comment Line. A comment line is any line that contains a C or an asterisk
in column 1, or contains only blank characters in columns 1 through 72. A
comment line that contains a C or an asterisk in column 1 may contain any
character capable of representation in the processor in columns 2 through 72.

A comment line does not affect the executable program in any way and may be
used to provide documentation.

Comment lines may appear anywhere in the program unit. Comment lines may
precede the initial line of the first statement of any program unit. Comment lines
may appear between an initial line and its first continuation line or between two
continuation lines.

3.2.2 Initial Line. An initial line is any line that is not a comment line and
contains the character blank or the digit O in column 6. Columns 1 through 5
may contain a statement label (3.4), or each of the columns 1 through 5 must
contain the character blank.

3.2.3 Continuation Line. A continuation line is any line that contains any
character of the FORTRAN character set other than the character blank or the
digit 0 in column 6 and contains only blank characters in columns 1 through 5. A
statement must not have more than nineteen continuation lines.

3.3 Satements

The statements of the FORTRAN language are described in Sections 7 through 16
and are used to form program units. Each statement is written in columns 7
through 72 of an initia line and as many as nineteen continuation lines. An END
statement is written only in columns 7 through 72 of an initial line. No other
statement in a program unit may have an initia line that appears to be an END
statement. Note that a statement must contain no more than 1320 characters.
Except as part of alogica |IF statement (11.5), no statement may begin on a line
that contains any part of the previous statement.

Blank characters preceding, within, or following a statement do not change the
interpretation of the statement, except when they appear within the datum strings
of character constants or the H or apostrophe edit descriptors in FORMAT
statements. However, blank characters do count as characters in the limit of total
characters alowed in any one statement.

3.4 Satement Labels

Statement labels provide a means of referring to individual statements. Any
statement may be labeled, but only labeled executable statements and FORMAT
statements may be referred to by the use of statement labels. The form of a
statement label is a sequence of one to five digits, one of which must be nonzero.
The statement label may be placed anywhere in columns 1 through 5 of the initial
line of the statement. The same statement label must not be given to more than
one statement in a program unit. Blanks and leading zeros are not significant in
distinguishing between statement labels.

FORTRAN 77 Full Language Page 3-2

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3J3/90.4

3.5 Order of Satements and Lines

A PROGRAM statement may appear only as the first statement of a main
program. The first statement of a subprogram must be either a FUNCTION,
SUBROUTINE, or BLOCK DATA statement.

Within a program unit that permits the statements:
(1) FORMAT statements may appear anywhere;

(2) al specification statements must precede all DATA statements, statement
function statements, and executable statements;

(3) al statement function statements must precede all executable statements;

(4) DATA statements may appear anywhere after the specification statements;
and

(5) ENTRY statements may appear anywhere except between a block IF
statement and its corresponding END |F statement, or between a DO
statement and the terminal statement of its DO-loop.

Within the specification statements of a program unit, IMPLICIT statements must
precede all other specification statements except PARAMETER statements. Any
specification statement that specifies the type of a symbolic name of a constant
must precede the PARAMETER statement that defines that particular symbolic
name of a constant; the PARAMETER statement must precede al other
statements containing the symbolic names of constants that are defined in the
PARAMETER statement.

The last line of a program unit must be an END statement.

Figure 1

Required Order of Statements and Comment Lines

0 0 0
B g PROGRAM, FUNCTION, SUBROUTINE, or B
0 5 BLOCK DATA Statement 0
O g 0 0 O
0 O B B IMPLICIT O
B E 0 0 Statements B
0 Comment [FORMAT O Statements O Other 0
0 Lines a and U U specification O
O O ENTRY B g Statements O
O O Statements 0
0 i U U O
0 0 O O Function O
0 0 0 DATA U Statements O
0 g B Statements B 0
B E 0 0 Executable B
0 0 0 0 Statements
0 0
H END Statement H

Figure 1 is a diagram of the required order of statements and comment lines for a
program unit. Vertical lines delineate varieties of statements that may be
interspersed. For example, FORMAT statements may be interspersed with

FORTRAN 77 Full Language Page 3-3

CHARACTERS, LINES, AND EXECUTION SEQUENCE ANSI X3J3/90.4

statement function statements and executable statements. Horizonta lines
delineate varieties of statements that must not be interspersed. For example,
statement function statements must not be interspersed with executable statements.
Note that an END statement is also an executable statement and must appear only
as the last statement of a program unit.

3.6 Normal Execution Sequence and Transfer of Control

Normal execution sequence is the execution of executable statements in the order
in which they appear in a program unit. Execution of an executable program
begins with the execution of the first executable statement of the main program.
When an external procedure specified in a subprogram is referenced, execution
begins with the first executable statement that follows the FUNCTION,
SUBROUTINE, or ENTRY statement that specifies the referenced procedure as
the name of a procedure.

A transfer of control is an alteration of the normal execution seguence.
Statements that may cause a transfer of control are:

(1) GOTO
(2) Arithmetic IF
(3) RETURN
(4) STOP
(5) An input/output statement containing an error specifier or end-of-file
specifier
(6) CALL with an alternate return specifier
(7) A logical IF statement containing any of the above forms
(8) Block IF and ELSE IF
(9) The last statement, if any, of an IF-block or ELSE IF-block
(10) DO
(11) The termina statement of a DO-loop
(12) END

The effect of these statements on the execution sequence is described in Sections
11, 12, and 15.

The normal execution sequence is not affected by the appearance of nonexecutable
statements or comment lines between executable statements. Execution of a
function reference or a CALL statement is not considered a transfer of control in
the program unit that contains the reference, except when control is returned to a
statement identified by an aternate return specifier in a CALL statement.
Execution of a RETURN or END statement in a referenced procedure, or
execution of a transfer of control within a referenced procedure, is not considered
atransfer of control in the program unit that contains the reference.

In the execution of an executable program, a procedure subprogram must not be
referenced a second time without the prior execution of a RETURN or END
statement in that procedure.

FORTRAN 77 Full Language Page 3-4

CONTENTS

3. CHARACTERS, LINES, AND EXECUTION SEQUENCE

31

3.2

3.3
3.4
35
3.6

FORTRAN Character Set

3.1.1 Letters. .

3.1.2 Digits.

3.1.3 Alphanumeric Characters

3.1.4 Specia Characters. .

3.1.5 Caoallating Sequence and Graphlcs

3.1.6 Blank Character. .

Lines

321 Comment Lrne

3.2.2 Initia Line.

3.2.3 Continuation Line.

Statements .

Statement Labels .

Order of Statements and Lm& .
Normal Execution Sequence and Transfer of Control .

31
31

31
31

31
31

3-2
3-2

3-2
3-2

34

ANSI X3J3/90.4

4. DATA TYPES AND CONSTANTS

4.1 Data Types
The six types of data are:

(1) Integer

(2) Red

(3) Double precision

(4) Complex

(5) Logica

(6) Character

Each type is different and may have a different internal representation. The type
may affect the interpretation of the operations involving the datum.

4.1.1 Data Type of a Name. The name employed to identify a datum or a
function also identifies its data type. A symbolic name representing a constant,
variable, array, or function (except a generic function) must have only one type
for each program unit. Once a particular name is identified with a particular type
in a program unit, that type is implied for any usage of the name in the program
unit that requires a type.

4.1.2 Type Rules for Data and Procedure ldentifiers. A symbolic name that
identifies a constant, variable, array, externa function, or statement function may
have its type specified in a type-statement (8.4) as integer, real, double precision,
complex, logical, or character. In the absence of an explicit declaration in a type-
statement, the type is implied by the first letter of the name. A first letter of I, J,
K, L, M, or N implies type integer and any other letter implies type real, unless
an IMPLICIT statement (8.5) is used to change the default implied type.

The data type of an array element name is the same as the type of its array name.

The data type of a function name specifies the type of the datum supplied by the
function reference in an expression.

A symbolic name that identifies a specific intrinsic function in a program unit has
a type as specified in 15.10. An explicit type-statement is not required; however,
it is permitted. A generic function name does not have a predetermined type; the
result of a generic function reference assumes a type that depends on the type of
the argument, as specified in 15.10. If a generic function name appears in a
type-statement, such an appearance is not sufficient by itself to remove the generic
properties from that function.

In a program unit that contains an external function reference, the type of the
function is determined in the same manner as for variables and arrays.

The type of an external function is specified implicitly by its name, explicitly in a
FUNCTION statement, or explicitly in a type-statement. Note that an IMPLICIT
statement within a function subprogram may affect the type of the external
function specified in the subprogram.

A symbolic name that identifies a main program, subroutine, common block, or
block data subprogram has no data type.

4.1.3 Data Type Properties. The mathematical and representation properties for
each of the data types are specified in the following sections. For real, double
precision, and integer data, the value zero is considered neither positive nor

FORTRAN 77 Full Language Page 4-1

DATA TYPES AND CONSTANTS ANSI X3J3/90.4

negative. The value of a signed zero is the same as the value of an unsigned
zZero.

4.2 Constants

A constant is an arithmetic constant, logical constant, or character constant. The
value of a constant does not change. Within an executable program, all constants
that have the same form have the same value.

4.2.1 Data Type of a Constant. The form of the string representing a constant
specifies both its value and data type. A PARAMETER statement (8.6) alows a
constant to be given a symbolic name. The symbolic nhame of a constant must not
be used to form part of another constant.

4.2.2 Blanks in Constants. Blank characters occurring in a constant, except in a
character constant, have no effect on the value of the constant.

4.2.3 Arithmetic Constants. Integer, rea, double precision, and complex
constants are arithmetic constants.

4.2.3.1 Sgns of Constants. An unsigned constant is a constant without a leading
sign. A signed constant is a constant with a leading plus or minus sign. An
optionally signed constant is a constant that may be either signed or unsigned.
Integer, real, and double precision constants may be optionally signed constants,
except where specified otherwise.

4.3 Integer Type

An integer datum is always an exact representation of an integer value. It may
assume a positive, negative, or zero vaue. It may assume only an integral value.
An integer datum has one numeric storage unit in a storage sequence.

4.3.1 Integer Constant. The form of an integer constant is an optional sign
followed by a nonempty string of digits. The digit string is interpreted as a
decimal number.

4.4 Real Type

A rea datum is a processor approximation to the value of a real number. It may
assume a positive, negative, or zero value. A real datum has one numeric storage
unit in a storage sequence.

4.4.1 Basic Real Constant. The form of a basic real constant is an optional sign,
an integer part, a decima point, and a fractional part, in that order. Both the
integer part and the fractional part are strings of digits; either of these parts may
be omitted but not both. A basic real constant may be written with more digits
than a processor will use to approximate the value of the constant. A basic real
constant is interpreted as a decima number.

4.4.2 Real Exponent. The form of areal exponent is the letter E followed by an
optionally signed integer constant. A real exponent denotes a power of ten.

4.4.3 Real Constant. The forms of areal constant are:
(1) Basic real constant
(2) Basic real constant followed by areal exponent
(3) Integer constant followed by areal exponent

The value of a real constant that contains a real exponent is the product of the
constant that precedes the E and the power of ten indicated by the integer
following the E. The integer constant part of form (3) may be written with more

FORTRAN 77 Full Language Page 4-2

DATA TYPES AND CONSTANTS ANSI X3J3/90.4

digits than a processor will use to approximate the value of the constant.
4.5 Double Precision Type

A double precision datum is a processor approximation to the value of a real
number. The precision, athough not specified, must be greater than that of type
real. A double precision datum may assume a positive, negative, or zero value.
A double precision datum has two consecutive numeric storage units in a storage
sequence.

45.1 Double Precision Exponent. The form of a double precision exponent is
the letter D followed by an optionally signed integer constant. A double precision
exponent denotes a power of ten. Note that the form and interpretation of a
double precision exponent are identical to those of a real exponent, except that the
letter D is used instead of the letter E.

4.5.2 Double Precision Constant. The forms of a double precision constant are:
(1) Basic real constant followed by a double precision exponent
(2) Integer constant followed by a double precision exponent

The value of a double precision constant is the product of the constant that
precedes the D and the power of ten indicated by the integer following the D.
The integer constant part of form (2) may be written with more digits than a
processor will use to approximate the value of the constant.

4.6 Complex Type

A complex datum is a processor approximation to the value of a complex number.
The representation of a complex datum is in the form of an ordered pair of real
data. The first of the pair represents the real part of the complex datum and the
second represents the imaginary part. Each part has the same degree of
approximation as for a real datum. A complex datum has two consecutive
numeric storage units in a storage sequence; the first storage unit is the real part
and the second storage unit is the imaginary part.

4.6.1 Complex Constant. The form of a complex constant is a left parenthesis
followed by an ordered pair of real or integer constants separated by a comma,
and followed by a right parenthesis. The first constant of the pair is the rea part
of the complex constant and the second is the imaginary part.

4.7 Logical Type

A logical datum may assume only the values true or false. A logical datum has
one numeric storage unit in a storage sequence.

4.7.1 Logical Constant. The forms and values of a logical constant are:

O ad a
O O O
o Form DValue 0
O ad a
OTRUE. Otrue 0O
O ad a
O ad a
|:[FALSE. Dfalse 0
0 d a

4.8 Character Type

A character datum is a string of characters. The string may consist of any
characters capable of representation in the processor. The blank character is valid

FORTRAN 77 Full Language Page 4-3

DATA TYPES AND CONSTANTS ANSI X3J3/90.4

and significant in a character datum. The length of a character datum is the
number of characters in the string. A character datum has one character storage
unit in a storage sequence for each character in the string.

Each character in the string has a character position that is numbered
consecutively 1, 2, 3, etc. The number indicates the sequential position of a
character in the string, beginning at the left and proceeding to the right.

4.8.1 Character Constant. The form of a character constant is an apostrophe
followed by a nonempty string of characters followed by an apostrophe. The
string may consist of any characters capable of representation in the processor.
Note that the delimiting apostrophes are not part of the datum represented by the
constant. An apostrophe within the datum string is represented by two
consecutive apostrophes with no intervening blanks. In a character constant,
blanks embedded between the delimiting apostrophes are significant.

The length of a character constant is the number of characters between the
delimiting apostrophes, except that each pair of consecutive apostrophes counts as
a single character. The delimiting apostrophes are not counted. The length of a
character constant must be greater than zero.

FORTRAN 77 Full Language Page 4-4

CONTENTS

4. DATA TYPES AND CONSTANTS

41

4.2

4.3

4.4

45

4.6

4.7

4.8

Data Types .
4.1.1 DataType of a Name

4.1.2 Type Rules for Data and Procedure Ident|f|ers

4.1.3 Data Type Properties.
Constants .

4.2.1 Data Type of a ConsIant
4.2.2 Blanks in Constants.
4.2.3 Arithmetic Constants.
Integer Type .o
4.3.1 Integer Constant. .
Rea Type . .

44.1 Basic Red Constant
4.4.2 Rea Exponent.

4.4.3 Rea Constant.
Double Precision Type

4.5.1 Double Precision Exponent.

4.5.2 Double Precision Constant.
Complex Type .

4.6.1 Complex Constant.
Logica Type . .

4.7.1 Logica Constant.
Character Type .

4.8.1 Character Constant.

4-1
4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-3
4-3
4-3
4-4

ANSI X3J3/90.4

5. ARRAYS AND SUBSTRINGS

An array is a nonempty sequence of data. An array element is one member of
the sequence of data. An array name is the symbolic name of an array. An
array element name is an array hame qualified by a subscript (5.3).

An array name not qualified by a subscript identifies the entire sequence of
elements of the array in certain forms where such use is permitted (5.6); however,
in an EQUIVALENCE statement, an array name not qualified by a subscript
identifies the first element of the array (8.2.4).

An array element name identifies one element of the sequence. The subscript
value (Table 1) specifies the element of the array being identified. A different
array element may be identified by changing the subscript value of the array
element name.

An array name is local to a program unit (18.1.2).
A substring is a contiguous portion of a character datum.
5.1 Array Declarator

An array declarator specifies a symbolic name that identifies an array within a
program unit and specifies certain properties of the array. Only one array
declarator for an array name is permitted in a program unit.

5.1.1 Form of an Array Declarator. The form of an array declarator is:
a(d[.d].)
where: a is the symbolic name of the array
d isadimension declarator

The number of dimensions of the array is the number of dimension declarators in
the array declarator. The minimum number of dimensions is one and the
maximum is seven.

5.1.1.1 Form of a Dimension Declarator. The form of a dimension declarator is:
[d1:] d2
where: d1 isthe lower dimension bound
do isthe upper dimension bound

The lower and upper dimension bounds are arithmetic expressions, called
dimension bound expressions, in which al constants, symbolic names of
constants, and variables are of type integer. The upper dimension bound of the
last dimension may be an asterisk in assumed-size array declarators (5.1.2). A
dimension bound expression must not contain a function or array element
reference. Integer variables may appear in dimension bound expressions only in
adjustable array declarators (5.1.2).

If the symbolic name of a constant or variable that appears in a dimension bound
expression is not of default implied integer type (4.1.2), it must be specified as
integer by an IMPLICIT statement or a type-statement prior to its appearance in a
dimension bound expression.

5.1.1.2 Value of Dimension Bounds. The value of either dimension bound may
be positive, negative, or zero; however, the value of the upper dimension bound
must be greater than or equal to the value of the lower dimension bound. If only
the upper dimension bound is specified, the value of the lower dimension bound is

FORTRAN 77 Full Language Page 5-1

ARRAYS AND SUBSTRINGS ANSI X3J3/90.4

one. An upper dimension bound of an asterisk is always greater than or equal to
the lower dimension bound.

5.1.2 Kinds and Occurrences of Array Declarators. Each array declarator is
either a constant array declarator, an adjustable array declarator, or an assumed-
size array declarator. A constant array declarator is an array declarator in which
each of the dimension bound expressions is an integer constant expression
(6.1.3.1). An adjustable array declarator is an array declarator that contains one
or more variables. An assumed-size array declarator is a constant array
declarator or an adjustable array declarator, except that the upper dimension bound
of the last dimension is an asterisk.

Each array declarator is either an actua array declarator or a dummy array
declarator.

5.1.2.1 Actual Array Declarator. An actual array declarator is an array
declarator in which the array name is not a dummy argument. Each actua array
declarator must be a constant array declarator. An actual array declarator is
permitted in a DIMENSION statement, type-statement, or COMMON statement
(Section 8).

5.1.2.2 Dummy Array Declarator. A dummy array declarator is an array
declarator in which the array name is a dummy argument. A dummy array
declarator may be either a constant array declarator, an adjustable array declarator,
or an assumed-size array declarator. A dummy array declarator is permitted in a
DIMENSION statement or a type-statement but not in a COMMON statement. A
dummy array declarator may appear only in a function or subroutine subprogram.

5.2 Properties of an Array

The following properties of an array are specified by the array declarator: the
number of dimensions of the array, the size and bounds of each dimension, and
therefore the number of array elements.

The properties of an array in a program unit are specified by the array declarator
for the array in that program unit.

5.2.1 Data Type of an Array and an Array Element. An array name has a data
type (4.1.1). An array element name has the same data type as the array name.

5.2.2 Dimensions of an Array. The number of dimensions of an array is equal to
the number of dimension declarators in the array declarator.

The size of a dimension is the value:
d-d +1
where: d1 isthe value of the lower dimension bound
do isthe vaue of the upper dimension bound

Note that if the value of the lower dimension bound is one, the size of the
dimension is d».

The size of a dimension whose upper bound is an asterisk is not specified.

The number and size of dimensions in one array declarator may be different from
the number and size of dimensions in another array declarator that is associated by
common, equivalence, or argument association.

FORTRAN 77 Full Language Page 5-2

ARRAYS AND SUBSTRINGS ANSI X3J3/90.4

5.2.3 Sze of an Array. The size of an array is equa to the number of elements
in the array. The size of an array is equa to the product of the sizes of the
dimensions specified by the array declarator for that array name. The size of an
assumed-size dummy array (5.5) is determined as follows:

(1) If the actual argument corresponding to the dummy array is a
noncharacter array name, the size of the dummy array is the size of the
actual argument array.

(2) If the actual argument corresponding to the dummy array name is a
noncharacter array element name with a subscript value of r in an array
of size x, the size of the dummy array isx + 1 - r.

(3) If the actual argument is a character array name, character array element
name, or character array element substring name and begins at character
storage unit t of an array with ¢ character storage units, then the size of
the dummy array isINT((c + 1 — t) / In), where In is the length of
an element of the dummy array.

If an assumed-size dummy array has n dimensions, the product of the sizes of the
first n — 1 dimensions must be less than or equa to the size of the array, as
determined by one of the immediately preceding rules.

5.24 Array Element Ordering. The elements of an array are ordered in a
sequence (2.1). An array element name contains a subscript (5.4.1) whose
subscript value (5.4.3) determines which element of the array is identified by the
array element name. The first element of the array has a subscript value of one;
the second element has a subscript value of two; the last element has a subscript
value equa to the size of the array.

Whenever an array hame unqualified by a subscript is used to designate the whole
array (5.6), the appearance of the array name implies that the number of values to
be processed is equal to the number of elements in the array and that the elements
of the array are to be taken in sequential order.

5.25 Array Sorage Sequence. An array has a storage sequence consisting of the
storage sequences of the array elements in the order determined by the array
element ordering. The number of storage unitsin an array is x* z, where x is the
number of the elements in the array and z is the number of storage units for each
array element.

5.3 Array Element Name
The form of an array element name is:
a(s[.s].)
where: a is the array name
(s [,s]...) isasubscript (5.4.1)
s isasubscript expression (5.4.2)

The number of subscript expressions must be equal to the number of dimensions
in the array declarator for the array name.

5.4 Subscript

5.4.1 Form of a Subscript. The form of a subscript is:

(s [,s]-)

where s is a subscript expression.

FORTRAN 77 Full Language Page 5-3

ARRAYS AND SUBSTRINGS ANSI X3J3/90.4

Note that the term "subscript" includes the parentheses that delimit the list of
subscript expressions.

5.4.2 Subscript Expression. A subscript expression is an integer expression. A
subscript expression may contain array element references and function references.
Note that a restriction in the evaluation of expressions (6.6) prohibits certain side
effects. In particular, evaluation of a function must not alter the value of any
other subscript expression within the same subscript.

Within a program unit, the value of each subscript expression must be greater than
or equal to the corresponding lower dimension bound in the array declarator for
the array. The value of each subscript expression must not exceed the
corresponding upper dimension bound declared for the array in the program unit.
If the upper dimension bound is an asterisk, the value of the corresponding
subscript expression must be such that the subscript value does not exceed the
size of the dummy array.

5.4.3 Subscript Value. The subscript value of a subscript is specified in Table 1.
The subscript value determines which array element is identified by the array
element name. Within a program unit, the subscript value depends on the values
of the subscript expressions in the subscript and on the dimensions of the array
specified in the array declarator for the array in the program unit. If the subscript
valueisr, the rth element of the array is identified.

Table 1

Subscript Vaue

0 0 0 0 0
B n g Dimension g Subscript g Subscript g
0 0 Declarator 0 0 Vaue 0
O 0 0 0 0
O 0 0 0 0
0 O (.. 0 0 . 0
0l g U1tki) o 1) o 1+(s1-j1) 0
1 1 1 1 Il
0 0 0 0 0
02 O (j1:kg,j2:k2) 0 (s1,%2) 0 1+(s1-j1) O
20 . 0 +(s-i2rd g
0 0 0 0 0
[l 1 1 N 1
O 0 0 0 0
03 O (j1:ki,j2:k2,j3:k3) O (s1,s2,53) U 1+(s1-j1) 0
70 5 0 H(s-iprd 5
0 0 0 0 2] L 0
0 0 0 0 +(s3—j3) d2*dq 0
O 0 0 0 0
O 0 0 0 0
0 0 0 0 0
O O O O 0
0 o _ 0 0 . 0
Bn E (j1:K1 . inikn) E (s1,.-+5n) E 1+(s1-j1) E
+(sp—j2)*d1
0 0 0 O ok ek 0
0 0 0 0 I(Ss j3)*d2*dy 0
O 0 0 g *t- 0
0 0 0 0 +(sn—jn)dn-1 0O
0 0 0 O *dn-2*.*dq 0
H H H H H

FORTRAN 77 Full Language Page 5-4

ARRAYS AND SUBSTRINGS ANSI X3J3/90.4

Notes for Table 1:
(1) nisthe number of dimensions, 1 < n < 7.
(2) ji isthe value of the lower bound of the ith dimension.
(3) kj isthe value of the upper bound of the ith dimension.
(4) If only the upper bound is specified, then jj% = 1.
(5) s istheinteger vaue of the ith subscript expression.

(6) di = kj—jj+1 isthesize of the ith dimension. If the value of the lower
bound is 1, thendi = kj.

Note that a subscript of the form (j1,...jn) has a subscript value of one and
identifies the first element of the array. A subscript of the form (k1,....kn)
identifies the last element of the array; its subscript value is equal to the number
of elements in the array.

The subscript value and the subscript expression value are not necessarily the
same, even for a one-dimensiona array. In the example:

DIMENSION A(-1:8),B(10,10)
A(2) = B(1.2)

A(2) identifies the fourth element of A, the subscript is (2) with a subscript value
of four, and the subscript expression is 2 with a value of two. B(1,2) identifies
the eleventh element of B, the subscript is (1,2) with a subscript value of eleven,
and the subscript expressions are 1 and 2 with values of one and two.

5.5 Dummy and Actual Arrays

A dummy array is an array for which the array declarator is a dummy array
declarator. An assumed-size dummy array is a dummy array for which the array
declarator is an assumed-size array declarator. A dummy array is permitted only
in a function or subroutine subprogram (Section 15).

An actual array is an array for which the array declarator is an actual array
declarator. Each array in the main program is an actual array and must have a
constant array declarator. A dummy array may be used as an actual argument.

5.5.1 Adjustable Arrays and Adjustable Dimensions. An adjustable array is an
array for which the array declarator is an adjustable array declarator. In an
adjustable array declarator, those dimension declarators that contain a variable
name are called adjustable dimensions.

An adjustable array declarator must be a dummy array declarator. At least one
dummy argument list of the subprogram must contain the name of the adjustable
array. A variable name that appears in a dimension bound expression of an array
must also appear as a hame either in every dummy argument list that contains the
array hame or in a common block in that subprogram.

At the time of execution of a reference to a function or subroutine containing an
adjustable array in its dummy argument list, each actua argument that
corresponds to a dummy argument appearing in a dimension bound expression for
the array and each variable in common appearing in a dimension bound
expression for the array must be defined with an integer value. The values of
those dummy arguments or variables in common, together with any constants and
symbolic names of constants appearing in the dimension bound expression,
determine the size of the corresponding adjustable dimension for the execution of
the subprogram. The sizes of the adjustable dimensions and of any constant

FORTRAN 77 Full Language Page 5-5

ARRAYS AND SUBSTRINGS ANSI X3J3/90.4

dimensions appearing in an adjustable array declarator determine the number of
elements in the array and the array element ordering. The execution of different
references to a subprogram or different executions of the same reference
determine possibly different properties (size of dimensions, dimension bounds,
number of elements, and array element ordering) for each adjustable array in the
subprogram. These properties depend on the values of any actual arguments and
variables in common that are referenced in the adjustable dimension expressions
in the subprogram.

During the execution of an external procedure in a subprogram containing an
adjustable array, the array properties of dimension size, lower and upper
dimension bounds, and array size (number of elements in the array) do not
change. However, the variables involved in an adjustable dimension may be
redefined or become undefined during execution of the external procedure with no
effect on the above-mentioned properties.

5.6 Use of Array Names

In a program unit, each appearance of an array name must be in an array element
name except in the following cases:

(1) Inalist of dummy arguments
(2) InaCOMMON statement
(3) In atype-statement

(4) In an array declarator. Note that although the form of an array declarator
may be identical to that of an array element name, an array declarator is
not an array element name.

(5) In an EQUIVALENCE statement
(6) InaDATA statement
(7) Inthe list of actual arguments in a reference to an external procedure

(8) In thelist of an input/output statement if the array is not an assumed-size
dummy array

(9) As a unit identifier for an interna file in an input/output statement if the
array is not an assumed-size dummy array

(10) As the format identifier in an input/output statement if the array is not an
assumed-size dummy array

(11) In a SAVE statement
5.7 Character Substring

A character substring is a contiguous portion of a character datum and is of type
character. A character substring is identified by a substring name and may be
assigned values and referenced.

5.7.1 Substring Name. The forms of a substring name are:
v ([e] : [e])
a(s[.s].)([a] @ [e])

where: v is a character variable name

a (s [,s]...) isacharacter array element name

FORTRAN 77 Full Language Page 5-6

ARRAYS AND SUBSTRINGS ANSI X3J3/90.4

e1 and e are each an integer expression and are caled substring
expressions

The value e1 specifies the leftmost character position of the substring, and the
value e specifies the rightmost character position. For example, A(2:4) specifies
characters in positions two through four of the character variable A, and
B(4,3)(1:6) specifies characters in positions one through six of the character array
element B(4,3).

The values of 1 and e2 must be such that:
l<e e < len

where len is the length of the character variable or array element (8.4.2). If g1 is
omitted, a value of one is implied for e1. If e» is omitted, a value of len is
implied for e2. Both e1 and e may be omitted; for example, the form v (:) is
equivalent to v, and the form a(s [,s]...)(:) is equivaent to a(s [,s]...).
The length of a character substringisep — e1 + 1.

5.7.2 Substring Expression. A substring expression may be any integer
expression. A substring expression may contain array element references and
function references. Note that a restriction in the evaluation of expressions (6.6)
prohibits certain side effects. In particular, evaluation of a function must not alter
the value of any other expression within the same substring name.

FORTRAN 77 Full Language Page 5-7

CONTENTS

5. ARRAYS AND SUBSTRINGS

51

52

53
54

55

56
57

Array Declarator .

5.1.1 Form of an Array Declarator

5.1.2 Kinds and Occurrences of Array Decl arators
Properties of an Array

5.2.1 Data Type of an Array and an Array Element
5.2.2 Dimensions of an Array. .o
5.2.3 Size of an Array. . .

5.2.4 Array Element Ordering.

5.2.5 Array Storage Sequence.

Array Element Name

Subscript

54.1 Formof a Subscrl pt

5.4.2 Subscript Expression.

5.4.3 Subscript Value.

Dummy and Actua Arrays

5.5.1 Adjustable Arrays and Adj ustable Dlmensrons

Use of Array Names
Character Substring

5.7.1 Substring Name.
5.7.2 Substring Expression.

5-1
5-1

5-2
5-2

5-2
5-3
5-3
5-3

5-3
5-3

54
55

5-6
5-6

57

ANSI X3J3/90.4

6. EXPRESSIONS

This section describes the formation, interpretation, and evaluation rules for
arithmetic, character, relational, and logical expressions. An expression is formed
from operands, operators, and parentheses.

6.1 Arithmetic Expressions

An arithmetic expression is used to express a numeric computation. Evaluation of
an arithmetic expression produces a numeric !value.

The simplest form of an arithmetic expression is an unsigned arithmetic constant,
symbolic name of an arithmetic constant, arithmetic variable reference, arithmetic
array element reference, or arithmetic function reference. More complicated
arithmetic expressions may be formed by using one or more arithmetic operands
together with arithmetic operators and parentheses. Arithmetic operands must
identify values of type integer, real, double precision, or complex.

6.1.1 Arithmetic Operators. The five arithmetic operators are:

O [O
Ebperator ERepr@enti ng E
O O O
g ** OExponentiation d
a UDivision g
B * |]Multiplication g
o - 0 Subt'rcf;\cti on or Negati on 5
o + pAddition or Identity 0

Each of the operators **, /, and * operates on a pair of operands and is written
between the two operands. Each of the operators + and - either:

(1) operates on a pair of operands and is written between the two operands,
or

(2) operates on a single operand and is written preceding that operand.

6.1.2 Form and Interpretation of Arithmetic Expressions. The interpretation of
the expression formed with each of the arithmetic operators in each form of use is
as follows:

O
se of Operator Elnterpretation

O
X1 ** x2 BExponentiate X1 to the power x2

X1/ X2 BDivide x1 by x2

a

* X2 OMultiply x1 and x2
0

X2 BSubtract x2 from x1

X
[N

x
-
|

- X2 BNegate X2

0
+ X2 OAdd x1 and x2
0

EDDDDDDDDDDDDDDD[]@D
x
-

MOoOoOoOOoooooooooooooggd

+ X2 HSame as X2

FORTRAN 77 Full Language Page 6-1

EXPRESSIONS ANSI X3J3/90.4

where: X1 denotes the operand to the left of the operator
X2 denotes the operand to the right of the operator

The interpretation of a division may depend on the data types of the operands
(6.1.5).

A set of formation rules is used to establish the interpretation of an arithmetic
expression that contains two or more operators. There is a precedence among the
arithmetic operators, which determines the order in which the operands are to be
combined unless the order is changed by the use of parentheses. The precedence
of the arithmetic operators is as follows:

O O O
Eb O O
perator —Precedence 0

O O O
O ** OHighest O
U* and/ Uintermediate U
+and - HLowest H

For example, in the expression
—_ A * % 2

the exponentiation operator (**) has precedence over the negation operator (-);
therefore, the operands of the exponentiation operator are combined to form an
expression that is used as the operand of the negation operator. The interpretation
of the above expression is the same as the interpretation of the expression

- (A ** 2)
The arithmetic operands are:
(1) Primary
(2) Factor
(3) Term
(4) Arithmetic expression

The formation rules to be applied in establishing the interpretation of arithmetic
expressions are in 6.1.2.1 through 6.1.2.4.

6.1.2.1 Primaries. The primaries are;

(1) Unsigned arithmetic constant (4.2.3)

(2) Symbolic name of an arithmetic constant (8.6)

(3) Arithmetic variable reference (2.5)

(4) Arithmetic array element reference (5.3)

(5) Arithmetic function reference (15.2)

(6) Arithmetic expression enclosed in parentheses (6.1.2.4)
6.1.2.2 Factor. The forms of a factor are:

(1) Primary

(2) Primary ** factor

Thus, a factor is formed from a sequence of one or more primaries separated by
the exponentiation operator. Form (2) indicates that in interpreting a factor

FORTRAN 77 Full Language Page 6-2

EXPRESSIONS ANSI X3J3/90.4

containing two or more exponentiation operators, the primaries are combined from
right to left. For example, the factor

)
has the same interpretation as the factor
%% (3% 2)
6.1.2.3 Term. The forms of aterm are:
(1) Factor
(2) Term / factor
(3) Term * factor

Thus, aterm is formed from a sequence of one or more factors separated by either
the multiplication operator or the division operator. Forms (2) and (3) indicate
that in interpreting a term containing two or more multiplication or division
operators, the factors are combined from left to right.

6.1.2.4 Arithmetic Expression. The forms of an arithmetic expression are:
(1) Term
(2) +term
(3) - term
(4) Arithmetic expression + term
(5) Arithmetic expression - term

Thus, an arithmetic expression is formed from a sequence of one or more terms
separated by either the addition operator or the subtraction operator. The first
term in an arithmetic expression may be preceded by the identity or the negation
operator. Forms (4) and (5) indicate that in interpreting an arithmetic expression
containing two or more addition or subtraction operators, the terms are combined
from left to right.

Note that these formation rules do not permit expressions containing two
consecutive arithmetic operators, such as A**-B or A+-B. However, expressions
such as A**(-B) and A+(-B) are permitted.

6.1.3 Arithmetic Constant Expression. An arithmetic constant expression is an
arithmetic expression in which each primary is an arithmetic constant, the
symbolic name of an arithmetic constant, or an arithmetic constant expression
enclosed in parentheses. The exponentiation operator is not permitted unless the
exponent is of type integer. Note that variable, array element, and function
references are not allowed.

6.1.3.1 Integer Constant Expression. An integer constant expression is an
arithmetic constant expression in which each constant or symbolic name of a
constant is of type integer. Note that variable, array element, and function
references are not allowed.

The following are examples of integer constant expressions:

3
-3
-3+4

FORTRAN 77 Full Language Page 6-3

EXPRESSIONS ANSI X3J3/90.4

6.1.4 Type and Interpretation of Arithmetic Expressions. The data type of a
constant is determined by the form of the constant (4.2.1). The data type of an
arithmetic variable reference, symbolic name of an arithmetic constant, arithmetic
array element reference, or arithmetic function reference is determined by the
name of the datum or function (4.1.2). The data type of an arithmetic expression
containing one or more arithmetic operators is determined from the data types of
the operands.

Integer expressions, real expressions, double precision expressions, and complex
expressions are arithmetic expressions whose values are of type integer, real,
double precision, and complex, respectively.

When the operator + or - operates on a single operand, the data type of the
resulting expression is the same as the data type of the operand.

When an arithmetic operator operates on a pair of operands, the data type of the
resulting expression is given in Tables 2 and 3. In these tables, each letter |, R,
D, or C represents an operand or result of type integer, real, double precision, or
complex, respectively.

The type of the result is indicated by the I, R, D, or C that precedes the equals,
and the interpretation is indicated by the expression to the right of the equals.
REAL, DBLE, and CMPLX are the type-conversion functions described in 15.10.

Table 2

Type and Interpretation of Result for x1 + x2

0 0 0 0
02 g 2 0 R2 0
X1 m M 0
0 0 0 0
Bll E =11 + I2 ER = REAL(l1) + R2 E
0 0 0 0
0 0 0 0
O0D1 O D = D1 + DBLE(lp) OD = D1 + DBLE(Rp) 0
0 0 0 0
Hci Hc=ci+eMPLX(REAL(12),0) HC = ¢1 + CMPLX(R2,0.) H
0 0 0 0
0. %2 g D2 0 C2 0
nx1 0 i 0
0 0 0 0
Bll B D = DBLE(l2) + D2 B C=CMPLX (REAL (12),0.)+C2 g
IR 7 b = DBLE(R D, = C = CMPLX(R i
nR1 oD = (R1) + D2 pC=C (R1,0.) + C2 0
0 0 0 0
0Dq 0D =D1 + D2 0 Prohibited 0
O 0 O 0
Hcp H Prohibited Hc=c1+ 0 H

Tables giving the type and interpretation of expressions involving -, *, and / may
be obtained by replacing all occurrences of + in Table 2 by -, *, or /, respectively.

