Evidence for an evolving cyclotron line energy in 4U 1538–522

Paul B. Hemphill

Richard E. Rothschild, Felix Fürst, Victoria Grinberg, Dmitry Klochkov, Peter Kretschmar, Katja Pottschmidt, Rüdiger Staubert, and Joern Wilms

5 April 2016

4U 1538-522: Vital statistics

4U 1538–522 is a moderately-luminous ($\sim\!5\times10^{36}$ erg $^{-1})$ wind-accreting X-ray pulsar

- RXTE (Coburn+ 2001, Rodes-Roca+ 2009) and BeppoSAX (Robba+ 2001) find CRSF at ~20 keV
- Suzaku (Hemphill+ 2014) finds CRSF at ~ 22 keV

4U 1538-522: Vital statistics

4U 1538–522 is a moderately-luminous ($\sim\!5\times10^{36}$ erg $^{-1})$ wind-accreting X-ray pulsar

- RXTE (Coburn+ 2001, Rodes-Roca+ 2009) and BeppoSAX (Robba+ 2001) find CRSF at \sim 20 keV
- Suzaku (Hemphill+ 2014) finds CRSF at \sim 22 keV
- Is this due to some other physical factor, *e.g.* a correlation with luminosity?
- Or is this because of model choice and/or instrumental differences?

Analysis strategy

We analyze all RXTE (\sim 50 observations) and Suzaku data (1 observation), and some INTEGRAL.

- Three data selections:
 - Pulse-by-pulse, luminosity-resolved (phase-averaged)
 - Peak of primary pulse (phase-resolved)
 - Peak of secondary pulse (phase-resolved)
- Use same model for all data:
 - Powerlaw-HighEcut continuum
 - Gaussian-profile CRSFs at ~21 and ~50 keV

E_{cyc} vs. luminosity

E_{cyc} vs. luminosity

E_{cyc} vs. luminosity

Change in $E_{\rm cyc}$ with time

Probably not simply a change in scattering region altitude:

- Dipole field? 5% increase in $|\vec{B}|$ means **1.5 km** decrease in scattering region altitude
- But constant $E_{\rm cyc}$ implies we're close (\lesssim 100 m) to the surface (see, e.g., Becker+ 2012)

However, simulations (Mukherjee+ 2012) show \sim 15% deviations from dipolar fields in accretion mounds

• Could a reconfigured/collapsed accretion mound increase *E*_{cyc}?

One last thing to think about...

Primary pulse only — $E_{\rm cyc}$ still increases

Secondary pulse only — no significant change

Conclusions

- 4U 1538–522's CRSF is uncorrelated with luminosity
- However, Suzaku spectra show ~1 keV higher-energy CRSF compared to RXTE data
- Shift is significant at \sim 4 σ level in both phase-averaged and pulse-peak data

However...

Conclusions

- 4U 1538–522's CRSF is uncorrelated with luminosity
- However, Suzaku spectra show ~1 keV higher-energy CRSF compared to RXTE data
- Shift is significant at \sim 4 σ level in both phase-averaged and pulse-peak data

However...

- It's only one point!
- Shift is not detected in data from secondary pulse

Conclusions

- 4U 1538–522's CRSF is uncorrelated with luminosity
- However, Suzaku spectra show ~1 keV higher-energy CRSF compared to RXTE data
- Shift is significant at \sim 4 σ level in both phase-averaged and pulse-peak data

However...

- It's only one point!
- Shift is not detected in data from secondary pulse

Remaining questions:

- Is this a long-term or short-term effect?
- Is this a change in only one magnetic pole?

NuSTAR and *INTEGRAL* observations this AO! Physical models are under development (see other talks in this session, also posters by Gottlieb+ [120.09], Rothschild+ [120.21], Wolff+ [120.24])

Backup slides

Other parameters

Confidence contour — phase-averaged

Confidence contour — pulse peak

Comparison — RXTE and Suzaku

