
Modelling the CPU load for the XRISM Resolve Instrument

Bachelorarbeit aus der Physik

Vorgelegt von
David Lochner
21. Februar 2024

Dr. Karl Remeis-Sternwarte Bamberg
Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Prof. Dr. Jörn Wilms

Abstract

During the observation of bright X-ray sources with the XRISM Resolve instrument, the
rate of events that can be processed by the CPU is limited. This affects the processing
of the data and can result in unwanted event loss. To simulate this effect in the SIXTE
end-to-end simulator, I design a model of the CPU, which tracks the unprocessed events.
This model implements the fair scheduling of the pixels in queues based on a round-robin
algorithm. Afterwards, I analyze the current output of SIXTE and the functionality of
the algorithm by simulating sources at various fluxes. Using these results, I discuss
methods to reduce the impact of the CPU limit on observations of bright sources and
give an outlook on further improvements of the scheduling.

2

Contents

1. Introduction 4

2. Resolve 7

3. Event grading and CPU load 9

4. SIXTE and CPU model 10
4.1. Introduction to SIXTE . 10
4.2. Modelling and algorithm . 10

5. Analysis and testing 15
5.1. Branching ratios of the event grades . 15
5.2. CPU load per grade . 16
5.3. Application of the algorithm . 17
5.4. Filter and offset pointing . 22

6. Conclusion and outlook 25

7. Acknowledgements 26

8. References 27

A. Algorithm in python code 29

3

1. Introduction

The universe, viewed through human eyes, seems to be an overall cold and dark place.
This is not the case in regards to the X-ray spectrum, where previously invisible structures
and colors are revealed. Earth’s atmosphere absorbs these X-rays at a high extent, which
is why space missions are required. XRISM (X-ray Imaging and Spectroscopy Mission)
is one of these spacecraft missions by the space agencies JAXA from Japan, NASA from
the United States and the European ESA (XRISM Science Team, 2020).
“The primary purpose of the mission is to recover the science that was lost after the
Astro-H/Hitomi mission failed in 2016, approximately one month after launch (XRISM
Science Team, 2020).” The XRISM spacecraft, shown in Figure 1, launched on 2023
September 7 Japan Standard Time1.
The two instruments onboard are the soft X-ray spectrometer (SXS) Resolve and the
soft X-ray imager Xtend, whereby the focus in this thesis lies on Resolve.
Resolve enables non-dispersive X-ray spectroscopy and operates in the soft X-ray bandpass
in the energy range of∼ 0.3 – 12 keV with an expected energy resolution of 7 eV (XRISM
Science Team, 2020).

Figure 1: The XRISM satellite, where the two instruments (Resolve and Xtend) are
located inside the lower-right area of the main corpus (XRISM Science Team,
2020).

The first data of XRISM published by NASA is shown in Figure 2. The supernova-
remnant N132D in the Large Magellanic Cloud that has been created by an explosion
of “a star roughly 15 times the Sun’s mass” was observed2.

1https://heasarc.gsfc.nasa.gov/docs/xrism/
2https://science.nasa.gov/missions/xrism/nasa-jaxa-xrism-mission-reveals-its-first

-look-at-x-ray-cosmos/,

4

https://heasarc.gsfc.nasa.gov/docs/xrism/
https://science.nasa.gov/missions/xrism/nasa-jaxa-xrism-mission-reveals-its-first-look-at-x-ray-cosmos/
https://science.nasa.gov/missions/xrism/nasa-jaxa-xrism-mission-reveals-its-first-look-at-x-ray-cosmos/

In the spectrum detected by Resolve, multiple elements can be identified through their
emission lines. From these lines, physical properties like temperatures or densities,
which provide more insight into the explosion process can be deduced. The first results
promise an energy resolution of 5 eV representing an improvement over Hitomi. Further
measurements are planned in 2024, which address a broad field of topics2.

Figure 2: The spectrum for the supernova remnant N132D that was measured by
Resolve. It shows peaks that are linked to specific elements. The image on the
right was taken by Xtend (JAXA/NASA/XRISM Resolve and Xtend).