FORTRAN 77 Full Language Page 6-4

EXPRESSIONS ANSI X3J3/90.4

Table 3

Type and Interpretation of Result for x1** x2

0 0 0 0
0 0 0 0
o *2 0 12 0 R2 0
0 X1 O 0 -
0 0 0 0
O O 1 = 17**1 0 R = REAL(I1)**R g
o1 0 1**12 0 (11)** Rz 0
B R1 E R = R1**Ip B R = R1**R2 E
O 0 O 0
0 D1 O D = D1**l2 0 D = D1**DBLE(R2) 0
0 O 0 0
H ¢ H c=c1*p H ¢ = c1**cMPLX(R2,0.) H
0 0 0 0
0 0 0 0
o *2 g D2 0 €2 0
0x1 0 0 0
0 0 0 0
BIZ B D = DBLE(I2)** D2 E C=CMPLX (REAL (12),0.)** Co g
0 O . _ o a . _ ox 0
0 R1 g D = DBLE(R1)**D2 C = CMPLX(Rg,0.)**Cp 0
O O 0 0
0D1 0 D = D1**D2 0 Prohibited 0
0 0 0 0
Hcp H Prohibited Hc=ci*co H

Four entries in Table 3 specify an interpretation to be a complex value raised to a
complex power. In these cases, the value of the expression is the "principal
value" determined by x1**x2 = EXP(x2*LOG(x1)), where EXP and LOG
are functions described in 15.10.

Except for a value raised to an integer power, Tables 2 and 3 specify that if two
operands are of different type, the operand that differs in type from the result of
the operation is converted to the type of the result and then the operator operates
on a pair of operands of the same type. When a primary of type real, double
precision, or complex is raised to an integer power, the integer operand need not
be converted. If the value of 12 is negative, the interpretation of 11** 12 is the
same as the interpretation of 1/(11**ABS(12)), which is subject to the rules for
integer division (6.1.5). For example, 2**(-3) has the value of 1/(2**3), which is
Zero.

The type and interpretation of an expression that consists of an operator operating
on either a single operand or a pair of operands are independent of the context in
which the expression appears. In particular, the type and interpretation of such an
expression are independent of the type of any other operand of any larger
expression in which it appears. For example, if X is of type real, Jis of type
integer, and INT is the rea-to-integer conversion function, the expression
INT(X+J) is an integer expression and X+J is a rea expression.

6.1.5 Integer Division. One operand of type integer may be divided by another
operand of type integer. Although the mathematical quotient of two integers is
not necessarily an integer, Table 2 specifies that an expression involving the
division operator with two operands of type integer is interpreted as an expression
of type integer. The result of such a division is called an integer quotient and is

FORTRAN 77 Full Language Page 6-5

EXPRESSIONS ANSI X3J3/90.4

obtained as follows: If the magnitude of the mathematical quotient is less than
one, the integer quotient is zero. Otherwise, the integer quotient is the integer
whose magnitude is the largest integer that does not exceed the magnitude of the
mathematical quotient and whose sign is the same as the sign of the mathematical
quotient. For example, the value of the expression (-8)/3 is (-2).

6.2 Character Expressions

A character expression is used to express a character string. Evaluation of a
character expression produces a result of type character.

The simplest form of a character expression is a character constant, symbolic
name of a character constant, character variable reference, character array element
reference, character substring reference, or character function reference. More
complicated character expressions may be formed by using one or more character
operands together with character operators and parentheses.

6.2.1 Character Operator. The character operator is:

O O O
Ebperator ERepr@enting g
O O O

g |/ HConcatenation §

The interpretation of the expression formed with the character operator is:

O O O
HJse of Operator Elnterpretation B
O O O
B x1/7 x2 HConcatenate x1 with x2 B

where: X1 denotes the operand to the left of the operator
X2 denotes the operand to the right of the operator

The result of a concatenation operation is a character string whose value is the
value of x1 concatenated on the right with the value of x2 and whose length is
the sum of the lengths of x1 and x2. For example, the value of 'AB' // 'CDE'
is the string ABCDE.

6.2.2 Form and Interpretation of Character Expressions. A character expression
and the operands of a character expression must identify values of type character.
Except in a character assignment statement (10.4), a character expression must not
involve concatenation of an operand whose length specification is an asterisk in
parentheses (8.4.2) unless the operand is the symbolic name of a constant.

6.2.2.1 Character Primaries. The character primaries are:
(1) Character constant (4.8.1)
(2) Symbolic name of a character constant (8.6)
(3) Character variable reference (2.5)
(4) Character array element reference (5.3)
(5) Character substring reference (5.7)
(6) Character function reference (15.2)

(7) Character expression enclosed in parentheses (6.2.2.2)

FORTRAN 77 Full Language Page 6-6

EXPRESSIONS ANSI X3J3/90.4

6.2.2.2 Character Expression. The forms of a character expression are:
(1) Character primary
(2) Character expression // character primary

Thus, a character expression is a sequence of one or more character primaries
separated by the concatenation operator. Form (2) indicates that in a character
expression containing two or more concatenation operators, the primaries are
combined from left to right to establish the interpretation of the expression. For
example, the formation rules specify that the interpretation of the character
expression

'AB' // 'CD' // 'EF
is the same as the interpretation of the character expression
(AB' // 'CD'") // 'EF

The value of the character expression in this example is the same as that of the
constant 'ABCDEF. Note that parentheses have no effect on the value of a
character expression.

6.2.3 Character Constant Expression. A character constant expression is a
character expression in which each primary is a character constant, the symbolic
name of a character constant, or a character constant expression enclosed in
parentheses. Note that variable, array element, substring, and function references
are not allowed.

6.3 Relational Expressions

A relational expression is used to compare the values of two arithmetic
expressions or two character expressions. A relational expression may not be
used to compare the value of an arithmetic expression with the value of a
character expression.

Relational expressions may appear only within logical expressions. Evauation of
a relational expression produces a result of type logical, with a value of true or
false.

6.3.1 Relational Operators. The relational operators are;
O O
Ebperator ERepr@enti ng

U
LT. OLess than

0
a
|
0
a
LE. UOLess than or equal to B
a
a
0
B

.EQ. DEqual to

NE. Not equal to

.GT. [Greater than

.GE. HGreater than or equal to

mOoOoOooooOo

6.3.2 Arithmetic Relational Expression. The form of an arithmetic relational
expression is:

€1 relop e

where: e1 and e are each an integer, rea, double precision, or complex
expression

relop is arelational operator

FORTRAN 77 Full Language Page 6-7

EXPRESSIONS ANSI X3J3/90.4

A complex operand is permitted only when the relational operator is .EQ. or .NE.

6.3.3 Interpretation of Arithmetic Relational Expressions. An arithmetic
relational expression is interpreted as having the logical value true if the values of
the operands satisfy the relation specified by the operator. An arithmetic
relational expression is interpreted as having the logical value false if the values
of the operands do not satisfy the relation specified by the operator.

If the two arithmetic expressions are of different types, the value of the relational
expression

€1 relop e
is the value of the expression

((e1) - (e2)) relop O

where 0 (zero) is of the same type as the expression ((e1) (e2)), and relop is
the same relational operator in both expressions. Note that the comparison of a
double precision value and a complex value is not permitted.

6.3.4 Character Relational Expression. The form of a character relational
expression is:

€1 relop e
where: e1 and €2 are character expressions
relop is arelational operator

6.3.5 Interpretation of Character Relational Expressions. A character relational
expression is interpreted as the logical value true if the values of the operands
satisfy the relation specified by the operator. A character relational expression is
interpreted as the logical value false if the values of the operands do not satisfy
the relation specified by the operator.

The character expression e1 is considered to be less than e if the value of e
precedes the value of e in the collating sequence; e1 is greater than e if the
value of e1 follows the value of e in the collating sequence (3.1.5). Note that
the collating sequence depends partially on the processor; however, the result of
the use of the operators .EQ. and .NE. does not depend on the collating sequence.
If the operands are of unequal length, the shorter operand is considered as if it
were extended on the right with blanks to the length of the longer operand.

6.4 Logical Expressions

A logical expression is used to express a logical computation. Evauation of a
logical expression produces a result of type logical, with a value of true or false.

The simplest form of a logical expression is a logical constant, symbolic name of
a logical constant, logical variable reference, logical array element reference,
logical function reference, or relational expression. More complicated logical
expressions may be formed by using one or more logical operands together with
logical operators and parentheses.

6.4.1 Logical Operators. The logical operators are:

FORTRAN 77 Full Language Page 6-8

EXPRESSIONS ANSI X3J3/90.4

O O

Ebperator ERepreﬁenti ng

O O

O.NOT. [OLogical Negation

U.AND. ULogica Conjunction

U or. DLogical Inclusive Digunction
EQV. lLogica Equivalence
ONEQV. [pLogica Nonequivalence

OOoOooooooono

6.4.2 Form and Interpretation of Logical Expressions. A set of formation rules
is used to establish the interpretation of a logical expression that contains two or
more logical operators. There is a precedence among the logical operators, which
determines the order in which the operands are to be combined unless the order is
changed by the use of parentheses. The precedence of the logical operators is as
follows:

O O O
B Operator BPrecedence S
O O O
O .NOT. OHighest O
O AND. O u
. OR. . .
OEQV. or .NEQV. [jLowest 0

For example, in the expression
A OR. B .AND. C

the .AND. operator has higher precedence than the &’.OR. operator; therefore,
the interpretation of the above expression is the same as the interpretation of the
expression

A .OR. (B .AND. C)
The logical operands are:
(1) Logica primary
(2) Logica factor
(3) Logica term
(4) Logica disunct
(5) Logica expression

The formation rules to be applied in establishing the interpretation of a logical
expression are in 6.4.2.1 through 6.4.2.5.

6.4.2.1 Logical Primaries. The logical primaries are:
(1) Logica constant (4.7.1)
(2) Symbolic name of alogical constant (8.6)
(3) Logica variable reference (2.5)
(4) Logical array element reference (5.3)
(5) Logica function reference (15.2)
(6) Relational expression (6.3)

FORTRAN 77 Full Language Page 6-9

EXPRESSIONS

(7) Logica expression enclosed in parentheses (6.4.2.5)
6.4.2.2 Logical Factor. The forms of alogical factor are:
(1) Logica primary
(2) .NOT. logical primary
6.4.2.3 Logical Term. The forms of alogical term are:
(1) Logica factor
(2) Logica term .AND. logical factor

ANSI X3J3/90.4

Thus, a logical term is a sequence of logical factors separated by the .AND.
operator. Form (2) indicates that in interpreting a logical term containing two or
more .AND. operators, the logical factors are combined from left to right.

6.4.2.4 Logical Disunct. The forms of alogical disunct are:

(1) Logica term
(2) Logica disunct .OR. logical term

Thus, a logical digunct is a sequence of logical terms separated by the .OR.
operator. Form (2) indicates that in interpreting a logical disjunct containing two
or more .OR. operators, the logical terms are combined from left to right.

6.4.2.5 Logical Expression. The forms of alogical expression are:

(1) Logica disunct
(2) Logica expression .EQV. logica disunct
(3) Logica expression .NEQV. logical disunct

Thus, a logical expression is a sequence of logical disuncts separated by either
the .EQV. operator or the .NEQV. operator. Forms (2) and (3) indicate that in
interpreting a logical expression containing two or more .EQV. or .NEQV.

operators, the logical disjuncts are combined from left to right.

6.4.3 Value of Logical Factors, Terms, Disuncts, and Expressions. The value of

alogica factor involving .NOT. is shown below:

d g g
O O O
sz D.NOT. X2 0
d d a

(rue 0O fdse O
Hfalse B true H

The value of alogical term involving .AND. is shown below:

g d O
Exl E X2 Exl AND. x2
g d

O

[drue [Otrue [O true
Urue Ufase U fase
Efalse Dirue E fase
Ofdse Ofadse [false

Ooooooooog

The value of alogical digunct involving .OR. is shown below:

FORTRAN 77 Full Language

Page 6-10

EXPRESSIONS ANSI X3J3/90.4

O O O O
Bxl B X2 Bxl .OR. x2 B
O O O O
(drue Otrue 0O true O
LGQrue Ufdse U true g
Efalse Dirue E true E
Ofase Ofase O fase 0
The value of alogical expression involving .EQV. is shown below:
O O 0 O
Bxl B X2 Exl EQV. x2 g
O O O O
(true Otrue O true O
Lrue Ufase U fdse g
Bfalse Dirue E fase E
ffalse Ofdse true 0

The value of alogical expression involving .NEQV. is shown below:

O O O O
le B X2 Exl .NEQV. x2 g
O O O O
(true Otrue 0O false O
Hrue Ufase U true g
Dals;e Etrue E true E
ffalse Ofdse fase 0

6.4.4 Logical Constant Expression. A logical constant expression is a logical
expression in which each primary is a logical constant, the symbolic name of a
logical constant, a relational expression in which each primary is a constant
expression, or a logical constant expression enclosed in parentheses. Note that
variable, array element, and function references are not allowed.

6.5 Precedence of Operators

In 6.1.2 and 6.4.2 precedences have been established among the arithmetic
operators and the logical operators, respectively. There is only one character
operator. No precedence has been established among the relational operators. The
precedences among the various operators are:

O O O
Ebperator Uprecedence U
- g O
O O O
CArithmetic [OHighest O
LCharacter U O

elational .

ogical Lowest 0

An expression may contain more than one kind of operator. For example, the
logical expression

L OR. A +B GE C

where A, B, and C are of type rea, and L is of type logical, contains an
arithmetic operator, a relational operator, and a logical operator. This expression
would be interpreted the same as the expression

FORTRAN 77 Full Language Page 6-11

EXPRESSIONS ANSI X3J3/90.4

L .OR. ((A + B) .GE. C)

6.5.1 Summary of Interpretation Rules. The order in which primaries are
combined using operators is determined by the following:

(1) Use of parentheses

(2) Precedence of the operators

(3) Right-to-left interpretation of exponentiations in a factor

(4) Left-to-right interpretation of multiplications and divisions in a term

(5) Left-to-right interpretation of additions and subtractions in an arithmetic
expression

(6) Left-to-right interpretation of concatenations in a character expression
(7) Left-to-right interpretation of conjunctions in a logical term
(8) Left-to-right interpretation of disunctions in alogica disunct
(9) Left-to-right interpretation of logical equivalences in alogical expression
6.6 Evaluation of Expressions
This section applies to arithmetic, character, relational, and logical expressions.

Any variable, array element, function, or character substring referenced as an
operand in an expression must be defined at the time the reference is executed.
An integer operand must be defined with an integer value rather than a statement
label value. Note that if a character string or substring is referenced, al of the
referenced characters must be defined at the time the reference is executed.

Any arithmetic operation whose result is not mathematically defined is prohibited
in the execution of an executable program. Examples are dividing by zero and
raising a zero- valued primary to a zero-valued or negative-valued power. Raising
a negative-valued primary to areal or double precision power is also prohibited.

The execution of a function reference in a statement may not alter the value of
any other entity within the statement in which the function reference appears. The
execution of a function reference in a statement may not ater the value of any
entity in common (8.3) that affects the value of any other function reference in
that statement. However, execution of a function reference in the expression e of
alogical IF statement (11.5) is permitted to affect entities in the statement st that
is executed when the value of the expression e is true. If a function reference
causes definition of an actual argument of the function, that argument or any
associated entities must not appear elsewhere in the same statement. For example,
the statements

A(l) = F()
Y = G(X) + X
are prohibited if the reference to F defines | or the reference to G defines X.

The data type of an expression in which a function reference appears does not
affect the evaluation of the actual arguments of the function. The data type of an
expression in which a function reference appears is not affected by the evaluation
of the actual arguments of the function, except that the result of a generic function
reference assumes a data type that depends on the data type of its arguments as
specified in 15.10.

FORTRAN 77 Full Language Page 6-12

EXPRESSIONS ANSI X3J3/90.4

Any execution of an array element reference requires the evaluation of its
subscript. The data type of an expression in which a subscript appears does not
affect, nor is it affected by, the evaluation of the subscript.

Any execution of a substring reference requires the evaluation of its substring
expressions. The data type of an expression in which a substring name appears
does not affect, nor is it affected by, the evaluation of the substring expressions.

6.6.1 Evaluation of Operands. It is not necessary for a processor to evaluate all
of the operands of an expression if the value of the expression can be determined
otherwise. This principle is most often applicable to logical express(ions, but it
applies to all expressions. For example, in evaluating the logical expression

X .GT. Y .OR. L(Z)

where X, Y, and Z are red, and L is a logical function, the function reference
L(Z) need not be evaluated if X is greater than Y. If a statement contains a
function reference in a part of an expression that need not be evaluated, all
entities that would have become defined in the execution of that reference become
undefined at the completion of evaluation of the expression containing the
function reference. In the example above, evaluation of the expression causes Z
to become undefined if L defines its argument.

6.6.2 Order of Evaluation of Functions. If a statement contains more than one
function reference, a processor may evaluate the functions in any order, except for
alogical IF statement and a function argument list containing function references.
For example, the statement

Y = F(G(X))
where F and G are functions, requires G to be evaluated before F is evaluated.

In a statement that contains more than one function reference, the value provided
by each function reference must be independent of the order chosen by the
processor for evaluation of the function references.

6.6.3 Integrity of Parentheses. The sections that follow state certain conditions
under which a processor may evaluate an expression different from the one
obtained by applying the interpretation rules given in 6.1 through 6.5. However,
any expression contained in parentheses must be treated as an entity. For
example, in evaluating the expression A*(B*C), the product of B and C must be
evauated and then multiplied by A; the processor must not evauate the
mathematically equivalent expression (A*B)*C.

6.6.4 Evaluation of Arithmetic Expressions. The rules given in 6.1.2 specify the
interpretation of an arithmetic expression. Once the interpretation has been
established in accordance with those rules, the processor may evaluate any
mathematically equivalent expression, provided that the integrity of parentheses is
not violated.

Two arithmetic expressions are mathematically equivaent if, for all possible
values of their primaries, their mathematical values are equal. However,
mathematically equivalent arithmetic expressions may produce different
computational results.

The mathematical definition of integer division is given in 6.1.5. The difference
between the value of the expression 5/2 and 5./2. is a mathematical difference, not
a computational difference.

FORTRAN 77 Full Language Page 6-13

EXPRESSIONS ANSI X3J3/90.4

The following are examples of expressions, along with alowable aternative forms
that may be used by the processor in the evaluation of those expressions. A, B,
and C represent arbitrary real, double precision, or complex operands; | and J
represent arbitrary integer operands; and X, Y, and Z represent arbitrary arithmetic
operands. (Note that Table 2 prohibits combinations of double precision and
complex data types.)

0 0 0
BExpron EAIIowabIe Alternative Form B
0 0 0
X +Y ay +x 0
Ox*y Oy*x O
Hox +y EY -X E
§<+Y+Z OX+(Y +2Z) 0
X-Y+Z OX-(Y-2Z) 0
[X*B/Z OX* (B/Z) O
Lx*y -x*z UX* (Y -2) U

/B/C EA/(B*C) E
A/5.0 [0.2*A 0

The following are examples of expressions along with forbidden forms that must
not be used by the processor in the evaluation of those expressions.

O O O
B Expression gNonallowable Alternative g
0 0O Form 0
O O O
L2 Uo. 5+ O
§<*I/J gx* (1/3) E

/VA Ol/(FA) 0
X*Y)—-(X*Z) pX*(Y-2Z) O
BX* (Y -2) BX*Y -X*Z g

In addition to the parentheses required to establish the desired interpretation,
parentheses may be included to restrict the aternative forms that may be used by
the processor in the actual evauation of the expression. This is useful for
controlling the magnitude and accuracy of intermediate values developed during
the evaluation of an expression. For example, in the expression

A+(B-C)

the term (B-C) must be evaluated and then added to A. Note that the inclusion of
parentheses may change the mathematical value of an expression. For example,
the two expressions:

A*1/]
A* (11)
may have different mathematical values if | and J are factors of integer data type.

Each operand of an arithmetic operator has a data type that may depend on the
order of evaluation used by the processor. For example, in the evauation of the
expression

D+R+l

where D, R, and | represent terms of double precision, real, and integer data type,
respectively, the data type of the operand that is added to | may be either double

FORTRAN 77 Full Language Page 6-14

EXPRESSIONS ANSI X3J3/90.4

precision or real, depending on which pair of operands (D and R, R and |, or D
and |) is added first.

6.6.5 Evaluation of Character Expressions. The rules given in 6.2.2 specify the
interpretation of a character expression as a string of characters. A processor
needs to evaluate only as much of the character expression as is required by the
context in which the expression appears. For example, the statements

CHARACTER* 2 C1,C2,C3,CF
Cl = C2 // CF(C3)

do not require the function CF to be evaluated, because only the value of C2 is
needed to determine the value of C1.

6.6.6 Evaluation of Relational Expressions. The rules given in 6.3.3 and 6.3.5
specify the interpretation of relational expressions. Once the interpretation of an
expression has been established in accordance with those rules, the processor may
evauate any other expression that is relationally equivalent. For example, the
processor may choose to evaluate the relational expression

I .GT. J
where | and J are integer variables, as
J-1.LT.0

Two relational expressions are relationally equivalent if their logical values are
equal for al possible values of their primaries.

6.6.7 Evaluation of Logical Expressions. The rules given in 6.4.2 specify the
interpretation of alogical expression. Once the interpretation of an expression has
been established in accordance with those rules, the processor may evaluate any
other expression that is logically equivalent, provided that the integrity of
parentheses is not violated. For example, the processor may choose to evaluate
the logical expression

L1 .AND. L2 .AND. L3
where L1, L2, and L3 are logical variables, as
L1 .AND. (L2 .AND. L3)

Two logical expressions are logically equivalent if their values are equal for all
possible values of their primaries.

6.7 Constant Expressions

A constant expression is an arithmetic constant expression (6.1.3), a character
constant expression (6.2.3), or alogical constant expression (6.4.4).

FORTRAN 77 Full Language Page 6-15

CONTENTS

6. EXPRESSIONS

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Arithmetic Expressions

6.1.1 Arithmetic Operators.

6.1.2 Form and Interpretation of Arlthmenc
Expressions. . .

6.1.3 Arithmetic Constant Expron

6.1.4 Type and Interpretation of Arithmetic
Expressions. . Coe e

6.1.5 Integer Division.

Character Expressions .

6.2.1 Character Operator.

6.2.2 Form and Interpretation of Character
Expressions.

6.2.3 Character Constant Expr jon.

Relational Expressions

6.3.1 Relationa Operators.

6.3.2 Arithmetic Relational Expron

6.3.3 Interpretatlon of Arithmetic Relational
Expressions. . .

6.3.4 Character Relational Expron

6.3.5 Interpretation of Character Relational
Expressions. .

Logical Expressions

6.4.1 Logical Operators.

6.4.2 Form and Interpretation of Log|cal Exprons
9

6.4.3 Value of Logica Factors, Terms, Disjuncts, and
Expressions. . e

6.4.4 Logical Constant Expron

Precedence of Operators

6.5.1 Summary of Interpretation Rules

Evaluation of Expressions .

6.6.1 Evaluation of Operands.

6.6.2 Order of Evaluation of Functions.

6.6.3 Integrity of Parentheses.

6.6.4 Evaluation of Arithmetic Exprons

6.6.5 Evaluation of Character Expressions.

6.6.6 Evaluation of Relational Expressions.

6.6.7 Evaluation of Logical Expressions.

Constant Expressions .o

6-10
6-11
6-11
6-12
6-12
6-13
6-13
6-13
6-13
6-15
6-15
6-15
6-15

ANSI X3J3/90.4

7. EXECUTABLE AND NONEXECUTABLE STATEMENT CLASSFICATION

Each statement is classified as executable or nonexecutable. Executable
statements specify actions and form an execution sequence in an executable
program. Nonexecutable statements specify characteristics, arrangement, and
initial values of data; contain editing information; specify statement functions;
classify program units; and specify entry points within subprograms.
Nonexecutable statements are not part of the execution sequence. Nonexecutable
statements may be labeled, but such statement labels must not be used to control
the execution sequence.

7.1 Executable Satements
The following statements are classified as executable:

(1) Arithmetic, logical, statement label (ASSIGN), and character assignment
statements

(2) Unconditionad GO TO, assigned GO TO, and computed GO TO
statements

(3) Arithmetic IF and logical |IF statements

(4) Block IF, ELSE IF, ELSE, and END IF statements
(5) CONTINUE statement

(6) STOP and PAUSE statements

(7) DO statement

(8) READ, WRITE, and PRINT statements

(9) REWIND, BACKSPACE, ENDFILE, OPEN, CLOSE, and INQUIRE
statements

(10) CALL and RETURN statements
(11) END statement
7.2 Nonexecutable Statements
The following statements are classified as honexecutable:

(1) PROGRAM, FUNCTION, SUBROUTINE, ENTRY, and BLOCK DATA
statements

(2) DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, PARAMETER,
EXTERNAL, INTRINSIC, and SAVE statements

(3) INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER type-statements

(4) DATA statement
(5) FORMAT statement
(6) Statement function statement

FORTRAN 77 Full Language Page 7-1

CONTENTS

7. EXECUTABLE AND NONEXECUTABLE STATEMENT CLASSIFICATION 7-
1
7.1 Executable Statements 71
7.2 Nonexecutable Statements 71

ANSI X3J3/90.4

8. SPECIFICATION STATEMENTS
There are nine kinds of specification statements:
(1) DIMENSION
(2) EQUIVALENCE
(3) COMMON

(4) INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and
CHARACTER type-statements

(5) IMPLICIT

(6) PARAMETER

(7) EXTERNAL

(8) INTRINSIC

(90 SAVE
All specification statements are honexecutable.
8.1 DIMENSON Satement

A DIMENSION statement is used to specify the symbolic names and dimension
specifications of arrays.

The form of a DIMENSION statement is:
DIMENSION a(d) [,a(d)]...
where each a(d) is an array declarator (5.1).

Each symbolic name a appearing in a DIMENSION statement declares a to be an
array in that program unit. Note that array declarators may also appear in
COMMON statements and type-statements. Only one appearance of a symbolic
name as an array hame in an array declarator in a program unit is permitted.

8.2 EQUIVALENCE Satement

An EQUIVALENCE statement is used to specify the sharing of storage units by
two or more entities in a program unit. This causes association of the entities that
share the storage units.

If the equivalenced entities are of different data types, the EQUIVALENCE
statement does not cause type conversion or imply mathematical equivalence. If a
variable and an array are equivalenced, the variable does not have array properties
and the array does not have the properties of a variable.

8.2.1 Form of an EQUIVALENCE Satement. The form of an EQUIVALENCE
statement is:

EQUIVALENCE (nlist) [, (nlist)]..

where each nlist is a list (2.10) of variable names, array element names, array
names, and character substring names. Each list must contain at least two names.
Names of dummy arguments of an external procedure in a subprogram must not
appear in the list. If a variable name is also a function name (15.5.1), that name
must not appear in the list.

Each subscript expression or substring expression in a list nlist must be an integer
constant expression.

FORTRAN 77 Full Language Page 8-1

SPECIFICATION STATEMENTS ANSI X3J3/90.4

8.2.2 Equivalence Association. An EQUIVALENCE statement specifies that the
storage sequences of the entities whose names appear in a list nlist have the same
first storage unit. This causes the association of the entities in the list nlist and
may cause association of other entities (17.1).

8.2.3 Equivalence of Character Entities. An entity of type character may be
equivalenced only with other entities of type character. The lengths of the
equivalenced entities are not required to be the same.

An EQUIVALENCE statement specifies that the storage sequences of the
character entities whose names appear in a list nlist have the same first character
storage unit. This causes the association of the entities in the list nlist and may
cause association of other entities (17.1). Any adjacent characters in the
associated entities may also have the same character storage unit and thus may
also be associated. In the example:

CHARACTER A*4, B*4, C(2)*3
EQUIVALENCE (A,C(2)), (B,C(2))

the association of A, B, and C can be graphically illustrated as:
Eb1 Ho2 Ho3 Ho4 Hos Hos Ho7 B

0 «--C(l)-—- B —C@-- O

8.2.4 Array Names and Array Element Names. If an array element name appears
in an EQUIVALENCE statement, the number of subscript expressions must be the
same as the number of dimensions specified in the array declarator for the array
name.

The use of an array name unqualified by a subscript in an EQUIVALENCE
statement has the same effect as using an array element name that identifies the
first element of the array.

8.25 Redrictions on EQUIVALENCE Satements. An EQUIVALENCE
statement must not specify that the same storage unit is to occur more than once
in a storage sequence. For example,

DIMENSION A(2)
EQUIVALENCE (A(1),B), (A(2),B)

is prohibited, because it would specify the same storage unit for A(1) and A(2).
An EQUIVALENCE statement must not specify that consecutive storage units are
to be nonconsecutive. For example, the following is prohibited:

REAL A(2)
DOUBLE PRECISION D(2)
EQUIVALENCE (A(1),D(1)), (A(2),D(2))

8.3 COMMON Satement

The COMMON statement provides a means of associating entities in different
program units. This alows different program units to define and reference the
same data without using arguments, and to share storage units.

8.3.1 Form of a COMMON Satement. The form of a COMMON statement is:

FORTRAN 77 Full Language Page 8-2

SPECIFICATION STATEMENTS ANSI X3J3/90.4

COMMON [/[cb]/] nlist [[,]/[cb]/ nlist]...
where: cb is a common block name (18.2.1)

nlistis a list (2.10) of variable names, array names, and array declarators.
Only one appearance of a symbolic name as a variable name, array
name, or array declarator is permitted in al such lists within a
program unit. Names of dummy arguments of an externa procedure
in a subprogram must not appear in the list. If a variable name is
aso a function name (15.5.1), that name must not appear in the list.

Each omitted cb specifies the blank common block. If the first cb is omitted, the
first two slashes are optional.

In eech COMMON statement, the entities whose names appear in an nlist
following a block name cb are declared to be in common block cb. If the first
cb is omitted, all entities whose names appear in the first nlist are specified to be
in blank common. Alternatively, the appearance of two slashes with no block
name between them declares the entities whose names appear in the list nlist that
follows to be in blank common.

Any common block name cb or an omitted cb for blank common may occur
more than once in one or more COMMON statements in a program unit. The list
nlist following each successive appearance of the same common block name is
treated as a continuation of the list for that common block name.

If a character variable or character array is in a common block, all of the entities
in that common block must be of type character.

8.3.2 Common Block Storage Sequence. For each common block, a common
block storage sequence is formed as follows:

(1) A storage sequence is formed consisting of the storage sequences of all
entities in the lists nlistZ for the common block. The order of the
storage sequence is the same as the order of the appearance of the lists
nlist in the program unit.

(2) The storage sequence formed in (1) is extended to include all storage
units of any storage sequence associated with it by equivaence
association. The sequence may be extended only by adding storage units
beyond the last storage unit. Entities associated with an entity in a
common block are considered to be in that common block.

8.3.3 Sze of a Common Block. The size of a common block is the size of its
common block storage sequence, including any extensions of the sequence
resulting from equivalence association.

Within an executable program, all named common blocks that have the same
name must be the same size. Blank common blocks within an executable
program are not required to be the same size.

8.3.4 Common Association. Within an executable program, the common block
storage sequences of al common blocks with the same name have the same first
storage unit. Within an executable program, the common block storage sequences
of al blank common blocks have the same first storage unit. This results in the
association (17.1) of entities in different program units.

8.3.5 Differences between Named Common and Blank Common. A blank
common block has the same properties as a named common block, except for the
following:

FORTRAN 77 Full Language Page 8-3

SPECIFICATION STATEMENTS ANSI X3J3/90.4

(1) Execution of a RETURN or END statement sometimes causes entities in
named common blocks to become undefined but never causes entities in
blank common to become undefined (15.8.4).

(2) Named common blocks of the same name must be of the same size in al
program units of an executable program in which they appear, but blank
common blocks may be of different sizes.

(3) Entities in named common blocks may be initially defined by means of a
DATA statement in a block data subprogram, but entities in blank
common must not be initially defined (Section 9).

8.3.6 Restrictions on Common and Equivalence. An EQUIVALENCE statement
must not cause the storage sequences of two different common blocks in the same
program unit to be associated. Equivalence association must not cause a common
block storage sequence to be extended by adding storage units preceding the first
storage unit of the first entity specified in a COMMON statement for the common
block. For example, the following is not permitted:

COMMON /X/A
REAL B(2)
EQUIVALENCE (A,B(2))

8.4 Type-Statements

A type-statement is used to override or confirm implicit typing and may specify
dimension information.

The appearance of the symbolic name of a constant, variable, array, external
function, or statement function in a type-statement specifies the data type for that
name for all appearances in the program unit. Within a program unit, a name
must not have its type explicitly specified more than once.

A type-statement that confirms the type of an intrinsic function whose name
appears in the Specific Name column of Table 5 is not required, but is permitted.
If a generic function name appears in a type-statement, such an appearance is not
sufficient by itself to remove the generic properties from that function.

The name of a main program, subroutine, or block data subprogram must not
appear in a type-statement.

8.4.1 INTEGER, REAL, DOUBLE PRECISON, COMPLEX, and LOGICAL
Type-Satements. An INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL type-statement is of the form:

typ v[,v]..

where: typ is one of INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LOGICAL

vV isavariable name, array name, array declarator, symbolic name of a
constant, function name, or dummy procedure name (18.2.11)

8.4.2 CHARACTER Type-Satement. The form of a CHARACTER type
statement is:

CHARACTER [*len [,]] nam [,nam]...
where: nam is of one of the forms:

v [*len]

FORTRAN 77 Full Language Page 8-4

SPECIFICATION STATEMENTS ANSI X3J3/90.4

a [(d)] [*len]

VvV is a variable name, symbolic name of a constant, function name, or
dummy procedure name

a isanarray name

a(d) isan array declarator

len isthe length (number of characters) of a character variable, character
array element, character constant that has a symbolic name, or
character function, and is called the length specification. len is one
of the following:

(1) An unsigned, nonzero, integer constant

(2) An integer constant expression (6.1.3.1) enclosed in parentheses
and with a positive value

(3) An asterisk in parentheses, (*)

A length len immediately following the word CHARACTER is the length
specification for each entity in the statement not having its own length
specification. A length specification immediately following an entity is the length
specification for only that entity. Note that for an array the length specified is for
each array element. If alength is not specified for an entity, its length is one.

An entity declared in a CHARACTER statement must have a length specification
that is an integer constant expression, unless that entity is an external function, a
dummy argument of an external procedure, or a character constant that has a
symbolic name.

If a dummy argument has alen of (*) declared, the dummy argument assumes the
length of the associated actual argument for each reference of the subroutine or
function. If the associated actual argument is an array name, the length assumed
by the dummy argument is the length of an array element in the associated actual
argument array.

If an external function has a len of (*) declared in a function subprogram, the
function name must appear as the name of a function in a FUNCTION or ENTRY
statement in the same subprogram. When a reference to such a function is
executed, the function assumes the length specified in the referencing program
unit.

The length specified for a character function in the program unit that references
the function must be an integer constant expression and must agree with the
length specified in the subprogram that specifies the function. Note that there
aways is agreement of length if a len of (*) is specified in the subprogram that
specifies the function.

If a character constant that has a symbolic name has a len of (*) declared, the
constant assumes the length of its corresponding constant expression in a
PARAMETER statement.

The length specified for a character statement function or statement function
dummy argument of type character must be an integer constant expression.

8.5 IMPLICIT Satement

An IMPLICIT statement is used to change or confirm the default implied integer
and real typing.

FORTRAN 77 Full Language Page 8-5

SPECIFICATION STATEMENTS ANSI X3J3/90.4

The form of an IMPLICIT statement is:

IMPLICIT typ (a [,a]...) [,typ (a [,a]...)]...

where: typ is one of INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, or CHARACTER [* len]

a is dther a single letter or a range of single letters in alphabetical
order. A range is denoted by the first and last letter of the range
separated by a minus. Writing a range of letters a1 — a2 has the
same effect as writing a list of the single letters a1 through ap.

len isthe length of the character entities and is one of the following:
(1) An unsigned, nonzero, integer constant

(2) An integer constant expression (6.. 1.3.1) enclosed in
parentheses and with a positive value

If len is not specified, the length is one.

An IMPLICIT statement specifies a type for al variables, arrays, symbolic names
of constants, external functions, and statement™ functions that begin with any
letter that appears in the specification, either as a single letter or included in a
range of letters. IMPLICIT statements do not change the type of any intrinsic
functions. An IMPLICIT statement applies only to the program unit that contains
it.

Type specification by an IMPLICIT statement may be overridden or confirmed
for any particular variable, array, symbolic name of a constant, external function,
or statement function name by the appearance of that name in a type-statement.
An explicit type specification in a FUNCTION statement overrides an IMPLICIT
statement for the name of that function subprogram. Note that the length is also
overridden when a particular name appears in a CHARACTER or CHARACTER
FUNCTION statement.

Within the specification statements of a program unit, IMPLICIT statements must
precede al other specification statements except PARAMETER statements. A
program unit may contain more than one IMPLICIT statement.

The same letter must not appear as a single letter, or be included in a range of
letters, more than once in al of the IMPLICIT statements in a program unit.

8.6 PARAMETER Satement
The PARAMETER statement is used to give a constant a symbolic name.
The form of a PARAMETER statement is:
PARAMETER (p=e [,p=€]...)
where: p is a symbolic name
e isaconstant expression (6.7)

If the symbolic name p is of type integer, real, double precision, or complex, the
corresponding expression e must be an arithmetic constant expression (6.1.3). If
the symbolic name p is of type character or logical, the corresponding expression
e must be a character constant expression (6.2.3) or a logical constant expression
(6.4.4), respectively.

Each p is the symbolic name of a constant that becomes defined with the value
determined from the expression e that appears on the right of the equals, in

FORTRAN 77 Full Language Page 8-6

SPECIFICATION STATEMENTS ANSI X3J3/90.4

accordance with the rules for assignment statements (10.1, 10.2, and 10.4).

Any symbolic name of a constant that appears in an expression € must have been
defined previoudly in the same or a different PARAMETER statement in the same
program unit.

A symbolic name of a constant must not become defined more than once in a
program unit.

