Application of a Physical Continuum Model to Recent X-ray Observations of Accreting Pulsars

Diana M. Marcu-Cheatham

University of Maryland Baltimore County CRESST/GSFC

K. Pottschmidt, M.T. Wolff, P.A. Becker, K.S. Wood, J. Wilms, P.B. Hemphill, A.M. Gottlieb, F. Fuerst, F.-W. Schwarm, R. Ballhausen

Accretion onto NS Surface

- X-ray seed photons emission in the accretion column:
 - Bremsstrahlung emission
 - Cyclotron emission
 - Blackbody emission
- Seed photons are **up-scattered by electron scattering** in the accretion column:
 - **Bulk Comptonization** due to the bulk motion of infalling electrons
 - **Thermal Comptonization** due to stochastic electron motion
 - Solution to Radiative Transfer
 Equation using Analytical Formalism
 by Becker & Wolff 2007
- Empirical models are used to described cutoff power law shape of the continuum (e.g. Cutoff Power Law, Fermi Dirac Cutoff, etc.)

Sources and Properties

Spectral Fitting GX 304-1

Fit results

Physical & Fermi Dirac Cutoff Models

Source L _{X 1-80keV}	kT_e [keV]	<i>r</i> ₀ [m]	σ_{\parallel} [×10 ⁻⁵ $\sigma_{ m T}$]	$ar{\sigma}$ [×10 ⁻⁴ $\sigma_{ m T}$]	E _{fold} [keV]	E _{cut} [keV]	Г
LMC X-4 25.4 × 10^{37} erg s ⁻¹	$6.53^{+0.08}_{-0.15}$	1912^{+759}_{-604}	$1.14^{+1.12}_{-0.52}$	106.06	$8.0^{+0.8}_{-0.7}$	$26.2^{+2.0}_{-2.7}$	0.65(4)
1 Her X-1 ^{<i>a</i>,<i>b</i>} $4.9 \times 10^{37} \text{ erg s}^{-1}$	4.58(7) ^a	170.4 ^{+1.7} a	$5.2(1)^{a}$	3.5(2) ^{<i>a</i>}	$6.0^{+0.5}_{-0.8}$ b	35.9 ^{+3.0} ^b	$0.888^{+0.008}_{-0.009}$ b
Cen X-3 ^c $4.0 \times 10^{37} \text{ erg s}^{-1}$	$3.1^{+0.4}_{-0.1}$ c	65 ⁺¹² c	$0.28(2)^{c}$	$1.6^{+0.6}_{-0.3}$ c	$7.0^{+0.7}_{-0.6}$ c	18(3) ^c	$1.1^{+0.2}_{-0.1}$ c
GX 304-1 $2.0 \times 10^{37} \text{ erg s}^{-1}$	6.28	69.4	2.7	8.5	$9.3^{+0.8}_{-0.7}$	$29.2^{+2.4}_{-2.7}$	1.47(3)
XTE J1946+274 $0.5 \times 10^{37} \text{ erg s}^{-1}$	4.45(3)	14.0(2)	1.07(2)	$7.0^{+0.5}_{-0.4}$	$9.1(4)^d$	0.0^d	$0.59(2)^d$

Note. — (a) Wolff et al. 2016 submitted, Poster #120.24; (b) Fuerst et al. (2013); (c) Gottlieb et al. 2016 in prep, Poster #120.09; (d) Marcu-Cheatham et al. (2015).

Conclusions

- Results:
 - All sources have statistically good fits $1.04 < \chi^{2}_{red} < 1.35$
 - Regardless of the diversity of the sources, there are no strong variations in T_e : ~3 6 keV similarly to E_{fold} : ~6 9 keV
 - Possible correlation: $r_{o} \thicksim L_{x}$
 - Physical fits reproduce the empirical (FDCO) fits → features that strongly influence the continuum were found in both, i.e., BBODY (GX 304-1), "10 keV bump" (Cen X-3), strong Fe line (Her X-1)
- Revolutionizing spectral modeling of neutron star accretion
 - Large improvement in modeling the X-ray continuum by successfully **statistically fitting a physical model**
 - Estimates for accretion column parameters: T_e, r_o, cross sections
- Next: Physics of Cyclotron Lines

Her X-1, Cen X-3, LMC X-4

- Comparison with BW 2007:
 - T_e approximately the same in both cases, even though luminosities are different
 - Largest differences are in r₀, especially in LMC
 X-4, other two show smaller differences probably due to different luminosities
 - Cen X-3 data was taken at a much higher luminosity in BW 2007

Comparison with Farinelli et al. 2015 (F15)

- F15 states that their velocity profile is more generalized rather than the free fall velocity used by BW
- F15 calculates the second order (vs. first order in BW) bulk-Comptonization → Te slightly lower in F15
- F15 claims a high cyclotron emission that described the "10 keV bump", however, we don't see a comparably strong cyclotron emission
- F15 finds much higher r_0 values (on the order of 1 3 km)

Empirical Continuum Models

$$\mathrm{CUTOFFPL}(E) = AE^{-\Gamma} \times e^{-E/E_{\mathrm{fold}}} \qquad \mathrm{FDCO}(E) = AE^{-\Gamma} \frac{1}{1 + e^{(E - E_{\mathrm{cut}})/E_{\mathrm{fold}}}}$$

$$PLCUT(E) = AE^{-\Gamma} \times \begin{cases} 1 & (E \le E_{cut}) \\ e^{-(E - E_{cut})/E_{fold}} & (E > E_{cut}) \end{cases}$$

NPEX(E) =
$$(A_1 E^{-\alpha_1} + A_2 E^{+\alpha_2})e^{-E/E_{\text{fold}}}$$

Empirical CRSF Models

$$M(E) = \begin{cases} \text{GABS}(E) = \tau_{c} e^{-(E - E_{c})^{2}/(2\sigma_{c}^{2})} \\ \text{CYCLABS}(E) = D_{c} \frac{(W_{c}E/E_{c})^{2}}{(E - E_{c})^{2} + W_{c}^{2}} \end{cases}$$

$$I_0(E) \rightarrow I_0(E)e^{-M(E)}$$

Becker and Wolff Physical Model for Accreting Pulsars

• Green's function distribution f_G satisfies the generalized Kompaneets (1957) transport equation

$$v \frac{\partial f_{\rm G}}{\partial z} = \frac{dv}{dz} \frac{\epsilon}{3} \frac{\partial f_{\rm G}}{\partial \epsilon} + \frac{\partial}{\partial z} \left(\frac{c}{3n_e \sigma_{\parallel}} \frac{\partial f_{\rm G}}{\partial z} \right) - \frac{f_{\rm G}}{t_{\rm esc}} + \frac{n_e \overline{\sigma} c}{m_e c^2} \frac{1}{\epsilon^2} \frac{\partial}{\partial \epsilon} \left[\epsilon^4 \left(f_{\rm G} + kT_e \frac{\partial f_{\rm G}}{\partial \epsilon} \right) \right] + \frac{\dot{N}_0 \,\delta(\epsilon - \epsilon_0) \,\delta(z - z_0)}{\pi r_0^2 \epsilon_0^2}$$

*f*_G convolved with a source distribution function for each type of emission provides the final spectral model

Becker and Wolff Physical Model for Accreting Pulsars

 Green's function distribution f_G satisfies the generalized Kompaneets (1957) transport equation