Potential topics in addition to the exploration of supernova remnants are black holes
and galaxy clusters. Resolve enables studies of the surroundings of the event horizon and
the black hole’s growth through mass accretion. The vicinity of a black hole is shaped by
its radiation field and outflowing winds. The study of these gas-containing winds from
black holes can yield detailed insights into the mass outflow, the driving mechanism,
and their impact on the accretion of black holes. Narrow emission and absorption lines
can be detected due to Resolve’s high resolution.
Furthermore, emission lines from hot gas in galaxy clusters can be measured and might
reveal more details about the biggest objects in the universe. The turbulent gas can be
heated by merging clusters, mass accretion or the influence of active galactic nuclei and
flows characteristically. Therefore, the investigations made by Resolve might increase
our understanding of the cluster’s development (XRISM Science Team, 2022).
Brief and quickly fluctuating phenomena, for instance, the disk winds, can best be
studied in bright sources with a sufficiently high count rate (Hodges-Kluck, 2023). One
potential object is the Crab supernova remnant and nebula, which is a bright source
with a X-ray flux of 2.4 · 10−8 erg/s/cm2 defined as 1 Crab3.
An image of the Crab nebula is shown in Figure 3. The Crab nebula was created through

3https://heasarc.gsfc.nasa.gov/docs/heasarc/headates/brightest.html

5

https://heasarc.gsfc.nasa.gov/docs/heasarc/headates/brightest.html

the collapse of a massive star. The neutron star in its center rotates quickly and possesses
a strong magnetic field. As a result, jets consisting of matter and anti-matter are powered
in the pole directions and a wind propagates perpendicular to them4.

Figure 3: A combined image of the Crab nebula, where the X-ray data from the Chandra
mission is blue and white. The data from the Hubble space telescope in the
optical range is purple and the data from the Spitzer mission in the infrared
range is pink (X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared:
NASA-JPL-Caltech).

Before these astrophysical observations with XRISM are executed, sufficient preparation
and study of Resolve’s performance is necessary. This is possible by a detailed simulation
of an object and the instrument. One of the best software tools for this task is SIXTE by
Dauser et al. (2019). The quality of the simulation depends greatly on the consideration
of effects and disturbances on the instruments and their electronics.
One of the fundamental effects on the processing of events from bright sources, like the
Crab nebula, is the load-limitation of the central processing unit (CPU). If this load
limit is exceeded, a significant amount of unprocessed events is loss (Ishisaki et al., 2016;
Mizumoto et al., 2022). This thesis is an attempt to understand the current output
of SIXTE and to provide a first solution for the implementation of an algorithm into
SIXTE, which tracks the unprocessed events. At the beginning, a deeper understanding
of the detector and its functionality is necessary.

4https://chandra.harvard.edu/photo/2018/crab/

6

https://chandra.harvard.edu/photo/2018/crab/

2. Resolve

The SXS, shown in Figure 4, is a HgTe-microcalorimeter and currently the only detector
of that type operated in space (Hodges-Kluck, 2023).
A calorimeter consists of three fundamental elements. Firstly, an absorber takes in the
incident photon and converts its energy into heat. Secondly, a thermometer measures
the temperature variation in the absorber, which acts as the signal pulse. Finally, a
weak thermal link to a heat sink is responsible for returning the absorber material to its
initial state (McCammon, 2005). Due to the small temperature variations induced by
the X-rays, in order to achieve a high resolution, the system stays at a low temperature
of 50 mK and is cooled by liquid helium cryogen.
Each of the 36 pixels has a dimension of 30′′. The pixel array is of a 6×6-shape with a
field of view of 2.9′ × 2.9′ (XRISM Science Team, 2020).
One of the pixels is located outside of the array to record the gain drift of the detector
through the illumination with a 55Fe-source (Mizumoto et al., 2022).

Figure 4: The SXS onboard of Hitomi photographed prior to launch. Resolve is alike
(XRISM Science Team, 2020).

The incident photon induces a pulse in a pixel, whose amplitude ∆T is proportional
to the photon’s energy E0 via

∆T =
E0

C
(1)

with the absorber’s heat capacity C. An example pulse shape is displayed in Figure 5,
where τ denotes the time for returning the absorber back to its initial state (McCammon,
2005).
The digital electronics for the SXS onboard is the pulse-shape-processor (PSP) with

two units. Each unit possesses one field-programmable-gate-array (FPGA) and two
CPUs, which is shown in Figure 6 (Tsujimoto et al., 2018).
An analog-digital converter (XBOX ADC) amplifies the signal received from the pixel
and digitizes it. Afterwards, the FPGA triggers the digitized pulse of the event and
sends it to the CPU for further processing.
The event dual buffer (EDB) stores the triggered events and distributes them to buffers,

7

Figure 5: The shape of the pulse caused by the thermalization of the energy. The thermal
link possesses the conductivity G (McCammon, 2005).

which work on a first-in-first-out basis (FIFO). There is one FIFO for each pixel, so no
spatial information is lost. If it exceeds its capacity of 256 entries and needs to store
another event, the associated FIFO is emptied and the new event fills the first spot
(Hodges-Kluck, 2023).
Each CPU is responsible for the processing of nine FIFOs. The processing includes the
inspection if it is a cosmic ray event using an anti-coincidence detector located below
the pixel array, event grading, and optimal filtering (Mizumoto et al., 2022).
In optimal filtering, the CPU determines the photon’s energy, which is proportional
to its pulse height. The PSP “cross-correlates a normalized pulse template with each
pulse”, where the templates vary for different event types (Hodges-Kluck, 2023).