If a symbolic name of a constant is not of default implied type, its type must be
specified by a type-statement or IMPLICIT statement prior to its first appearance
in a PARAMETER statement. If the length specified for the symbolic name of a
constant of type character is not the default length of one, its length must be
specified in a type-statement or IMPLICIT statement prior to the first appearance
of the symbolic name of the constant. Its length must not be changed by
subsequent statements including IMPLICIT statements.

Once such a symbolic name is defined, that name may appear in that program unit
in any subsequent statement as a primary in an expression or in a DATA
statement (9.1). A symbolic name of a constant must not be part of a format
specification. A symbolic name of a constant must not be used to form part of
another constant, for example, any part of a complex constant.

A symbolic name in a PARAMETER statement may identify only the
corresponding constant in that program unit.

8.7 EXTERNAL Satement

An EXTERNAL statement is used to identify a symbolic name as representing an
external procedure or dummy procedure, and to permit such a name to be used as
an actual argument.

The form of an EXTERNAL statement is:
EXTERNAL proc [,proc]...

where each proc is the name of an external procedure, dummy procedure, or
block data subprogram. Appearance of a name in an EXTERNAL statement
declares that name to be an external procedure name or dummy procedure name,
or block data subprogram name. If an external procedure na)me or a dummy
procedure name is used as an actual argument in a program unit, it must appear in
an EXTERNAL statement in that program unit. Note that a statement function
name must not appear in an EXTERNAL statement.

If an intrinsic function name appears in an EXTERNAL statement in a program
unit, that name becomes the name of some external procedure and an intrinsic
function of the same name is not available for reference in the program unit.

Only one appearance of a symbolic name in al of the EXTERNAL statements of
a program unit is permitted.

8.8 INTRINSC Satement

An INTRINSIC statement is used to identify a symbolic name as representing an
intrinsic function (15.3). It aso permits a name that represents a specific intrinsic
function to be used as an actual argument.

The form of an INTRINSIC statement is:
INTRINSIC fun [,fun]...

where each fun is an intrinsic function name.

FORTRAN 77 Full Language Page 8-7

SPECIFICATION STATEMENTS ANSI X3J3/90.4

Appearance of a name in an INTRINSIC statement declares that hame to be an
intrinsic function name. If a specific name of an intrinsic function is used as an
actual argument in a program unit, it must appear in an INTRINSIC statement in
that program unit. The names of intrinsic functions for type conversion (INT,
IFIX, IDINT, FLOAT, SNGL, REAL, DBLE, CMPLX, ICHAR, CHAR), lexica
relationship (LGE, LGT, LLE, LLT), and for choosing the largest or smallest
vaue (MAX, MAX0, AMAX1, DMAX1, AMAX0, MAX1, MIN, MINO, AMINL1,
DMIN1, AMINO, MIN1) must not be used as actual arguments.

The appearance of a generic function name in an INTRINSIC statement does not
cause that name to lose its generic property.

Only one appearance of a symbolic name in al of the INTRINSIC statements of a
program unit is permitted. Note that a symbolic hame must not appear in both an
EXTERNAL and an INTRINSIC statement in a program unit.

8.9 SAVE Satement

A SAVE statement is used to retain the definition status of an entity after the
execution of a RETURN or END statement in a subprogram. Within a function
or subroutine subprogram, an entity specified by a SAVE statement does not
become undefined as a result of the execution of a RETURN or END statement in
the subprogram. However, such an entity in a common block may become
undefined or redefined in another program unit.

The form of a SAVE statement is:
SAVE [a [,a]..]

where each a is a named common block name preceded and followed by a slash,
a variable name, or an array name. Redundant appearances of an item are not
permitted.

Dummy argument names, procedure names, and names of entities in a common
block must not appear in a SAVE statement.

A SAVE statement without a list is treated as though it contained the names of all
alowable items in the program unit.

The appearance of a common block name preceded and followed by a slash in a
SAVE statement has the effect of specifying al of the entities in that common
block.

If a particular common block name is specified by a SAVE statement in a
subprogram of an executable program, it must be specified by a SAVE statement
in every subprogram in which that common block appears.

A SAVE statement is optional in a main program and has no effect.

If a named common block is specified in a SAVE statement in a subprogram, the
current values of the entities in the common block storage sequence (8.3.3) at the
time a RETURN or END statement is executed are made available to the next
program unit that specifies that common block name in the execution sequence of
an executable program.

If a named common block is specified in the main program unit, the current
values of the common block storage sequence are made available to each
subprogram that specifies that named common block; a SAVE statement in the
subprogram has no effect.

FORTRAN 77 Full Language Page 8-8

SPECIFICATION STATEMENTS ANSI X3J3/90.4

The definition status of each entity in the named common block storage sequence
depends on the association that has been established for the common block
storage sequence (17.2 and 17.3).

If aloca entity that is specified by a SAVE statement and is not in a common
block is in a defined state at the time a RETURN or END statement is executed
in a subprogram, that entity is defined with the same value at the next reference of
that subprogram.

The execution of a RETURN statement or an END statement within a subprogram
causes all entities within the subprogram to become undefined except for the
following:

(1) Entities specified by SAVE statements
(2) Entities in blank common

(3) Initidly defined entities that have neither been redefined nor become
undefined

(4) Entities in a named common block that appears in the subprogram and
appears in at least one other program unit that is referencing, either
directly or indirectly, that subprogram

FORTRAN 77 Full Language Page 8-9

CONTENTS

8. SPECIFICATION STATEMENTS .

8.1
8.2

8.3

8.4

85
8.6
8.7
8.8
8.9

DIMENSION Statement
EQUIVALENCE Statement

8.2.1 Form of an EQUIVALENCE Statement

8.2.2 Equivaence Association.

8.2.3 Equivalence of Character Entma
8.2.4 Array Names and Array Element Names.
8.2.5 Restrictions on EQUIVALENCE Statements.

COMMON Statement

8.3.1 Form of a COMMON Statement
8.3.2 Common Block Storage Sequence.

8.3.3 Size of a Common Block.

8.3.4 Common Association.

8.3.5 Differences between Named Common and Blank

Common.

8.3.6 Restrictions on Common and Equwal ence.

Type-Statements .

8.4.1 INTEGER, REAL, DOUBLE PRECISION COMPLEX and

LOGICAL Type-Statements.

8.4.2 CHARACTER Type-Statement.

IMPLICIT Statement
PARAMETER Statement
EXTERNAL Statement .
INTRINSIC Statement
SAVE Statement .

81
81

81
8-2

8-2
8-2
8-2
8-2

8-3
8-3

8-3

8-4

8-4

8-5
8-6

8-7
8-8

ANSI X3J3/90.4

9. DATA STATEMENT

A DATA datement is used to provide initial values for variables, arrays, array
elements, and substrings. A DATA statement is nonexecutable and may appear in
a program unit anywhere after the specification statements, if any.

All initially defined entities are defined when an executable program begins
execution. All entities not initially defined, or associated with an initially
defined entity, are undefined at the beginning of execution of an executable
program.

9.1 Form of a DATA Satement
The form of a DATA statement is:
DATA nlist /clist/ [[,] nlist /clist/]...

where: nlist is alist (2.10) of variable names, array names, array element names,
substring names, and implied-DO lists

clistisalist of the form:
al[,al].

where a is one of the forms:

1= 1o

*C

[e]

is a constant or the symbolic name of a constant

|=

is a nonzero, unsigned, integer constant or the symbolic name
of such a constant. The r* ¢ form is equivalent to r successive
appearances of the constant c.

9.2 DATA Satement Restrictions

Names of dummy arguments, functions, and entities in blank common (including
entities associated with an entity in blank common) must not appear in the list
nlist. Names of entities in a named common block may appear in the list nlist
only within a block data subprogram.

There must be the same number of items specified by each list nlist and its
corresponding list clist. There is a one-to-one correspondence between the items
specified by nlist and the constants specified by clist such that the first item of
nlist corresponds to the first constant of clist, etc. By this correspondence, the
initial value is established and the entity is initialy defined. If an array name
without a subscript is in the list, there must be one constant for each element of
that array. The ordering of array elements is determined by the array element
subscript value (5.2.4).

The type of the nlist entity and the type of the corresponding clist constant must
agree when either is of type character or logical. When the nlist entity is of type
integer, real, double precision, or complex, the lcorresponding clist constant
must also be of type integer, real, double precision, or complex; if necessary, the
clist constant is converted to the type of the nlist entity according to the rules for
arithmetic conversion (Table 4). Note that if an nlist entity is of type double
precision and the clist constant is of type real, the processor may supply more
precision derived from the constant than can be contained in areal datum.

Any variable, array element, or substring may be initially defined except for:

FORTRAN 77 Full Language Page 9-1

DATA STATEMENT ANSI X3J3/90.4

(1) an entity that is a dummy argument,

(2) an entity in blank common, which includes an entity associated with an
entity in blank common, or

(3) avariable in a function subprogram whose name is also the name of the
function subprogram or an entry in the function subprogram.

A variable, array element, or substring must not be initially defined more than
once in an executable program. If two entities are associated, only one may be
initially defined in a DATA statement in the same executable program.

Each subscript expression in the list nlist must be an integer constant expression
except for implied-DO-variables as noted in 9.3. Each substring expression in the
list nlist must be an integer constant expression.

9.3 Implied-DO in a DATA Satement
The form of an implied-DO list in a DATA statement is:

(dist, i =mi, m2 [,m3])
where: dlist isalist of array element names and implied-DO lists
i isthe name of an integer variable, caled the implied—DO - variable

m1, m2 m3 are each an integer constant expression, except that the
expression may contain implied- DO-variables of other implied-DO
lists that have this implied-DO list within their ranges

The range of an implied-DO list is the list dlist. An iteration count and the
values of the implied-DO-variable are established from m1, mp, and m3 exactly
as for a DO-loop (11.10), except that the iteration count must be positive. When
an implied-DO list appears in a DATA statement, the list items in dlist are
specified once for each iteration of the implied-DO list with the appropriate
substitution of values for any occurrence of the implied-DO-variable i. The
appearance of an implied-DO-variable name in a DATA statement does not affect
the definition status of a variable of the same name in the same program unit.

Each subscript expression in the list dlist must be an integer constant expression,
except that the expression may contain implied-DO-variables of implied-DO lists
that have the subscript expression within their ranges.

The following is an example of a DATA statement that contains implied-DO lists:
DATA ((X(@,1), 1=13), J=1,5) / 15*0. /
9.4 Character Constant in a DATA Statement

An entity in the list nlist that corresponds to a character constant must be of type
character.

If the length of the character entity in the list nlist is greater than the length of
its corresponding character constant, the additional rightmost characters in the
entity are initially defined with blank characters.

If the length of the character entity in the list nlist is less than the length of its
corresponding character constant, the additional rightmost characters in the
constant are ignored.

Note that initial definition of a character entity causes definition of al of the
characters in the entity, and that each character constant initially defines exactly
one variable, array element, or substring.

FORTRAN 77 Full Language Page 9-2

DATA STATEMENT ANSI X3J3/90.4

FORTRAN 77 Full Language Page 9-3

CONTENTS

9. DATA STATEMENT .
9.1 Form of a DATA Statement
9.2 DATA Statement Restrictions .
9.3 Implied-DO in a DATA Statement
9.4 Character Constant in a DATA Statement

9-1
9-1

9-2
9-2

ANSI X3J3/90.4

10. ASSGNMENT STATEMENTS

Completion of execution of an assignment statement causes definition of an entity.
There are four kinds of assignment statements:

(1) Arithmetic

(2) Logica

(3) Statement label (ASSIGN)

(4) Character
10.1 Arithmetic Assignment Statement
The form of an arithmetic assignment statement is:

v=e

where: v is the name of a variable or array element of type integer, read,
double precision, or complex

€ isan arithmetic expression

Execution of an arithmetic assignment statement causes the evaluation of the
expression e by the rules in Section 6, conversion of e to the type of v, and
definition and assignment of v with the resulting value, as established by the rules
in Table 4.

Table 4

Arithmetic Conversion and Assignment of e to v

0 0 0
Dl’ype of v Uyvalue O
O o, . O
O pAssigned 0
O O O
Unteger UINT (e) O
= = O
O O O
Real OREAL(e) O
[O O
gbouble precision EDBLE(g) g
O O O
FComplex HCMPLX (e) B

The functions in the "Vaue Assigned" column of Table 4 are generic functions
described in Table 5 (15.10).

10.2 Logical Assignment Statement
The form of alogical assignment statement is:
v=¢g
where: v is the name of alogical variable or logical array element
e isalogica expression

Execution of a logical assignment statement causes the evaluation of the logical
expression e and the assignment and definition of v with the value of e. Note
that e must have a value of either true or false.

FORTRAN 77 Full Language Page 10-1

ASSIGNMENT STATEMENTS ANSI X3J3/90.4

10.3 Satement Label Assignment (ASSIGN) Satement
The form of a statement label assignment statement is:
ASSIGN s TO |
where: s is a statement |abel
i isaninteger variable name

Execution of an ASSIGN statement causes the statement label s to be assigned to
the integer variable i. The statement label must be the label of a statement that
appears in the same program unit as the ASSIGN statement. The statement |abel
must be the label of an executable statement or a FORMAT statement.

Execution of a statement label assignment statement is the only way that a
variable may be defined with a statement label value.

A variable must be defined with a statement label value when referenced in an
assigned GO TO statement (11.3) or as a format identifier (12.4) in an
input/output statement. While defined with a statement label value, the variable
must not be referenced in any other way.

An integer variable defined with a statement label value may be redefined with the
same or a different statement label value or an integer value.

10.4 Character Assignment Satement
The form of a character assignment statement is:
v==¢g

where: v is the name of a character variable, character array element, or
character substring

e isacharacter expression

Execution of a character assignment statement causes the evaluation of the
expression e and the assignment and definition of v with the value of e. None of
the character positions being defined in v may be referenced in e. v and e may
have different lengths. If the length of v is greater than the length of e, the effect
is as though e were extended to the right with blank characters until it is the same
length as v and then assigned. If the length of v is less than the length of e, the
effect is as though e were truncated from the right until it is the same length as v
and then assigned.

Only as much of the value of e must be defined as is needed to define v. In the
example:

CHARACTER A*2,B*4
A=B

the assignment A=B requires that the substring B(1:2) be defined. It does not
require that the substring B(3:4) be defined.

If v is a substring, e is assigned only to the substring. The definition status of
substrings not specified by v is unchanged.

FORTRAN 77 Full Language Page 10-2

CONTENTS

10. ASSIGNMENT STATEMENTS .
10.1 Arithmetic Assignment Statement
10.2 Logica Assignment Statement . . .

10.3 Statement Label Assignment (ASSIGN) Statement

10.4 Character Assignment Statement .

10-1
10-1
10-1
10-2
10-2

ANSI X3J3/90.4

11. CONTROL STATEMENTS
Control statements may be used to control the execution sequence.
There are sixteen control statements:
(1) Unconditional GO TO
(2) Computed GO TO
(3) Assigned GO TO
(4) Arithmetic IF
(5) Logicd IF
(6) Block IF
(7) ELSE IF
(8) ELSE
(9) END IF
(10) DO
(11) CONTINUE
(12) sTOP
(13) PAUSE
(14) END
(15) CALL
(16) RETURN
The CALL and RETURN statements are described in Section 15.
11.1 Unconditional GO TO Satement
The form of an unconditional GO TO statement is:
GO TO s

where s is the statement label of an executable statement that appears in the same
program unit as the unconditional GO TO statement.

Execution of an unconditiona GO TO statement causes a transfer of control so
that the statement identified by the statement label is executed next.

11.2 Computed GO TO Satement

The form of a computed GO TO statement is:
GO TO (s [.s].-) [.] L

where: i is an integer expression

s isthe statement label of an executable statement that appears in the
same program unit as the computed GO TO statement. The same
statement label may appear more than once in the same computed
GO TO statement.

Execution of a computed GO TO statement causes evaluation of the expression i .
The evaluation of i is followed by a transfer of control so that the statement
identified by the ith statement label in the list of statement labels is executed
next, provided that 1 < i < n, where n is the number of statement labels in the

FORTRAN 77 Full Language Page 11-1

CONTROL STATEMENTS ANSI X3J3/90.4

list of statement labels. If i<l or i>n, the execution sequence continues as
though a CONTINUE statement were executed.

11.3 Assigned GO TO Satement

The form of an assigned GO TO statement is:
GO TO i [[.] (s [,s]-)]

where: i is an integer variable name

s isthe statement label of an executable statement that appears in the
same program unit as the assigned GO TO statement. The same
statement label may appear more than once in the same assigned GO
TO statement.

At the time of execution of an assigned GO TO statement, the variable i must be
defined with the value of a statement label of an executable statement that appears
in the same program unit. Note that the variable may be defined with a statement
label value only by an ASSIGN statement (10.3) in the same program unit as the
assigned GO TO statement. The execution of the assigned GO TO statement
causes a transfer of control so that the statement identified by that statement label
is executed next.

If the parenthesized list is present, the statement label assigned to i must be one
of the statement labels in the list.

11.4 Arithmetic IF Statement
The form of an arithmetic |IF statement is:
IF(e) s1.8.33
where: e is an integer, real, or double precision expression

s1, S2, and s3 are each the statement label of an executable
statement that appears in the same program unit as the arithmetic IF
statement. The same statement label may appear more than once in
the same arithmetic IF statement.

Execution of an arithmetic IF statement causes evaluation of the expression e
followed by a transfer of control. The statement identified by s1, sp, or s3 is
executed next as the value of e is less than zero, equal to zero, or greater than
zero, respectively.

115 Logical IF Satement

The form of alogical IF statement is:
IF (e) &

where: e is alogical expression

s isany executable statement except a DO, block IF, ELSE IF, ELSE,
END IF, END, or another logical IF statement

Execution of a logical IF statement causes evaluation of the expression e. If the
value of e is true, statement st is executed. If the value of e is false, statement
st is not executed and the execution sequence continues as though a CONTINUE
statement were executed.

Note that the execution of a function reference in the expression e of alogica IF
statement is permitted to affect entities in the statement st.

FORTRAN 77 Full Language Page 11-2

CONTROL STATEMENTS ANSI X3J3/90.4

11.6 Block IF Satement

The block IF statement is used with the END IF statement and, optionaly, the
ELSE IF and EL SE statements to control the execution sequence.

The form of a block IF statement is:
IF (e) THEN
where e is alogical expression.
11.6.1 IF-Level. The IF-level of a statement s is
m - nm
where n1 is the number of block IF statements from the beginning of the program

unit up to and including s, and n2 is the number of END IF statements in the
program unit up to but not including s.

The IF-level of every statement must be zero or positive. The IF-level of each
block IF, ELSE IF, ELSE, and END IF statement must be positive. The IF-level
of the END statement of each program unit must be zero.

11.6.2 IF-Block. An IF-block consists of al of the executable statements that
appear following the block IF statement up to, but not including, the next ELSE
IF, ELSE, or END IF statement that has the same IF-level as the block IF
statement. An IF-block may be empty.

11.6.3 Execution of a Block IF Statement. Execution of a block IF statement
causes evaluation of the expression e. If the value of e is true, normal execution
sequence continues with the first statement of the IF-block. If the value of e is
true and the IF-block is empty, control is transferred to the next END |F statement
that has the same IF-level as the block IF statement. If the value of e is false,
control is transferred to the next ELSE IF, ELSE, or END IF statement that has
the same IF-level as the block IF statement.

Transfer of control into an IF-block from outside the IF-block is prohibited.

If the execution of the last statement in the IF-block does not result in a transfer
of control, control is transferred to the next END IF statement that has the same
IF-level as the block IF statement that precedes the IF-block.

11.7 ELSE IF Statement

The form of an ELSE |F statement is:
ELSE IF (e) THEN

where e is alogical expression.

11.7.1 ELSE IF-Block. An ELSE IF-block consists of al of the executable
statements that appear following the ELSE IF statement up to, but not including,
the next ELSE IF, ELSE, or END IF statement that has the same IF-level as the
ELSE IF statement. An ELSE IF-block may be empty.

11.7.2 Execution of an ELSE IF Statement. Execution of an ELSE IF statement
causes evaluation of the expression e. If the value of e is true, normal execution
sequence continues with the first statement of the ELSE IF-block. If the value of
e is true and the ELSE IF-block is empty, control is transferred to the next END
IF statement that has the same IF-level as the ELSE IF statement. If the value of
e isfase, contral is transferred to the next ELSE IF, ELSE, or END IF statement
that has the same IF-level as the ELSE IF statement.

FORTRAN 77 Full Language Page 11-3

CONTROL STATEMENTS ANSI X3J3/90.4

Transfer of control into an ELSE IF-block from outside the ELSE IF-block is
prohibited. The statement label, if any, of the ELSE IF statement must not be
referenced by any statement.

If execution of the last statement in the ELSE IF-block does not result in a
transfer of control, control is transferred to the next END |F statement that has the
same |F-level as the ELSE IF statement that precedes the EL SE |F-block.

11.8 ELSE Satement
The form of an ELSE statement is:
ELSE

11.8.1 ELSE-Block. An ELSE-block consists of all of the executable statements
that appear following the ELSE statement up to, but not including, the next END
IF statement that has the same IF-level as the ELSE statement. An ELSE-block
may be empty.

An END IF statement of the same IF-level as the ELSE statement must appear
before the appearance of an ELSE IF or EL SE statement of the same IF-level.

11.8.2 Execution of an ELSE Satement. Execution of an ELSE statement has no
effect.

Transfer of control into an ELSE-block from outside the ELSE-block is
prohibited. The statement label, if any, of an ELSE statement must not be
referenced by any statement.

11.9 END IF Statement
The form of an END IF statement is:
END IF
Execution of an END IF statement has no effect.

For each block IF statement there must be a corresponding END |F statement in
the same program unit. A corresponding END |IF statement is the next END IF
statement that has the same IF-level as the block IF statement.

11.10 DO Satement
A DO statement is used to specify aloop, called a DO-loop.
The form of a DO statement is:

DO s[,]i=#@&, e, [,e3]

where: s is the statement label of an executable statement. The statement
identified by s, caled the termina statement of the DO-loop, must
follow the DO statement in the sequence of statements within the
same program unit as the DO statement.

i is the name of an integer, real, or double precision variable, called
the DO —variable

€1, €, and e3 are each an integer, rea, or double precision
expression

The terminal statement of a DO-loop must not be an unconditional GO TO,
assigned GO TO, arithmetic IF, block IF, ELSE IF, ELSE, END IF, RETURN,
STOP, END, or DO statement. If the terminal statement of a DO-loop is a logical
IF statement, it may contain any executable statement except a DO, block IF,

FORTRAN 77 Full Language Page 11-4

CONTROL STATEMENTS ANSI X3J3/90.4

ELSE IF, ELSE, END IF, END, or another logical IF statement.

11.10.1 Range of a DO-Loop. The range of a DO-loop consists of al of the
executable statements that appear following the DO statement that specifies the
DO-loop, up to and including the terminal statement of the DO-loop.

If a DO statement appears within the range of a DO-loop, the range of the DO-
loop specified by that DO statement must be contained entirely within the range
of the outer DO-loop. More than one DO-loop may have the same terminal
statement.

If a DO statement appears within an IF-block, EL SE IF-block, or EL SE-block, the
range of that DO-loop must be contained entirely within that 1F-block, ELSE IF-
block, or EL SE-block, respectively.

If a block IF statement appears within the range of a DO-loop, the corresponding
END IF statement must also appear within the range of that DO-loop.

11.10.2 Active and Inactive DO-Loops. A DO-loop is either active or inactive.
Initially inactive, a DO-loop becomes active only when its DO statement is
executed.

Once active, the DO-loop becomes inactive only when:
(1) itsiteration count is tested (11.10.4) and determined to be zero,
(2) aRETURN statement is executed within its range,

(3) contral is transferred to a statement that is in the same program unit and
is outside the range of the DO-loop, or

(4) any STOP statement in the executable program is executed, or execution
is terminated for any other reason (12.6).

Execution of a function reference or CALL statement that appears in the range of
a DO-loop does not cause the DO-loop to become inactive, except when control is
returned by means of an aternate return specifier in a CALL statement to a
statement that is not in the range of the DO-loop.

When a DO-loop becomes inactive, the DO-variable of the DO-loop retains its
last defined value.

11.10.3 Executing a DO Satement. The effect of executing a DO statement is to
perform the following steps in sequence:

(1) The initial parameter m1, the terminal parameter mp, and the
incrementation parameter m3 are established by evaluating e1, €2, and
e3, respectively, including, if necessary, conversion to the type of the
DO-variable according to the rules for arithmetic conversion (Table 4). If
e3 does not appear, m3 has a value of one. m3 must not have a value
of zero.

(2) The DO-variable becomes defined with the value of the initial parameter
m1.

(3) Theiteration count is established and is the value of the expression
MAX(INT((m2 - m1 + m3)/m3), 0)
Notethat the iteration count is zero whenever:

mi1 > m2 and m3 > 0, or

FORTRAN 77 Full Language Page 11-5

CONTROL STATEMENTS ANSI X3J3/90.4

mp < mp and m3 < 0.

At the completion of execution of the DO statement, loop control processing
begins.

11.10.4 Loop Control Processing. Loop control processing determines if further
execution of the range of the DO-loop is required. The iteration count is tested. If
it is not zero, execution of the first statement in the range of the DO-loop begins.
If the iteration count is zero, the DO-loop becomes inactive. If, as a result, all of
the DO-loops sharing the terminal statement of this DO-loop are inactive, normal
execution continues with execution of the next executable statement following the
terminal statement. However, if some of the DO-loops sharing the terminal
statement are active, execution continues with incrementation processing, as
described in 11.10.7.

11.10.5 Execution of the Range. Statements in the range of a DO-loop are
executed until the terminal statement is reached. Except by the incrementation
described in 11.10.7, the DO-variable of the DO-loop may neither be redefined
nor become undefined during execution of the range of the DO-loop.

11.10.6 Terminal Satement Execution. Execution of the terminal statement
occurs as a result of the normal execution sequence or as a result of transfer of
control, subject to the restrictions in 11.10.8. Unless execution of the terminal
statement results in a transfer of control, execution then continues with
incrementation processing, as described in 11.10.7.

11.10.7 Incrementation Processing. Incrementation processing has the effect of
the following steps performed in sequence:

(1) The DO-variable, the iteration count, and the incrementation parameter of
the active DO-loop whose DO statement was most recently executed, are
selected for processing.

(2) The value of the DO-variable is incremented by the value of the
incrementation parameter m3.

(3) The iteration count is decremented by one.

(4) Execution continues with loop control processing (11.10.4) of the same
DO-loop whose iteration count was decremented.

For example:

N=0
DO 100 1=1,10
J=l
DO 100 K=1,5
L=K

100 N=N+1

101 CONTINUE

After execution of these statements and at the execution of the CONTINUE
statement, 1=11, J=10, K=6, L=5, and N=50.

Also consider the following example:

N=0

DO 200=1=1,10
J=l

DO 200 K=5,1
L=K

FORTRAN 77 Full Language Page 11-6

CONTROL STATEMENTS ANSI X3J3/90.4

200 N=N+1
201 CONTINUE

After execution of these statements and at the execution of the CONTINUE
statement, 1=11, J=10, K=5, and N=0. L is not defined by these statements.

11.10.8 Transfer into the Range of a DO-Loop. Transfer of control into the
range of a DO-loop from outside the range is not permitted.

11.11 CONTINUE Satement

The form of a CONTINUE statement is:
CONTINUE

Execution of a CONTINUE statement has no effect.

If the CONTINUE statement is the terminal statement of a DO-loop, the next
statement executed depends on the result of the DO-loop incrementation
processing (11.10.7).

11.12 STOP Statement
The form of a STOP statement is:
STOP [n]
where n is a string of not more than five digits, or is a character constant.

Execution of a STOP statement causes termination of execution of the executable
program. At the time of termination, the digit string or character constant is
accessible.

11.13 PAUSE Satement
The form of a PAUSE statement is:
PAUSE [n]
where n is a string of not more than five digits, or is a character constant.

Execution of a PAUSE statement causes a cessation of execution of the executable
program. Execution must be resumable. At the time of cessation of execution,
the digit string or character constant is accessible. Resumption of execution is not
under control of the program. If execution is resumed, the execution sequence
continues as though a CONTINUE statement were executed.

11.14 END Satement

The END statement indicates the end of the sequence of statements and comment
lines of a program unit (3.5). If executed in a function or subroutine subprogram,
it has the effect of a RETURN statement (15.8). |If executed in a main program,
it terminates the execution of the executable program.

The form of an END statement is:
END

An END statement is written only in columns 7 through 72 of an initia line. An
END statement must not be continued. No other statement in a program unit may
have an initial line that appears to be an END statement.

The last line of every program unit must be an END statement.

FORTRAN 77 Full Language Page 11-7

CONTENTS

11. CONTROL STATEMENTS

111
11.2
113
114
115
11.6

11.7

11.8

119
11.10

1111
11.12
11.13
11.14

Unconditional GO TO Statement
Computed GO TO Statement

Assigned GO TO Statement .
Arithmetic IF Statement

Logica IF Statement

Block IF Statement

11.6.1 IF-Leve.

11.6.2 IF-Block.

11.6.3 Execution of a BIock IF Statement
ELSE IF Statement .

11.7.1 ELSE IF-Block.

11.7.2 Execution of an ELSE IF Statement
ELSE Statement .

11.8.1 ELSE-Block.

11.8.2 Execution of an ELSE Statement
END IF Statement .

DO Statement .

11.10.1 Range of a DO- Loop .
11.10.2 Active and Inactive DO-Loops.
11.10.3 Executing a DO Statement.
11.10.4 Loop Control Processing.
11.10.5 Execution of the Range.

11.10.6 Terminal Statement Execution.
11.10.7 Incrementation Processing.

11.10.8 Transfer into the Range of a DO- Loop.

CONTINUE Statement
STOP Statement
PAUSE Statement .
END Statement .

11-1
11-1
11-1
11-2
11-2
11-2
11-3
11-3
11-3
11-3
11-3
11-3
11-3
11-4
11-4
11-4
11-4
11-4
11-5
11-5
11-5
11-6
11-6
11-6
11-6
11-7
11-7
11-7
11-7
11-7

ANSI X3J3/90.4

12. INPUT/OUTPUT STATEMENTS

Input statements provide the means of transferring data from external media to
internal storage or from an internal file to internal storage. This process is called
reading. Output statements provide the means of transferring data from internal
storage to external media or from internal storage to an internal file. This process
is called writing. Some input/output statements specify that editing of the data is
to be performed.

In addition to the statements that transfer data, there are auxiliary input/output
statements to manipulate the external medium, or to inquire about or describe the
properties of the connection to the external medium.

There are nine input/output statements:
(1) READ
(2) WRITE
(3) PRINT
(4) OPEN
(5) CLOSE
(6) INQUIRE
(7) BACKSPACE
(8) ENDFILE
(9) REWIND

The READ, WRITE, and PRINT statements are data transfer input/output
statements (12.8). The OPEN, CLOSE, INQUIRE, BACKSPACE, ENDFILE,
and REWIND statements are auxiliary input/output statements (12.10). The
BACKSPACE, ENDFILE, and REWIND statements are file positioning
input/output statements (12.10.4).

12.1 Records

A record is a sequence (2.1) of values or a sequence of characters. For example,
a punched card is usually considered to be a record. However, a record does not
necessarily correspond to a physical entity. There are three kinds of records:

(1) Formatted
(2) Unformatted
(3) Endfile

12.1.1 Formatted Record. A formatted record consists of a sequence of
characters that are capable of representation in the processor. The length of a
formatted record is measured in characters and depends primarily on the number
of characters put into the record when it is written. However, it may depend on
the processor and the externa medium. The length may be zero. Formatted
records may be read or written only by formatted input/output statements (12.8.1).

Formatted records may be prepared by some means other than FORTRAN; for
example, by some manual input device.

12.1.2 Unformatted Record. An unformatted record consists of a sequence of
values in a processor-dependent form and may contain both character and
noncharacter data or may contain no data. The length of an unformatted record is

FORTRAN 77 Full Language Page 12-1

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

measured in processor-dependent units and depends on the output list (12.8.2)
used when it is written, as well as on the processor and the external medium. The
length may be zero.

Unformatted records may be read or written only by unformatted input/output
statements (12.8.1).

12.1.3 Endfile Record. An endfile record is written by an ENDFILE statement.
An endfile record may occur only as the last record of a file. An endfile record
does not have a length property.

12.2 Files
A file is a sequence (2.1) of records.
There are two kinds of files:

(1) Externd

(2) Internal

12.2.1 File Existence. At any given time, there is a processor-determined set of
files that are said to exist for an executable program. A file may be known to the
processor, yet not exist for an executable program at a particular time. For
example, security reasons may prevent a file from existing for an executable
program. A file may exist and contain no records; an example is a newly created
file not yet written.

To create a file means to cause a file to exist that did not previously exist. To
delete a file means to terminate the existence of the file.

All input/output statements may refer to files that exist. The INQUIRE, OPEN,
CLOSE, WRITE, PRINT, and ENDFILE statements may also refer to files that do
not exist.

12.2.2 File Properties. At any given time, there is a processor-determined set of
allowed access methods, a processor-determined set of allowed forms, and a
processor-determined set of allowed record lengths for afile.

A file may have a name; a file that has a name is caled a named file. The name
of a named file is a character string. The set of alowable names is processor
dependent and may be empty.

12.2.3 File Position. A file that is connected to a unit (12.3) has a position
property. Execution of certain input/output statements affects the position of a
file. Certain circumstances can cause the position of a file to become
indeterminate.

The initial point of a file is the position just before the first record The terminal
point is the position just after the last record.

If afile is positioned within a record, that record is the current record; otherwise,
there is no current record.

Let n be the number of records in thefile. If 1 < i < n and afile is positioned
within the ith record or between the (i—1)th record and the ith record, the
(i—2)th record is the preceding record. If n =1 and the file is positioned at its
terminal point, the preceding record is the nth and last record. If n=0 or if afile
is positioned at its initial point or within the first record, there is no preceding
record.

FORTRAN 77 Full Language Page 12-2

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

If 1 < i < n and afile is positioned within the ith record or between the ith
and (i+1)th record, the (i+1)th record is the next record. If n = 1 and the
file is positioned at its initial point, the first record is the next record. If n=0 or
if afileis positioned at its terminal point or within the nth and last record, there
iS no next record.

12.2.4 File Access. There are two methods of accessing the records of an
external file: sequentia and direct. Some files may have more than one allowed
access method; other files may be restricted to one access method. For example, a
processor may allow only sequential access to a file on magnetic tape. Thus, the
set of alowed access methods depends on the file and the processor.

The method of accessing the file is determined when the file is connected to a unit
(12.3.2).

An internal file must be accessed sequentially.

12.2.4.1 Sequential Access. When connected for sequential access, a file has the
following properties:

(1) The order of the records is the order in which they were written if the
direct access method is not a member of the set of allowed access
methods for the file. If the direct access method is also a member of the
set of allowed access methods for the file, the order of the records is the
same as that specified for direct access (12.2.4.2). The first record
accessed by sequential access is the record whose record number is 1 for
direct access. The second record accessed by sequential access is the
record whose record number is 2 for direct access, etc. A record that has
not been written since the file was created must not be read.

(2) The records of the file are either all formatted or all unformatted, except
that the last record of the file may be an endfile record.

(3) The records of the file must not be read or written by direct access
input/output statements (12.8.1).

12.2.4.2 Direct Access. When connected for direct access, a file has the
following properties:

(1) The order of the records is the order of their record numbers. The
records may be read or written in any order.

(2) The records of the file are either all formatted or al unformatted. If the
sequential access method is also a member of the set of allowed access
methods for the file, its endfile record, if any, is not considered to be part
of the file while it is connected for direct access. If the sequential access
method is not a member of the set of allowed access methods for the file,
the file must not contain an endfile record.

(3) Reading and writing records is accomplished only by direct access
input/output statements (12.8.1).

(4) All records of the file have the same length.

(5) Each record of the file is uniquely identified by a positive integer called
the record number. The record number of a record is specified when the
record is written. Once established, the record number of a record can
never be changed.

Note that a record may not be deleted; however, a record may be

FORTRAN 77 Full Language Page 12-3

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

(6)

()

rewritten.

Records need not be read or written in the order of their record numbers.
Any record may be written into the file while it is connected (12.3.2) to a
unit. For example, it is permissible to write record 3, even though
records 1 and 2 have not been written. Any record may be read from the
file while it is connected to a unit, provided that the record was written
since the file was created.

The records of the file must not be read or written using list-directed
formatting.

12.25 Internal Files. Interna files provide a means of transferring and
converting data from interna storage to internal storage.

12.25.1 Internal File Properties. An interna file has the following properties:

1)

@)

©)

(4)

©)

(6)

()

The file is a character variable, character array element, character array,
or character substring.

A record of an interna file is a character variable, character array
element, or character substring.

If the file is a character variable, character array element, or character
substring, it consists of a single record whose length is the same as the
length of the variable, array element, or substring, respectively. If the file
is a character array, it is treated as a sequence of character array elements.
Each array element is a record of the file. The ordering of the records of
the file is the same as the ordering of the array elements in the array
(5.2.4). Every record of the file has the same length, which is the length
of an array element in the array.

The variable, array element, or substring that is the record of the internal
file becomes defined by writing the record. If the number of characters
written in a record is less than the length of the record, the remaining
portion of the record is filled with blanks.

A record may be read only if the variable, array element, or substring that
is the record is defined.

A variable, array element, or substring that is a record of an interna file
may become defined (or undefined) by means other than an output
statement. For example, the variable, array element, or substring may
become defined by a character assignment statement.

An interna file is always positioned at the beginning of the first record
prior to data transfer.

12.2.5.2 Internal File Restrictions. An internal file has the following restrictions:

D)

@)

Reading and writing records is accomplished only by sequential access
formatted input/output statements (12.8.1) that do not specify list-directed
formatting.

An auxiliary input/output statement must not specify an internal file.

12.3 Units

A unit is a means of referring to afile.

FORTRAN 77 Full Language Page 12-4

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

12.3.1 Unit Existence. At any given time, there is a processor-determined set of
units that are said to exist for an executable program.

All input/output statements may refer to units that exist. The INQUIRE and
CLOSE statements may also refer to units that do not exist.

