

The Broadband Spectrum of Centaurus X-3

Amy M. Gottlieb^{1,2,3}, Katja Pottschmidt^{1,2}, Diana M. Marcu-Cheatham^{1,2}, Michael T. Wolff⁴, Matthias Kühnel⁵, Sebastian Falkner⁵, Paul B. Hemphill⁶, Slawomir Suchy⁷, Peter A. Becker⁸, Kent S. Wood⁹, Jörn Wilms⁵

¹CRESST/NASA-GSFC, Greenbelt, MD, USA, ²UMBC, Baltimore, MD, USA, ³University of Florida, Gainesville, FL, USA, ⁴Naval Research Laboratory, Washington, DC, USA, ⁵ECAP & Remeis Observatory, Bamberg, Germany, ⁶CASS/UCSD, La Jolla, CA, USA, ⁷Altensteig, Germany, ⁸GMU, Fairfax, VA, USA, ⁹Praxis Inc., Alexandria, VA, USA

E-mail: agottlieb7@ufl.edu

Abstract

Cen X-3: This source is an eclipsing ~ 4.8 s X-ray pulsar consisting of a neutron star and an O6.5II mass donor in a ~ 2.1 d orbit (Ash et al., 1999, MNRAS 307, 357). **Suzaku:** Cen X-3 was observed at average flux in 2008 for one binary orbit. We selected ~ 11 ks of constant hardness for spectral analysis, where $L_{eng.3-60keV.5.7kpc} = 2 \times 10^{37}$ ergs/s. **NuSTAR:** Cen X-3 was observed during another phase of average flux in 2015 for ~ 22 ks. We present a preliminary spectral analysis where $L_{eng.3-60keV.5.7kpc} = 1.5 \times 10^{37}$ ergs/s. **Physical Continuum Model:** The selected *Suzaku* data were successfully modeled with one of the first physical continuum models describing the emission from an accretion column, the "radiation dominated radiative shock" model of Becker & Wolft, 2007, Apl 654, 435. Its main parameters are the radius, temperature, and pseudo cross-sections of the column. **Emission Geometry Model:** The *Suzaku*-PIN pulse profile shows a phase shift at the cyclotron line energy as predicted by Schönherr et al., 2014, A&A 564, L8.

(A2) Hardness Selection: Suzaku

(A1) Lightcurves: Suzaku (BAT Context)

FIGURE 1: TOP: Time of the Suzaku observation of Cen X-3 in the Swift-BAT longterm monitoring context. Bottom: Suzaku-XIS lightcurve of Cen X-3 covering one -2.1 d binary orbit. The red part highlights ~11 ks selected for spectral analysis, see (B1) and (B2) below.

(C1) Phase Shift at Cyclotron Line

FIGURE 7: SUZARU-PIN pulse profile map for the data selected in (A2): Normalized color-coded flux, F as a function of pulse phase, ϕ , and energy. Green contours represent (SN=10-30. The right nanel shows the energy dependent phase shift, $\Delta\phi$, of each pulse profile with respect to the mean profile.

Using Monte Carlo simulations for cyclotron resonant scattering and a numerical ray-tracing routine accounting for general relativistic lightbending Schönherr et al., 2014, A&A 564, L8, showed that photons leaving the accretion column around the cyclotron resonance energy $E_{\rm cyc}$ have an altered emission geometry. Consistent with this picture we find that the main peak of Cen X-3's pulse profile shows a phase shift of ~ 0.06 above $E_{\rm cyc} \sim 30\,{\rm keV}$ with respect to the average 10–60 keV Suzaku-PIN pulse profile.

FIGURE 2: Top: Hardness ratio in the soft energy band as measured by Suzaku-XIS. Bottom: Hardness ratio in the hard energy band as measured by Suzaku-PIN. The red part shows near constant hardness in both energy bands and was therefore selected for spectral analysis, see (B1) and (B2) below.

FIGURE 5: Top: Unfolded best fit model components with a physical continuum (red) originating in the accretion column for the selected *Suzaku* data.

Physical continuum, new for X-ray pulsar accretion: Xspec implementation of analytical model by Becker and Wolff, 2007, ApJ 654, 435. See also session 201 (talks Wolff, Marcu-Cheatham), poster 120.24, and Wolff et al., 2016, ApJ, submitted. Three components: Comptonized - (1) bremsstrahlung, - (2) cyclotron emission, - (3) blackbody radiation (negligible here).

See also alternative new xspec implementation of numerical model by Farinelli et al., 2016, A&A, in press.

Main result: Physical model fit is equivalent to best empirical fit. Additional model input: Distance, standard neutron star mass and radius, $\sigma_{\perp} = \sigma_{T}$, empirical fit: 0.1–75 keV unabsorbed flux $\rightarrow \dot{M}$, cyclotron line at ~30 keV $\rightarrow B$.

Other components, similar for empirical and physical fits: Partial covering absorption, $K\alpha$ lines from neutral, He-like, H-like iron, studied by Naik et al., 2011, ApJ 737, 79. We also see lines at ~ 1 and ~ 6 keV, possibly iron L and a Compton shoulder.

 $\begin{array}{l} Cyclotron line: {\it E}_{cyc}=30.0^{+14}_{-0.7}\,keV, \sigma_{cyc}=6^{+1}_{-2}\,keV, \tau_{cyc}=0.7^{+03}_{-0.5}\\ Broad \ components \ at \ \sim \ 2 \ and \ \sim \ 13\,keV: \ The \ latter \ is \ often \ required \ for \ accr. \ pulsars. \ See \ also \ Cen \ X-3 \ NuSTAR \ fit \ (B3). \end{array}$

(A3) Lightcurves: NuSTAR (BAT Context)

FIGURE 3: Top: Time of the NuSTAR observation of Cen X-3 in the Swift-BAT longterm monitoring context. Bottom: NuSTAR-FPMA lightcurve of Cen X-3 covering ~ 22 ks, see (B3) below for spectral analysis.

FIGURE 6: TOP: Preliminary unfolded best fit model components with an em pirical continuum (red) for the NuSTAR data. Bottom: Preliminary counts spectra and total best fit model for the NuSTAR data.

Acknowledgments

We acknowledge support by the CRESST Summer Internship Program (AMG), the CRESST Suzaku project (AMG, KP), Suzaku cycle 3 GO NASA grant NNX09AO90G (DMM, KP), NuS-TAR cycle 1 GO NASA grant NNX15AV16G (DMM, KP), and 2012 NASA ADAP grant NNH13AV181 / 2014 NRL BAA grant N00173-14-1-G007 (MTW, DMM, KP).

(B3) Spectrum: NuSTAR, Empirical