Figure 6: An overview of the main parts of the processing electronics. The continuous
lines designate digital signals and the double lines designate analog signals.
After the CPU, the data are transferred via SpaceWire to the satellite-
management-unit (SMU) and the data-receiver (DR) (Ishisaki et al., 2016).

8

3. Event grading and CPU load

Event grading distinguishes the different event types. Each incoming event receives a
grade, which contains information about its temporal position to other triggered pulses
in this pixel. Figure 7 illustrates this process, where the minimum temporal separations
for the different grades and where they are set are visible.

Figure 7: An event’s grade depends on the temporal position of the pulse at t0 = 0 to
the previous pulse at −tp and to the next pulse at tn. The decisive values for
tp and tn are 17.52 ms and 69.92 ms (XRISM Science Team, 2022).

The differentiation between secondary and primary events is important to classify
the position in an event pair. Thus, for high-resolution primary (Hp)-events, a high
resolution-template is used to measure the amplitude, which has a record length of 81.92
ms or 1024 samples. For mid-resolution primary and secondary (Mp and Ms)-events a
shorter template of 20.48 ms duration is used and for the low-resolution primary and
secondary (Lp and Ls)-events merely the maximum height for the pulse is measured
without any optimal filtering (Ishisaki et al., 2016).
The energy resolution of ∆E ≤ 7 eV is only ensured for Hp- and Mp-events and makes
them the preferred event grades (XRISM Science Team, 2022).
The event processing consumes a minimal share of the CPU load for a single event
depending on its grade, though it increases enormously for higher incoming rates. The
maximal CPU load is finite and a limitation can be reached, which affects the measurement
significantly starting at a flux of around 1 Crab according to Hodges-Kluck (2023). This
limit at 100 % CPU load is reached for a countrate of ∼ 200 counts/s for all four CPUs
combined. Exceeding this limit, the FIFOs fill up faster than the CPU can process the
events, which leads to FIFO dumping and a massive event loss (Hodges-Kluck, 2023).
For the correctness of the measurement, it is crucial to know the events that are affected.
Therefore, the processed and unprocessed events are tracked using an algorithm, which
is the topic of the following section.

9

4. SIXTE and CPU model

SIXTE provides the input for the following algorithm, which means that a basic understanding
of its architecture and functionality is beneficial.

4.1. Introduction to SIXTE

SIXTE (Simulation of X-ray Telescopes) by Dauser et al. (2019) is based on a Monte
Carlo simulation with single photons and can be executed easily with Dauser et al.
(2023). It takes a SIMPUT file as input, in which the observed source is specified. In
the next step, SIXTE applies this input and details regarding the instrument’s pointing
for the photon production. The generated photons are directed through the specified
optics of the spacecraft onto the detector so that an impact list of their properties, such
as arrival time, incident pixel, and energy is created. At the end, SIXTE creates the
final event list, where the detector model and its form of event processing are taken into
account. Specific information about the vignetting, the point spread function (PSF), the
ancillary response file (ARF), and the redistribution matrix file (RMF) is necessary to
run SIXTE. These data are, for instance, from measurements or from simulations. An
overview of SIXTE is provided in Figure 8, where the few specific parameters SIXTE
requires at each step, are visible (Dauser et al., 2019). The algorithm for the CPU
limit effect will be implemented into the detector model so that the unprocessed and
processed events are separate in the final event list. With this knowledge, the next
step is the development of the algorithm, which needs specific data on the events from
SIXTE.

Figure 8: An overview of the functionality of SIXTE, where the three yellow symbols
are the fundamental steps. The SIMPUT file defines the source catalog and
the final event file is used for further operations (Dauser et al., 2019).

4.2. Modelling and algorithm

The CPU load for Resolve onboard of XRISM is simulated with an algorithm where the
tasks of the CPUs to process events are distributed using a round-robin scheduling. The
idea refers to Hodges-Kluck (2023). The original code is in Appendix A. Each CPU
possesses one queue which is initialized in a strict rising order and contains FIFO 0 to

10

Table 1: The parameters are calculated as the mean values over all CPUs of Table 3
from Mizumoto et al. (2022).

aHp aMp aMs aLp aLs c
0.0196 0.018475 0.016875 0.018525 0.015475 0.085875

8. This implies that no FIFO is prioritized. The rotation of this queue schedules the
event processing of each FIFO because a single event is processed at a time. The queues
and the FIFOs are implemented as double-ended queues, which provide insertion and
deletion actions at the front and the back.
The important information about each event like the event grading, the arrival time,
and the pixel of detection is computed by SIXTE. Using this information the time
consumption of the CPU for the processing of a single event, is

(CPU rate) =
∑
pixel

ak · (pixel count rate of the event type k) + c (2)

(Mizumoto et al., 2022). The count rate denotes the number of triggered events in the
pixel per second and grade. The parameters ak are the associated values of the five
grades and c is the baseload of each CPU, which considers other tasks that occupy
the four CPUs. The parameters are the mean values over all CPUs of Table 3 from
Mizumoto et al. (2022) and are shown in Table 1.