12.3.2 Connection of a Unit. A unit has a property of being connected or not
connected. If connected, it refers to a file. A unit may become connected by
preconnection or by the execution of an OPEN statement. The property of
connection is symmetric: if a unit is connected to a file, the file is connected to
the unit.

Preconnection means that the unit is connected to a file at the beginning of
execution of the executable program and therefore may be referenced by
input/output statements without the prior execution of an OPEN statement.

All input/output statements except OPEN, CLOSE, and INQUIRE must reference
a unit that is connected to a file and thereby make use of or affect that file.

A file may be connected and not exist. An example is a preconnected new file.

A unit must not be connected to more than one file at the same time, and a file
must not be connected to more than one unit at the same time. However, means
are provided to change the status of a unit and to connect a unit to a different file.

After a unit has been disconnected by the execution of a CLOSE statement, it
may be connected again within the same executable program to the same file or a
different file. After a file has been disconnected by the execution of a CLOSE
statement, it may be connected again within the same executable program to the
same unit or a different unit. Note, however, that the only means to refer to afile
that has been disconnected is by its name in an OPEN or INQUIRE statement.
Therefore, there may be no means of reconnecting an unnamed file once it is
disconnected.

12.3.3 Unit Specifier and Identifier. The form of a unit specifier is:
[UNIT =] u
where u is an external unit identifier or an internal file identifier.

An externa unit identifier is used to refer to an external file. An interna file
identifier is used to refer to an interna file.

An external unit identifier is one of the following:
(1) Aninteger expression i whose value must be zero or positive

(2) An asterisk, identifying a particular processor-determined external unit
that is preconnected for formatted sequential access (12.9.2)

The external unit identified by the value of i is the same external unit in all
program units of the executable program. In the example:

SUBROUTINE A
READ (6) X

SUBROUTINE B
N=6
REWIND N

the value 6 used in both program units identifies the same external unit.

FORTRAN 77 Full Language Page 12-5

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

An external unit identifier in an auxiliary input/output statement (12.10) must not
be an asterisk.

An internal file identifier is the name of a character variable, character array,
character array element, or character substring.

If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in a list of specifiers.

12.4 Format Specifier and Identifier

The form of a format specifier is:
[FMT =] f

where f is aformat identifier.

A format identifier identifies a format. A format identifier must be one of the
following:

(1) The statement label of a FORMAT statement that appears in the same
program unit as the format identifier.

(2) An integer variable name that has been assigned the statement label of a
FORMAT statement that appears in the same program unit as the format
identifier (10.3).

(3) A character array name (13.1.2).

(4) Any character expression except a character expression involving
concatenation of an operand whose length specification is an asterisk in
parentheses unless the operand is the symbolic name of a constant. Note
that a character constant is permitted.

(5) An asterisk, specifying list-directed formatting.

If the optional characters FMT= are omitted from the format specifier, the format
specifier must be the second item in the control information list and the first item
must be the unit specifier without the optional characters UNIT=.

12,5 Record Specifier
The form of a record specifier is:
REC = rn

where rn is an integer expression whose value is positive. It specifies the number
of the record that is to be read or written in a file connected for direct access.

12.6 Error and End-of-File Conditions
The set of input/output error conditions is processor dependent.
An end-of-file condition exists if either of the following events occurs:

(1) An endfile record is encountered during the reading of a file connected
for sequential access. |n this case, the file is positioned after the endfile
record.

(2) An attempt is made to read a record beyond the end of an internal file.

If an error condition occurs during execution of an input/output statement,
execution of the input/output statement terminates and the position of the file
becomes indeterminate.

FORTRAN 77 Full Language Page 12-6

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

If an error condition or an end-of-file condition occurs during execution of a
READ statement, execution of the READ statement terminates and the entities
specified by the input list and implied-DO-variables in the input list become
undefined. Note that variables and array elements appearing only in subscripts,
substring expressions, and implied-DO parameters in an input list do not become
undefined when the entities specified by the list become undefined.

If an error condition occurs during execution of an output statement, execution of
the output statement terminates and implied-DO-variables in the output list
become undefined.

If an error condition occurs during execution of an input/output statement that
contains neither an input/output status specifier (12.7) nor an error specifier
(12.7.1), or if an end-of-file condition occurs during execution of a READ
statement that contains neither an input/output status specifier nor an end-of-file
specifier (12.7.2), execution of the executable program is terminated.

12.7 Input/Output Satus, Error, and End-of-File Specifiers
The form of an input/output status specifier is:

IOSTAT = ios
where ios is an integer variable or integer array element.

Execution of an input/output statement containing this specifier causes ios to
become defined:

(1) with a zero value if neither an error condition nor an end-of-file condition
is encountered by the processor,

(2) with a processor-dependent positive integer value if an error condition is
encountered, or

(3) with a processor-dependent negative integer value if an end-of-file
condition is encountered and no error condition is encountered.

12.7.1 Error Secifier. The form of an error specifier is:
ERR = s

where s is the statement label of an executable statement that appears in the same
program unit as the error specifier.

If an input/output statement contains an error specifier and the processor
encounters an error condition during execution of the statement:

(1) execution of the input/output statement terminates,

(2) the position of the file specified in the input/output statement
becomes indeterminate,

(3) if the input/output statement contains an input/output status specifier
(12.7), the variable or array element ios becomes defined with a
processor-dependent positive integer value, and

(4) execution continues with the statement labeled s.
12.7.2 End-of-File Specifier. The form of an end-of-file specifier is:
END = s

where s is the statement label of an executable statement that appears in the same
program unit as the end-of-file specifier.

FORTRAN 77 Full Language Page 12-7

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

If a READ statement contains an end-of-file specifier and the processor encounters
an end-of-file condition and no error condition during execution of the statement:

(1) execution of the READ statement terminates,

(2) if the READ statement contains an input/output status specifier (12.7), the
variable or array element ios becomes defined with a processor-dependent
negative integer value, and

(3) execution continues with the statement labeled s.
12.8 READ, WRITE, and PRINT Satements

The READ satement is the data transfer input statement. The WRITE and
PRINT statements are the data transfer output statements. The forms of the data
transfer input/output statements are:

READ (cilist) [iolist]
READ f [,iolist]
WRITE (cilist) [iolist]
PRINT f [,iolist]
where: cilist is a control information list (12.8.1) that includes:

(1) A reference to the source or destination of the data to be
transferred

(2) Optiona specification of= editing processes

(3) Optiona specifiers that determine the execution sequence on the
occurrence of certain events

(4) Optiona specification to identify a record

(5) Optional specification to provide t[(»he return of the
input/output status
f isaformat identifier (12.4)
iolist is an input/output list (12.8.2) specifying the data to be transferred

12.8.1 Control Information List. A control information list, cilist, is a list (2.10)
whose list items may be any of the following:

0 0
UNIT =] u 3
FMT =1 £ [

[REC = m 0

OOSTAT = ios O

LERR = s U

END =s

A control information list must contain exactly one unit specifier (12.3.3), at most
one format specifier (12.4), at most one record specifier (12.5), at most one
input/output status specifier (12.7), a most one error specifier (12.7.1), and at
most one end-of-file specifier (12.7.2).

If the control information list contains a format specifier, the statement is a
formatted input/output statement; otherwise, it is an unformatted input/output
statement.

FORTRAN 77 Full Language Page 12-8

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

If the control information list contains a record specifier, the statement is a direct
access input/output statement; otherwise, it is a sequential access input/output
statement.

If the optional characters UNIT= are omitted from the unit specifier, the unit
specifier must be the first item in the control information list.

If the optional characters FMT= are omitted from the format specifier, the format
specifier must be the second item in the control information list and the first item
must be the unit specifier without the optional characters UNIT=.

A control information list must not contain both a record specifier and an end-of-
file specifier.

If the format identifier is an asterisk, the statement is a list-directed input/output
statement and a record specifier must not be present.

In a WRITE statement, the control information list must not contain an end-of-file
specifier.

If the unit specifier specifies an interna file, the control information list must
contain a format identifier other than an asterisk and must not contain a record
specifier.

12.8.2 Input/Output List. An input/output list, iolist, specifies the entities whose
values are transferred by a data transfer input/output statement.

An input/output list is a list (2.10) of input/output list items and implied-DO lists
(12.8.2.3). An input/output list item is either an input list item or an output list
item.

If an array name appears as an input/output list item, it is treated as if al of the
elements of the array were specified in the order given by array element ordering
(5.2.4). The name of an assumed-size dummy array must not appear as an
input/output list item.

12.8.2.1 Input List Items. An input list item must be one of the following:
(1) A variable name
(2) An array element name
(3) A character substring name
(4) An array name
Only input list items may appear as input/output list items in an input statement.
12.8.2.2 Output List Items. An output list item must be one of the following:
(1) A variable name
(2) An array element name
(3) A character substring name
(4) An array name

(5) Any other expression except a character expression involving
concatenation of an operand whose length specification is an asterisk in
parentheses unless the operand is the symbolic name of a constant

Note that a constant, an expression involving operators or function references, or
an expression enclosed in parentheses may appear as an output list item but must
not appear as an input list item.

FORTRAN 77 Full Language Page 12-9

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

12.8.2.3 Implied-DO List. An implied-DO list is of the form:

(dist, i =e1, e [.,e3])
where: i, are as specified for the DO statement (11.10)
dlistunde>r is an input/output list

The range of an implied-DO list is the list dlist. Note that dlist may contain
implied-DO . lists. The iteration count and the values of the DO-variable i are
established from e1, €2, and e3 exactly as for a DO-loop. In an input statement,
the DO-variable i, or an associated entity, must not appear as an input list item in
dlist. When an implied-DO list appears in an input/output list, the list items in
dlist are specified once for each iteration of the implied-DO list with appropriate
substitution of values for any occurrence of the DO-variablei .

12.9 Execution of a Data Transfer Input/Output Statement

The effect of executing a data transfer input/output statement must be as if the
following operations were performed in the order specified:

(1) Determine the direction of data transfer
(2) Identify the unit

(3) Establish the format if any is specified
(4) Position the file prior to data transfer

(5) Transfer data between the file and the entities specified by the
input/output list (if any)

(6) Position the file after data transfer

(7) Cause the specified integer variable or array element in the input/output
status specifier (if any) to become defined

12.9.1 Direction of Data Transfer. Execution of a READ statement causes
values to be transferred from a file to the entities specified by the input list, if one
is specified.

Execution of a WRITE or PRINT statement causes values to be transferred to a
file from the entities specified by the output list and format specification (if any).
Execution of a WRITE or PRINT statement for a file that does not exist creates
the file, unless an error condition occurs.

12.9.2 ldentifying a Unit. A data transfer input/output statement that contains a
control information list (12.8.1) includes a unit specifier that identifies an external
unit or an interna filee A READ statement that does not contain a control
information list specifies a particular processor-determined unit, which is the same
as the unit identified by an asterisk in a READ statement that contains a control
information list. A PRINT statement specifies some other processor-determined
unit, which is the same as the unit identified by an asterisk in a WRITE statement.
Thus, each data transfer input/output statement identifies an external unit or an
internal file.

The unit identified by a data transfer input/output statement must be connected to
a file when execution of the statement begins.

12.9.3 Establishing a Format. If the control information list contains a format
identifier other than an asterisk, the format specification identified by the format
identifier is established. If the format identifier is an asterisk, list-directed
formatting is established.

FORTRAN 77 Full Language Page 12-10

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

On output, if an internal file has been specified, a format specification (13.1) that
isin the file or is associated (17.1) with the file must not be specified.

12.9.4 File Position Prior to Data Transfer. The positioning of the file prior to
data transfer depends on the method of access: sequential or direct.

If the file contains an endfile record, the file must not be positioned after the
endfile record prior to data transfer.

12.9.4.1 Sequential Access. On input, the file is positioned at the beginning of
the next record. This record becomes the current record. On output, a new record
is created and becomes the last record of the file.

An interna file is always positioned at the beginning of the first record of the file.
This record becomes the current record.

12.9.4.2 Direct Access. For direct access, the file is positioned at the beginning
of the record specified by the record specifier (12.5). This record becomes the
current record.

12.9.5 Data Transfer. Data are transferred between records and entities specified
by the input/output list. The list items are processed in the order of the
input/output list.

All values needed to determine which entities are specified by an input/output list
item are determined at the beginning of the processing of that item. All values
are transmitted to or from the entities specified by a list item prior to the
processing of any succeeding list item. In the example,

READ (3) N, A(N)

two values are read; one is assigned to N, and the second is assigned to A(N) for
the new value of N.

An input list item, or an entity associated with it (17.1.3), must not contain any
portion of the established format specification.

If an intern file has been specified, an input/output list item must not be in the file
or associated with the file.

A DO-variable becomes defined at the beginning of processing of the items that
congtitute the range of an implied-DO list.

On output, every entity whose value is to be transferred must be defined.

On input, an attempt to read a record of a file connected for direct access that has
not previously been written causes all entities specified by the input list to become
undefined.

12.9.5.1 Unformatted Data Transfer. During unformatted data transfer, data are
transferred without editing between the current record and the entities specified by
the input/output list. Exactly one record is read or written.

On input, the file must be positioned so that the record read is an unformatted
record or an endfile record.

On input, the number of values required by the input list must be less than or
equal to the number of values in the record.

On input, the type of each vaue in the record must agree with the type of the
corresponding entity in the input list, except that one complex value may
correspond to two real list entities or two real values may correspond to one
complex list entity. If an entity in the input list is of type character, the length of

FORTRAN 77 Full Language Page 12-11

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

the character entity must agree with the length of the character value.

On output to a file connected for direct access, the output list must not specify
more values than can fit into a record.

On output, if the file is connected for direct access and the values specified by the
output list do not fill the record, the remainder of the record is undefined.

If the file is connected for formatted input/output, unformatted data transfer is
prohibited.

The unit specified must be an external unit.

12.95.2 Formatted Data Transfer. During formatted data transfer, data are
transferred with editing between the entities specified by the input/output list and
the file. The current record and possibly additional records are read or written.

On input, the file must be positioned so that the record read is a formatted record
or an endfile record.

If the file is connected for unformatted input/output, formatted data transfer is
prohibited.

129521 Using a Format Specification. If a format specification has been
established, format control (13.3) is initiated and editing is performed as described
in 13.3 through 13.5.

On input, the input list and format specification must not require more characters
from a record than the record contains.

If the file is connected for direct access, the record number is increased by one as
each succeeding record is read or written.

On output, if the file is connected for direct access or is an internal file and the
characters specified by the output list and format do not fill a record, blank
characters are added to fill the record.

On output, if the file is connected for direct access or is an internal file, the output
list and format specification must not specify more characters for a record than
can fit into the record.

129522 List-Directed Formatting. If list-directed formatting has been
established, editing is performed as described in 13.6.

12.95.2.3 Printing of Formatted Records. The transfer of information in a
formatted record to certain devices determined by the processor is called printing.
If a formatted record is printed, the first character of the record is not printed.
The remaining characters of the record, if any, are printed in one line beginning at
the left margin.

The first character of such a record determines vertical spacing as follows:

O O O
%:haracter BVertical Spacing Before Printing g
O O O
O Blank [OOne Line O
0 o UTwo Lines U
B 1 UTo First Line of Next Page B
o + JNo Advance 0

If there are no characters in the record (13.5.4), the vertical spacing is one line
and no characters other than blank are printed in that line.

FORTRAN 77 Full Language Page 12-12

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

A PRINT statement does not imply that printing will occur, and a WRITE
statement does not imply that printing will not occur.

12.9.6 File Position After Data Transfer. If an end-of-file condition exists as a
result of reading an endfile record, the file is positioned after the endfile record.

If no error condition or end-of-file condition exists, the file is positioned after the
last record read or written and that record becomes the preceding record. A
record written on a file connected for sequential access becomes the last record of
the file.

If the file is positioned after the endfile record, execution of a data transfer
input/output statement is prohibited. However, a BACKSPACE or REWIND
statement may be used to reposition the file.

If an error condition exists, the position of the file is indeterminate.

12.9.7 Input/Output Satus Specifier Definition. If the data transfer input/output
statement contains an input/output status specifier, the integer variable or array
element ios becomes defined. If no error condition or end-of-file condition exists,
the value of ios is zero. If an error condition exists, the value of ios is positive.
If an end-of-file condition exists and no error condition exists, the value of ios is
negative.

12.10 Auxiliary Input/Output Satements

12.10.1 OPEN Satement. An OPEN statement may be used to connect (12.3.2)
an existing file to a unit, create a file (12.2.1) that is preconnected, create a file
and connect it to a unit, or change certain specifiers of a connection between a file
and a unit.

The form of an OPEN statement is:
OPEN (olist)
where olist is alist (2.10) of specifiers:

0

UNIT =] u

OSTAT = ios
(ERR =s
[FILE = fin
LBTATUS = sa
CACCESS =

ORM = fm
RECL =1l
FBLANK = bink

1

olist must contain exactly one external unit specifier (12.3.3) and may contain at
most one of each of the other specifiers.

The other specifiers are described as follows:
IOSTAT = ios

is an input/output status specifier (12.7). Execution of an OPEN
statement containing this specifier causes ios to become defined with a
zero value if no error condition exists or with a processor-dependent
positive integer value if an error condition exists.

FORTRAN 77 Full Language Page 12-13

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

ERR =

s

is an error specifier (12.7.1).

FILE = fin

fin is a character expression whose value when any trailing blanks are
removed is the name of the file to be connected to the specified unit. The
file name must be a name that is alowed by the processor. If this
specifier is omitted and the unit is not connected to a file, it becomes
connected to a processor-determined file. (See also 12.10.1.1)

STATUS = #a

sta is a character expression whose value when any trailing blanks are
removed is OLD, NEW, SCRATCH, or UNKNOWN. If OLD or NEW
is specified, a FILE= specifier must be given. If OLD is specified, the
file must exist. If NEW is specified, the file must not exist. Successful
execution of an OPEN statement with NEW specified creates the file and
changes the status to OLD (12.10.1.1). If SCRATCH is specified with an
unnamed file, the file is connected to the specified unit for use by the
executable program but is deleted (12.2.1) at the execution of a CLOSE
statement referring to the same unit or at the termination of the
executable program. SCRATCH must not be specified with a named file.
If UNKNOWN is specified, the status is processor dependent. If this
specifier is omitted, a value of UNKNOWN is assumed.

ACCESS = acc

FORM

RECL

acc is a character expression whose value when any trailing blanks are
removed is SEQUENTIAL or DIRECT. It specifies the access method
for the connection of the file as being sequential or direct (12.2.4). If this
specifier is omitted, the assumed value is SEQUENTIAL. For an existing
file, the specified access method must be included in the set of alowed
access methods for the file (12.2.4). For a new file, the processor creates
the file with a set of allowed access methods that includes the specified
method.

= fm

fm is a character expression whose value when any trailing blanks are
removed is FORMATTED or UNFORMATTED. It specifies that the file
is being connected for formatted or unformatted input/output,
respectively. If this specifier is omitted, a value of UNFORMATTED is
assumed if the file is being connected for direct access, and a value of
FORMATTED is assumed if the file is being connected for sequential
access. For an existing file, the specified form must be included in the
set of allowed forms for the file (12.2.2). For a new file, the processor
creates the file with a set of alowed forms that includes the specified
form.

=

rl is an integer expression whose value must be positive. It specifies the
length of each record in a file being connected for direct access. If the
file is being connected for formatted input/output, the length is the
number of characters. If the file is being connected for unformatted
input/output, the length is measured in processor-dependent units. For an
existing file, the value of rl must be included in the set of allowed record

FORTRAN 77 Full Language Page 12-14

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

lengths for the file (12.2.2). For a new file, the processor creates the file
with a set of allowed record lengths that includes the specified value.
This specifier must be given when a file is being connected for direct
access, otherwise, it must be omitted.

BLANK = blnk

blnk is a character expression whose value when any trailing blanks are
removed is NULL or ZERO. If NULL is specified, al blank characters
in numeric formatted input fields on the specified unit are ignored, except
that a field of al blanks has a value of zero. If ZERO is specified, all
blanks other than leading blanks are treated as zeros. If this specifier is
omitted, a value of NULL is assumed. This specifier is permitted only
for afile being connected for formatted input/output.

The unit specifier is required to appear; al other specifiers are optional, except
that the record length rl must be specified if a file is being connected for direct
access. Note that some of the specifications have an assumed value if they are
omitted.

The unit specified must exist.

A unit may be connected by execution of an OPEN statement in any program unit
of an executable program and, once connected, may be referenced in any program
unit of the executable program.

12.10.1.1 Open of a Connected Unit. If a unit is connected to a file that exists,
execution of an OPEN statement for that unit is permitted. If the FILE= specifier
is not included in the OPEN statement, the file to be connected to the unit is the
same as the file to which the unit is connected.

If the file to be connected to the unit does not exist, but is the same as the file to
which the unit is preconnected, the properties specified by the OPEN statement
become a part of the connection.

If the file to be connected to the unit is not the same as the file to which the unit
is connected, the effect is as if a CLOSE statement (12.10.2) without a STATUS=
specifier had been executed for the unit immediately prior to the execution of the
OPEN statement.

If the file to be connected to the unit is the same as the file to which the unit is
connected, only the BLANK= specifier may have a value different from the one
currently in effect. Execution of the OPEN statement causes the new value of the
BLANK= specifier to be in effect. The position of the file is unaffected.

If afileis connected to a unit, execution of an OPEN statement on that file and a
different unit is not permitted.

12.10.2 CLOSE Satement. A CLOSE dsatement is used to terminate the
connection of a particular file to a unit.

The form of a CLOSE statement is:
CLOSE (cllist)
where cllist isalist (2.10) of specifiers:

FORTRAN 77 Full Language Page 12-15

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

0 0
UNIT =] u B
OSTAT = ios [

(FRR ='s O

ESTATUS = sia

cllist must contain exactly one externa unit specifier (12.3.3) and may contain at
most one of each of the other specifiers.

The other specifiers are described as follows:
IOSTAT = ios

is an input/output status specifier (12.7). Execution of a CLOSE
statement containing this specifier causes ios to become defined with a
zero value if no error condition exists or with a processor-dependent
positive integer value if an error condition exists.

ERR = s
is an error specifier (12.7.1).
STATUS = ¢a

sta is a character expression whose value when any trailing blanks are
removed is KEEP or DELETE. sta determines the disposition of the file
that is connected to the specified unit. KEEP must not be specified for a
file whose status prior to execution of the CLOSE statement is
SCRATCH. If KEEP is specified for a file that exists, the file continues
to exist after the execution of the CLOSE statement. If KEEP is
specified for a file that does not exist, the file will not exist after the
execution of the CLOSE statement. If DELETE is specified, the file will
not exist after execution of the CLOSE statement. If this specifier is
omitted, the assumed value is KEEP, unless the file status prior to
execution of the CLOSE statement is SCRATCH, in which case the
assumed value is DELETE.

Execution of a CLOSE statement that refers to a unit may occur in any program
unit of an executable program and need not occur in the same program unit as the
execution of an OPEN statement referring to that unit.

Execution of a CLOSE statement specifying a unit that does not exist or has no
file connected to it is permitted and affects no file.

After a unit has been disconnected by execution of a CLOSE statement, it may be
connected again within the same executable program, either to the same file or to
a different file. After a file has been disconnected by execution of a CLOSE
statement, it may be connected again within the same executable program, either
to the same unit or to a different unit, provided that the file still exists.

12.10.2.1 Implicit Close at Termination of Execution. At termination of
execution of an executable program for reasons other than an error condition, all
units that are connected are closed. Each unit is closed with status KEEP unless
the file status prior to termination of execution was SCRATCH, in which case the
unit is closed with status DELETE. Note that the effect is as though a CLOSE
statement without a STATUS= specifier were executed on each connected unit.

12.10.3 INQUIRE Satement. An INQUIRE statement may be used to inquire
about properties of a particular named file or of the connection to a particular unit.
There are two forms of the INQUIRE statement: inquire by file and inquire by

FORTRAN 77 Full Language Page 12-16

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

unit. All value assignments are done according to the rules for assignment
statements.

The INQUIRE statement may be executed before, while, or after a file is
connected to a unit. All values assigned by the INQUIRE statement are those that
are current at the time the statement is executed.

12.10.3.1 INQUIRE by File. The form of an INQUIRE by file statement is:
INQUIRE (iflist)

where iflist is a list (2.10) of specifiers that must contain exactly one file
specifier and may contain other inquiry specifiers. The iflist may contain at most
one of each of the inquiry specifiers described in 12.10.3.3.

The form of afile specifier is:
FILE = fin

where fin is a character expression whose value when any trailing blanks are
removed specifies the name of the file being inquired about. The named file need
not exist or be connected to a unit. The value of fin must be of a form
acceptable to the processor as a file name.

12.10.3.2 INQUIRE by Unit. The form of an INQUIRE by unit statement is:
INQUIRE (iulist)

where iulist is a list (2.10) of specifiers that must contain exactly one external

unit specifier (12.3.3) and may contain other inquiry specifiers. The iulist may

contain at most one of each of the inquiry specifiers described in 12.10.3.3. The

unit specified need not exist or be connected to afile. If it is connected to a file,
the inquiry is being made about the connection and about the file connected.

12.10.3.3 Inquiry Specifiers. The following inquiry specifiers may be used in
either form of the INQUIRE statement:

[(BEQUENTIAL = seq
(DIRECT = dir
ORM = fm
ORMATTED = fmt
[UNFORMATTED = unf
[RECL = rcl
LNEXTREC

nr
HBLANK

bink

P

(@)

(@)

m

&

1
8

(MoOoOooooooooooooooooog

The specifiers are described as follows:
IOSTAT = ios

is an input/output status specifier (12.7). Execution of an INQUIRE
statement containing this specifier causes ios to become defined with a

FORTRAN 77 Full Language Page 12-17

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

zero value if no error condition exists or with a processor-dependent
positive integer value if an error condition exists.

ERR = s

is an error specifier (12.7.1).

EXIST = ex
ex is a logical variable or logical array element. Execution of an
INQUIRE by file statement causes ex to be assigned the value true if
there exists a file with the specified name; otherwise, ex is assigned the
value false. Execution of an INQUIRE by unit statement causes ex to be
assigned the value true if the specified unit exists; otherwise, ex is
assigned the value false.

OPENED = od

od is a logical variable or logical array element. Execution of an
INQUIRE by file statement causes od to be assigned the value true if the
file specified is connected to a unit; otherwise, od is assigned the value
false. Execution of an INQUIRE by unit statement causes od to be
assigned the vaue true if the specified unit is connected to a filg;
otherwise, od is assigned the value false.

NUMBER = num

num is an integer variable or integer array element that is assigned the
value of the external unit identifier of the unit that is currently connected
to the file. If there is no unit connected to the file, num becomes
undefined.

NAMED = nmd

nmd is a logical variable or logical array element that is assigned the
value true if the file has a name; otherwise, it is assigned the value false.

NAME = fn

fn is acharacter variable or character array element that is assigned the
value of the name of the file, if the file has a name; otherwise, it becomes
undefined. Note that if this specifier appears in an INQUIRE by file
statement, its value is not necessarily the same as the name given in the
FILE= specifier. For example, the processor may return a file name
qualified by a user identification. However, the value returned must be
suitable for use as the value of a FILE= specifier in an OPEN statement.

ACCESS = acc

acc is a character variable or character array# element that is assigned the
value SEQUENTIAL if the file is connected for sequential access, and
DIRECT if the file is connected for direct access. If there is no
connection, acc becomes undefined.

SEQUENTIAL = seq

seq is a character variable or character array element that is assigned the
value YES if SEQUENTIAL is included in the set of allowed access
methods for the file, NO if SEQUENTIAL is not included in the set of
allowed access methods for the file, and UNKNOWN if the processor is
unable to determine whether or not SEQUENTIAL is included in the set
of allowed access methods for the file.

FORTRAN 77 Full Language Page 12-18

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

DIRECT = dir

dir is a character variable or character array element that is assigned the
value YES if DIRECT is included in the set of allowed access methods
for the file, NO if DIRECT is not included in the set of allowed access
methods for the file, and UNKNOWN if the processor is unable to
determine whether or not DIRECT is included in the set of allowed
access methods for the file.

FORM = fm

fm is a character variable or character array element that is assigned the
vaue FORMATTED if the file is connected for formatted input/output,
and is assigned the value UNFORMATTED if the file is connected for
unformatted input/output. If there is no connection, fm becomes
undefined.

FORMATTED = fmt

fmt is a character variable or character array element that is assigned the
value YES if FORMATTED is included in the set of alowed forms for
the file, NO if FORMATTED is not included in the set of allowed forms
for the file, and UNKNOWN if the processor is unable to determine
whether or not FORMATTED is included in the set of alowed forms for
the file.

UNFORMATTED = unf

unf is a character variable or character array element that is assigned the
value YES if UNFORMATTED is included in the set of alowed forms
for the file, NO if UNFORMATTED is not included in the set of allowed
forms for the file, and UNKNOWN if the processor is unable to
determine whether or not UNFORMATTED is included in the set of
alowed forms for the file.

RECL = rd

rcl is an integer variable or integer array element that is assigned the
value of the record length of the file connected for direct access. If the
file is connected for formatted input/output, the length is the number of
characters. If the file is connected for unformatted input/output, the
length is measured in processor-dependent units. If there is no
connection or if the connection is not for direct access, rcl becomes
undefined.

NEXTREC = nr

nr is an integer variable or integer array element that is assigned the
value n+1, where n is the record number of the last record read or
written on the file connected for direct access. If the file is connected but
no records have been read or written since the connection, nr is assigned
the value 1. If the file is not connected for direct access or if the position
of the file is indeterminate because of a previous error condition, nr
becomes undefined.

BLANK = blnk

blnk is a character variable or character array element assigned the value
NULL if null blank control is in effect for the file connected for
formatted input/output, and is assigned the value ZERO if zero blank

FORTRAN 77 Full Language Page 12-19

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

control is in effect for the file connected for formatted input/output. If
there is no connection, or if the connection is not for formatted
input/output, bink becomes undefined.

A variable or array element that may become defined or undefined as a result of
its use as a specifier in an INQUIRE statement, or any associated entity, must not
be referenced by any other specifier in the same INQUIRE statement.

Execution of an INQUIRE by file statement causes the specifier variables or array
elements nmd, fn, seq, dir, fmt, and unf to be assigned values only if the value of
fin is acceptable to the processor as a file name and if there exists a file by that
name; otherwise, they become undefined. Note that num becomes defined it and
only if od becomes defined with the value true. Note aso that the specifier
variables or array elements acc, fm, rcl, nr, and bink may become defined only if
od becomes defined with the value true.

Execution of an INQUIRE by unit statement causes the specifier variables or array
elements num, nmd, fn, acc, seq, dir, fm, fmt, unf, rcl, nr, and bink to be assigned
values only if the specified unit exists and if a file is connected to the unit;
otherwise, they become undefined.

If an error condition occurs during execution of an INQUIRE statement, all of the
inquiry specifier variables and array elements except ios become undefined.

Note that the specifier variables or array elements ex and od aways become
defined unless an error condition occurs.

12.10.4 File Positioning Satements. The forms of the file positioning statements
are

BACKSPACE u
BACKSPACE (alist)

ENDFILE u
ENDFILE (dist)

REWIND u
REWIND (alist)
where: u is an externa unit identifier (12.3.3)
aistisalist (2.20) of specifiers:
O

UNIT =] u
OSTAT = ios
[FRR ='s

Oooood

aist must contain exactly one external unit specifier (12.3.3) and may contain at
most one of each of the other specifiers.

The external unit specified by a BACKSPACE, ENDFILE, or REWIND statement
must be connected for sequential access.

Execution of a file positioning statement containing an input/output status specifier
causes ios to become defined with a zero value if no error condition exists or with
a processor-dependent positive integer value if an error condition exists.

FORTRAN 77 Full Language Page 12-20

INPUT/OUTPUT STATEMENTS ANSI X3J3/90.4

12.10.4.1 BACKSPACE Satement. Execution of a BACKSPACE statement
causes the file connected to the specified unit to be positioned before the
preceding record. If there is no preceding record, the position of the file is not
changed. Note that if the preceding record is an endfile record, the file becomes
positioned before the endfile record.

Backspacing a file that is connected but does not exist is prohibited.
Backspacing over records written using list-directed formatting is prohibited.

12.10.4.2 ENDFILE Satement. Execution of an ENDFILE statement writes an
endfile record as the next record of the file. The file is then positioned after the
endfile record. If the file may also be connected for direct access, only those
records before the endfile record are considered to have been written. Thus, only
those records may be read during subsequent direct access connections to the file.

After execution of an ENDFILE statement, a BACKSPACE or REWIND
statement must be used to reposition the file prior to execution of any data
transfer input/output statement.

Execution of an ENDFILE statement for a file that is connected but does not exist
creates the file.

12.10.4.3 REWIND Satement. Execution of a REWIND statement causes the
specified file to be positioned at its initial point. Note that if the file is aready
positioned at its initial point, execution of this statement has no effect on the
position of the file.

Execution of a REWIND statement for a file that is connected but does not exist
is permitted but has no effect.

12.11 Restrictions on Function References and List [tems

A function must not be referenced within an expression appearing anywhere in an
input/output statement if such a reference causes an input/output statement to be
executed. Note that a restriction in the evauation of expressions (6.6) prohibits
certain side effects.

12.12 Restriction on Input/Output Statements

If a unit, or a file connected to a unit, does not have al of the properties required
for the execution of certain input/output statements, those statements must not
refer to the unit.

FORTRAN 77 Full Language Page 12-21

CONTENTS

12. INPUT/OUTPUT STATEMENTS 12-1
121 Records oL 12-1
12.1.1 Formatted Record. Ce e e 12-1
12.1.2 Unformatted Record. 12-1
12.1.3 Endfile Record. Ce e e 12-2
122 Fles L0 12-2
1221 FileExisence. 12-2
12.2.2 File Properties. 12-2
12.23 File Position. 12-2
12.2.4 File Access. Ce e e e 12-3
1225 Interna Fles. 12-4
123 Units oL 12-4
12.3.1 Unit Existence. Ce e e 12-5
12.3.2 Connection of a Unit. Ce e 12-5
12.3.3 Unit Specifier and Identifier. Ce e 12-5
124 Format Specifier and Identifier 12-6
125 Record Specifier . . . Ce e 12-6
12.6 Error and End-of-File Cond|t|ons Ce e 12-6
12.7 Input/Output Status, Error, and End-of-File
Specifiers . . . C e e 12-7
12.7.1 Error SpeC|f|er Ce e 12-7
12.7.2 End-of-File Specifier. 12-7
128 READ, WRITE, and PRINT Statements 12-8
12.8.1 Control Information List. e 12-8
12.8.2 Input/Output List. . . . e 12-9
12.9 Execution of a Data Transfer Input/Output
Statement 22 (0]
12.9.1 Direction of Data Transfer 1210
12.9.2 Identifying a Unit. e 2 0]
12.9.3 Establishing a Format. 1210
12.9.4 File Position Prior to Data Transfer e ... 1211
1295 DataTransfer. . . . T 2
12.9.6 File Position After Data Transfer 1213
12.9.7 Input/Output Status Specifier Definition. 12-
13
12,10 Auxiliary Input/Output Statements 12-13
12.10.1 OPEN Statement. 1213
12.10.2 CLOSE Statement. 1215
12.10.3 INQUIRE Statement. 12-16
12.10.4 File Positioning Statements. 12-20
12.11 Redtrictions on Function References and List
Items . . e A

12.12 Restriction on Input/Output Statements e A

ANSI X3J3/90.4

13. FORMAT SPECIFICATION

A format used in conjunction with formatted input/output statements provides
information that directs the editing between the interna representation and the
character strings of arecord or a sequence of records in the file.

A format specification provides explicit editing information. An asterisk (*) as a
format identifier in an input/output statement indicates list-directed formatting
(13.6).

13.1 Format Specification Methods
Format specifications may be given:
(1) In FORMAT statements

(2) As values of character arrays, character variables, or other character
expressions

13.1.1 FORMAT Satement. The form of a FORMAT statement is:
FORMAT fs

where fs is a format specification, as described in 13.2. The statement must be
labeled.

13.1.2 Character Format Specification. If the format identifier (12.4) in a
formatted input/output statement is a character array name, character variable
name, or other character expression, the leftmost character positions of the
specified entity must be in a defined state with character data that constitute a
format specification when the statement is executed.

A character format specification must be of the form described in 13.2. Note that
the form begins with a left parenthesis and ends with a right parenthesis.
Character data may follow the right parenthesis that ends the format specification,
with no effect on the format specification. Blank characters may precede the
format specification.

If the format identifier is a character array name, the length of the format
specification may exceed the length of the first element of the array; a character
array format specification is considered to be a concatenation of all the array
edements of the array in the order given by array element ordering (5.2.4).
However, if a character array element name is specified as a format identifier, the
length of the format specification must not exceed the length of the array element.

13.2 Form of a Format Specification
The form of a format specification is:

([flist])
where flist isalist (2.10). The forms of the flist items are:

[r] ed

ned

[r] fs

where: ed is arepeatable edit descriptor (13.2.1)
ned is a nonrepeatable edit descriptor (13.2.1)

fs isaformat specification with a nonempty list flist

FORTRAN 77 Full Language Page 13-1

FORMAT SPECIFICATION ANSI X3J3/90.4

r is a nonzero, unsigned, integer constant caled a
repeat specification

The comma used to separate list items in the list flist may be omitted as follows:

(1) Between a P edit descriptor and an immediately following F, E, D, or G
edit descriptor (13.5.9)

(2) Before or after a slash edit descriptor (13.5.4)
(3) Before or after a colon edit descriptor (13.5.5)

13.2.1 Edit Descriptors. An edit descriptor is either a repeatable edit descriptor
or a nonrepeatable edit descriptor.

The forms of a repeatable edit descriptor are:

w

lw.m

Fw.d

Ew.d

Ew.dEe

Dw.d

Gw.d

Gw.dEe

Lw

A

Aw

where: |, F, E, D, G, L, and A indicate the manner of editing

w and e are nonzero, unsigned, integer constants
d and m are unsigned integer constants

The forms of a nonrepeatable edit descriptor are:

where: apostrophe, H, T, TL, TR, X, dslash, colon, S, SP, SS, P, BN, and BZ
indicate the manner of editing

h is one of the characters capable of representation by the processor
n and c are nonzero, unsigned, integer constants
k isan optionally signed integer constant

FORTRAN 77 Full Language Page 13-2

FORMAT SPECIFICATION ANSI X3J3/90.4

13.3 Interaction Between Input/Output List and Format

The beginning of formatted data transfer using a format specification (12.9.5.2.1)
initiates format control. Each action of format control depends on information
jointly provided by:

(1) the next edit descriptor contained in the format specification, and
(2) the next item in the input/output list, if one exists.

