

NUSTAR Nuclear Spectroscopic Telescope Array

### **Pulsar observations with NuSTAR**

# Felix Fürst California Institute of Technology



HEAD 2016-04-05 Naples, FL







| Name            | Туре               | E <sub>cyc</sub> [keV] | Reference              |
|-----------------|--------------------|------------------------|------------------------|
| IGR J16393-4643 | Obscured<br>pulsar | 29.3 ± 1.3             | Bodaghee et al., 2016  |
| 2S 1553-542     | Be<br>companion    | 27.34 ± 0.38           | Tsygankov et al., 2016 |
| KS 1947+319     | Be<br>companion    | 12.2 ±0.7              | Fürst et al., 2015     |
| IGR J17544-2619 | SFXT               | $16.9 \pm 0.3$         | Bhalerao et al., 2015  |
| RX J0520.5–6932 | Be<br>companion    | $31.3 \pm 0.8$         | Tendulkar et al., 2014 |
|                 |                    |                        |                        |
| GRO J1008-57    | Be<br>companion    | 78 ± 3                 | Bellm et al., 2014     |



KS 1947+319





- Outburst in 2013 after 11 years of quiescence
- Triggered 3 NuSTAR observations
- Discovery of cyclotron line at 12.3keV in brightest observation
- Only possible due to continuous coverage of relevant energy band (~10-15 keV)



#### KS 1947+319





- Very strong phase dependence of CRSF strength in all observations
- Detected significantly only during minimum of pulse profile!
- Contains information about the emission geometry and location



#### Vela X-1 spectrum







### Vela X-1 in context





Fürst et al., 2014



#### Vela X-1 in context













## Cep X-4: CRSF profile





Green line assumes symmetric line shape



*Ultra-luminous X-ray sources* (*ULXs*)





#### M82 X-2

- First ultra-luminous neutron star (L<sub>X</sub>~10<sup>40</sup> erg/s)
- no CRSF, what is the Bfield?
- How does it accrete?
- Use Galactic sources to extrapolate
- Are there more out there?

X-ray: NASA/CXC/Tsinghua Univ./H. Feng et al.; Full-field: X-ray: NASA/CXC/JHU/D.Strickland; Optical: NASA/ESA/STScI/AURA/The Hubble Heritage Team; IR: NASA/JPL-Caltech/Univ. of AZ/C. Engelbracht

Bachetti et al., 2014





- *NuSTAR* is a CRSF discovery machine
- High sensitivity at hard X-rays and spectral resolution key to uncover new features about CRSF behavior
- Pulse-to-pulse and phase-resolved analysis help us understand accretion regime and emission geometry
- Monitoring of sources in outburst is important to sample different physical conditions