In the algorithm, the CPU load per event is understood as the processing time tp of
an event. To illustrate this, if an incident event is marked with a Hp-grade by SIXTE,
tp is

tp =
aHp · 1
(1− c)

≈ 21.441 ms (3)

Furthermore, for a Mp-event tp ≈ 20.211 ms, for a Ms tp ≈ 18.460 ms, for a Lp
tp ≈ 20.265 ms and for a Ls tp ≈ 16.929 ms. This confirms that the Hp-events consume
the most time of the CPU for their processing and the Ls-events the least. This formula
is part of the algorithm, of which an overview is shown in Figure 10. The symbol shapes
used in the overviews are explained in the captions of Figure 9.
When an event enters the detector, the algorithm wakes up and needs initial information
on the layout of the detector to find the associated CPU and queue. It processes events
that are stored in the FIFOs until the arrival time t0 of the incident event. The queue
of each CPU schedules the FIFOs and so the order of processing. The queue processing,
as indicated in Figure 11, is based on a loop, which processes stored events as long as a
filled FIFO exists. Otherwise, the current time tCPU will be set to t0. If a filled FIFO
exists, its first stored event is processed if there is sufficient time until t0 and tCPU is
updated with the event processing time tp. Otherwise, the processing will stop. After
the processing of an event or the discovery of an empty FIFO, the queue rotates, which
means that the FIFO in focus is added to the back of the line.
After the queue processing, the incident event is added to the associated FIFO as long as

11

it has storage left. Otherwise, the stored events are added to the not-processed events,
and the FIFO gets dumped. In the last step, the main loop continues with the next
event at t1. After the last event of the simulation, no further events will arrive, so the
FIFOs can not overflow and all stored events are added to the processed events. In case
of processed or unprocessed events, they are added to the final output lists, which are
referenced as arrows to the shapes according to Figure 9.
In order to gain a deeper understanding of the algorithm and its functionality beyond
the overviews, the following sections contain various analyses of the algorithm with data
simulated by SIXTE.

Input

Process

Decision

Output

Details about the events or Resolve

An action or determination is executed

The process line is split depending on the condition

The lists of unprocessed and processed events

Figure 9: The symbols used in Figure 10 and Figure 11 on the left and their explanations
next to them.

12

Incident event at t0

Determine CPU

Structure (Array, CPUs, ...)

Process
queue until t0

Determine
FIFO

FIFO-length == 256

New Event?

Append all
in FIFOs

Processed

Next Event at t1

Append events
in FIFO

Dump FIFO

Append event
at t0 to FIFO

Not processed

No

Yes

Yes

No

Figure 10: Schematic overview of the algorithm that was used to simulate the CPU
load. The underlying scheduling was done by a round-robin algorithm. The
highlighted step is shown more detailed in Figure 11.

13

Process
queue until t0

Length all FIFOs == 0

Determine first
FIFO in queue

Set tCPU to t0

Fifo-length == 0

Event at t
from FIFO

Rotate queue

Compute event
processing-
time tp

Event grade

t0 - tCPU >= tpAdd tp to tCPU
Append

Event at t

Stop processing

Rotate queue

Remove event
at t from FIFO

Processed

No

Yes

No

Yes

No

Yes

Figure 11: Schematic overview of the step, where the queue is processed until the time
of the incoming event t0. tCPU tracks the current time of the CPU.

14

5. Analysis and testing

It is necessary to test the model and algorithm sufficiently before implementing it into
SIXTE itself. Therefore, I analyze the current output of SIXTE in order to investigate
the model for the CPU load and the algorithm in detail. Since the simulations are based
on pre-launch assumptions, the Gate-Valve located in front of the detector is in its open
state for the following simulations. This is a cover in front of the detector, which filters
mainly low-energy photons in its closed state2. Since the behavior shown below depends
only on the event rate, simulations with open or closed Gate-Valve would produce similar
results, with only the conversion between flux and incoming rate changing.

5.1. Branching ratios of the event grades

The final event list of SIXTE contains the grade of each event. The branching ratios
of the grades in the final event file depend on the source’s flux. Based on SIXTE
simulations of Resolve, the branching ratios of a point source for different fluxes are
shown in Figure 12. The global behavior is that the resolution of the events decreases
with higher fluxes as the time between the events in the pixels shrinks. As a result, the
fraction of Ls-events rises, whereas the fraction of Hp- and Mp-events decreases with
higher fluxes. For bright sources with a flux of more than 1 Crab, mainly low-resolution
events enter the FIFOs. The branching ratios of Mp- and Lp-events are relatively low
because they require a temporal separation of more than 69.92 ms to the previous pulse
followed by a temporal closer subsequent pulse, which is generally improbable.