If an input/output list specifies at least one list item, at least one repeatable edit
descriptor must exist in the format specification. Note that an empty format
specification of the form () may be used only if no list items are specified; in this
case, one input record is skipped or one output record containing no characters is
written. Except for an edit descriptor preceded by a repeat specification, r ed,
and a format specification preceded by a repeat specification, r(flist), a format
specification is interpreted from left to right. A format specification or edit
descriptor preceded by a repeat specification r is processed as a list of r format
specifications or edit descriptors identical to the format specification or edit
descriptor without the repeat specification. Note that an omitted repeat
specification is treated the same as a repeat specification whose value is one.

To each repeatable edit descriptor interpreted in a format specification, there
corresponds one item specified by the input/output list (12.8.2), except that a list
item of type complex requires the interpretation of two F, E, D, or G edit
descriptors. To each P, X, T, TL, TR, S, SP, SS, H, BN, BZ, slash, colon, or
apostrophe edit descriptor, there is no corresponding item specified by the
input/output list, and format control communicates information directly with the
record.

Whenever format control encounters a repeatable edit descriptor in a format
specification, it determines whether there is a corresponding item specified by the
input/output list. If there is such an item, it transmits appropriately edited
information between the item and the record, and then format control proceeds. If
there is no corresponding item, format control terminates.

If format control encounters a colon edit descriptor in a format specification and
another list item is not specified, format control terminates.

If format control encounters the rightmost parenthesis of a complete format
specification and another list item is not specified, format control terminates.
However, if another list item is specified, the file is positioned at the beginning of
the next record and format control then reverts to the beginning of the format
specification terminated by the last preceding right parenthesis. If there is no such
preceding right parenthesis, format control reverts to the first left parenthesis of
the format specification. |If such reversion occurs, the reused portion of the format
specification must contain at least one repeatable edit descriptor. If format control
reverts to a parenthesis that is preceded by a repeat specification, the repeat
specification is reused. Reversion of format control, of itself, has no effect on the
scale factor (13.5.7), the S, SP, or SS edit descriptor sign control (13.5.6), or the
BN or BZ edit descriptor blank control (13.5.8).

13.4 Positioning by Format Control

After each I, F, E, D, G, L, A, H, or apostrophe edit descriptor is processed, the
file is positioned after the last character read or written in the current record.

After each T, TL, TR, X, or dlash edit descriptor is processed, the file is
positioned as described in 13.5.3 and 13.5.4.

FORTRAN 77 Full Language Page 13-3

FORMAT SPECIFICATION ANSI X3J3/90.4

If format control reverts as described in 13.3, the file is positioned in a manner
identical to the way it is positioned when a dlash edit descriptor is processed
(13.5.4).

During a read operation, any unprocessed characters of the record are skipped
whenever the next record is read.

13.5 Editing

Edit descriptors are used to specify the form of a record and to direct the editing
between the characters in a record and internal representations of data.

A field is a part of arecord that is read on input or written on output when format
control processes one |, F, E, D, G, L, A, H, or apostrophe edit descriptor. The
field width is the size in characters of the field.

The interna representation of a datum corresponds to the internal representation of
a constant of the corresponding type (Section 4).

13.5.1 Apostrophe Editing. The apostrophe edit descriptor has the form of a
character constant. It causes characters to be written from the enclosed characters
(including blanks) of the edit descriptor itself. An apostrophe edit descriptor must
not be used on input.

The width of the field is the number of characters contained in, but not including,
the delimiting apostrophes. Within the field, two consecutive apostrophes with no
intervening blanks are counted as a single apostrophe.

13.5.2 H Editing. The nH edit descriptor causes character information to be
written from the n characters (including blanks) following the H of the nH edit
descriptor in the format specification itself. An H edit descriptor must not be used
on input.

Note that if an H edit descriptor occurs within a character constant and includes
an apostrophe, the apostrophe must be represented by two consecutive
apostrophes, which are counted as one character in specifying n.

13.5.3 Positional Editing. The T, TL, TR, and X edit descriptors specify the
position at which the next character will be transmitted to or from the record.

The position specified by a T edit descriptor may be in either direction from the
current position. On input, this allows portions of a record to be processed more
than once, possibly with different editing.

The position specified by an X edit descriptor is forward from the current
position. On input, a position beyond the last character of the record may be
specified if no characters are transmitted from such positions.

On output, a T, TL, TR, or X edit descriptor does not by itself cause characters to
be transmitted and therefore does not by itself affect the length of the record. If
characters are transmitted to positions at or after the position specified by a T, TL,
TR, or X edit descriptor, positions skipped and not previoudly filled are filled with
blanks. The result is as if the entire record were initialy filled with blanks.

On output, a character in the record may be replaced. However, a T, TL, TR, or
X edit descriptor never directly causes a character already placed in the record to
be replaced. Such edit descriptors may result in positioning so that subsequent
editing causes a replacement.

FORTRAN 77 Full Language Page 13-4

FORMAT SPECIFICATION ANSI X3J3/90.4

13531 T, TL, and TR Editing. The Tc edit descriptor indicates that the
transmission of the next character to or from a record is to occur at the cth
character position.

The TL ¢ edit descriptor indicates that the transmission of the next character to or
from the record is to occur at the character position ¢ characters backward from
the current position. However, if the current position is less than or equal to
position ¢, the TLc edit descriptor indicates that the transmission of the next
character to or from the record is to occur at position one of the current record.

The TRc edit descriptor indicates that the transmission of the next character to or
from the record is to occur at the character position ¢ characters forward from the
current position.

13.5.3.2 X Editing. The nX edit descriptor indicates that the transmission of the
next character to or from a record is to occur at the position n characters forward
from the current position.

13.5.4 Hash Editing. The dash edit descriptor indicates the end of data transfer
on the current record.

On input from a file connected for sequential access, the remaining portion of the
current record is skipped and the file is positioned at the beginning of the next
record. This record becomes the current record. On output to a file connected for
sequential access, a new record is created and becomes the last and current record
of thefile.

Note that a record that contains no characters may be written on output. If the
fileis an interna file or a file connected for direct access, the record is filled with
blank characters. Note also that an entire record may be skipped on input.

For a file connected for direct access, the record number is increased by one and
the file is positioned at the beginning of the record that has that record number.
This record becomes the current record.

13.5.5 Colon Editing. The colon edit descriptor terminates format control if there
are no more items in the input/output list (13.3). The colon edit descriptor has no
effect if there are more items in the input/output list.

1356 S SP, and SS Editing. The S, SP, and SS edit descriptors may be used to
control optional plus characters in numeric output fields. At the beginning of
execution of each formatted output statement, the processor has the option of
producing a plus in humeric output fields. If an SP edit descriptor is encountered
in a format specification, the processor must produce a plus in any subsequent
position that normally contains an optiona plus. If an SS edit descriptor is
encountered, the processor must not produce a plus in any subsequent position
that normally contains an optional plus. If an S edit descriptor is encountered, the
option of producing the plus is restored to the processor.

The S, SP, and SS edit descriptors affect only I, F, E, D, and G editing during the
execution of an output statement. The S, SP, and SS edit descriptors have no
effect during the execution of an input statement.

13.5.7 P Editing. A scale factor is specified by a P edit descriptor, which is of
the form:

kP

where k is an optionally signed integer constant, called the scale factor.

FORTRAN 77 Full Language Page 13-5

FORMAT SPECIFICATION ANSI X3J3/90.4

13.5.7.1 Scale Factor. The vaue of the scale factor is zero at the beginning of
execution of each input/output statement. It applies to all subsequently interpreted
F, E, D, and G edit descriptors until another scale factor is encountered, and then
that scale factor is established. Note that reversion of format control (13.3) does
not affect the established scale factor.

The scale factor k affects the appropriate editing in the following manner:

() On input, with F, E, D, and G editing (provided that no exponent exists
in the field) and F output editing, the scale factor effect is that the
externaly represented number equals the internally represented number
multiplied by 10** k

(2) On input, with F, E, D, and G editing, the scale factor has no effect if
there is an exponent in the field.

(3) On output, with E and D editing, the basic real constant (4.4.1) part of
the quantity to be produced is multiplied by 10** k and the exponent is
reduced by k.

(4) On output, with G editing, the effect of the scale factor is suspended
unless the magnitude of the datum to be edited is outside the range that
permits the use of F editing. If the use of E editing is required, the scale
factor has the same effect as with E output editing.

13.5.8 BN and BZ Editing. The BN and BZ edit descriptors may be used to
specify the interpretation of blanks, other than leading blanks, in numeric input
fields. At the beginning of execution of each formatted input statement, such
blank characters are interpreted as zeros or are ignored, depending on the value of
the BLANK= specifier (12.10.1) currently in effect for the unit. If a BN edit
descriptor is encountered in a format specification, all such blank characters in
succeeding numeric input fields are ignored. The effect of ignoring blanks is to
treat the input field as if blanks had been removed, the remaining portion of the
field right-justified, and the blanks replaced as leading blanks. However, afield of
al blanks has the value zero. If a BZ edit descriptor is encountered in a format
specification, al such blank characters in succeeding numeric input fields are
treated as zeros.

The BN and BZ edit descriptors affect only I, F, E, D, and G editing during
execution of an input statement. They have no effect during execution of an
output statement.

13.5.9 Numeric Editing. The I, F, E, D, and G edit descriptors are used to
specify input/output of integer, real, double precision, and complex data. The
following general rules apply:

(1) On input, leading blanks are not significant. The interpretation of blanks,
other than leading blanks, is determined by a combination of any
BLANK= specifier and any BN or BZ blank control that is currently in
effect for the unit (13.5.8). Plus signs may be omitted. A field of all
blanks is considered to be zero.

(2) On input, with F, E, D, and G editing, a decimal point appearing in the
input field overrides the portion of an edit descriptor that specifies the
decimal point location. The input field may have more digits than the
processor uses to approximate the value of the datum.

(3) On output, the representation of a positive or zero interna value in the
field may be prefixed with a plus, as controlled by the S, SP, and SS edit

FORTRAN 77 Full Language Page 13-6

FORMAT SPECIFICATION ANSI X3J3/90.4

descriptors (13.5.6) or the processor. The representation of a negative
internal value in the field must be prefixed with a minus. However, the
processor must not produce a negative signed zero in a formatted output
record.

(4) On output, the representation is right-justified in the field. If the number
of characters produced by the editing is smaller than the field width,
leading blanks will be inserted in the field.

(5) On output, if the number of characters produced exceeds the field width
or if an exponent exceeds its specified length using the Ew.dEe or
Gw.dEe edit descriptor, the processor will fill the entire field of width
w with asterisks. However, the processor must not produce asterisks if
the field width is not exceeded when optional characters are omitted.
Note that when an SP edit descriptor is in effect, a plus is not optional
(13.5.6).

13.5.9.1 Integer Editing. The Iw and lw.m edit descriptors indicate that the
field to be edited occupies w positions. The specified input/output list item must
be of type integer. On input, the specified list item will become defined with an
integer datum. On output, the specified list item must be defined with an integer
datum.

On input, an | w.m edit descriptor is treated identically to an | w edit descriptor.

In the input field, the character string must be in the form of an optionally signed
integer constant, except for the interpretation of blanks (13.5.9, item (1)).

The output field for the | w edit descriptor consists of zero or more leading blanks
followed by a minus if the value of the internal datum is negative, or an optional
plus otherwise, followed by the magnitude of the internal value in the form of an
unsigned integer constant without leading zeros. Note that an integer constant
aways consists of at least one digit.

The output field for the lw.m edit descriptor is the same as for the |w edit
descriptor, except that the unsigned integer constant consists of at least m digits
and, if necessary, has leading zeros. The value of m must not exceed the value of
w. If m is zero and the value of the internal datum is zero, the output field
consists of only blank characters, regardless of the sign control in effect.

13.5.9.2 Real and Double Precision Editing. The F, E, D, and G edit descriptors
specify the editing of real, double precision, and complex data. An input/output
list item corresponding to an F, E, D, or G edit descriptor must be real, double
precision, or complex. An input list item will become defined with a datum
whose type is the same as that of the list item. An output list item must be
defined with a datum whose type is the same as that of the list item.

13.5.9.2.1 F Editing. The Fw.d edit descriptor indicates that the field occupies
w positions, the fractional part of which consists of d digits.

The input field consists of an optional sign, followed by a string of digits
optionally containing a decimal point. If the decima point is omitted, the
rightmost d digits of the string, with leading zeros assumed if necessary, are
interpreted as the fractional part of the value represented. The string of digits
may contain more digits than a processor uses to approximate the value of the
constant. The basic form may be followed by an exponent of one of the
following forms:

FORTRAN 77 Full Language Page 13-7

FORMAT SPECIFICATION ANSI X3J3/90.4

(1) Signed integer constant

(2) E followed by zero or more blanks, followed by an optionaly signed
integer constant

(3) D followed by zero or more blanks, followed by an optionaly signed
integer constant

An exponent containing a D is processed identically to an exponent containing an
E.

The output field consists of blanks, if necessary, followed by a minus if the
internal value is negative, or an optiona plus otherwise, followed by a string of
digits that contains a decimal point and represents the magnitude of the internal
value, as modified by the established scale factor and rounded to d fractiona
digits. Leading zeros are not permitted except for an optional zero immediately to
the left of the decimal point if the magnitude of the value in the output field is
less than one. The optional zero must appear if there would otherwise be no
digits in the output field.

1359.22 E and D Editing. The Ew.d, Dw.d, and Ew.dEe edit descriptors
indicate that the external field occupies w positions, the fractional part of which
consists of d digits, unless a scale factor greater than one is in effect, and the
exponent part consists of e digits. The e has no effect on input.

The form of the input field is the same as for F editing (13.5.9.2.1).
The form of the output field for a scale factor of zero is:

[£] [O] . X1X2...Xqd exp
where: + signifies a plus or a minus (13.5.9)

X1,X2...Xg are the Ld most significant digits of the value of the datum
after rounding

exp is adecima exponent, one of the following forms:

O O O O
dit U Absolute Value UForm of g
escriptor ~of Exponent 1 Exponent 0

O O O O

LEw.d UDexp 0<99 UE+z920 or +0z120 U

O = = O

O O O O

O 099< Oexp 0<999 0+z12223 O

O O O O

EwdEe HDexpO<(10e)-1 UE+z12..26 g

O O O O

(Dw.d O0exp O0<99 OD+z1z2 or Exz1z2 O

g U Uor +0z1z g

O = = £122 O

O O O O

O 099< Oexp 0<999 0+z12223 O

where z is a digit. The sign in the exponent is required. A plus sign must be
used if the exponent value is zero. The forms Ew.d and Dw.d must not be used
if Oexp O > 999.

The scale factor k controls the decimal normalization (13.5.7). If -d < k < 0,
the output field contains exactly Ok O leading zeros and d — Ok O significant
digits after the decimal point. If 0 < k < d + 2, the output field contains

FORTRAN 77 Full Language Page 13-8

FORMAT SPECIFICATION ANSI X3J3/90.4

exactly k significant digits to the left of the decima point and d — k + 1
significant digits to the right of the decima point. Other values of k are not
permitted.

13.5.9.2.3 G Editing. The Gw.d and Gw.dEe edit descriptors indicate that the
external field occupies w positions, the fractional part of which consists of d
digits, unless a scale factor greater than one is in effect, and the exponent part
consists of e digits.

G input editing is the same as for F editing (13.5.9.2.1).

The method of representation in the output field depends on the magnitude of the
datum being edited. Let N be the magnitude of the internal datum. If N < 0.1
or N = 10**d,Gw.d output editing is the same as kK PEw.d output editing and
Gw.dEe output editing is the same as K PEw.dEe output editing, where k is the
scale factor currently in effect. If N is greater than or equal to 0.1 and is less
than 10** d, the scale factor has no effect, and the value of N determines the
editing as follows:

0 O 0
g\/lagnitude of Datum EEquivaIent Conversion g
O O 0
[0.1=N<1 OF(w-n).d, n('b") 0
O O O
DsN<10 SF(w-n).(d-1), n(b) 7
O O 0
o - O 0
o . O 0
o . O 0
L0 (d-2)sN<10(d-1) gF(w-n).1, n(b)
O O 0
(Lo** (d-1)sN<10**d OF(w-n).0, n('b") 0
B B B

where: b is a blank
n is4for Gw.d and e+?2 for Gw.dEe

Note that the scale factor has no effect unless the magnitude of the datum to be
edited is outside of the range that permits effective use of F editing.

13.5.9.2.4 Complex Editing. A complex datum consists of a pair of separate rea
data; therefore, the editing is specified by two successively interpreted F, E, D, or
G edit descriptors. The first of the edit descriptors specifies the rea part; the
second specifies the imaginary part. The two edit descriptors may be different.
Note that nonrepeatable edit descriptors may appear between the two successive F,
E, D, or G edit descriptors.

13.5.10 L Editing. The Lw edit descriptor indicates that the field occupies w
positions. The specified input/output list item must be of type logical. On input,
the list item will become defined with a logical datum. On output, the specified
list item must be defined with a logica datum. The input field consists of
optional blanks, optionally followed by a decimal point, followed by a T for true
or F for false. The T or F may be followed by additional characters in the field.
Note that the logical constants .TRUE. and .FALSE. are acceptable input forms.

The output field consists of w — 1 blanks followed by a T or F, as the value of
the internal datum is true or false, respectively.

FORTRAN 77 Full Language Page 13-9

FORMAT SPECIFICATION ANSI X3J3/90.4

13.5.11 A Editing. The A[w] edit descriptor is used with an input/output list
item of type character. On input, the input list item will become defined with
character data. On output, the output list item must be defined with character
data.

If afield width w is specified with the A edit descriptor, the field consists of w
characters. If a field width w is not specified with the A edit descriptor, the
number of characters in the field is the length of the character input/output list
item.

Let len be the length of the input/output list item. If the specified field width w
for A input is greater than or equal to len, the rightmost len characters will be
taken from the input field. If the specified field width is less than len, the w
characters will appear left-justified with len—w trailing blanks in the internal
representation.

If the specified field width w for A output is greater than len, the output field will
consist of w—len blanks followed by the len characters from the internal
representation. If the specified field width w is less than or equal to len, the
output field will consist of the leftmost w characters from the internal
representation.

13.6 List-Directed Formatting

The characters in one or more list-directed records constitute a sequence of values
and value separators. The end of a record has the same effect as a blank
character, unless it is within a character constant. Any sequence of two or more
consecutive blanks is treated as a single blank, unless it is within a character
constant.

Each value is either a constant, a null value, or of one of the forms:
Ir*c

r*

where r is an unsigned, nonzero, integer constant. The r* ¢ form is equivaent to
I successive appearances of the constant ¢, add the r* form is equivalent to r
successive appearances of the null values. Neither of these forms may contain
embedded blanks, except where permitted within the constant c.

A value separator is one of the following:

(1) A comma optionally preceded by one or more contiguous blanks and
optionally followed by one or more contiguous blanks

(2) A dash optionally preceded by one or more contiguous blanks and
optionally followed by one or more contiguous blanks

(3) One or more contiguous blanks between two constants or following the
last constant

13.6.1 List-Directed Input. Input forms acceptable to format specifications for a
given type are acceptable for list-directed formatting, except as noted below. The
form of the input value must be acceptable for the type of the input list item.
Blanks are never used as zeros, and embedded blanks are not permitted in
constants, except within character constants and complex constants as specified
below. Note that the end of a record has the effect of a blank, except when it
appears within a character constant.

FORTRAN 77 Full Language Page 13-10

FORMAT SPECIFICATION ANSI X3J3/90.4

When the corresponding input list item is of type rea or double precision, the
input form is that of a numeric input field. A numeric input field is a field
suitable for F editing (13.5.9.2) that is assumed to have no fractiona digits unless
a decimal point appears within the field.

When the corresponding list item is of type complex, the input form consists of a
left parenthesis followed by an ordered pair of numeric input fields separated by a
comma, and followed by a right parenthesis. The first numeric input field is the
real part of the complex constant and the second is the imaginary part. Each of
the numeric input fields may be preceded or followed by blanks. The end of a
record may occur between the real part and the comma or between the comma
and the imaginary part.

When the corresponding list item is of type logical, the input form must not
include either slashes or commas among the optional characters permitted for L
editing (13.5.10).

When the corresponding list item is of type character, the input form consists of a
nonempty string of characters enclosed in apostrophes. Each apostrophe within a
character constant must be represented by two consecutive apostrophes without an
intervening blank or end of record. Character constants may be continued from
the end of one record to the beginning of the next record. The end of the record
does not cause a blank or any other character to become part of the constant. The
constant may be continued on as many records as needed. The characters blank,
comma, and slash may appear in character constants.

Let len be the length of the list item, and let w be the length of the character
constant. If len is less than or equal to w, the leftmost len characters of the
constant are transmitted to the list item. If len is greater than w, the constant is
transmitted to the leftmost w characters of the list item and the remaining len—w
characters of the list item are filled with blanks. Note that the effect is as though
the constant were assigned to the list item in a character assignment statement
(10.4).

A null value is specified by having no characters between successive value
separators, no characters preceding the first value separator in the first record read
by each execution of a list-directed input statement, or the r* form. A null value
has no effect on the definition status of the corresponding input list item. If the
input list item is defined, it retains its previous value; if it is undefined, it remains
undefined. A null value may not be used as either the real or imaginary part of a
complex constant, but a single null value may represent an entire complex
constant. Note that the end of a record following any other separator, with or
without separating blanks, does not specify a null value.

A slash encountered as a value separator during execution of a list-directed input
statement causes termination of execution of that input statement after the
assignment of the previous value. If there are additional items in the input list,
the effect is as if null values had been supplied for them.

Note that al blanks in a list-directed input record are considered to be part of
some value separator except for the following:

(1) Blanks embedded in a character constant

(2) Embedded blanks surrounding the real or imaginary part of a complex
constant

(3) Leading blanks in the first record read by each execution of a list-directed
input statement, unless immediately followed by a slash or comma

FORTRAN 77 Full Language Page 13-11

FORMAT SPECIFICATION ANSI X3J3/90.4

13.6.2 List-Directed Output. The form of the values produced is the same as that
required for input, except as noted otherwise. With the exception of character
constants, the values are separated by one of the following:

(1) One or more blanks

(2) A comma optionaly preceded by one or more blanks and optionally
followed by O<one or more blanks

The processor may begin new records as necessary, but, except for complex
constants and character constants, the end of a record must not occur within a
constant and blanks must not appear within a constant.

Logical output constants are T for the value true and F for the value false.

Integer output constants are produced with the effect of an | w edit descriptor, for
some reasonable value of w.

Real and double precision constants are produced with the effect of either an F
edit descriptor or an E edit descriptor, depending on the magnitude x of the value
andarange 10**d1 < x < 10**dp, wheredq and d2 are processor-dependent
integer values. If the magnitude x is within this range, the constant is produced
using OPFw.d; otherwise, 1IPEw.dEeis used. Reasonable processor-dependent
values of w, d, and e are used for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma separating the real
and imaginary parts. The end of a record may occur between the comma and the
imaginary part only if the entire constant is as long as, or longer than, an entire
record. The only embedded blanks permitted within a complex constant are
between the comma and the end of a record and one blank at the beginning of the
next record.

Character constants produced are not delimited by apostrophes, are not preceded
or followed by a value separator, have each internal apostrophe represented
externally by one apostrophe, and have a blank character inserted by the processor
for carriage control at the beginning of any record that begins with the
continuation of a character constant from the preceding record.

If two or more successive values in an output record produced have identical
values, the processor has the option of producing a repeated constant of the form
r*c instead of the sequence of identical values.

Slashes, as value separators, and null values are not produced by list-directed
formatting.

Each output record begins with a blank character to provide carriage control when
the record is printed.

FORTRAN 77 Full Language Page 13-12

CONTENTS

13. FORMAT SPECIFICATION

131

13.2

13.3

13.4
135

13.6

Format Specification Methods

13.1.1 FORMAT Statement.

13.1.2 Character Format Specmcatlon
Form of a Format Specification .
13.2.1 Edit Descriptors.

Interaction Between Input/Output L|st and

Format

Positioning by Format Control
Editing

135.1 Apostrophe Editi ng.
13.5.2 H Editing.

13.5.3 Positiona Editing.
13.5.4 Sash Editing.

1355 Colon Editing. .
1356 S, SP, and SSEditing. .
13.5.7 P Editing. .o
13.5.8 BN and BZ Editing.
1359 Numeric Editing.

13.5.10 L Editing.

13.5.11 A Editing.

List-Directed Formatting

13.6.1 List-Directed Input. .
13.6.2 List-Directed Output.

13-1
13-1
13-1
13-1
13-1
13-2

13-3
13-3
13-4
13-4
13-4
13-4
13-5
13-5
13-5
13-5
13-6
13-6
13-9
13-10
13-10
13-10
13-12

ANSI X3J3/90.4

14. MAIN PROGRAM

A main program is a program unit that does not have a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement. It may have a
PROGRAM statement as its first statement.

There must be exactly one main program in an executable program. Execution of
an executable program begins with the execution of the first executable statement
of the main program.

14.1 PROGRAM Satement
The form of a PROGRAM statement is:
PROGRAM pgm

where pgm is the symbolic name of the main program in which the PROGRAM
statement appears.

A PROGRAM statement is not required to appear in an executable program. If it
does appear, it must be the first statement of the main program.

The symbolic name pgm is global (18.1.1) to the executable program and must
not be the same as the name of an external procedure, block data subprogram, or
common block in the same executable program. The name pgm must not be the
same as any local name in the main program.

14.2 Main Program Restrictions

The PROGRAM statement may appear only as the first statement of a main
program. A main program may contain any other statement except a BLOCK
DATA, FUNCTION, SUBROUTINE, ENTRY, or RETURN statement. The
appearance of a SAVE statement in a main program has no effect.

A main program may not be referenced from a subprogram or from itself.

FORTRAN 77 Full Language Page 14-1

CONTENTS

14. MAINPROGRAM 11
141 PROGRAM Statement 141
14.2 Main Program Restrictions 141

ANSI X3J3/90.4

15. FUNCTIONS AND SUBROUTINES
15.1 Categories of Functions and Subroutines

15.1.1 Procedures. Functions and subroutines are procedures. There are four
categories of procedures:

(1) Intrinsic functions

(2) Statement functions
(3) Externa functions

(4) Subroutines

Intrinsic functions, statement functions, and externa functions are referred to
collectively as functions.

External functions and subroutines are referred to collectively as external
procedures.

15.1.2 External Functions. There are two categories of external functions:

(1) External functions specified in function subprograms

(2) External functions specified by means other than FORTRAN subprograms
15.1.3 Subroutines. There are two categories of subroutines:

(1) Subroutines specified in subroutine subprograms

(2) Subroutines specified by means other than FORTRAN subprograms

15.1.4 Dummy Procedure. A dummy procedure is a dummy argument that is
identified as a procedure (18.2.11).

15.2 Referencing a Function

A function is referenced in an expression and supplies a value to the expression.
The value supplied is the value of the function.

An intrinsic function may be referenced in the main program or in any procedure
subprogram of an executable program.

A statement function may be referenced only in the program unit in which the
statement function statement appears.

An external function specified by a function subprogram may be referenced within
any other procedure subprogram or the main program of the executable program.
A subprogram must not reference itself, either directly or indirectly.

An external function specified by means other than a subprogram may be
referenced within any procedure subprogram or the main program of the
executable program.

If a character function is referenced in a program unit, the function length
specified in the program unit must be an integer constant expression.

15.2.1 Form of a Function Reference. A function reference is used to reference
an intrinsic function, statement function, or external function.

The form of afunction reference is:

fun ([a [.a]..])
where: fun isthe symbolic name of a function or a dummy procedure

FORTRAN 77 Full Language Page 15-1

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

a isan actua argument

The type of the result of a statement function or external function reference is the
same as the type of the function name. The type is specified in the same manner
as for variables and arrays (4.1.2). The type of the result of an intrinsic function
is specified in Table 5 (15.10).

15.2.2 Execution of a Function Reference. A function reference may appear only
as a primary in an arithmetic, logical, or character expression. Execution of a
function reference in an expression causes the evaluation of the function identified
by fun.

Return of control from a referenced function completes execution of the function
reference. The value of the function is available to the referencing expression.

15.3 Intrinsic Functions

Intrinsic functions are supplied by the processor and have a special meaning. The
specific names that identify the intrinsic functions, their generic names, function
definitions, type of arguments, and type of results appear in Table 5.

An IMPLICIT statement does not change the type of an intrinsic function.

15.3.1 Specific Names and Generic Names. Generic names simplify the
referencing of intrinsic functions, because the same function name may be used
with more than one type of argument. Only a specific intrinsic function name
may be used as an actual argument when the argument is an intrinsic function.

If a generic name is used to reference an intrinsic function, the type of the result
(except for intrinsic functions performing type conversion, nearest integer, and
absolute value with a complex argument) is the same as the type of the argument.

For those intrinsic functions that have more than one argument, all arguments
must be of the same type.

If the specific name or generic name of an intrinsic function appears in the
dummy argument list of a function or subroutine in a subprogram, that symbolic
name does not identify an intrinsic function in the program unit. The data type
identified with the symbolic name is specified in the same manner as for variables
and arrays (4.1.2).

A name in an INTRINSIC statement must be the specific name or generic name
of an intrinsic function.

15.3.2 Referencing an Intrinsic Function. An intrinsic function is referenced by
using its reference as a primary in an expression. For each intrinsic function
described in Table 5, execution of an intrinsic function reference causes the
actions specified in Table 5, and the result depends on the values of the actual
arguments. The resulting value is available to the expression that contains the
function reference.

The actual arguments that constitute the argument list must agree in order,
number, and type with the specification in Table 5 and may be any expression of
the specified type. An actua argument in an intrinsic function reference may be
any expression except a character expression involving concatenation of an
operand whose length specification is an asterisk in parentheses unless the operand
is the symbolic name of a constant.

A specific name of an intrinsic function that appears in an INTRINSIC statement
may be used as an actual argument in an external procedure reference; however,
the names of intrinsic functions for type conversion, lexical relationship, and for

FORTRAN 77 Full Language Page 15-2

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

choosing the largest or smallest value must not be used as actual arguments. Note
that such an appearance does not cause the intrinsic function to be classified as an
external function (18.2.10).

15.3.3 Intrinsic Function Restrictions. Arguments for which the result is not
mathematically defined or exceeds the numeric range of the processor cause the
result of the function to become undefined.

Restrictions on the range of arguments and results for intrinsic functions are
described in 15.10.1.

15.4 Satement Function

A statement function is a procedure specified by a single statement that is similar
in form to an arithmetic, logical, or character assignment statement. A statement
function statement must appear only after the specification statements and before
the first executable statement of the program unit in which it is referenced (3.5).

A statement function statement is classified as a nonexecutable statement; it is not
a part of the normal execution sequence.

154.1 Form of a Satement Function Satement. The form of a statement
function statement is;

fun ([d [.d]..]) = e
where: fun isthe symbolic name of the statement function

d isastatement function dummy argument

e isanexpression

The relationship between fun and e must conform to the assignment rules in
10.1, 10.2, and 10.4. Note that the type of the expression may be different from
the type of the statement function name.

Each d is a variable name called a statement function dummy argument. The
statement function dummy argument list serves only to indicate order, number,
and type of arguments for the statement function. The variable names that appear
as dummy arguments of a statement function have a scope of that statement
(18.1). A given symbolic name may appear only once in any statement function
dummy argument list. The symbolic name of a statement function dummy
argument may be used to identify other dummy arguments of the same type in
different statement function statements. The name may aso be used to identify a
variable of the same type appearing elsewhere in the program unit, including its
appearance as a dummy argument in a FUNCTION, SUBROUTINE, or ENTRY
statement. The name must not be used to identify any other entity in the program
unit except a common block.

Each primary of the expression e must be one of the following:
(1) A constant
(2) The symbolic name of a constant
(3) A variable reference
(4) An array element reference
(5) Anintrinsic function reference

(6) A reference to a statement function for which the statement function
statement appears in preceding lines of the program unit

FORTRAN 77 Full Language Page 15-3

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

(7) An externa function reference
(8) A dummy procedure reference

(9) An expression enclosed in parentheses that meets all of the requirements
specified for the expression e

Each variable reference may be either a reference to a dummy argument of the
statement function or a reference to a variable that appears within the same
program unit as the statement function statement.

If a statement function dummy argument name is the same as the name of another
entity, the appearance of that name in the expression of a statement function
statement is a reference to the statement function dummy argument. A dummy
argument that appears in a FUNCTION or SUBROUTINE statement may be
referenced in the expression of a statement function statement within the
subprogram. A dummy argument that appears in an ENTRY statement that
precedes a statement function statement may be referenced in the expression of
the statement function statement within the subprogram.

15.4.2 Referencing a Satement Function. A statement function is referenced by
using its function reference as a primary in an expression.

Execution of a statement function reference results in:
(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the corresponding dummy
arguments,

(3) evaluation of the expression e, and

(4) conversion, if necessary, of an arithmetic expression value to the type of
the statement function according to the assignment rules in 10.1 or a
change, if necessary, in the length of a character expression value
according to the rules in 10.4.

The resulting value is available to the expression that contains the function
reference.

The actual arguments, which constitute the argument list, must agree in order,
number, and type with the corresponding dummy arguments. An actual argument
in a statement function reference may be any expression except a character
expression involving concatenation of an operand whose length specification is an
asterisk in parentheses unless the operand is the symbolic name of a constant.

When a statement function reference is executed, its actual arguments must be
defined.

15.4.3 Satement Function Restrictions. A statement function may be referenced
only in the program unit that contains the statement function statement.

A statement function statement must not contain a reference to another statement
function that appears following the reference in the sequence of lines in the
program unit. The symbolic name used to identify a statement function must not
appear as a symbolic name in any specification statement except in a type-
statement (to specify the type of the function) or as the name of a common block
in the same program unit.

An external function reference in the expression of a statement function statement
must not cause a dummy argument of the statement function to become undefined
or redefined.

FORTRAN 77 Full Language Page 15-4

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

The symbolic name of a statement function is a local name (18.1.2) and must not
be the same as the name of any other entity in the program unit except the name
of a common block.

The symbolic name of a statement function may not be an actual argument. It
must not appear in an EXTERNAL statement.

A statement function statement in a function subprogram must not contain a
function reference to the name of the function subprogram or an entry name in the
function subprogram.

The length specification of a character statement function or statement function
dummy argument of type character must be an integer constant expression.

15.5 External Functions

An external function is specified externally to the program unit that references it.
An external function is a procedure and may be specified in a function
subprogram or by some other means.

15.5.1 Function Subprogram and FUNCTION Satement. A function subprogram
specifies one or more external functions (15.7). A function subprogram is a
program unit that has a FUNCTION statement as its first statement. The form of
a function subprogram is as described in 2.4 and 3.5, except as noted in 15.5.3
and 15.7.4.

The form of a FUNCTION statement is:
[typ] FUNCTION fun ([d [,d]..])

where: typ is one of INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, or CHARACTER [*len] where len is the length
specification of the result of the character function. len may have
any of the forms alowed in a CHARACTER statement (8.4.2)
except that an integer constant expression must not include the
symbolic name of a constant. If a length is not specified in a
CHARACTER FUNCTION statement, the character function has a
length of one.

fun is the symbolic name of the function subprogram in which the
FUNCTION statement appears. fun is an external function name.

d is avariable name, array name, or dummy procedure name. d is a
dummy argument.

The symbolic name of a function subprogram or an associated entry name of the
same type must appear as a variable name in the function subprogram. During
every execution of the external function, this variable must become defined and,
once defined, may be referenced or become redefined. The value of this variable
when a RETURN or END statement is executed in the subprogram is the value of
the function. If this variable is a character variable with a length specification that
is an asterisk in parentheses, it must not appear as an operand for concatenation
except in a character assignment statement (10.4).

An externa function in a function subprogram may define one or more of its
dummy arguments to return values in addition to the value of the function.

15.5.2 Referencing an External Function. An external function is referenced by
using its reference as a primary in an expression.

FORTRAN 77 Full Language Page 15-5

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

15.5.2.1 Execution of an External Function Reference. Execution of an externa
function reference results in:

(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the corresponding dummy
arguments, and

(3) the actions specified by the referenced function.

The type of the function name in the function reference must be the same as the
type of the function name in the referenced function. The length of the character
function in a character function reference must be the same as the length of the
character function in the referenced function.

When an external function reference is executed, the function must be one of the
external functions in the executable program.

15.5.2.2 Actual Arguments for an External Function. The actual arguments in an
external function reference must agree in order, number, and type with the
corresponding dummy arguments in the referenced function. The use of a
subroutine name as an actual argument is an exception to the rule requiring
agreement of type because subroutine names do not have a type.

An actual argument in Tan external function reference must be one of the
following:

(1) An expression except a character expression involving concatenation of
an operand whose length specification is an asterisk in parentheses unless
the operand is the symbolic name of a constant

(2) An array name

(3) Anintrinsic function name
(4) An externa procedure name
(5) A dummy procedure name

Note that an actual argument in a function reference may be a dummy argument
that appears in a dummy argument list within the subprogram containing the
reference.

15.5.3 Function Subprogram Restrictions. A FUNCTION statement must appear
only as the first statement of a function subprogram. A function subprogram may
contain any other statement except a BLOCK DATA, SUBROUTINE, or
PROGRAM statement.

The symbolic name of an external function is a global name (18.1.1) and must not
be the same as any other global name or any local name, except a variable name,
in the function subprogram.

Within a function subprogram, the symbolic name of a function specified by a
FUNCTION or ENTRY statement must not appear in any other nonexecutable
statement, except a type-statement. In an executable statement, such a hame may
appear only as a variable.

If the type of a function is specified in a FUNCTION statement, the function
name must not appear in a type-statement. Note that a name must not have its
type explicitly specified more than once in a program unit.

