# Self-consistent accretion column modeling

# Sebastian Falkner<sup>1</sup>

HEAD 2016, Naples FL

#### in collaboration with

F.-W. Schwarm<sup>1</sup>,G. Schönherr<sup>2</sup>,D. Klochkov<sup>3</sup>,P. Kretschmar<sup>4</sup>,P. A. Becker<sup>5</sup>,M. T. Wolff<sup>6</sup>,K. A. Postnov<sup>7</sup>,K. Pottschmidt<sup>8</sup>,P. B. Hemphill<sup>9</sup>,R. Ballhausen<sup>1</sup>,R. Staubert<sup>3</sup>, and J. Wilms<sup>1</sup>

<sup>1</sup>Remeis Observatory Bamberg & ECAP, <sup>2</sup>AIP, <sup>3</sup>IAAT, <sup>4</sup>ESA/ESAC, <sup>5</sup>GMU, <sup>6</sup>NRL SSD, <sup>7</sup>SAI, <sup>8</sup>CRESST, <sup>9</sup>CASS







ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

## three-part, modular model

#### Continuum

produced in the dense and optical thick inner column (e.g., Talk by M. Wolff; Becker & Wolff, 2007; Postnov et al., 2015)

#### **CRSF** layer

imprints CRSF onto the continuum in a thin outer layer (e.g., Talk by G. Schönherr; Schwarm et al., 2012)

#### light bending

accounts for geometrical effects (including relativistic effects) (Falkner et al., in prep.)



### Height dependent emission



#### Observed phase resolved spectra



## Observed spatially resolved flux



2nd accretion column only visible due to light bending, which is emitting most of the observed flux  $% \left( {{{\rm{c}}_{\rm{m}}}} \right)$ 

### Pulse profile of KS 1947+300



The narrow peak can be explained with strong light bending

# Conclusions & Outlook

- three-part accretion column model with exchangeable modules (Continuum, CRSF, light bending)
  - $\rightarrow$  simultaneous investigation of (phase resolved) spectra and (energy dependent) pulse profiles
  - $\rightarrow$  drawing conclusions about the geometry of the system, where CRSFs are especially useful
- Quantitative analysis based on large, simulated datasets
- Also interfacing to other continuum models, e.g., Becker & Wolff (2007)

#### References

- Ballhausen R., Kühnel M., Pottschmidt K., et al., 2016, ArXiv e-prints Becker P.A., Wolff M.T., 2007, ApJ 654, 435
- Chandrasekhar S., 1983, The mathematical theory of black holes
- Einstein A., 1916, Annalen der Physik 354, 769
- Misner C.W., Thorne K.S., Wheeler J.A., 1973, Gravitation
- Postnov K.A., Gornostaev M.I., Klochkov D., et al., 2015, mnras 452, 1601
- Schwarm F., Schönherr G., Wilms J., Kretschmar P., 2012, PoS INTEGRAL 2012, 153
- Schwarzschild K., 1916, Abh. Konigl. Preuss. Akad. Wissenschaften Jahre 1906,92, Berlin,1907 189–196