10 3 10 2 10 1 100 101
Flux [Crab]

100 101 102 103

Incoming rate [1/s]

0.0

0.2

0.4

0.6

0.8

1.0

Br
an

ch
in

g
ra

tio Hp
Hp+Mp
Ms
Lp
Ls
Mp

Figure 12: The branching ratios of the event grades at given fluxes of 1, 3, 10, 30, 100,
250, 500, 1000, 2500, 5000 and 10000 mCrab. The exposure time was scaled
via an initial value of 1 · 105 s divided by the flux in mCrab.

15

5.2. CPU load per grade

To test Equation 2 separately from the algorithm, it is initially important to consider the
CPU load in percentage per grade. Therefore, I apply Equation 2 with the parameters
of Table 1 on the data of Figure 12. The result is seen in Figure 13. The exposure time
was scaled via an initial value of 1 · 105 s divided by the flux in mCrab. In this plot
the Hp- and Mp-line diverge with increasing incoming rates from the ‘Total’-line and
the Ls-line converges to the ‘Total’ line at high fluxes due to the branching ratios. The
‘Total’ line passes the limit for all four CPUs below a flux of 1 Crab at an incoming
rate of ∼ 200 counts/s, which means that event loss is likely. In general, although the
CPU load for all four CPUs is lower than 400 %, a single CPU with a high incoming
rate could exceed its own limit of ∼ 50 counts/s and therefore lose events.

Figure 13: The CPU load as a function of the incoming rate for a point source. The
limit of 400 % for all four CPUs is marked by the horizontal line. The dashed
colored lines represent the associated secondary grades.

16

5.3. Application of the algorithm

As the next step, the output of SIXTE is given to the algorithm, which then returns
a list of processed and unprocessed events. The algorithm’s output varies for extended
and point sources, because of the different distributions of events onto the pixel array.
Analyses of all grades for different fluxes, as evident in Figure 14 and Figure 15, show
that the loss of events starts at incoming rates of ∼ 200 counts/s for the two source
types. The circular area of the extended source covers the entire pixel array. This
distribution causes a lower incoming rate per pixel compared to the point source for the
same flux due to the hits beyond the pixel array. With increasing flux more and more
low-resolution events enter the detector, whereas the number of event grades with higher
processing time decreases. This leads to a rise in the absolute number of processed events
per second, whereas the fraction of processed events decreases. The two plane saddle
points visible in both figures shortly after the beginning of event loss are affected by the
transition from the predominantly high-resolution to the low-resolution events. Here,
the divergence of the processed rate from the input rate is the highest.

10 2 10 1 100 101
Flux [Crab]

101 102 103

Incoming rate [1/s]

101

102

103

Th
ro

ug
hp

ut
 ra

te
 [1

/s
]

Input Events
Processed Events

10 2 10 1 100 101
Flux [Crab]

101 102 103

Incoming rate [1/s]

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

Figure 14: Simulation output showing the rate (left) and fraction (right) of processed
events as a function of the incoming event rate for a point source with the
same scaling of the exposure time as previously. In the left plots below a
flux of 1 Crab, the dots for the input events are covered by the dots for the
processed events due to the marginal loss of events.

17

10 2 10 1 100 101
Flux [Crab]

101 102 103

Incoming rate [1/s]

101

102

103

Th
ro

ug
hp

ut
 ra

te
 [1

/s
]

Input Events
Processed Events

10 2 10 1 100 101
Flux [Crab]

101 102 103

Incoming rate [1/s]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

Figure 15: The same output as in Figure 14 for an extended source.

It is important to gain deeper insight into the event loss taking the event grades into
account. As illustrated in Figure 16, the branching ratios result in a divergence of the
Hp- and Mp-line from the total event line and a convergence of the Ms-, Lp- and Ls-line
to the total event line with higher fluxes. The algorithm conserves events of all grades
for low incoming rates due to the fair scheduling of the queue and the low CPU load.
The throughput rate of Hp- and Mp-events for the extended source is higher for medium
fluxes due to the equal distribution of events on the entire pixel array. On the other
hand, the throughput rate of Ms-, Lp-, and Ls-events is initially higher for the point
source in Figure 16. This behavior is caused by the concentration of the incident events
onto a few pixels in the center of the pixel array, where the time intervals between the
triggered events shrink early.
As the event loss begins at an incoming rate of ∼ 200 counts/s, the extended source loses
more processed Hp- and Mp-events caused by the uniform distribution of the different
event grades among all pixels. With higher fluxes, the extended source produces fewer
Hp- and Mp-events than the point source. The lower incoming rate to the edges of the
pixel array for the point source guarantees more time between the triggered pulses in
these edge pixels. As a result of the fair scheduling, high-resolution events are more likely
for the point source and Ms-, Lp-, and Ls-events are less likely to be processed for the
point than the extended source. Thus, the point source has a better resolution at high
fluxes. Moreover, the consideration of focusing the point source on one CPU quadrant
for higher resolution in the remaining quadrants at high incoming rates is plausible.