If the name of a function subprogram is of type character, each entry name in the
function subprogram must be of type character. If the name of the function

FORTRAN 77 Full Language Page 15-6

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

subprogram or any entry in the subprogram has a length of (*) declared, al such
entities must have a length of (*) declared; otherwise, all such entities must have
a length specification of the same integer value.

In a function subprogram, the symbolic name of a dummy argument is local to the
program unit and must not appear in an EQUIVALENCE, PARAMETER, SAVE,
INTRINSIC, DATA, or COMMON statement, except as a common block name.

A character dummy argument whose length specification is an asterisk in
parentheses must not appear as an operand for concatenation, except in a character
assignment statement (10.4).

A function specified in a subprogram may be referenced within any other
procedure subprogram or the main program of the executable program. A
function subprogram must not reference itself, either directly or indirectly.

15.6 Subroutines

A subroutine is specified externally to the program unit that references it. A
subroutine is a procedure and may be specified in a subroutine subprogram or by
some other means.

15.6.1 Subroutine Subprogram and SUBROUTINE Satement. A subroutine
subprogram specifies one or more subroutines (15.7). A subroutine subprogram is
a program unit that has a SUBROUTINE statement as its first statement. The
form of a subroutine subprogram is as described in 2.4 and 3.5, except as noted in
15.6.3 and 15.7.4.

The form of a SUBROUTINE statement is:
SUBROUTINE sub [([d [,d]..])]

where: sub is the symbolic name of the subroutine subprogram in which the
SUBROUTINE statement appears. sub is a subroutine name.

d is avariable name, array name, or dummy procedure name, or is an
asterisk (15.9.3.5). d is a dummy argument.

Note that if there are no dummy arguments, either of the forms sub or sub() may
be used in the SUBROUTINE statement. A subroutine that is specified by either
form may be referenced by a CALL statement of the form CALL sub or CALL
sub ().

One or more dummy arguments of a subroutine in a subprogram may become
defined or redefined to return results.

15.6.2 Subroutine Reference. A subroutine is referenced by a CALL statement.
15.6.2.1 Form of a CALL Satement. The form of a CALL statement is:
CALL sub [([a [.a]..])]
where: sub is the symbolic name of a subroutine or dummy procedure
a isan actua argument
15.6.2.2 Execution of a CALL Statement. Execution of a CALL statement results
in
(1) evaluation of actual arguments that are expressions,

(2) association of actual arguments with the corresponding dummy
arguments, and

FORTRAN 77 Full Language Page 15-7

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

(3) the actions specified by the referenced subroutine.

Return of control from the referenced subroutine completes execution of the
CALL statement.

A subroutine specified in a subprogram may be referenced within any other
procedure subprogram or the main program of the executable program. A
subprogram must not reference itself, either directly or indirectly.

When a CALL statement is executed, the referenced subroutine must be one of
the subroutines specified in subroutine subprograms or by other means in the
executable program.

15.6.2.3 Actual Arguments for a Subroutine. The actual arguments in a
subroutine reference must agree in order, number, and type with the corresponding
dummy arguments in the dummy argument list of the referenced subroutine. The
use of a subroutine name or an aternate return specifier as an actual argument is
an exception to the rule requiring agreement of type.

An actual argument in a subroutine reference must be one of the following:

(1) An expression except a character expression involving concatenation of
an operand whose length specification is an asterisk in parentheses unless
the operand is the symbolic name of a constant

(2) An array name

(3) An intrinsic function name
(4) An externa procedure name
(5) A dummy procedure name

(6) An alternate return specifier, of the form * s, where s is the statement
label of an executable statement that appears in the same program unit as
the CALL statement (15.8.3)

Note that an actual argument in a subroutine reference may be a dummy argument
name that appears in a dummy argument list within the subprogram containing the
reference. An asterisk dummy argument must not be used as an actual argument
in a subprogram reference.

15.6.3 Subroutine Subprogram Restrictions. A SUBROUTINE statement must
appear only as the first statement of a subroutine subprogram. A subroutine
subprogram may contain any other statement except a BLOCK DATA,
FUNCTION, or PROGRAM statement.

The symbolic name of a subroutine is a global name (18.1.1) and must not be the
same as any other global name or any local name in the program unit.

In a subroutine subprogram, the symbolic name of a dummy argument is local to
the program unit and must not appear in an EQUIVALENCE, PARAMETER,
SAVE, INTRINSIC, DATA, or COMMON statement, except as a common block
name.

A character dummy argument whose length specification is an asterisk in
parentheses must not appear as an operand for concatenation, except in a character
assignment statement (10.4).

15.7 ENTRY Satement

An ENTRY statement permits a procedure reference to begin with a particular
executable statement within the function or subroutine subprogram in which the

FORTRAN 77 Full Language Page 15-8

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

ENTRY statement appears. It may appear anywhere within a function
subprogram after the FUNCTION statement or within a subroutine subprogram
after the SUBROUTINE statement, except that an ENTRY statement must not
appear between a block IF statement and its corresponding END IF statement, or
between a DO statement and the terminal statement of its DO-loop.

Optionally, a subprogram may have one or more ENTRY statements.

An ENTRY statement is classified as a nonexecutable statement.

15.7.1 Form of an ENTRY Statement. The form of an ENTRY statement is:
ENTRY en [([d [.d]..])]

where: en is the symbolic name of an entry in a function or subroutine
subprogram and is called an entry name. |f the ENTRY statement
appears in a subroutine subprogram, en is a subroutine name. If the
ENTRY statement appears in a function subprogram, en is an
external function name.

[o%

is a variable name, array name, or dummy procedure name, or is an
asterisk. d is a dummy argument. An asterisk is permitted in an
ENTRY statement only in a subroutine subprogram.

Note that if there are no dummy arguments, either of the forms en or en() may
be used in the ENTRY statement. A function that is specified by either form
must be referenced by the form en() (15.2.1). A subroutine that is specified by
either form may be referenced by a CALL statement of the form CALL en or
CALL en().

The entry name en in a function subprogram may appear in a type-statement.

15.7.2 Referencing External Procedure by Entry Name. An entry name in an
ENTRY statement in a function subprogram identifies an external function within
the executable program and may be referenced as an externa function (15.5.2).
An entry name in an ENTRY statement in a subroutine subprogram identifies a
subroutine within the executable program and may be referenced as a subroutine
(15.6.2).

When an entry name en is used to reference a procedure, execution of the
procedure begins with the first executable statement that follows the ENTRY
statement whose entry name is en.

An entry name is available for reference in any program unit of an executable
program, except in the program unit that contains the entry name in an ENTRY
statement.

The order, number, type, and names of the dummy arguments in an ENTRY
statement may be different from the order, number, type, and names of the
dummy arguments in the FUNCTION statement or SUBROUTINE statement and
other ENTRY statements in the same subprogram. However, each reference to a
function or subroutine must use an actual argument list that agrees in order,
number, and type with the dummy argument list in the corresponding
FUNCTION, SUBROUTINE, or ENTRY statement. The use of a subroutine
name or an aternate return specifier as an actual argument is an exception to the
rule requiring agreement of type.

15.7.3 Entry Association. Within a function subprogram, all variables whose
names are also the names of entries are associated with each other and with the
variable, if any, whose name is also the name of the function subprogram (17.1.3).

FORTRAN 77 Full Language Page 15-9

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

Therefore, any such variable that becomes defined causes all associated variables
of the same type to become defined and all associated variables of different type
to become undefined. Such variables are not required to be of the same type
unless the type is character, but the variable whose name is used to reference the
function must be in a defined state when a RETURN or END statement is
executed in the subprogram. An associated variable of a different type must not
become defined during the execution of the function reference.

15.7.4 ENTRY Satement Restrictions. Within a subprogram, an entry name must
not appear both as an entry name in an ENTRY statement and as a dummy
argument in a FUNCTION, SUBROUTINE, or ENTRY statement and must not
appear in an EXTERNAL statement.

In a function subprogram, a variable name that is the same as an entry name must
not appear in any statement that precedes the appearance of the entry name in an
ENTRY statement, except in a type-statement.

If an entry name in a function subprogram is of type character, each entry name
and the name of the function subprogram must be of type character. If the name
of the function subprogram or any entry in the subprogram has a length of (*)
declared, al such entities must have a length of (*) declared; otherwise, al such
entities must have a length specification of the same integer value.

In a subprogram, a name that appears as a dummy argument in an ENTRY
statement must not appear in an executable statement preceding that ENTRY
statement unless it also appears in a FUNCTION, SUBROUTINE, or ENTRY
statement that precedes the executable statement.

In a subprogram, a name that appears as a dummy argument in an ENTRY
statement must not appear in the expression of a statement function statement
unless the name is also a dummy argument of the statement function, appears in a
FUNCTION or SUBROUTINE statement, or appears in an ENTRY statement that
precedes the statement function statement.

If a dummy argument appears in an executable statement, the execution of the
executable statement is permitted during the execution of a reference to the
function or subroutine only if the dummy argument appears in the dummy
argument list of the procedure name referenced. Note that the association of
dummy arguments with actual arguments is not retained between references to a
function or subroutine.

15.8 RETURN Satement

A RETURN statement causes return of control to the referencing program unit
and may appear only in a function subprogram or subroutine subprogram.

15.8.1 Form of a RETURN Satement. The form of a RETURN statement in a
function subprogram is:

RETURN

The form of a RETURN statement in a subroutine subprogram is:
RETURN [e]

where e is an integer expression.

15.8.2 Execution of a RETURN Statement. Execution of a RETURN statement
terminates the reference of a function or subroutine subprogram. Such
subprograms may contain more than one RETURN statement; however, a
subprogram need not contain a RETURN statement. Execution of an END

FORTRAN 77 Full Language Page 15-10

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

statement in a function or subroutine subprogram has the same effect as executing
a RETURN statement in the subprogram.

In the execution of an executable program, a function or subroutine subprogram
must not be referenced a second time without the prior execution of a RETURN
or END statement in that procedure.

Execution of a RETURN statement in a function subprogram causes return of
control to the currently referencing program unit. The value of the function (15.5)
must be defined and is available to the referencing program unit.

Execution of a RETURN statement in a subroutine subprogram causes return of
control to the currently referencing program unit. Return of control to the
referencing program unit completes execution of the CALL statement.

Execution of a RETURN statement terminates the association between the dummy
arguments of the external procedure in the subprogram and the current actual
arguments.

15.8.3 Alternate Return. If e is not specified in a RETURN statement, or if the
value of e is less than one or greater than the number of asterisks in the
SUBROUTINE or subroutine ENTRY statement that specifies the currently
referenced name, control returns to the CALL statement that initiated the
subprogram reference and this completes the execution of the CALL statement.

If 1 < e < n, where n is the number of asterisks in the SUBROUTINE or
subroutine ENTRY statement that specifies the currently referenced name, the
value of e identifies the eth asterisk in the dummy argument list. Control is
returned to the statement identified by the alternate return specifier in the CALL
statement that is associated with the eth asterisk in the dummy argument list of
the currently referenced name. This completes the execution of the CALL
statement.

15.8.4 Definition Status. Execution of a RETURN statement (or END statement)
within a subprogram causes all entities within the subprogram to become
undefined, except for the following:

(1) Entities specified by SAVE statements
(2) Entities in blank common

(3) Initidly defined entities that have neither been redefined or become
undefined

(4) Entities in a named common block that appears in the subprogram and
appears in at least one other program unit that is referencing, either
directly or indirectly, the subprogram

Note that if a named common block appears in the main program, the entities in
the named common block do not become undefined at the execution of any
RETURN statement in the executable program.

15.9 Arguments and Common Blocks

Arguments and common blocks provide means of communication between the
referencing program unit and the referenced procedure.

Data may be communicated to a statement function or intrinsic function by an
argument list. Data may be communicated to and from an external procedure by
an argument list or common blocks. Procedure names may be communicated to
an externa procedure only by an argument list.

FORTRAN 77 Full Language Page 15-11

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

A dummy argument appears in the argument list of a procedure. An actua
argument appears in the argument list of a procedure reference.

The number of actual arguments must be the same as the number of dummy
arguments in the procedure referenced.

15.9.1 Dummy Arguments. Statement functions, function subprograms, and
subroutine subprograms use dummy arguments to indicate the types of actual
arguments and whether each argument is a single value, array of values,
procedure, or statement label. Note that a statement function dummy argument
may be only a variable.

Each dummy argument is classified as a variable, array, dummy procedure, or
asterisk. Dummy argument names may appear wherever an actua name of the
same class (Section 18) and type may appear, except where they are explicitly
prohibited.

Dummy argument names of type integer may appear in adjustable dimensions in
dummy array declarators (5.5.1). Dummy argument names must not appear in
EQUIVALENCE, DATA, PARAMETER, SAVE, INTRINSIC, or COMMON
statements, except as common block names. A dummy argument name must not
be the same as the procedure name appearing in a FUNCTION, SUBROUTINE,
ENTRY, or statement function statement in the same program unit.

15.9.2 Actual Arguments. Actua arguments specify the entities that are to be
associated with the dummy arguments for a particular reference of a subroutine or
function. An actual argument must not be the name of a statement function in the
program unit containing the reference. Actua arguments may be constants,
symbolic names of constants, function references, expressions involving operators,
and expressions enclosed in parentheses if and only if the associated dummy
argument is a variable that is not defined during execution of the referenced
external procedure.

The type of each actual argument must agree with the type of its associated
dummy argument, except when the actua argument is a subroutine name
(15.9.3.4) or an aternate return specifier (15.6.2.3).

15.9.3 Association of Dummy and Actual Arguments. At the execution of a
function or subroutine reference, an association is established between the
corresponding dummy and actual arguments. The first dummy argument becomes
associated with the first actual argument, the second dummy argument becomes
associated with the second actual argument, etc.

All appearances within a function or subroutine subprogram of a dummy
argument whose name appears in the dummy argument list of the procedure name
referenced become associated with the actual argument when a reference to the
function or subroutine is executed.

A valid association occurs only if the type of the actual argument is the same as
the type of the corresponding dummy argument. A subroutine name has no type
and must be associated with a dummy procedure name. An aternate return
specifier has no type and must be associated with an asterisk.

If an actual argument is an expression, it is evaluated just before the association
of arguments takes place.

If an actual argument is an array element name, its subscript is evaluated just
before the association of arguments takes place. Note that the subscript value
remains constant as long as that association of arguments persists, even if the

FORTRAN 77 Full Language Page 15-12

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

subscript contains variables that are redefined during the association.

If an actual argument is a character substring name, its substring expressions are
evauated just before the association of arguments takes place. Note that the value
of each of the substring expressions remains constant as long as that association
of arguments persists, even if the substring expression contains variables that are
redefined during the association.

If an actua argument is an external procedure name, the procedure must be
available at the time a reference to it is executed.

If an actual argument becomes associated with a dummy argument that appears in
an adjustable dimension (5.5.1), the actual argument must be defined with an
integer value at the time the procedure is referenced.

A dummy argument is undefined if it is not currently associated with an actual
argument. An adjustable array is undefined if the dummy argument array is not
currently associated with an actual argument array or if any variable appearing in
the adjustable array declarator is not currently associated with an actual argument
and is not in a common block.

Argument association may be carried through more than one level of procedure
reference. A valid association exists at the last level only if a valid association
exists at all intermediate levels. Argument association within a program unit
terminates at the execution of a RETURN or END statement in the program unit.
Note that there is no retention of argument association between one reference of a
subprogram and the next reference of the subprogram.

15.9.3.1 Length of Character Dummy and Actual Arguments. If a dummy
argument is of type character, the associated actual argument must be of type
character and the length of the dummy argument must be less than or equal to the
length of the actual argument. If the length len of a dummy argument of type
character is less than the length of an associated actual argument, the leftmost len
characters of the actual argument are associated with the dummy argument.

If a dummy argument of type character is an array name, the restriction on length
is for the entire array and not for each array element. The length of an array
element in the dummy argument array may be different from the length of an
array element in an associated actual argument array, array element, or array
element substring, but the dummy argument array must not extend beyond the end
of the associated actual argument array.

If an actual argument is a character substring, the length of the actual argument is
the length of the substring. If an actual argument is the concatenation of two or
more operands, its length is the sum of the lengths of the operands.

15.9.3.2 Variables as Dummy Arguments. A dummy argument that is a variable
may be associated with an actual argument that is a variable, array element,
substring, or expression.

If the actual argument is a variable name, array element name, or substring name,
the associated dummy argument may be defined or redefined within the
subprogram. If the actual argument is a constant, a symbolic name of a constant,
a function reference, an expression involving operators, or an expression enclosed
in parentheses, the associated dummy argument must not be redefined within the
subprogram.

FORTRAN 77 Full Language Page 15-13

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

15.9.3.3 Arrays as Dummy Arguments. Within a program unit, the array
declarator given for an array provides all array declarator information needed for
the array in an execution of the program unit. The number and size of
dimensions in an actual argument array declarator may be different from the
number and size of the dimensions in an associated dummy argument array
declarator.

A dummy argument that is an array may be associated with an actual argument
that is an array, array element, or array element substring.

If the actual argument is a noncharacter array name, the size of the dummy
argument array must not exceed the size of the actual argument array, and each
actual argument array element becomes associated with the dummy argument
array element that has the same subscript value as the actua argument array
element. Note that association by array elements exists for character arrays if
there is agreement in length between the actua argument and the dummy
argument array elements; if the lengths do not agree, the dummy and actual
argument array elements do not consist of the same characters, but an association
still exists.

If the actual argument is a noncharacter array element name, the size of the
dummy argument array must not exceed the size of the actual argument array plus
one minus the subscript value of the array element. When an actual argument is a
noncharacter array element name with a subscript value of as, the dummy
argument array element with a subscript value of ds becomes associated with the
actual argument array element that has a subscript value of as + ds — 1 (Table
1, 5.4.3).

If the actual argument is a character array name, character array element name, or
character array element substring name and begins at character storage unit acu of
an array, character storage unit dcu of an associated dummy argument array
becomes associated with character storage unit acu + dcu — 1 of the actua
argument array.

15.9.3.4 Procedures as Dummy Arguments. A dummy argument that is a dummy
procedure may be associated only with an actual argument that is an intrinsic
function, external function, subroutine, or another dummy procedure.

If a dummy argument is used as if it were an external function, the associated
actual argument must be an intrinsic function, external function, or dummy
procedure. A dummy argument that becomes associated with an intrinsic function
never has any automatic typing property, even if the dummy argument name
appears in Table 5 (15.10). Therefore, the type of the dummy argument must
agree with the type of the result of al specific actual arguments that become
associated with the dummy argument. If a dummy argument name is used as if it
were an externa function and that name also appears in Table 5, the intrinsic
function corresponding to the dummy argument name is not available for
referencing within the subprogram.

A dummy argument that is used as a procedure name in a function reference and
is associated with an intrinsic function must have arguments that agree in order,
number, and type with those specified in Table 5 for the intrinsic function.

If a dummy argument appears in a type-statement and an EXTERNAL statement,
the actual argument must be the name of an intrinsic function, external function,
or dummy procedure.

FORTRAN 77 Full Language Page 15-14

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

If the dummy argument is referenced as a subroutine, the actual argument must be
the name of a subroutine or dummy procedure and must not appear in a type-
statement or be referenced as a function.

Note that it may not be possible to determine in a given program unit whether a
dummy procedure is associated with a function or a subroutine. If a procedure
name appears only in a dummy argument list, an EXTERNAL statement, and an
actual argument list, it is not possible to determine whether the symbolic name
becomes associated with a function or subroutine by examination of the
subprogram alone.

15.9.35 Asterisks as Dummy Arguments. A dummy argument that is an asterisk
may appear only in the dummy argument list of a SUBROUTINE statement or an
ENTRY statement in a subroutine subprogram.

A dummy argument that is an asterisk may be associated only with an actual
argument that is an aternate return specifier in the CALL statement that identifies
the current referencing name. If a dummy argument is an asterisk, the
corresponding actual argument must be an alternate return specifier.

15.9.3.6 Restrictions on Association of Entities. If a subprogram reference causes
a dummy argument in the referenced subprogram to become associated with
another dummy argument in the referenced subprogram, neither dummy argument
may become defined during execution of that subprogram. For example, if a
subroutine is headed by

SUBROUTINE XYZ (A ,B)
and is referenced by
CALL XYZ (C,C)

theln the dummy arguments A and B each become associated with the same
actual argument C and therefore with each other. Neither A nor B may become
defined during this execution of subroutine XYZ or by any procedures referenced
by XYZ.

If a subprogram reference causes a dummy argument to become associated with
an entity in a common block in the referenced subprogram or in a subprogram
referenced by the referenced subprogram, neither the dummy argument nor the
entity in the common block may become defined within the subprogram or within
a subprogram referenced by the referenced subprogram. For example, if a
subroutine contains the statements:

SUBROUTINE XYZ (A)
COMMON C

and is referenced by a program unit that contains the statements:

COMMON B
CALL XYZ (B)

then the dummy argument A becomes associated with the actual argument B,
which is associated with C, which is in a common block. Neither A nor C may
become defined during execution of the subroutine XYZ or by any procedures
referenced by XYZ.

15.9.4 Common Blocks. A common block provides a means of communication
between external procedures or between a main program and an externa
procedure. The variables and arrays in a common block may be defined and
referenced in all subprograms that contain a declaration of that common block.

FORTRAN 77 Full Language Page 15-15

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

Because association is by storage rather than by name, the names of the variables
and arrays may be different in the different subprograms. A reference to a datum
in a common block is proper if the datum is in a defined state of the same type as
the type of the name used to reference the datum. However, an integer variable
that has been assigned a statement label must not be referenced in any program
unit other than the one in which it was assigned (10.3).

No difference in data type is permitted between the defined state and the type of
the reference, except that either part of a complex datum may be referenced aso
as areal datum.

In a subprogram that has declared a named common block, the entities in the
block remain defined after the execution of a RETURN or END statement if a
common block of the same name has been declared in any program unit that is
currently referencing the subprogram, either directly or indirectly. Otherwise,
such entities become undefined at the execution of a RETURN or END statement,
except for those that are specified by SAVE statements and those that were
initially defined by DATA statements and have neither been redefined nor become
undefined.

Execution of a RETURN or END statement does not cause entities in blank
common or in any named common block that appears in the main program to
become undefined.

Common blocks may be used also to reduce the total number of storage units
required for an executable program by causing two or more subprograms to share
some of the same storage units. This sharing of storage is permitted if the rules
for defining and referencing data are not violated.

FORTRAN 77 Full Language Page 15-16

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

15.10 Table of Intrinsic Functions

FORTRAN 77 Full Language Page 15-17

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

FORTRAN 77 Full Language Page 15-18

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

FORTRAN 77 Full Language Page 15-19

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

FORTRAN 77 Full Language Page 15-20

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

Notes for Table 5:

(1) For a of type integer, int(a)=a. For a of type rea or double precision,
there are two cases. if Jal < 1, int(a)=0; if Oad = 1, int(a)
is the integer whose magnitude is the largest integer that does not exceed
the magnitude of a and whose sign is the same as the sign of a. For
example,

int(-3.7) = -3

For a of type complex, int(a) is the value obtained by applying the
above rule to the real part of a.

For a of typered, IFIX (a) isthe same asINT (a).

(2) For a of type real, REAL (a) is a. For a of type integer or double
precision, REAL (a) is as much precision of the significant part of a asa
real datum can contain. For a of type complex, REAL (a) is the red
part of a.

For a of type integer, FLOAT (a) isthe same as REAL (a).

(3) For a of type double precision, DBLE(a) isa. For a of type integer or
real, DBLE(a) is as much precision of the significant part of a as a
double precision datum can contain. For a of type complex, DBLE(a)
is as much precision of the significant part of the rea part of a as a
double precision datum can contain.

(49) CMPLX may have one or two arguments. If there is one argument, it
may be of type integer, real, double precision, or complex. If there are
two arguments, they must both be of the same type and may be of type
integer, real, or double precision.

For a of type complex, CMPLX (a) isa. For a of type integer, real, or
double precision, CMPLX (a) is the complex value whose rea part is
REAL (a) and whose imaginary part is zero.

CMPLX (a1,ap) is the complex value whose rea part is REAL (a1)
and whose imaginary part is REAL (ap).

(5) ICHAR provides a means of converting from a character to an integer,
based on the position of the character in the processor collating sequence.
The first character in the collating sequence corresponds to position 0 and
the last to position n—1, where n is the number of characters in the
collating sequence.

The vaue of ICHAR(a) is an integer in the range
0 < ICHAR(a) < n-1, where a is an argument of type character of
length one. The value of a must be a character capable of representation
in the processor. The position of that character in the collating sequence
is the value of ICHAR.

For any characters ¢c1 and co capable of representation in the processor,
(c1 .LE c¢2) istrueif and only if (ICHAR(c1) .LE. ICHAR(c2)) is
true, and (c1 .EQ. c2) is true if and only if
(ICHAR(c1) .EQ. ICHAR(c2)) istrue.

FORTRAN 77 Full Language Page 15-21

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

CHAR(i) returns the character in the ith position of the processor
collating sequence. The value is of type character of length one. i must
be an integer expression whose value must be in the range
0 <i< n-1.

ICHAR(CHAR(i)) = i for0 < i <n-1.

CHAR(ICHAR(c)) = ¢ for any character ¢ capable of
representation in the processor.

(6) A complex value is expressed as an ordered pair of reals, (ar,ai), where
ar istheread part and ai is the imaginary part.

(7) All angles are expressed in radians.
(8) The result of afunction of type complex is the principal value.
(9) All arguments in an intrinsic function reference must be of the same type.

(10) INDEX (a1,ap) returns an integer value indicating the starting position
within the character string a1 of a substring identical to string ap. If ap
occurs more than once in a1, the starting position of the first occurrence
is returned.

If ap does not occur in ap, the value zero is returned. Note that zero is
returned if LEN(a1) < LEN(a2).

(11) The value of the argument of the LEN function need not be defined at the
time the function reference is executed.

(12) LGE(&a1,a2) returns the value true if aj=ap or if a1 follows a2 in the
collating sequence described in American National Standard Code for
Information Interchange, ANSI X3.4-1977 (ASCII), and otherwise returns
the value false.

LGT (a1,a2) returns the value true if a1 follows ap in the collating
sequence described in ANSI X3.4-1977 (ASCII), and otherwise returns
the value false.

LLE(a1,a2) returns the value true if aj=ap or if a1 precedes ap in the
collating sequence described in ANSI X3.4-1977 (ASCII), and otherwise
returns the value false.

LLT(a1,a2) returns the value true if a; precedes ap in the collating
sequence described in ANSI X3.4-1977 (ASCII), and otherwise returns
the value false.

If the operands for LGE, LGT, LLE, and LLT are of unequal length, the
shorter operand is considered as if it were extended on the right with
blanks to the length of the longer operand.

If either of the character entities being compared contains a character that
is not in the ASCII character set, the result is processor-dependent.

15.10.1 Restrictions on Range of Arguments and Results. Restrictions on the
range of arguments and results for intrinsic functions when referenced by their
specific names are as follows:

FORTRAN 77 Full Language Page 15-22

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

(1) Remaindering: The result for MOD, AMOD, and DMOD is undefined
when the value of the second argument is zero.

(2) Transfer of Sign: If the value of the first argument of ISIGN, SIGN, or
DSIGN is zero, the result is zero, which is neither positive or negative
(4.1.3).

(3) Sgquare Root: The value of the argument of SQRT and DSQRT must be
greater than or equal to zero. The result of CSQRT is the principa value
with the real part greater than or equal to zero. When the rea part of the
result is zero, the imaginary part is greater than or equal to zero.

(4) Logarithms: The value of the argument of ALOG, DLOG, ALOG10, and
DLOG10 must be greater than zero. The vaue of the argument of CLOG
must not be (0.,0.). The range of the imaginary part of the result of
CLOG is: =Tt < imaginary part < 1. The imaginary part of the result
is T only when the rea part of the argument is less than zero and the
imaginary part of the argument is zero.

(5) Sine, Cosine, and Tangent: The absolute value of the argument of SIN,
DSIN, COS, DCOS, TAN, and DTAN is not restricted to be less than
2T

(6) Arcsine: The absolute value of the argument of ASIN and DASIN must
be less than or equal to one.
The range of the result is: —1/2 < result < 2.

(7) Arccosine: The absolute value of the argument of ACOS and DACOS
must be less than or equal to one. The range of the result is:
0 < result <mI.

(8) Arctangent: The range of the result for ATAN and DATAN s
-2 < result £ 1w2. If the value of the first argument of ATAN2 or
DATAN2 is positive, the result is positive. If the value of the first
argument is zero, the result is zero if the second argument is positive and
11 if the second argument is negative. If the value of the first argument is
negative, the result is negative. If the value of the second argument is
zero, the absolute value of the result is T72. The arguments must not
both have the value zero. The range of the result for ATAN2 and
DATAN2is -1t < result < TI.

The above redtrictions on arguments and results also apply to the intrinsic
functions when referenced by their generic names.

FORTRAN 77 Full Language Page 15-23

FUNCTIONS AND SUBROUTINES

ANSI X3J3/90.4

Table 5
Intrinsic Functions

0 0 0 0 0 0 0
O B UNumber of H Generic gSpecific B Type of g
Hntri nsic Function —Definition pArguments - Name Name SArgument [JFunction
0 0 0 O O 0 H 0
Urype Conversion UConversion o 1 UINT . Uinteger integer O
O Uto 1nteger O O UNT URed Olnteger U
O . O 0 0 0 0
0 nint(a) 0 0 nlFIX Real Ulnteger
0O 1See Note 1 0 0 OIDINT Double Uinteger [
O 0 O O 0- OComplex Dinteger O
0 0 0 O 0 0 0 O
B BConversi on B 1 E REAL E REAL BI nteger OReal E
0O to Red 0O 0 OFLOAT [jlinteger UReal 0
0 [JSee Note 2 0 0 O- [Redl BReal 0
O 0 O O OsNGL UbDouble Redl O
: . . b 7 Homwe fre
0 0 0 0 0 0 J 0
O OConversion O 1 ODBLE [- Olnteger Upouble O
U Uto Double 0 g - UReal fDouble U
O Usee Note 3 O O 0. Ubouble Double O
a a a 0 0 0
0 O 0 O o Complex [Double
0 0 0 O O 0 H 0
O UConversion O 10r2 UOcmpLx OU- Uinteger Complex U
O to Complex O O O UReal Complex O
O O 0 0 0 0
0 See Note 4 0 0 0 Double OComplex
0 0O 0 0 0- nComplex UComplex [
O a O 0 0 0 - 0
O Uconversion O 1 O UicHAR Bcharacter lnteger O
0 0 0 0 0 0
0 See Note 5 0 0 0 0 O 0
0 0 0 0 0 0 E 0
O Uconversion O 1 O Uenar DInteger Character O
a a a 0 0 a 0
0 nto Character 0 0 0 0 O 0
O [1See Note 5 O O O O O 0
a a a 0 0 a E 0
E*rruncation Uint(a) B 1 gAlNT EAINT BReal (Redl E
N ﬂSee Note 1 N N ﬂDlNT ﬂDOUble ODouble 0
0 0 0 O O 0 H 0
[(Nearest Whole Uint(a+.5) if a0 U 1 UANINT UANINT UReal Real N
B Number Dint(g1—.5) if a<0 E E BDNINT BDouble Double E
0 0 0 0 0 0 J 0
[Nearest Integer ~ Oint(a+.5) if a=0 O 1 ONINT ONINT ORead Uinteger O
0 Uint(a-.5) if a<0 U 0 UIDNINT UDouble integer U
a a a 0 0 a 0
Absolute Value [Oal o 1 OABS OlABS [integer Ulnteger [
0 0 0 O OABS ORed gReal 0
O USee Note 6 O O UpABS UbDouble Double U
H Har2+ai2)v2 j i HcaBs Hcomplex [Red H
FORTRAN 77 Full Language Page 15-23

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

Table 5 (continued)
Intrinsic Functions

0 0 0 0 0 0 0
O B UNumber of Hceneric gSpecific E Type of g
Hntri nsic Function Definition pArguments 5 Name 5Name qArgument CFunction
0 0 O 0 0 0 H O
LRemaindering Uag—int(ay/ap)*a U 2 Omop UmoOD Uinteger integer U
O UsSee Note 1 O O Uamop URedl ORed U
a a 0 a 0 0
O O O O PMOD Double [Double
0 0 O 0 O O H 0
Urransfer of Sign UboayO ifap=20 U 2 USIGN UISIGN Uinteger integer U
O U Dagoifap<o b O UsieN CRed ORed U
0 0 0 0 0 0 0
N N M N ﬂDSlGN |—|DOUble ODouble 0
0 0 O O O O H O
Lpositive Difference Uaj—ap if ap>ap o 2 UpIM UiDimM Uinteger ~ integer U
O U0 if yg<a O O UpiM EHRed ORed U
a a 0 a 0 0
0 O O O ;DDIM Double ODouble
0 0 O 0 0 0 H O
[LDouble Precision Uag * ap g 2 U UDPROD URed fDouble U
0 product 0 0 0 0 0 0 0
— - H = H — l
0 0 0 0 0 0 g 0
[(Choosing Largest Omax(a1,a2,...) o =2 OMax OMAXO Olnteger DInteger O
B Value B g B EAMAX1 gReaI Real g
0 0 0 O DDMAXl DDouble gDouble 7
a a 0 a 0 0 0 0
a a 0 a UAMAXO Ointeger DReal 0
0 0 0 0 OMAX1 UReal qinteger U
= H= t t t t 0 il
a) a 0 a 0 0 0
(Choosing Smallest omin(a1,a2,...) o =2 OMIN OMINO Ol nteger Uinteger [
0 Vaue O O O OAMIN1 [ORea gReal 0
0 0 0 O UDMIN1 UDouble 7Double U
0 0 0 t H t 0 {1
a a 0 a 0 0 0
0 0 O 0 OAMINO Integer UReal O
0 0 0 0 OOMIN1 OReal Elnteger 0
O O O O O O 0 O
aength BLength of E 1 B ELEN ECharacter OlInteger E
0 Character Entity 0 0 O 0 E O
a a 0 a 0 0 E 0
0 ; 0 0 0 0 0
ndex of Location of 2 INDEX Character [jlnteger

. . 0 a 0 0 O
f Substring Substring a2 0 0 0 0 O 0
O [in String a1 O O O O g O
O [JSee Note 10 O O O 0 O 0
O O O O O O 5 O
Hmaginary Part of Bg’ E 1 B EAIMAG EComplex OReal E
] Complex Argument [See Note 6 0 0 0 0 0 0
0 0 0 0 0 0 E 0
; a e 0 a 0 0 0

onjugate of a (ar,—a) 1 CONJG Complex Complex
0 a 0 0 0
 Complex Argument 5See Note 6 O O O 0 O 0
0 0 O 0 0 0 H O
[Square Root U(a)l/2 g 1 USQRT USQRT URed Real g
B B E B EDSQRT Ubouble Double g
0 0 0 0 OCSQRT [OComplex HComplex [

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

Table 5 (continued)
Intrinsic Functions

0 0 0 0 0 0 0
O B UNumber of EGeneric BSpecifi c g Type of B
Hntri nsic Function Definition pArguments 5 Name 5 Name pArgument OFunction
0 0 O 0 0 O 5 0
CExponential Uer* a g 1 Uexp UEXP UReal Real O
0 0 O O Upexp Ubounle pDouble E
O O 0 0 a a
O O O O nCEXP Complex OComplex
0 0 O O 0 O E 0
[Natural Logarithm Ulog(a) o 1 ULoc UALOG URed OResl 0
O O O O UpLoc Ubouble Double O
0 0 0 0 0 0 0
0 0 0 0 1CLOG Complex CComplex 5
0 O O O 0 O E 0
Ebommon L ogarithm BIOQlO(a) E 1 ELOGlO BALOGlO EReal Real B
o o O o = DLOG10 O Double 1Double J
0 0 0 0 0 0 B 0
[(Bine Osin(a) O 1 OSIN OSIN ORed DReal a
B B E E BDSI N E Double ;Double B
0 0 o o DCSI N o Complex jComplex 0
0 0 0 0 0 0 B 0
[Cosine Ocos(a) O 1 dcos 0cos [Red DReal O
B B E g BDCOS E Double ;Double B
O O 0 O O CCOos O Complex [jComplex 7
0 0 0 0 0 0 B 0
[Tangent Otan(a) o 1 OTAN OTAN OReal Redl 0
0 0 0 0 ODTAN ~ UDouble Double U
= t t t H t 0 |
o o O 0 O O O
rArcsine parcsin(a) o 1 OASIN QASIN Real UReal 0O
0 0 0 0 ODASIN ODouble UDouble [
O O O O O O 0 O
Eﬁrccosi ne Barccos (a) E 1 EACOS BACOS E Real OReal B
0 0 0 0O DACOS [Double EDoubIe 0
0 0 0 0 0 0 E 0
O 0 0 a 0 a

rctangent arctan(a) 1 ATAN ATAN Real Real
a 0 a a a
0 O O O nDATAN 5Double ODouble 5
0 0 0 0 0 O 5 0
O Uarctan(ag/ap) U 2 UATAN2 UATAN2 URedl Real O
g g E E gDATANz EDoubIe JDouble g
0 0 0 0 0 0 . 0
[(Hyperbolic Sine Osinh(a) O 1 OSINH OSINH ORedl DReal O
0 0 0 O ODSINH UDouble SDouble U
t t t t t t 0 il
| . . 0 0 0 0 0 0
Hyperbolic Cosine jcosh(a) o 1 NCOSH [COSH Red UReal 0
a a 0 a ODCOSH [ODouble EDoubIe a
O O O O O O 5 O
. O 0 0 a 0 a
yperbolic Tangent Stanh(a) 0 1 OTANH 5TANH Red OReal 0
0 0 0 0 ODTANH [Double HDouble [

FORTRAN 77 Full Language Page 15-25

FUNCTIONS AND SUBROUTINES

Table 5 (continued)
Intrinsic Functions

ANSI X3J3/90.4

O 0 O 0 O O O
O g UNumber of EGeneric gSpecific g Type of B
Hntrinsic Function Definition SArguments 7 Name Name Argument [Function
0 O 0 0 O 0 H 0
 exically Greater Uag = @ U 2 g OLGE UCharacter Logica U
g Than or Equa ESee Note 12 E E E E 0 g
0 0 0 0 0 0 . 0
[(Lexically Greater [a; > ap O 2 O OLGT OCharacter DLogic:al O
0 Than USee Note 12 U 0 O 0 0 0
t H t H t t 0 il
o . O O O O O . O
exicaly Less N <a 0 2 0 OLLE Character ULogica [
O Than or Equa [OSeeNote 12 O O O O E O
O O O O O O 5 O
. O O O O O . O
exically Less 0al < & 0 2 0 OLLT rCharacter [lLogica
0 Than 0See Note 12 0 0 0 H 0
FORTRAN 77 Full Language Page 15-26

FUNCTIONS AND SUBROUTINES ANSI X3J3/90.4

FORTRAN 77 Full Language Page 15-27

CONTENTS

15. FUNCTIONS AND SUBROUTINES .

151

152

153

154

155

15.6

157

15.8

159

15.10

Categories of Functions and Subroutines

15.1.1 Procedures. .

15.1.2 External Functions.

15.1.3 Subroutines.

15.1.4 Dummy Procedure.

Referencing a Function

15.21 Form of a Function Reference

15.2.2 Execution of a Function Reference.

Intrinsic Functions

15.3.1 Specific Names and Gener|c Names

15.3.2 Referencing an Intrinsic Function.

15.3.3 Intrinsic Function Restrictions.

Statement Function

1541 Formof a Statement Funct|on
Statement.

15.4.2 Referencing a Statement Functlon

15.4.3 Statement Function Restrictions.

External Functions

15.5.1 Function Subprogram and FU NCTION
Statement.

15.5.2 Referencing an External Functlon

15.5.3 Function Subprogram Restrictions. .

Subroutines

15.6.1 Subroutine Subprogram and SUBROUTINE

Statement. .