18

10 2 10 1 100 101
Flux [Crab]

101 102 103

Incoming rate [1/s]

100

101

102

103
Th

ro
ug

hp
ut

 ra
te

 [1
/s

]

Input Events
Processed Hp+Mp Point
Processed Hp+Mp Ext
SIXTE Hp+Mp Point
SIXTE Hp+Mp Ext

10 2 10 1 100 101
Flux [Crab]

101 102 103

Incoming rate [1/s]

10 1

100

101

102

103

104

Th
ro

ug
hp

ut
 ra

te
 [1

/s
]

Input Events
Processed Ms+Lp+Ls Point
Processed Ms+Lp+Ls Ext
SIXTE Ms+Lp+Ls Point
SIXTE Ms+Lp+Ls Ext

Figure 16: The throughput rate of Hp- and Mp-events (above) and of Ms-,Lp-, and Ls-
events (below) as functions of the incoming rate and flux for a point and an
extended source. The data of SIXTE are dashed lines and the outputs after
the algorithm continuous lines.

It is useful to inspect the conservation of the spatial information by the detector and
the algorithm to understand, which pixels lose events. I simulate a point source with

19

a flux of 1 Crab, so event loss is present. The source points to the center of the pixel
array and the exposure time is 100 s. The result is visible in Figure 17. The pixels
with the highest incoming rates lose the most events. Moreover, pixels with relatively
low incoming rates provide the highest amount of processed events. In general, pixels
with low incoming rates located at the edges of the pixel array do not lose events,
although they are in CPU quadrants, where pixels lose many events. This is achieved
by the fair scheduling of the queue with strict order, so these pixels with low incoming
rates, which tend to produce high-resolution events, are not neglected. Moreover, fair
scheduling achieves similar rates of processed events in pixels, although their incoming
rates deviate enormously.

2.89 5.59 5.4 3.29 1.56

3.34 8.93 19.09 19.8 10.32 3.95

5.46 18.6 73.09 83.29 20.51 5.93

5.4 19.7 84.65 93.35 21.33 6.23

3.08 9.76 20.29 21.86 11.23 3.69

1.49 3.34 5.97 5.9 4.32 1.85

Total events

1.0 1.0 1.0 1.0 1.0

1.0 0.71 0.33 0.35 0.75 1.0

1.0 0.31 0.09 0.08 0.38 1.0

1.0 0.35 0.09 0.07 0.28 1.0

1.0 0.74 0.37 0.3 0.54 1.0

1.0 1.0 1.0 1.0 1.0 1.0

Processed/total events

2.89 5.59 5.4 3.29 1.56

3.34 6.37 6.29 7.0 7.76 3.95

5.46 5.8 6.53 6.49 7.71 5.93

5.4 6.9 7.85 6.31 5.97 6.23

3.08 7.2 7.49 6.5 6.11 3.69

1.49 3.34 5.97 5.9 4.32 1.85

Processed events

0.0 0.0 0.0 0.0 0.0

0.0 2.56 12.8 12.8 2.56 0.0

0.0 12.8 66.56 76.8 12.8 0.0

0.0 12.8 76.8 87.04 15.36 0.0

0.0 2.56 12.8 15.36 5.12 0.0

0.0 0.0 0.0 0.0 0.0 0.0

Not-processed events
0

20

40

60

80

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

6

7

0

10

20

30

40

50

60

70

80

Figure 17: The pixel arrays for the ratio of processed to incoming events, processed
events and not-processed events per second for a point source with a flux of
1 Crab. The pixel in the lower left corner is the mentioned calibration pixel
that is located outside of the array. The color and the value in the pixel
illustrate the event rate per second.

Other interesting information conserved by the algorithm are the arrival times of the
incoming photons. The following is for the same source as in the spatial analysis. In

20

Figure 18, patterns are visible, which show periodic behavior. After high event loss,
because of the FIFO-dumping, the number of processed events rises again. The bars of
the unprocessed events complement the gaps between the bars of the processed events.
At the beginning, the fraction of processed events is high because of the initial empty
state of the FIFOs. This is not the case for the pixel with the highest incoming rate.
The total incoming rate in its CPU quadrant is ∼ 170 counts/s, so it exceeds the limit
of ∼ 50 counts/s for each CPU significantly and the FIFO fills up quickly resulting in
an early event loss. At the end of the simulation, the fraction of processed events is the
highest, because after the last event is detected, all events remaining in the FIFOs are
processed events, since the FIFOs will not overflow anymore. It is clearly visible that
the amount of unprocessed events over the exposure time is inefficient for bright sources.
Thus, it is important to study methods for reaching a higher efficiency.