15.6.2 Subroutine Reference

15.6.3 Subroutine Subprogram Restrrcuons

ENTRY Statement .

15.71 Form of an ENTRY Statement oo

15.7.2 Referencing External Procedure by Entry
Name. e

15.7.3 Entry Assouatlon

15.7.4 ENTRY Statement Restnctlons

RETURN Statement .

1581 Formof a RETURN Statement

15.8.2 Execution of a RETURN Statement.

15.8.3 Alternate Return.

15.84 Definition Status.

Arguments and Common Blocks

159.1 Dummy Arguments.

15.9.2 Actua Arguments.

15.9.3 Association of Dummy and Actual
Arguments. Coe

15.9.4 Common Blocks.

Table of Intrinsic Functions .

15.10.1 Restrictions on Range of Arguments and
Results. e

151
151
151
151
151
151
151
15-1
15-2
15-2
15-2
15-2
15-3
15-3

15-3
154
154
15-5

15-5
15-5
15-6
15-7

15-7
15-7
15-8
15-8
15-9

15-9

15-9
15-10
15-10
15-10
15-10
15-11
15-11
15-11
15-12
15-12

15-12
15-15
15-17

15-22

ANSI X3J3/90.4

16. BLOCK DATA SUBPROGRAM

Block data subprograms are used to provide initial values for variables and array
elements in named common blocks.

A block data subprogram is a program unit that has a BLOCK DATA statement
as its first statement. A block data subprogram is nonexecutable. There may be
more than one block data subprogram in an executable program.

16.1 BLOCK DATA Satement
The form of a BLOCK DATA statement is:
BLOCK DATA [sub]

where sub is the symbolic name of the block data subprogram in which the
BLOCK DATA statement appears.

The optional name sub is a global name (18.1.1) and must not be the same as the
name of an external procedure, main program, common block, or other block data
subprogram in the same executable program. The name sub must not be the same
as any local name in the subprogram.

16.2 Block Data Subprogram Restrictions

The BLOCK DATA statement must appear only as the first statement of a block
data subprogram. The only other statements that may appear in a block data
subprogram are IMPLICIT, PARAMETER, DIMENSION, COMMON, SAVE,
EQUIVALENCE, DATA, END, and type-statements. Note that comment lines
are permitted.

If an entity in a named common block is initially defined, all entities having
storage units in the common block storage sequence must be specified even if
they are not al initially defined. More than one hamed common block may have
entities initialy defined in a single block data subprogram.

Only an entity in a named common block may be initially defined in a block data
subprogram. Note that entities associated with an entity in a common block are
considered to be in that common block.

The same named common block may not be specified in more than one block data
subprogram in the same executable program.

There must not be more than one unnamed block data subprogram in an
executable program.

FORTRAN 77 Full Language Page 16-1

CONTENTS

16. BLOCK DATA SUBPROGRAM 161
16.1 BLOCK DATA Statement 161
16.2 Block Data Subprogram Restrictions 161

ANSI X3J3/90.4

17. ASSOCIATION AND DEFINITION
17.1 Sorage and Association

Storage segquences are used to describe relationships that exist among variables,
array elements, substrings, common blocks, and arguments.

17.1.1 Sorage Sequence. A storage sequence is a sequence (2.1) of storage
units. The size of a storage sequence is the number of storage units in the storage
sequence. A storage unit is a character storage unit or a numeric storage unit.

A variable or array element of type integer, real, or logical has a storage sequence
of one numeric storage unit.

A variable or array element of type double precision or complex has a storage
sequence of two numeric storage units. In a complex storage segquence, the real
part has the first storage unit and the imaginary part has the second storage unit.

A variable, array element, or substring of type character has a storage sequence of
character storage units. The number of character storage units in the storage
sequence is the length of the character entity. The order of the sequence
corresponds to the ordering of character positions (4.8).

Each array and common block has a storage sequence (5.2.5 and 8.3.2).

17.1.2 Association of Storage Sequences. Two storage sequences s1 and sp are
associated if the ith storage unit of s1 is the same as the jth storage unit of sp.
This causes the (i+k)th storage unit of s1 to be the same as the (j+k)th storage
unit of sp, for each integer k such that 1 < i+k < sizeofs] and
1 < j+k < sizeof sp.

17.1.3 Association of Entities. Two variables, array elements, or substrings are
associated if their storage seguences are associated. Two entities are totally
associated if they have the same storage sequence. Two entities are partially
associated if they are associated but not totally associated.

The definition status and value of an entity affects the definition status and value
of any associated entity. An EQUIVALENCE statement, a COMMON statement,
an ENTRY statement (15.7.3), or a procedure reference (argument association)
may cause association of storage sequences.

An EQUIVALENCE statement causes association of entities only within one
program unit, unless one of the equivalenced entities is also in a common block
(8.3).

Arguments and COMMON statements cause entities in one program unit to
become associated with entities in another program unit (8.3 and 15.9). Note that
association between actual and dummy arguments does not imply association of
storage sequences except when the actual argument is the name of a variable,
array element, array, or substring.

In a function subprogram, an ENTRY statement causes the entry name to become
associated with the name of the function subprogram which appears in the
FUNCTION statement.

Partial association may exist only between two character entities or between a
double precision or complex entity and an entity of type integer, real, logical,
double precision, or complex.

Except for character entities, partial association may occur only through the use of
COMMON, EQUIVALENCE, or ENTRY statements. Partial association must

FORTRAN 77 Full Language Page 17-1

ASSOCIATION AND DEFINITION ANSI X3J3/90.4

not occur through argument association, except for arguments of type character.
In the example:

REAL A(4)aB

COMPLEX C(2)

DOUBLE PRECISION D
EQUIVALENCE (C(2),A(2),B), (A,D)

the third storage unit of C, the second storage unit of A, the storage unit of B, and
the second storage unit of D are specified as the same. The storage sequences
may be illustrated as:

sorageunit U1 H 2 U3 H4 U5 H
By~ B —c@)—

DA(1) DA ODA@Q) DA@ O
0--B-- O
0 ----De-eev H

A(2) and B are totally associated. The following are partially associated: A(1)
and C(1), A(2) and C(2), A(3) and C(2), B and C(2), A(1) and D, A(2) and D, B
and D, C(1) and D, and C(2) and D. Note that although C(1) and C(2) are each
associated with D, C(1) and C(2) are not associated with each other.

Partial association of character entities occurs when some, but not al, of the
storage units of the entities are the same. In the example:

CHARACTER A*4,B*4,C*3
EQUIVALENCE (A(2:3),B,C)

A, B, and C are partially associated.
17.2 Events That Cause Entities to Become Defined
Variables, array elements, and substrings become defined as follows:

(1) Execution of an arithmetic, logical, or character assignment statement
causes the entity that precedes the equals to become defined.

(2) As execution of an input statement proceeds, each entity that is assigned
a value of its corresponding type from the input medium becomes defined
at the time of such assignment.

(3) Execution of a DO statement causes the DO-variable to become defined.

(4) Beginning of execution of action specified by an implied-DO list in an
input/output statement causes the implied-DO-variable to become defined.

(5) A DATA statement causes entities to become initialy defined at the
beginning of execution of an executable program.

(6) Execution of an ASSIGN statement causes the variable in the statement
to become defined with a statement label value.

(7) When an entity of a given type becomes defined, all totally associated
entities of the same type become defined except that entities totally
associated with the variable in an ASSIGN statement become undefined
when the ASSIGN statement is executed.

(8) A reference to a subprogram causes a dummy argument to become
defined if the corresponding actual argument is defined with a value that
is not a statement label value. Note that there must be agreement
between the actual argument and the dummy argument (15.9.3).

FORTRAN 77 Full Language Page 17-2

ASSOCIATION AND DEFINITION ANSI X3J3/90.4

(9) Execution of an input/output statement containing an input/output status
specifier causes the specified integer variable or array element to become
defined.

(10) Execution of an INQUIRE statement causes any entity that is assigned a
value during the execution of the statement to become defined if no error
condition exists.

(11) When a complex entity becomes defined, all partially associated real
entities become defined.

(12) When both parts of a complex entity become defined as a result of
partially associated real or complex entities becoming defined, the
complex entity becomes defined.

(13) When all characters of a character entity become defined, the character
entity becomes defined.

17.3 Events That Caused Entities to Become Undefined
Variables, array elements, and substrings become undefined as follows:

(1) All entities are undefined at the beginning of execution of an executable
program except those entities initially defined by DATA statements.

(2) When an entity of a given type becomes defined, all totally associated
entities of different type become undefined.

(3) Execution of an ASSIGN statement causes the variable in the statement
to become undefined as an integer. Entities that are associated with the
variable become undefined.

(4) When an entity of type other than character becomes defined, all partially
associated entities become undefined. However, when an entity of type
real is partially associated with an entity of type complex, the complex
entity does not become undefined when the real entity becomes defined
and the real entity does not become undefined when the complex entity
becomes defined. When an entity of type complex is partialy associated
with another entity of type complex, definition of one entity does not
cause the other to become undefined.

(5) When the evaluation of a function causes an argument of the function or
an entity in common to become defined and if a reference to the function
appears in an expression in which the value of the function is not needed
to determine the value of the expression, then the argument or the entity
in common becomes undefined when the expression is evaluated (6.6.1).

(6) The execution of a RETURN statement or an END statement within a
subprogram causes al entities within the subprogram to become
undefined except for the following:

(a) Entities in blank common

(b) Initialy defined entities that have neither been redefined nor become
undefined

(c) Entities specified by SAVE statements

(d) Entities in a named common block that appears in the subprogram
and appears in at least one other program unit that is either directly or
indirectly referencing the subprogram

FORTRAN 77 Full Language Page 17-3

ASSOCIATION AND DEFINITION ANSI X3J3/90.4

(7) When an error condition or end-of-file condition occurs during execution
of an input statement, al of the entities specified by the input list of the
statement become undefined.

(8) Execution of a direct access input statement that specifies a record that
has not been previously written causes al of the entities specified by the
input list of the statement to become undefined.

(9) Execution of an INQUIRE statement may cause entities to become
undefined (12.10.3).

(10) When any character of a character entity becomes undefined, the character
entity becomes undefined.

(11) When an entity becomes undefined as a result of conditions described in
(5) through (10), al totally associated entities become undefined and all
partially associated entities of type other than character become
undefined.

FORTRAN 77 Full Language Page 17-4

CONTENTS

17. ASSOCIATION AND DEFINITION
17.1 Storage and Association .o
17.1.1 Storage Sequence.
17.1.2 Association of Storage Sequences.
17.1.3 Association of Entities. .o
17.2 Events That Cause Entities to Become Defined
17.3 Events That Caused Entities to Become Undefined

17-1
17-1
17-1
17-1
17-1
17-2
17-3

ANSI X3J3/90.4

18. SCOPES AND CLASSES OF SYMBOLIC NAMES

A symbolic name consists of one to six aphanumeric characters, the first of which
must be a letter. Some sequences of characters, such as format edit descriptors
and keywords that uniquely identify certain statements, for example, GO TO,
READ, FORMAT, etc, are not symbolic names in such occurrences nor do they
form the first characters of symbolic names in such occurrences.

18.1 Scope of Symbolic Names

The scope of a symbolic name is an executable program, a program unit, a
statement function statement, or an implied-DO list in a DATA statement.

The name of the main program and the names of block data subprograms, external
functions, subroutines, and common blocks have a scope of an executable
program.

The names of variables, arrays, constants, statement functions, intrinsic functions,
and dummy procedures have a scope of a program unit.

The names of variables that appear as dummy arguments in a statement function
statement have a scope of that statement.

The names of variables that appear as the DO-variable of an implied-DO in a
DATA statement have a scope of the implied-DO list.

18.1.1 Global Entities. The main program, common blocks, subprograms, and
external procedures are globa entities of an executable program. A symbolic
name that identifies a global entity must not be used to identify any other global
entity in the same executable program.

18.1.1.1 Classes of Global Entities. A symbolic name in one of the following
classes is a global entity in an executable program:

(1) Common block

(2) External function

(3) Subroutine

(4) Main program

(5) Block data subprogram

18.1.2 Local Entities. The symbolic name of a loca entity identifies that entity
in a single program unit. Within a program unit, a symbolic name that is in one
class of entities local to the program unit must not also be in another class of
entities local to the program unit. However, a symbolic name that identifies a
local entity may, in a different program unit, identify an entity of any class that is
either local to that program unit or global to the executable program. A symbolic
name that identifies a global entity in a program unit must not be used to identify
a local entity in that program unit, except for a common block name and an
external function name (18.2.1 and 18.2.2).

18.1.2.1 Classes of Local Entities. A symbolic name in one of the following
classes is alocal entity in a program unit.

(1) Array
(2) Variable
(3) Constant

FORTRAN 77 Full Language Page 18-1

SCOPES AND CLASSES OF SYMBOLIC NAMES ANSI X3J3/90.4

(4) Statement function
(5) Intrinsic function
(6) Dummy procedure

A symbolic name that is a dummy argument of a procedure is classified as a
variable, array, or dummy procedure. The specification and usage must not
violate the respective class rules.

18.2 Classes of Symbolic Names

In a program unit, a symbolic name must not be in more than one class except as
noted in the following paragraphs of this section. There are no restrictions on the
appearances of the same symbolic name in different program units of an
executable program other than those noted in this section.

18.2.1 Common block. A symbolic name is the name of a common block if and
only if it appears as a block name in a COMMON statement (8.3).

A common block name is global to the executable program.

A common block name in a program unit may aso be the name of any local
entity other than a constant, intrinsic function, or a local variable that is aso an
external function in a function subprogram. If a name is used for both a common
block and a local entity, the appearance of that name in any context other than as
a common block name in a COMMON or SAVE statement identifies only the
local entity. Note that an intrinsic function name may be a common block name
in a program unit that does not reference the intrinsic function.

18.2.2 External Function. A symbolic name is the name of an external function
if it meets either of the following conditions:

(1) The name appears immediately following the word FUNCTION in a
FUNCTION statement or the word ENTRY in an ENTRY statement
within a function subprogram.

(2) Itisnot an array name, character variable name, statement function name,
intrinsic function name, dummy argument, or subroutine name, and every
appearance is immediately followed by a left parenthesis except in a
type-statement, in an EXTERNAL statement, or as an actual argument.

In a function subprogram, the name of a function that appears immediately after
the word FUNCTION in a FUNCTION statement or immediately after the word
ENTRY in an ENTRY statement may also be the name of a variable in that
subprogram (15.5.1). At least one such function name must be the name of a
variable in a function subprogram.

An external function name is global to the executable program.

18.2.3 Subroutine. A symbolic name is the name of a subroutine if it meets
either of the following conditions:

(1) The name appears immediately following the word SUBROUTINE in a
SUBROUTINE statement or the word ENTRY in an ENTRY statement
within a subroutine subprogram.

(2) The name appears immediately following the word CALL in a CALL
statement and is not a dummy argument.

A subroutine name is global to the executable program.

FORTRAN 77 Full Language Page 18-2

SCOPES AND CLASSES OF SYMBOLIC NAMES ANSI X3J3/90.4

18.2.4 Main Program. A symbolic name is the name of a main program if and
only if it appears in a PROGRAM statement in the main program.

A main program name is global to the executable program.

18.2.5 Block Data Subprogram. A symbolic name is the name of a block data
subprogram if and only if it appearsin a BLOCK DATA statement.

A block data subprogram name is global to the executable program.

18.2.6 Array. A symbolic name is the name of an array if it appears as the array
name in an aray declarator (5.1) in a DIMENSION, COMMON, or type-
statement.

An array name is local to a program unit.
An array name may be the same as a common block name.

18.2.7 Variable. A symbolic name is the name of a variable if it meets al of the
following conditions:

(1) It does not appear in a PARAMETER, INTRINSIC, or EXTERNAL
statement.

(2) It is not the name of an array, subroutine, main program, or block data
subprogram.

(3) It appears other than as the name of a common block, the name of an
external function in a FUNCTION statement, or an entry name in an
ENTRY statement in an externa function.

(4) It is never immediately followed by a left parenthesis unless it is
immediately preceded by the word FUNCTION in a FUNCTION
statement, is immediately preceded by the word ENTRY in an ENTRY
statement, or is at the beginning of a character substring name (5.7.1).

A variable name in the dummy argument list of a statement function statement is
local to the statement function statement in which it occurs. Note that the use of
a name that appears in Table 5 as a dummy argument of a statement function
removes it from the class of intrinsic functions. A variable name that appears as
an implied-DO-variable in a DATA statement is local to the implied-DO list. All
other variable names are local to a program unit.

A statement function dummy argument name may also be the name of a variable
or common block in the program unit. The appearance of the name in any
context other than as a dummy argument of the statement function identifies the
local variable or common block. The statement function dummy argument name
and local variable name have the same type and, if of type character, both have
the same constant length.

The name of an implied-DO-variable in a DATA statement may aso be the name
of a variable or common block in the program unit. The appearance of the name
in any context other than as an implied-DO-variable in the DATA statement
identifies the local variable or common block. The implied- DO-variable and the
local variable have the same type.

18.2.8 Constant. A symbolic name is the name of a constant if it appears as a
symbolic name in a PARAMETER statement.

The symbolic name of a constant is local to a program unit.

FORTRAN 77 Full Language Page 18-3

SCOPES AND CLASSES OF SYMBOLIC NAMES ANSI X3J3/90.4

18.2.9 Satement Function. A symbolic name is the name of a statement function
if a statement function statement (15.4) is present for that symbolic name and it is
not an array name.

A statement function name is local to a program unit. A statement function name
may be the same as a common block name.

18.2.10 Intrinsic Function. A symbolic name is the name of an intrinsic function
if it meets al of the following conditions:

(1) The name appears in the Specific Name column or the Generic Name
column of Table 5.

(2) It is not an array name, statement function name, subroutine name, or
dummy argument name.

(3) Every appearance of the symbolic name, except in an INTRINSIC
statement, a type-statement, or as an actua argument, is immediately
followed by an actual argument list enclosed in parentheses.

An intrinsic function name is local to a program unit.

18.2.11 Dummy Procedure. A symbolic name is the name of a dummy
procedure if the name appears in the dummy argument list of a FUNCTION,
SUBROUTINE, or ENTRY statement and meets one or more of the following
conditions:

(1) It appearsin an EXTERNAL statement.
(2) It appears immediately following the word CALL in a CALL statement.

(3) It is not an array name or character variable name, and every appearance
is immediately followed by a left parenthesis except in a type-statement,
in an EXTERNAL statement, in a CALL statement, as a dummy
argument, as an actual argument, or as a common block name in a
COMMON or SAVE statement.

A dummy procedure name is local to a program unit.

FORTRAN 77 Full Language Page 18-4

CONTENTS

18. SCOPES AND CLASSES OF SYMBOLIC NAMES
18.1 Scope of Symbolic Names .

18.1.1
18.1.2

Global Entities.
Local Entities.

18.2 Classes of Symbolic Names

18.2.1
18.2.2
18.2.3
1824
18.2.5
18.2.6
18.2.7
18.2.8
18.2.9
18.2.10
18.2.11

Common block.

External Function.
Subroutine. .
Main Program. . . .
Block Data Subprogram.
Array. .o
Variable.

Constant. .
Statement Function.
Intrinsic Function.
Dummy Procedure.

18-1
18-1
18-1
18-1
18-2
18-2
18-2
18-2
18-3
18-3
18-3
18-3
18-3
18-4
18-4
18-4

ANSI X3J3/90.4

APPENDIX A: CRITERIA, CONFLICTS, AND PORTABILITY

Al. Criteria
The principal criteria used in developing this FORTRAN standard were:

1)
@)

©)
(4)

(5)
(6)

()
(8)

Interchangeability of FORTRAN programs between processors

Compatibility with ANSI X3.9-1966, allied standards, and existing
practices

Consistency and simplicity to user

Suitability for efficient processor operation for a wide range of computing
equipment of varying structure and power

Allowance for future growth in the language

Achievement of capabilities not currently available, but needed for
processes appropriately expressed in FORTRAN

Acceptability by a significant portion of users

Improved ability to use FORTRAN programs and data in conjunction
with other languages and environments

A2. Conflicts with ANS X3.9-1966

An extremely important consideration in the preparation of this standard was the
minimization of conflicts with the previous standard, ANSI X3.9-1966. This
standard includes changes that create conflicts with ANSI X3.9-1966 only when
such changes were necessary to correct an error in the previous standard or to add
to the power of the FORTRAN language in a significant manner. The following
isalist of known conflicts:

1)

@)

3

(4)

A line that contains only blank characters in columns 1 through 72 is a
comment line. ANSI X3.9-1966 allowed such a line to be the initial line
of a statement.

Columns 1 through 5 of a continuation line must contain blanks. A
published interpretation of ANSI X3.9-1966 specified that columns 1-5 of
a continuation line may contain any character from the FORTRAN
character set except that column 1 must not contain a C.

Hollerith constants and Hollerith data are not permitted in this standard.
ANS| X3.9-1966 permitted the use of Hollerith constants in DATA and
CALL datements, the use of noncharacter list items in formatted
input/output statements with A edit descriptors, and the referencing of
noncharacter arrays as formats. Note that the H edit (field) descriptor is
permitted; it is not a Hollerith constant.

The value of each comma-separated subscript expression in a subscript
must not exceed its corresponding upper bound declared for the array
name in the program unit. In the example:

DIMENSION A(10,5)
Y=A(11,1)

The reference to A(11,1) is not permitted for the array A(10,5). ANS
X3.9-1966 permitted a subscript expression to exceed its corresponding
upper bound if the maximum subscript value for the array was not
exceeded.

FORTRAN 77 Full Language Page A-1

APPENDIX A: CRITERIA, CONFLICTS, AND PORTABILITY ANSI X3J3/90.4

(5

(6)

()

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

Only an array that is declared as a one-dimensional array in the program
unit may have a one-dimensional subscript in an EQUIVALENCE
statement. In the example:

DIMENSION B(2,3,4), C(4,8)
EQUIVALENCE (B(23), C(1,1))

B(23) is not permitted. ANSlI X3.9-1966 permitted arrays that were
declared as two- or three-dimensional arrays to appear in an
EQUIVALENCE statement with a one-dimensional subscript.

A name must not have its type explicitly specified more than once in a
program unit. ANSI X3.9-1966 did not explicitly have such a
prohibition.

This standard does not permit a transfer of control into the range of a
DO-loop from outside the range. The range of a DO-loop may be
entered only by the execution of a DO statement. ANSI X3.9-1966
permitted transfer of control into the range of a DO-loop under certain
conditions. This involved the concept referred to as "extended range of a
DO."

A labeled END statement could conflict with the initial line of a
statement in an ANSI X3.9-1966 standard-conforming program.

A record must not be written after an endfile record in a sequential file.
ANSI X3.9-1966 did not prohibit this, but provided no interpretation for
the reading of an endfile record.

A sequential file may not contain both formatted and unformatted records.
A published interpretation of ANSI X3.9-1966 specified that this was
permitted.

Negative values for input/output unit identifiers are prohibited in this
standard. ANSI X3.9-1966 did not explicitly prohibit them for variable
unit identifiers.

A simple /O list enclosed in parentheses is prohibited from appearing in
an 1/0 list.

This requires that parentheses enclosing more than one 1/O list item must
mark an implied DO-loop. The restriction was imposed to eliminate
potential syntactic ambiguities introduced by complex constants in list-
directed output lists. As all the parentheses referred to are redundant, a
program can be made conforming with this standard by deleting
redundant parentheses enclosing more than one list item in an /O list.

The definition of an entity associated with an entity in an input list occurs
at the same time as the definition of the list entity. ANSI X3.9-1966
delayed the definition of such an associated entity until the end of
execution of the input statement.

Reading into an H edit (field) descriptor in a FORMAT statement is
prohibited in this standard.

The range of a scale factor for E, D, and G output fields is restricted to
reasonable values. ANS| X3.9-1966 had no such restriction, but did not
provide a clear interpretation of the meaning of the unreasonable values.

FORTRAN 77 Full Language Page A-2

APPENDIX A: CRITERIA, CONFLICTS, AND PORTABILITY ANSI X3J3/90.4

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

A processor must not produce a numeric output field containing a
negative zero. ANSI X3.9-1966 required this if the internal value of a
real or double precision datum was negative.

On output, the | edit descriptor must not produce unnecessary leading
Zeros.

On output, the F edit descriptor must not produce unnecessary leading
zeros, other than the optional leading zero for a value less than one.

Following the E or D in an E or D output field, a + or - is required
immediately prior to the exponent field. This improves compatibility
with American National Standard for the Representation of Numeric
Values in Character Strings for Information Interchange, ANSI X3.42-
1975. ANSI X3.9-1966 permitted a blank as a replacement for + in the
exponent sign.

An intrinsic function name that is used as an actual argument must appear
in an INTRINSIC statement rather than an EXTERNAL statement. Note
that the intrinsic function class includes the basic external function class
of ANSI X3.9-1966.

The appearance of an intrinsic function name in a type-statement that
conflicts with the type specified in Table 5 is not sufficient to remove the
name from the intrinsic function class. In ANSI X3.9-1966, this
condition was sufficient to remove the name from the intrinsic function
class.

More intrinsic function names have been added and could conflict with
the names of subprograms. These names are ACOS, ANINT, ASIN,
CHAR, COSH, DACOS, DASIN, DCOSH, DDIM, DINT, DNINT,
DPROD, DSINH, DTAN, DTANH, ICHAR, IDNINT, INDEX, LEN,
LGE, LGT, LLE, LLT, LOG, LOG10, MAX, MIN, NINT, SINH, and
TAN.

The units of the arguments and results of the intrinsic functions (and
basic external functions) were not specified in ANSlI X3.9-1966 and are
specified in this standard. The range of the arguments and results has
also been specified. These specifications may be different from those
used on some processors conforming to ANSI X 3.9-1966.

An executable program must not contain more than one unnamed block
data subprogram. ANS| X3.9-1966 did not have this prohibition and
could be interpreted to permit more than one.

A3. Sandard Items That Inhibit Portability

Although the primary purpose of this standard is to promote portability of
FORTRAN programs, there are some items in it that tend to inhibit portability.

1)

2

Procedures written in languages other than FORTRAN may not be
portable.

Because the collating sequence has not been completely specified,
character relational expressions do not necessarily have the same value on
al processors. However, the intrinsic functions LGE, LGT, LLE, and
LLT can be used to provide a more portable comparison of character
entities.

FORTRAN 77 Full Language Page A-3

APPENDIX A: CRITERIA, CONFLICTS, AND PORTABILITY ANSI X3J3/90.4

(3) Character data, H edit descriptors, apostrophe edit descriptors, and
comment lines may include characters that are acceptable to one
processor but unacceptable to another processor.

(4) No explicit requirements are specified for file names. A file name that is
acceptable to one processor may be unacceptable to another processor.

(5) Input/output unit numbers and unit capabilities may vary among
processors.
A4. Recommendation for Enhancing Portability

To enhance the development of portable FORTRAN programs, a producer should
provide some means of identifying nonstandard syntax supported by his processor.
Alternatives for doing this include appropriate documentation, features of the
processor, and other means.

FORTRAN 77 Full Language Page A-4

APPENDIX A: CRITERIA, CONFLICTS, AND PORTABILITY

A-1
Al
A2
A3.
A4.

CONTENTS

Criteria . e

Conflicts with ANSI X3.9-1966

Standard Items That Inhibit Portability
Recommendation for Enhancing Portability

A-1
A-1

A-4

ANSI X3J3/90.4

APPENDIX B: SECTION NOTES

B1. Section 1 Notes

What this standard calls a "processor” is any mechanism that can carry out the
actions of a program. Commonly, this may be any of these:

(1) The combined actions of a computer (hardware), its operating system, a
compiler, and a loader

(2) Aninterpreter
(3) The mind of a human, perhaps with the help of paper and pencil

When you read this standard, it is important to keep its point of view in mind.
The standard is written from the point of view of a programmer using the
language, and not from the point of view of the implementation of a processor.
This point of view affects the way you should interpret the standard. For
example, in 3.3 the assertion is made:

"... a statement must contain no more than 1320 characters.”

This means that if a programmer writes a longer statement, his program is not
standard conforming. Therefore, it will get different treatment on different
processors. Some processors will accept the program, and some will not. Some
may even seemingly accept the program but process it incorrectly. The assertion
means that all standard-conforming processors must accept statements up to 1320
characters long. That is the only inference about a standard-conforming processor
that can be made from the assertion.

The assertion does not mean that a standard-conforming processor is prohibited
from accepting longer statements. Accepting longer statements would be an
extension.

The assertion does not mean that a standard-conforming processor must diagnose
statements longer than 1320 characters, although it may do so.

In general, a standard-conforming processor is one that accepts al standard-
conforming programs and processes them according to the rules of this standard.
Thus, the specification of a standard-conforming processor must be inferred from
this document.

In some places, explicit prohibitions or restrictions are stated, such as the above
statement-length restriction. Such assertions restrict what programmers can write
in standard-conforming programs and have no more weight in the standard than
an omitted feature. For example, there is no mention anywhere in the standard of
double precision integers. Because it is omitted, programmers must not use this
feature in standard-conforming programs. A standard-conforming processor may
or may not provide it or diagnose its use. Thus, an explicit prohibition (such as
statements longer than 1320 characters) and an omission (such as double precision
integers) are equivalent in this standard.

B2. Section 2 Notes

Some of the terminology used in this document is different from that used to
describe other programming languages. The following indicates terms from other
languages that are approximately equivalent to some FORTRAN terms.

FORTRAN 77 Full Language Page B-1

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

FORTRAN Other Languages

Variable Simple Variable

Array Element Subscripted Variable

Subscript Expression Subscript

Subscript (none)

Dummy Argument Formal Argument, Formal
Parameter

Actual Argument Actua Parameter

In particular, the FORTRAN terms "subscript" and "subscript expression” should
be studied carefully by readers who are unfamiliar with this standard (5.4).

The term "symbolic name" is frequently shortened to "name" throughout the
standard.

B3. Section 3 Notes

A partial collating sequence is specified. |f possible, a processor should use the
American National Standard Code for Information Interchange, ANSI X3.4-1977
(ASCII), sequence for the complete FORTRAN character set.

When a continuation line follows a comment line, the continuation line is part of
the current statement; it is not a continuation of the comment line. A comment
line is not part of a statement.

The standard does not restrict the number of consecutive comment lines. The
limit of 19 continuation lines permitted for a statement should not be construed as
being a limitation on the number of consecutive comment lines.

There are 99999 unique statement labels and a processor must accept 99999 as a
statement label. However, a processor may have an implementation limit on the
total number of unique statement labels in one program unit (3.4).

Blanks and leading zeros are not significant in distinguishing between statement
labels. For example, 123, 1 23, and 0123 are al forms of the same statement
label.

B4. Section 4 Notes
A processor must not consider a negative zero to be different from a positive zero.

ANSI X3.9-1966 used the term "constant” to mean an unsigned constant. This
standard uses the term "constant" to have its more norma meaning of an
optionally signed constant when describing arithmetic constants. The term
"unsigned constant" is used wherever a leading sign is not permitted on an
arithmetic constant.

A character constant is a representation of a character value. The delimiting
apostrophes are part of the representation but not part of the value, double
apostrophes are used to represent a single embedded apostrophe. For example:

FORTRAN 77 Full Language Page B-2

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

O

Character DChara(:ter
Constant o Vaue

0
"CAT’ O CAT
"ISN T g ISN'T

,)ISN)!’YT)I! DIISNIIT)

OOOoOoopoogdg
Ooooooooog

Note that the value of the character constant *’'ISN’'"'T'"" is a representation of
another character constant.

Some programs that used an extension to ANSI X3.9-1966 that permitted a
Hollerith constant delimited by apostrophes instead of the nH form do not
conform to this standard.

B5. Section 5 Notes

For the array declarator A(2,3), the use of the array name A in the proper context,
such as in an input/output list, specifies the following order for the array elements:
A(L,1), A(2,1), A(1,2), A(2,2), A(1,3), A(2,3).

B6. Section 6 Notes

If V is a variable name, the interpretation and value of V, +V, and (V) are the
same. However, the three forms may not aways be used interchangeably. For
example, the forms +V and (V) may not be used as list items of a READ
statement or as actual arguments of a procedure reference if the procedure defines
the corresponding dummy argument.

B7. Section 7 Notes

Although DIMENSION statements, type-statements, and statement function
statements are classified as nonexecutable statements, they may contain references
that are executed. Expressions containing variables in DIMENSION statements
and type-statements may be evaluated whenever a reference to the program unit is
executed. The expression in a statement function statement is evaluated whenever
a function reference to the statement function is executed.

B8. Section 8 Notes

If a processor allows a one-dimensional subscript for a multidimensional array in
an EQUIVALENCE statement, the interpretation should be as though the
subscript expression were the leftmost one and the missing subscript expressions
each have their respective lower dimension bound value.

ANS|I X3.9-1966 permitted two- and three-dimensional arrays to have a one-
dimensional subscript in an EQUIVALENCE statement. The following table can
be used to convert a onedimensional subscript to the corresponding
multidimensional subscript:

FORTRAN 77 Full Language Page B-3

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

O O 0 0 0
S’J 0 Dimension DSubscript DSubscript 0

0 0 0 O
0 0 o Vaue p 0
o O 0 0 0
1 O (d1) 0 s H(s) u
5 & & 0
O O 0 0 0
@ 0O (d,d2) O s 0(1+MOD(s-1,dy1), 0
O O 0 0 1+(s-1)/dy O
T O | | 0

0 0 0 O
B o@1.d2.d3) o s g(1+MOD(s-1d1), [
O O 0 0 1+MOD ((s-1)d1,d2), O
8 B] B 1+(s-1)/(d1*d2)) 5]

Each expression in the last column of the table is evaluated according to the rules
for integer expressions.

A processor that allows additional intrinsic functions should alow their names to
appear in an INTRINSIC statement.

As an extension to ANSI X3.9-1966, many processors permitted the retention of
certain values at the completion of execution of a subprogram, such as local
variables and arrays, initially defined data that had been changed, and named
common blocks not specified in the main program, whereas other processors
prohibited the retention of such values. In ANSI X3.9-1966 such entities were
undefined at the completion of execution of the subprogram, and therefore a
standard-conforming program could not retain these values. The SAVE statement
provides a facility for data retention.

B9. Section 9 Notes

An entity is "initially defined" only by a DATA statement. An assignment
statement may define or redefine an entity but it does not "initially define" the
entity.

Initially defined entities in a subprogram may become undefined at the execution
of a RETURN or END statement if they are assigned any value, including their
initial value, during the execution of the executable program (see 8.9 and 15.8.4).

B10. Section 10 Notes

All four types of implied arithmetic conversion are permitted in an arithmetic
assignment statement.

B11. Section 11 Notes

A logical IF statement must not contain another logical IF statement or a block IF
statement; however, it may contain an arithmetic IF statement. The following is
allowed:

IF (logical expr.) IF (arithmetic expr.) s1,s2,S3

A processor is not required to evaluate the iteration count in a DO-loop if the
same effect is achieved without evaluation. However, the processor must allow
redefinition of variables and array elements that appear after the equals in a DO
statement during the execution of the DO-loop without affecting the number of
times the DO-loop is executed and without affecting the value by which the DO-
variable is incremented.

FORTRAN 77 Full Language Page B-4

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

If J1 > J2, ANSI X3.9-1966 does not allow execution of the following DO
statement:

DO 100 J=J1,J2

Some processors that allowed such a case executed the range of the DO-loop
once, whereas other processors did not execute the range of the DO-loop. This
standard allows such a case and requires that the processor execute the range of
the DO-loop zero times. The following change to the DO statement will require
that the processor execute the range at least once:

DO 100 J=J1,MAX (J1,J2)

References to function procedures and subroutine procedures may appear within
the range of a DO-loop or within an IF-block, ELSE IF-block, or ELSE-block.
Execution of a function reference or a CALL statement is not considered a
transfer of control in the program unit that contains the reference, except when
control is returned to a statement identified by an alternate return specifier in a
CALL statement. Execution of a RETURN or END statement in a referenced
procedure, or execution of a transfer of control within a referenced procedure, is
not considered a transfer of control in the program unit that contains the reference.

The CONTINUE statement is an executable statement that has no effect of itself.
It can serve as an executable statement on which to place a statement label when
no effect of execution is desired. For example, it can serve as the statement
referred to by a GO TO statement or as& the termina statement of a DO-loop.
Although the CONTINUE statement has no effect of itself, it causes execution to
continue with incrementation processing when it is the termina statement of a
DO-loop.

The standard does not define the term "accessible' in the STOP or PAUSE
statement in order to allow a wide latitude in adapting to a processor environment.
Some processors may use the n the PAUSE or STOP statement for documentation
only. Other processors may display the n to the user or to the operator. In order
not to confine its use, the meaning of "accessible" is purposely left vague.

B12. Section 12 Notes

What is called a "record" in FORTRAN is commonly called a "logica record."
There is no concept in FORTRAN of a "physical record.”

An endfile record does not necessarily have any physica embodiment. The
processor may use a record count or other means to register the position of the
file a the time an ENDFILE statement is executed, so that it can take
appropriate action when that position is again reached during a read operation.
The endfile record, however it is implemented, is considered to exist for the
BACKSPACE statement.

An interna file permits data to be transferred with conversion between internal
storage areas using the READ and WRITE statements. This facility was
implemented as an extension to ANSI X3.9-1966 on many processors as
ENCODE and DECODE statements. Specifying the READ and WRITE
statements to perform this process avoids such confusion as. "Is ENCODE like
READ or isit like WRITE?"

This standard accommodates, but it does not require, file cataloging. To do this,
several concepts are introduced.

FORTRAN 77 Full Language Page B-5

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

In ANSI X3.9-1966 many properties were given to a unit that in this standard are
given to the connection of a file to a unit. Also, additional properties are
introduced.

Before any input/output can be performed on afile, it must be connected to a unit.
The unit then serves as a designator for that file as long as it is connected. To be
connected does not imply that "buffers' have or have not been alocated, that
"file-control tables' have or have not been filled out, or that any other method of
implementation has been used. Connection means that (barring some other fault)
a READ or WRITE statement can be executed on the unit, hence on the file.
Without a connection, a READ or WRITE statement cannot be executed.

Totally independent of the connection state is the property of existence, this being
a file property. The processor "knows' of a set of files that exist at a given time
for a given executable program. This set would include tapes ready to read, files
in a catalog, a keyboard, a printer, etc. The set may exclude files inaccessible to
the executable program because of security, because they are already in use by
another executable program, etc. This standard does not specify which files exist,
hence wide latitude is available to a processor to implement security, locks,
privilege techniques, etc. Existence is a convenient concept to designate all of the
files that an executable program can potentially process.

All four combinations of connection and existence may occur:
O O O
Opyiq O
Eponnect DEX|51 = Examples

O
OA card reader loaded and

Uready to be read
[]

<
®

Yes

O

OA printer before the first
Oline is written

O

DA file named " JOE' in
the catalog

O

UA redl of tape destroyed
0in the fire last week

<
?
Z
o

Z
o
<
®

Ogooogoooogoog

Z
o

zZ
o
OOoOoOodoooodooooooono

OOoOOoooogoooogooodg

[}

Means are provided to create, delete, connect, and disconnect files.

A file may have a name. The form of a file name is not specified. If a system
does not have some form of cataloging or tape labeling for at least some of its
files, al file names will disappear at the termination of execution. This is a valid
implementation. Nowhere does this standard require names to survive for any
period of time longer than the execution time span of an executable program.
Therefore, this standard does not impose cataloging as a prerequisite. The naming
feature is intended to allow use of a cataloging system where one exists.

A file may become connected to a unit in either of two ways. preconnection or
execution of an OPEN statement. Preconnection is performed prior to the
beginning of execution of an executable program by means externa to
FORTRAN. For example, it may be done by job control action or by processor
established defaults. Execution of an OPEN statement is not required to access
preconnected files.

FORTRAN 77 Full Language Page B-6

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

The OPEN statement provides a means to access existing files that are not
preconnected. An OPEN statement may be used in either of two ways. with afile
name (open by name) and without a file name (open by unit). A unit is given in
either case. Open by name connects the specified file to the specified unit. Open
by unit connects a processor-determined default file to the specified unit. (The
default file may or may not have a name.)

Therefore, there are three ways a file may become connected and hence processed:
preconnection, open by name, and open by unit. Once a file is connected, there is
no means in standard FORTRAN to determine how it became connected.

In subset FORTRAN, sequential access may be performed only on preconnected
files, and direct access only on files that are opened by unit.

An OPEN statement may also be used to create a new file. In fact, any of the
foregoing three connection methods may be performed on a file that does not
exist. When a unit is preconnected, writing the first record creates the file. With
the other two methods, execution of the OPEN statement creates the file.

When a unit becomes connected to a file, either by execution of an OPEN
statement or by preconnection, the following connection properties may be
established:

(1) An access method, which is sequential or direct, is established for the
connection.

(2) A form, which is formatted or unformatted, is established for a
connection to a file that exists or is created by the connection. For a
connection that results from execution of an OPEN statement, a default
form (which depends on the access method, as described in 12.10.1) is
established if no form is specified. For a preconnected file that exists, a
form is established by preconnection. For a preconnected file that does
not exist, a form may be established, or the establishment of a form may
be delayed until the file is created (for example, by execution of a
formatted or unformatted WRITE statement).

(3) A record length may be established. If the access method is direct, the
connection establishes a record length, which specifies the length of each
record of the file. A connection for sequential access does not have this
property.

(4) A blank significance property, which is ZERO or NULL, is established
for a connection for which the form is formatted. This property has no
effect on output. For a connection that results from execution of an
OPEN statement, the blank significance property is NULL by default if
no blank significance property is specified. For a preconnected file, the
property is established by preconnection.

The blank significance property of the connection is effective at the
beginning of each formatted input statement. During execution of the
statement, any BN or BZ edit descriptors encountered may temporarily
change the effect of embedded and trailing blanks.

A processor has wide latitude in adapting these concepts and actions to its own
cataloging and job control conventions. Some processors may require job control
action to specify the set of files that exist or that will be created by an executable
program. Some processors may require no job control action prior to execution.
This standard enables processors to perform a dynamic open, close, and file

FORTRAN 77 Full Language Page B-7

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

creation, but it does not require such capabilities of the processor.

The meaning of "open" in contexts other than FORTRAN may include such
things as mounting a tape, console messages, spooling, label checking, security
checking, etc. These actions may occur upon job control action external to
FORTRAN, upon execution of an OPEN statement, or upon execution of the first
read or write of the filee The OPEN statement describes properties of the
connection to the file and may or may not cause physical activities to take place.
It is a place for an implementation to define properties of a file beyond those
required in standard FORTRAN.

Similarly, the actions of dismounting a tape, protection, etc. of a "close" may be
implicit at the end of a run. The CLOSE statement may or may not cause such
actions to occur. This is another place to extend file properties beyond those of
standard FORTRAN. Note, however, that the execution of a CLOSE statement on
unit 10 followed by an OPEN statement on the same unit to the same file or to a
different file is a permissible sequence of events. The processor may not deny
this sequence solely because the implementation chooses to do the physical act of
closing the file at the termination of execution of the program.

This standard does not address problems of security, protection, locking, and
many other concepts that may be part of the concept of "right of access." Such
concepts are considered to be in the province of an operating system. The OPEN
and INQUIRE statements can be extended naturally to consider these things.

Possible access methods for a file are: sequential and direct. The processor may
implement two different types of files, each with its own access method. It may
also implement one type of file with two different access methods.

Direct access to files is of a simple and commonly available type, that is, fixed-
length records. The key is a positive integer.

Keyword forms of specifiers are used because there are many specifiers and a
positional notation is difficult to remember. The keyword form sets a style for
processor extensions. The UNIT= and FMT= keywords are offered for
completeness, but their use is optional. Thus, compatibility with ANSI X3.9-1966
is achieved.

Format specifications may be included in READ and WRITE statements, as in:
READ (UNIT=10, FMT=(13,A4,F10.2)) K,ALPH X

ANSI X3.9-1966 alowed a standard-conforming program to write an endfile
record but did not allow the reading of an endfile record. In this standard, the
END= specifier alows end-of-file detection and continuation of execution of the
program.

List-directed input/output allows data editing according to the type of the list item
instead of by a format specifier. It aso alows data to be free-field, that is,
separated by commas or blanks.

List-directed input/output is record oriented to or from a formatted sequentia file.
Each read or write begins with a new record. The form of list-directed data on a
sequential output file is not necessarily suitable for list-directed input. However,
there are no mandatory errors specified for reading list-directed data previously
written. The results may not be guaranteed because of the syntax using
apostrophes for character data or the r* ¢ form of a repeated constant. All other
applications should work, and attempting to read previously written list-directed
output is not prohibited in a standard-conforming program.

FORTRAN 77 Full Language Page B-8

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

If no list items are specified in a list-directed input/output statement, one input
record is skipped or one empty output record is written.

An example of a restriction on input/output statements (12.12) is that an input
statement may not specify that data are to be read from a printer.

B13. Section 13 Notes

The term "edit descriptor" in this standard was "field descriptor” in ANSI X3.9-
1966.

If a character constant is used as a format identifier in an input/output statement,
care must be taken that the value of the character constant is a valid format
specification. In particular, if the format specification contains an apostrophe edit
descriptor, two apostrophes must be written to delimit the apostrophe edit
descriptor and four apostrophes must be written for each apostrophe that occurs
within the apostrophe edit descriptor. For example, the text:

2 ISN'T 3

may be written by various combinations of output statements and format
specifications:

WRITE(6,100) 2,3
100 FORMAT(1X,I1,1X, ISN" T’ ,1X,I1)

WRITE(®6, (1X,11,1X,” SN T ,1X,11)") 2,3

WRITE(6,200) 2,3
200 FORMAT(1X,11,1X,5HISN' T, 1X,I1)

WRITE(6, (1X,11,1X,5HISN" T, 1X,11)’) 2,3
WRITE(6,(A))’ 2ISN"'T 3

WRITE(6, (IX,ILA,11)) 2, ISN"T ", 3

Note that two consecutive apostrophes in an H edit descriptor within a character
constant are counted as only one Hollerith character.

The T edit descriptor includes the carriage control character in lines that are to be
printed. T1 specifies the carriage control character, and T2 specifies the first
character that is printed.

The length of a record is not always specified exactly and may be processor
dependent.

The number of records read by a formatted input statement can be determined
from the following rule: A record is read at the beginning of the format scan
(even if the input list is empty), at each slash edit descriptor encountered in the
format, and when a format rescan occurs at the end of the format.

The number of records written by a formatted output statement can be determined
from the following rule: A record is written when a slash edit descriptor is
encountered in the format, when a format rescan occurs at the end of the format,
and at completion of execution of the output statement (even if the output list is
empty). Thus, the occurrence of n successive slashes between two other edit
descriptors causes n — 1 blank lines if the records are printed. The occurrence
of n dashes at the beginning or end of a complete format specification causes n

FORTRAN 77 Full Language Page B-9

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

blank lines if the records are printed. However, a complete format specification
containing n slashes (n = 0) and no other edit descriptors causes n + 1 blank
lines if the records are printed. For example, the statements

PRINT 3
3 FORMAT()

will write two records that cause two blank lines if the records are printed.

The following examples illustrate list-directed input. A blank character is

represented by b.
Example 1.
Program: J=3
READ * ||
READ *,J

Sequentia input file:

record 1: b1lb,4bbbbb
record 2: ,2bbbbbbbb

Result: 1=1,

Explanation: The second READ statement reads the second record. The initia
comma in the record designates a null value; therefore, Jis not redefined.
Example 2:

Program: CHARACTER A*8, B*1
READ *, A, B

Sequentia input file:

record 1: ' bbbbbbbb’
record 2: 'QXY'b'Z'

Result: A ='bbbbbbbb', B='Q

Explanation: The end of a record cannot occur between two apostrophes
representing an embedded apostrophe in a character constant; therefore, A is set to
the character constant ' bbbbbbbb'. The end of a record acts as a blank, which in
this case is a value separator because it occurs between two constants.

B14. Section 14 Notes

The name of a main program has no explicit use within the FORTRAN language.
It is available for documentation and for possible use within a computer
environment.

B15. Section 15 Notes

A FUNCTION statement specifies the name of an external function, and each
ENTRY statement in a function subprogram specifies an additional external
function name. A SUBROUTINE statement specifies the name of a subroutine,
and each ENTRY statement in a subroutine subprogram specifies an additional
subroutine hame.

The intrinsic function names IFIX, IDINT, FLOAT, and SNGL have been retained
to support programs that conform to ANSI X3.9-1966. However, future use of
these intrinsic function names is not recommended.

FORTRAN 77 Full Language Page B-10

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

For the specific functions that define the maximum and minimum values with a
function type different from the argument type (AMAX0, MAX1, AMINO, and
MIN1), it is recommended that an expression containing the generic name
preceded by a type -conversion function be wused, for example,
REAL (MAX (a1, a&2,...)) for AMAXO(a1, a,..), S0 that these specific
function names may be deleted in a future revision of this standard.

This standard provides that a standard-conforming processor may supply intrinsic
functions in addition to those defined in Table 5 (15.10). Because of this, care
must be taken when a program is used on more than one processor because a
function name not in Table 5 may be classified as an external function name on
one processor and as an intrinsic function name on another processor in the
absence of a declaration for that name in an EXTERNAL or INTRINSIC
statement.

To guard against this possibility, it is suggested that any external functions
referenced in a program should appear in an EXTERNAL statement in every
program unit in which a reference to that function appears. If a program unit
references a processor-supplied intrinsic function that does not appear in Table 5,
the name of the function should appear in an INTRINSIC statement in the
program unit.

The distinction between external functions (user defined) and intrinsic functions
(processor defined) may be clarified by the following table:

FORTRAN 77 Full Language Page B-11

APPENDIX B: SECTION NOTES

ANSI X3J3/90.4

0 0

E Different Processor Definitions g

O (Table 5 extended) 0

0 O O 0

DpProcessor 1 EProcr 2 E Processor 3 E

. 0 0 0 0
g U U a

a:)ifferent Ointrinsic Uintrinsic U 0
User Ulnteger Complex E (none) g
[Bpecifications UrrROG SFROG 5 .
= 0 O 0 0
5 0 0 0 0
_ T o .. . g O
OY=FROG(A) 0 Intrinsic glntrinsic External 0
g i nteger OComplex Real 0
U OFROG OFROG OFROG 0
5 0 0 0 0
Oy oere o, .. . U O

ONTRINSIC FROG DIntr|n5|c glntrinsic 0 O
Uy =FROG(A) ol nteger OComplex QUndefined
J OFROG OFROG 0 0
= 0 0 0 0
J Oy ntring O 4 0
UONTEGER FROG 0 Intrinsic 0 0 External 0
Uy=FROG(A) 0 nteger OUndefined integer 0
D OFROG 0 OFROG 0
= 0 0 0 0
o 0 O O 0
CONTRINSIC FROG Intrinsic 0 0 0
ONTEGER FROG lnteger OUndefined gUndefined
By -FROG(A) OFROG O O 0
= O L L O
o 0 O u 0
(EXTERNAL FROG 0 External External External 0
Uy =FROG(A) Real Real Real O
J OFROG OFROG OFROG 0
= 0 U U 0
o 0 O O 0
CEXTERNAL FROG —External nExternal nExternal O
UNTEGER FROG ! nteger Olnteger OInteger 0
Hr=FROG(A) OFROG AFROG AFROG O

If a generic name is the same as the specific name of an intrinsic function for a
specified type of argument, a reference to the function with an argument of that
type may be considered to be either a specific or generic function reference.

The use of the concatenation operator with operands of nonconstant length has
been restricted to the assignment statement so that a processor need not implement
dynamic storage allocation.

When a character array is an actual argument, the array is considered to be one
string of characters and there need not be correspondence between the actua array
elements and the dummy array elements. Only subset FORTRAN requires such
correspondence.

The intrinsic functions ICHAR and CHAR provide a means of converting between
a character and an integer, based on the position of the character in the processor
collating sequence. The first character in the collating sequence corresponds to
position 0 and the last to position n — 1, where n is the number of charactersin
the collating sequence.

FORTRAN 77 Full Language Page B-12

APPENDIX B: SECTION NOTES ANSI X3J3/90.4

Many processors provide a collating sequence that is the same as the ordering of
the internal representation of the character (where the internal representation may
be regarded as either a representation of a character or of some integer). For
example, for a seven-bit character, the internal representation of the first character
is '0000000" binary (O decimal) and the last character is '1111111' binary (127
decimal). For such a processor, ICHAR returns the value of an internal character
representation, considered as an integer. CHAR takes an appropriate small integer
and returns the character having the same internal representation.

B16. Section 16 Notes

The name of a block data subprogram has no explicit use within the FORTRAN
language. It is available for documentation and for possible use within a
computer environment.

B17. Section 17 Notes

The size of an array is the number of elements (5.2.3), but the storage sequence of
the array also has a size, which may be different from the number of elements
(17.1.2).

The definition of character entities occurs on a character-by-character basis. The
use of substrings or partially associated entities permits individual characters or
groups of characters within an entity to become defined or undefined.

B18. Section 18 Notes

There is no explicit means for declaring an entity to be a variable. An entity
becomes a variable if it is used in a manner that does not cause it to be
exclusively something else. Note that the name of a variable may aso be the
name of a common block, except when the name of the variable is aso the name
of afunction.

FORTRAN 77 Full Language Page B-13

CONTENTS

APPENDIX B: SECTION NOTES B-1
B1. SectionlNotes B-1
B2. Section2Notes B-1
B3. Section3Notes B-2
B4. Section4Notes B-2
B5. Section5Notes B-3
B6. Section6Notes B-3
B7. Section7Notes B-3
B8. Section8Notes B-3
B9. Section9Notes B-4
B10. Section10Notes B-4
B11. SectionllNotes B-4
B12. Section12Notes B-5
B13. Section13Notes B-9
B14. Section1l4Notes B-10
B15. Sectionl5Notes B-10
B16. Section16Notes B-13
B17. Sectionl7Notes B-13
B18. Section18Notes B-13

ANSI X3J3/90.4

APPENDIX C: HOLLERITH

The character data type was added to provide a character data processing
capability that is superior to the Hollerith data capability that existed in ANS
X3.9-1966.

The Hoallerith data type has been deleted. For processors that extend the standard
by allowing Hollerith data, the following rules for programs are recommended:

C1. Hollerith Data Type

Hollerith is a data type; however, a symbolic name must not be of type Hollerith.
Hollerith data, other than constants, are identified under the guise of a name of
type integer, real, or logical. They must not be identified under the guise of type
character. No recommendation is made regarding Hollerith under the guise of
double precision or complex.

A Hollerith datum is a string of characters. The string may consist of any
characters capable of representation in the processor. The blank character is
significant in a Hollerith datum. Hollerith data may have an internal
representation that is different from that of other data types.

An entity of type integer, real, or logical may be defined with a Hollerith value by
means of a DATA statement (C4) or READ statement (C6). When an entity is
defined with a Hollerith value, its totally associated entities are also defined with
that Hollerith value. When an entity of type integer, real, or logica is defined
with a Hollerith value, the entity and its associates become undefined for use as
an integer, real, or logical datum.

C2. Hollerith Constant

The form of a Hollerith constant is a nonzero, unsigned, integer constant n
followed by the letter H, followed by a string of exactly n contiguous characters.
The string may consist of any characters capable of representation in the
processor. The string of n characters is the Hollerith datum.

In a Hollerith constant, blanks are significant only in the n characters following
the letter H.

C3. Redtrictions on Hollerith Constants

A Hollerith constant may appear only in a DATA statement and in the argument
list of a CALL statement.

C4. Hollerith Constantin

An integer, real, or logical entity may be initially defined with a Hollerith datum
by a DATA statement.

A Hollerith constant may appear in the list clist, and the corresponding entity in
the list nlist may be of type integer, real, or logical.

For an entity of type integer, real, or logical, the number of characters n in the
corresponding Hollerith constant must be less than or equal to g, where g is the
maximum number of characters that can be stored in a single numeric storage unit
at onetime. If n islessthan g, the entity is initially defined with the n Hollerith
characters extended on the right with g — n blank characters.

Note that each Hollerith constant initialy defines exactly one variable or array
element. Also note that g is processor dependent.

FORTRAN 77 Full Language Page C-1

APPENDIX C: HOLLERITH ANSI X3J3/90.4

C5. Hollerith Format Specification
A format specification may be an array name of type integer, real, or logical.

The leftmost characters of the specified entity must contain Hollerith data that
congtitute a format specification when the statement is executed.

The format specification must be of the form described in 13.2. It must begin
with a left parenthesis and must end with a right parenthesis. Data may follow
the right parenthesis that ends the format specification and have no effect. Blank
characters may precede the format specification.

A Hollerith format specification must not contain an apostrophe edit descriptor or
an H edit descriptor.

C6. A Editing of Hollerith Data

The Aw edit descriptor may be used with Hollerith data when the input/output
list item is of type integer, real, or logical. On input, the input list item will
become defined with Hollerith data. On output, the list item must be defined with
Hollerith data.

Editing is as described for Aw editing of character data except that len is the
maximum number of characters that can be stored in a single numeric storage
unit.

C7. Hollerith Constant in a Subroutine Reference

An actual argument in a subroutine reference may be a Hollerith constant. The
corresponding dummy argument must be of type integer, real, or logical. Note
that this is an exception to the rule that requires that the type of the actua and
dummy argument must agree.

FORTRAN 77 Full Language Page C-2

CONTENTS

APPENDIX C: HOLLERITH

CL
c2.
C3.
C4.
CS.
Co6.
Cv.

Hollerith Data Type .

Hollerith Constant

Restrictions on Hollerith Constants

Hollerith Constant .

Hollerith Format SpeC|f|caI|on .

A Editing of Hollerith Data

Hollerith Constant in a Subroutine Reference

C-1

C-1
C-1

C-2
C-2
C-2

ANSI X3J3/90.4

APPENDIX D: SUBSET OVERVIEW

This Appendix provides an overview of the two levels of FORTRAN specified in
this standard, including the general criteria used for including or excluding a
feature at a given level, and a section-by-section summary of the principal
differences between the full language and the subset.

D1. Background

The full FORTRAN language described in this document is a superset of the
FORTRAN language described in ANSI X3.9-1966, with the exceptions
previously noted. In formulating a subset philosophy, the following existing
FORTRAN standards were considered:

(1) American National Standard FORTRAN, ANS| X3.9-1966
(2) American National Standard Basic FORTRAN, ANSI X3.10-1966
(3) International Standard Programming Language FORTRAN, 1SO R1539

The ISO R1539 document describes three levels. basic, intermediate, and full.
The 1SO R1539 basic level corresponds closely with ANSI X3.10-1966; the 1SO
R1539 full level corresponds closely with ANSI X3.9-1966; and the ISO R1539
intermediate level is in between.

It was thought that the 1ISO R1539 basic level and the ANSI X3.10-1966 had not
been sufficiently used, even on small computer systems, to warrant a subset
corresponding to that level.

The I1SO R1539 intermediate level has been sufficiently used to warrant a subset
of similar capability.

However, it was also thought that some of the capabilities in the full language
described here, but not part of any current standard or recommendation, are so
important for the general use of the language that they should be present in the
subset, at least to some degree.

Furthermore, it was thought that the specification of ANSI X3.10-1966 in such a
manner that it is not a subset of ANSI X3.9-1966 was inconsistent with the
primary goa of promoting program interchange. Consequently, careful attention
has been given to ensuring that a program that conforms to the subset of this
standard will also conform to the full language.

D2. Criteria

The criteria in D2.1 and D2.2 were adopted for the two levels of FORTRAN
within this standard.

D2.1 Full Language.

The most notable new elements of the full language that have been included at
both levels are: character data type, mixed-type arithmetic, INTRINSIC statement,
SAVE statement, and direct access I/0O statements.

D2.2 Subset Language.
(1) The subset must be a proper subset of the full language.
(2) The subset must be based on 1SO R1539 intermediate level FORTRAN.

(3) The subset must include, at a fundamental level, those features of the full
language that significantly increase the scope of the language.

FORTRAN 77 Full Language Page D-1

APPENDIX D: SUBSET OVERVIEW ANSI X3J3/90.4

(4) The eements of the subset must make a minimum demand on storage
requirements, particularly during execution.

(5) The subset must require a minimum of effort for the development and
maintenance of a viable FORTRAN processor.
D3. Summary of Subset Differences

This section summarizes the differences between the full language and the subset
in this standard. It is organized primarily on the basis of the standard itself. The
differences are discussed under the section where each language element is
primarily presented. Of course, a difference in one section may cause changes in
other sections. Such changes are not noted here.

An exception to the above practice is the subsetting of the character data type.
The description of character data type and its usage is so distributed throughout
the standard that a more meaningful summary is produced by collecting the
relevant items into a single presentation.

D3.1 Section 1: Introduction.

The subset is the same as the full language (see aso D4).
D3.2 Section 2: FORTRAN Terms and Concepts.

The subset is the same as the full language.

D3.3 Section 3: Characters, Lines, and Execution Sequence.
The subset is the same as the full language except that:

(1) The character set does not include the currency symbol ($) or the colon
().
(2) Statements may have up to nine continuation lines.

(3) DATA statements must follow all specification statements and precede all
statement function statements and executable statements.

(4) A comment line must not precede a continuation line.
D3.4 Section 4: Data Types and Constants.

The subset is the same as the full language except that double precision and
complex data types are not included. Note that each entity of type character must
have a constant length.

D3.5 Section 5: Arrays and Substrings.
The subset is the same as the full language except that:
(1) An array declarator must not have an explicit lower bound.

(2) A dimension declarator must be either an integer constant or an integer
variable. (This excludes integer expressions, but allows a variable in
common.)

(3) An array may have up to three dimensions.

(4) A subscript expression may be an expression containing only integer
variables and constants. (This excludes function and array element
references.)

FORTRAN 77 Full Language Page D-2

APPENDIX D: SUBSET OVERVIEW ANSI X3J3/90.4

D3.6 Section 6: Expressions.

The subset is the same as the full language except that a constant expression is
alowed only where a general expression is allowed, the logical operators .EQV.
and .NEQV. are not included, and there are restrictions on character expressions
as described in D3.19.

D3.7 Section 7: Executable and Nonexecutable Satement Classification.

The classification of a statement in the subset is the same as in the full language.
However, the subset does not include PRINT, CLOSE, INQUIRE, ENTRY,
BLOCK DATA, PARAMETER, DOUBLE PRECISION, and COMPLEX
statements.

D3.8 Section 8: Secification Satements.
The subset is the same as the full language except that:
(1) The PARAMETER statement is not included.

(2) Only the names of common blocks (enclosed in slashes) may appear in
the list of a SAVE statement. The form of the SAVE statement without
alist is not included.

D3.9 Section 9: DATA Statement.
The subset is the same as the full language except that:

(1) Only names of variables, arrays, and array elements are alowed in the list
nlist. Implied-DO lists are not included.

(2) Values in the list clist must agree in type with the corresponding item in
the list nlist. Type conversion is not included.

Note that DATA statements must follow all specification statements and precede
al statement function statements and executable statements.

D3.10 Section 10: Assignment Statements.

The subset is the same as the full language except for restrictions on character
type presented in D3.19.

D3.11 Section 11: Control Satements.
The subset is the same as the full language except that:

(1) A DO-variable must be an integer variable and DO parameters must be
integer constants or integer variables.

(2) In a computed GOTO statement, the index expression must be an integer
variable.

D3.12 Section 12: Input/Output Satements.
The subset is the same as the full language except that:
(1) The CLOSE statement is not included.
(2) The INQUIRE statement is not included.
(3) List-directed READ and WRITE statements are not included.

(4) An interna file identifier must be a character variable or character array
element.

FORTRAN 77 Full Language Page D-3

APPENDIX D: SUBSET OVERVIEW ANSI X3J3/90.4

(5) Formatted direct access files and statements are not included.
(6) External unit identifiers must be an integer constant or integer variable.

(7) A format identifier must be the label of a FORMAT statement, an integer
variable that has been assigned the label of a FORMAT statement, or a
character constant.

(8) The UNIT= and FMT= forms of unit and format specifiers are not
included.

(9) The ERR= specifier is not included.
(10) The forms READ f [,idlist] and PRINT f [,iolist] are not included.

(11) In input/output lists, the implied-DO parameters must be integer constants
and variables. Implied-DO-variables must be of type integer.

(12) Variable names, array element names, and array names may appear as
input/output list items; constants, character substring references, and
general expressions are not included.

(13) A limited form of OPEN statement is included with the following olist
specifiers required, and no others are allowed:

(8 Aninteger constant unit identifier

(b) The keyword specifier ACCESS='DIRECT’

(c) The record length specifier RECL= rl, where rl is an integer
constant

The OPEN statement is included in the subset only to the extent needed
to connect a unit to a direct access unformatted file. Once a unit has
been connected to a direct access file, it may not be reconnected to any
other file.

(14) Named files are not included.
D3.13 Section 13: Format Specification.
The subset is the same as the full language except that:

(1) The following edit descriptors are not included:

lw.m Tc S
Dw.d TLc SP
Gw.d TRc SS
Gw.dEe

(2) At most three levels of parentheses are permitted.
(3) The format scan terminator (colon) is not included.
D3.14 Section 14: Main Program.
The subset is the same as the full language.
D3.15 Section 15: Functions and Subroutines.

The subset is the same as the full language except that the following are not
included:

(1) The ENTRY statement

FORTRAN 77 Full Language Page D-4

APPENDIX D: SUBSET OVERVIEW ANSI X3J3/90.4

(2) Alternate return specifier
(3) Generic function references

(4) Intrinsic functions involving arguments or results of type double precision
or complex

Other exclusions are presented in D3.19, most notably an asterisk character length
specifier, character functions, the intrinsic functions LEN, CHAR, and INDEX,
and partial association.

D3.16 Section 16: Block Data Subprogram.
Block data subprograms are not included in the subset.
D3.17 Section 17: Association and Definition.

The subset is the same as the full language except that the concept of partial
association does not apply to the subset.

D3.18 Section 18: Scope and Classes of Symbolic Names.
The subset is the same as the full language.
D3.19 Section 1 to 18: Character Type.

The primary intent of the the subset character facility is to provide a minimal
character capability that is functionally comparable to what is possible with most
extensions of Hollerith data.

D3.19.1 Character Features in the Subset. The subset includes the following
character data type features:

(1) Character constants, variables, and arrays, but not character functions

(2) CHARACTER and IMPLICIT statements for declaring character entities
and their lengths; a length specification must be an integer constant (not
an asterisk)

(3) Character assignment statements in which the right-hand side is a
variable, array element, or constant

(4) Character relational expressions in which the operands are variables, array
elements, or constants

(5) Initidlization of character variables, arrays, and array elementsin a DATA
statement

(6) Character variables, arrays, and array elements in output lists

(7) Character variables, arrays, array elements, and constants as arguments in
subprogram references

(8) Character constants (but not variables or array elements) as a format
specification
(9) Tota, but not partial, association of character entities (that is, association

of character entities only of the same length by means of COMMON and
EQUIVALENCE statements or by argument association)

(10) Input/output of character data, both formatted (using character edit
descriptors) and unformatted

FORTRAN 77 Full Language Page D-5

APPENDIX D: SUBSET OVERVIEW ANSI X3J3/90.4

D3.19.2 Character Features Not in the Subset. The subset does not include the
following character data type features:

(1) Substring reference and definition

(2) Concatenation operator

(3) Use of character variables or array elements as format specifications
(4) Partia association of character entities

(5) Character functions

(6) Theintrinsic functions LEN, CHAR, and INDEX

(7) Character length specification consisting of an asterisk or any expression
other than a constant

D4. Subset Conformance.

Conformance at the subset level of this standard involves requirements that relate
to the full language for both processors and programs.

D4.1 Subset Processor Conformance.

A standard-conforming subset processor may include an extension to the subset
language that has an interpretation in the full language only if the processor
provides the interpretation described for the full language. That is, a standard-
conforming subset processor may not provide an extension that conflicts with the
full language. Extensions that do not have forms and interpretations in the full
language are not precluded by this requirement.

As an example, a standard-conforming subset processor may provide a double
precision data type provided that the requirements for double precision are
fulfilled.

D4.2 Subset Program Performance.

A program that conforms to the subset level of this standard must have the same
interpretation at both the subset level and the full language level. The principal
implication of this requirement concerns the use of function names that are
identified as specific or generic intrinsic function names at the full language level
but which are not available at the subset level. Examples of such names are
DSIN, MIN, and CABS.

A subset-conforming program may not use such names as intrinsic functions
because these names are not defined as intrinsic functions in the subset language.
Moreover, a subset-conforming program may not use such names as externa
function names unless such names are identified as external function names by
appearing in an EXTERNAL statement. If such names are not explicitly declared
as external, the names would be classified as externa by a subset processor and as
intrinsic by a full language processor. Note that the burden of avoiding this
situation rests on the program. A subset-conforming processor is not required to
recognize that a full language intrinsic name is being used without being declared
as externa. In effect, the full set of names described in Table 5 may be
considered as reserved intrinsic function names in the subset even though only a
subset of those names is available for use.

FORTRAN 77 Full Language Page D-6

CONTENTS

APPENDIX D: SUBSET OVERVIEW

D1.

D2.

D21
D22
D3.

D31
D3.2
D3.3
D34
D35
D3.6
D3.7

Background
Criteria .

Full Language.

Subset Language. .

Summary of Subset leferenc&s

Section 1: Introduction. .o

Section 2: FORTRAN Terms and Concepts

Section 3: Characters, Lines, and Execution Sequence.

Section 4: Data Types and Constants.
Section 5: Arrays and Substrings.
Section 6: Expressions. .

Section 7: Executable and Nonexecutable Statement

Classification.
D3.8 Section 8: Specm cat|on Statements
D3.9 Section 9: DATA Statement.

D3.10
D3.11
D3.12
D3.13
D3.14
D3.15
D3.16
D3.17
D3.18
D3.19
DA4.

Section 10:
Section 11:
Section 12
Section 13:
Section 14:
Section 15:
Section 16:
Section 17:
Section 18:

Assignment Statements.
Control Statements. .
Input/Output Statements.
Format Specification.
Main Program.

Functions and Subroutl nes.
Block Data Subprogram.
Association and Definition.

Scope and Classes of Symbolic Nameﬁ

Section 1 to 18; Character Type.
Subset Conformance.
D4.1 Subset Processor Conformance
D4.2 Subset Program Performance. .

D-1

D-1
D-1

D-2
D-2
D-2
D-2
D-2
D-2
D-3

D-3
D-3

D-3
D-3

D-4
D-4

D-5
D-5

D-5
D-6
D-6
D-6

ANSI X3J3/90.4

APPENDIX E: FORTRAN STATEMENTS

Form

ASSIGN s TO i
BACKSPACE u
BACKSPACE (alist)
BLOCK DATA [sub]

CALL sub [([a[.,d]..])]

CHARACTER [*len[,]] nam [,nam]...

CLOSE (dllist)
COMMON [/[chl/nlist][}/[ch]/nlist]...

COMPLEX v [,V]...

CONTINUE
DATA nlist/clist/ [[]nlist/clist/]...
DIMENSION a(d) [,a(d)]...

DOs|[]i=e1,e[,e3]

DOUBLE PRECISION V [V]...

ELSE

ELSE IF (e) THEN
END

END IF

ENDFILE u
ENDFILE (alist)

ENTRY en [([d [.d]...])]

FORTRAN 77 Full Language

Descriptive Heading

Statement Label
Assignment Statement

File Positioning
Statements

BLOCK DATA Statement

Subroutine Reference:
CALL Statement

Character Type-
Statement

CLOSE Statement
COMMON Statement

Complex Type-
Statement

CONTINUE Statement
DATA Statement
DIMENSION Statement
DO Statement

Double Precision
Type-Statement

ELSE Statement
ELSE IF Statement
END Statement
END IF Statement

File Positioning
Statements

ENTRY Statement

Page E-1

APPENDIX E: FORTRAN STATEMENTS ANSI X3J3/90.4

EQUIVALENCE (nlist) [,(nlist)]... EQUIVALENCE Statement

EXTERNAL proc [,proc]... EXTERNAL Statement

FORTRAN 77 Full Language Page E-2

APPENDIX E: FORTRAN STATEMENTS

Form

FORMAT fs
fun ([d [,d]..]) = e

[typ] FUNCTION fun ([d [,d]...])

GO TOI [[I(s[.9.-)]

GO TOs

GO TO (s[,9..)[] i

IF (e) st

IF(e)s1, 2, s3

IF (€) THEN

IMPLICIT typ (a[,9]...)
[typ (a[.d]..)]...

INQUIRE (iflist)

INQUIRE (iulist)

INTEGER Vv [,V]...

INTRINSIC fun [,fun]...

LOGICAL v [,V]...

OPEN (olist)
PARAMETER (p=e€ [,p=€]...)
PAUSE [n]

PRINT f [,iolist]

PROGRAM pgm

FORTRAN 77 Full Language

ANSI X3J3/90.4

Descriptive Heading

FORMAT Statement
Statement Function
Statement

FUNCTION Statement

Assigned GO TO
Statement

Unconditiona GO TO
Statement

Computed GO TO
Statement

Logica IF Statement

Arithmetic IF
Statement

Block IF Statement
IMPLICIT Statement
INQUIRE by File
Statement

INQUIRE by Unit
Statement

Integer Type-
Statement

INTRINSIC Statement

Logica Type-
Statement

OPEN Statement

PARAMETER Statement

PAUSE Statement

Data Transfer Output
Statement

PROGRAM Statement

Page E-3

APPENDIX E: FORTRAN STATEMENTS

Form

READ (cilist) [iolis]

READ f [,iolist]
REAL v [V]...
RETURN [€]

REWIND u
REWIND (alist)

SAVE [a[,d]...]
STOP [n]

SUBROUTINE sub [([d [,d]...])]

WRITE (cilist) [iolist]

FORTRAN 77 Full Language

ANSI X3J3/90.4

Descriptive Heading

Data Transfer Input
Statement

Data Transfer Input

Statement

Rea Type-Statement
RETURN Statement

File Positioning
Statements

SAVE Statement
STOP Statement
Subroutine Subprogram
and SUBROUTINE
Statement

Arithmetic Assignment
Statement

Logical Assignment
Statement

Character Assignment
Statement

Data Transfer Output
Statement

Page E-4

CONTENTS

APPENDIX E: FORTRAN STATEMENTS .

E-1

ANSI X3J3/90.4

APPENDIX F: SYNTAX CHARTS

Appendix F is temporarily unavailable.

FORTRAN 77 Full Language Page F-1

CONTENTS

APPENDIX F: SYNTAX CHARTS

F1