0 20 40 60 80 100
Time [s]

0.0

0.2

0.4

0.6

0.8

All pixels - Processed/incoming events

0 20 40 60 80 100
Time [s]

0

100

200

300

400

500

All pixels - Processed events

0 20 40 60 80 100
Time [s]

0

100

200

300

400

500

All pixels - Not-processed events

0 20 40 60 80 100
Time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Max pixel - Processed/incoming events

0 20 40 60 80 100
Time [s]

0

10

20

30

40

50

60

Max pixel - Processed events

0 20 40 60 80 100
Time [s]

0

20

40

60

80

100

Max pixel - Not-processed events

Figure 18: The ratios of processed to incoming events, processed events and not-
processed events are divided into 50 time bins spanned over the exposure
time. This is again for the point source with a flux of 1 Crab. The plots on
the top are for all 36 pixels and the three on the bottom are for the pixel
with the highest incoming rate, as observed in Figure 17.

21

5.4. Filter and offset pointing

Potential methods to decrease the CPU load for bright sources, in order to gain more Hp-
and Mp-events, are the reduction of incoming events by filters or offset pointing. The
filter wheel of XRISM is equipped with a beryllium, a neutral-density, and a polyimide
filter (XRISM Science Team, 2022). In the following analyses, the Gate-Valve is again
open, so that the effects of the filters are in focus.
The energy-dependent throughput of the beryllium and the neutral-density filters are
shown in Figure 19. The effective area and so the number of detected photons decreases
significantly at low energies of < 5 keV. The beryllium filter aims to conserve photons of
higher energies, whereas the neutral density filter aims to balance and lower the effective
area for the entire energy spectrum.

Figure 19: The energy dependence of the effective area for the beryllium filter, the
neutral-density filter, and without filter on the left and the fractions of the
filters from the clear state are in the right plot.

The other reduction method is to perform an offset pointing, as shown in Figure 20.
This picture was created with the same point source as in Section 5.2 but with a 75′′

offset in right ascension and declination, which puts the source in the outer corner of the
detector array. The quadrants adjacent to the one on the top left are able to process all
incident events. It is remarkable that the pixel with the sufficiently low incoming rate
in the top left CPU quadrant does not lose events, despite the very large incoming rates
in the other pixels. This behavior is due to the fair scheduling of the queue.
The effects of filters and the offset pointing on the throughput of high-resolution events

are shown in Figure 21. For high fluxes of more than 3 Crab, the lower input photon
rates due to the filters and the offset pointing actually lead to a higher Hp- and Mp-rate
than for the regular pointing when both the branching ratios and CPU limits are taken
into account. The rate for the neutral-density filter increases continuously to the highest
value due to the strong filtering for all events, which is counterproductive at low fluxes.
Moreover, the rate for the offset pointing increases continuously caused by the rise in

22

0.56 0.36 0.32 0.26 0.2

1.45 1.23 0.77 0.54 0.37 0.14

4.87 3.61 2.33 0.9 0.68 0.28

17.57 11.75 4.85 1.91 0.83 0.46

90.34 32.77 9.57 2.78 0.94 0.42

122.65 38.61 10.33 2.74 0.95 0.55

Total events

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

0.27 0.35 1.0 1.0 1.0 1.0

0.06 0.14 0.46 1.0 1.0 1.0

0.04 0.14 0.5 1.0 1.0 1.0

Processed/total events

0.56 0.36 0.32 0.26 0.2

1.45 1.23 0.77 0.54 0.37 0.14

4.87 3.61 2.33 0.9 0.68 0.28

4.77 4.07 4.85 1.91 0.83 0.46

5.86 4.61 4.45 2.78 0.94 0.42

4.89 5.33 5.21 2.74 0.95 0.55

Processed events

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0

12.8 7.68 0.0 0.0 0.0 0.0

84.48 28.16 5.12 0.0 0.0 0.0

117.76 33.28 5.12 0.0 0.0 0.0

Not-processed events
0

20

40

60

80

100

120

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

0

20

40

60

80

100

Figure 20: The same representation as in Figure 17 for the offset pointing of the point
source.

events in the CPU quadrants that are adjacent to the CPU quadrant in focus. The high
number of hits beyond the pixel array suppresses this at lower fluxes. SIXTE’s output
for the beryllium filter deviates slightly from the original state for low and high fluxes.
The beryllium filter absorbs exclusively low energies, but nevertheless, fewer events enter
the pixel array, so more Hp- and Mp-events are processed for high fluxes.
Taking the overall picture into account, the original state is the best choice to gain the
most high-resolution events below a flux of ∼ 1.5 Crab and the neutral-density filter
for higher fluxes. In general, the best choice depends strongly on the source. As an
example, the impact of the beryllium filter would be much higher for a source that is
very bright below 2 keV. Moreover, a desired spectrum can choose the filter, for instance,
if the energies of interest are above 5 keV, the beryllium filter is more effective than the
neutral-density filter.

23

10 2 10 1 100 101

Flux [Crab]

100

101

102

103

Th
ro

ug
hp

ut
 ra

te
 [1

/s
]

Input Events
Processed Hp+Mp
Processed Hp+Mp Offset
Processed Hp+Mp Be
Processed Hp+Mp Nd

Figure 21: The Hp- and Mp-rates as functions of the flux for the original state, the two
filters, and the offset pointing. The outputs of SIXTE are the dashed and the
processed rates of the algorithm the continuous lines. The input event rate is
for the data of the original state and the filter plots have no offset pointing.

24

6. Conclusion and outlook

In this thesis, I studied the event grades of the XRISM Resolve instrument and how
the CPU limit affects their processing for bright sources. After designing a CPU model
and a round-robin algorithm to track the affected events, I analyzed the functionality
for real sources simulated by SIXTE.
The results and analyses show that the round robin algorithm is indeed a solution for
SIXTE to schedule the processing of FIFOs for XRISM’s Resolve fairly. The algorithm
tracks the event loss during the observation of an object in the X-ray spectrum, which
reaches the limit of the CPU load. The analyses of data simulated by SIXTE show
that the effect is present and beginning at a flux of less than 1 Crab or an incoming
rate of ∼ 200 counts/s, the algorithm is able to identify events that are not processed
and returns them to the user. The branching ratios of the event grades are crucial to
have a more accurate model. The study of an extended and a point source reveal that
the amount and resolution of the processed events depend strongly on the coverage of
the pixel array and the flux. Further testing shows that the algorithm conserves spatial
and temporal information. As a result, it balances the processing among all pixels and
damps pixels with very high incoming rates that tend to produce low-resolution events.
The methods to reduce the CPU load for higher fluxes are filters and offset pointing,
which increase the rate of Hp- and Mp-events for bright sources with a flux of more than
3 Crab. The impact of these reduction methods varies for different source types, their
flux, and the desired spectrum.
Further steps are the implementation of the algorithm into SIXTE and the consideration
of neglected factors like the difference in the baseload of each CPU due to the varying
contact with the XBOX and the anti-coincidence detector and also the baseline (Mizumoto
et al., 2022). These factors are neglected in this thesis due to the marginal difference
and the initial aim to suggest a first-version solution for SIXTE. Furthermore, according
to information from the XRISM team at GSFC, the concept of the locked queue needs
more focus on the threads that can run simultaneously and the influence of secondary
events, which could alter the order of processing.

25

7. Acknowledgements

I would like to dedicate these lines to my supervisors, who have supported me on the
entire way leading to this work with their enormous knowledge and advice. I am
grateful for the support and insights shared by Jörn and the SIXTE team including
Lea, Maximilian, Ole, Thomas, and the other members of the Remeis observatory. I
want to highlight Christian, who was so patient with me and took every single question
I addressed to him seriously. His conviction and passion to do science intrigued me like
no other tutor had done during my bachelor’s studies. Christian and Jörn’s wive Katja
invited me to participate in a XRISM meeting with NASA scientists in which I gained
a lot of experience. I am grateful for Edmund’s help, a NASA scientist working on
XRISM, who participated in this meeting and provided assistance regarding his work
on Resolve’s CPU load as far as he was allowed to. Finally, the working atmosphere at
the observatory is very pleasant and the organization is professional, which enabled me
to work efficiently and joyfully.

26

List of Figures

1. The XRISM satellite . 4
2. The first results of XRISM . 5
3. A combined image of the Crab nebula . 6
4. The SXS onboard Hitomi . 7
5. The pulse-shape . 8
6. An overview of the processing-electronics 8
7. The different event-grades . 9
8. An overview of SIXTE . 10
9. The symbols used for the algorithm-overviews 12
10. An overview of the algorithm . 13
11. A detailed look on the queue processing 14
12. The branching ratios of the event grades 15
13. The CPU load as a function of the incoming rate 16
14. Processed events to incoming events for point source 17
15. Processed events to incoming events for extended source 18
16. Two plots for Hp- and Mp-events and Ms-, Lp-, and Ls-events as functions

of the incoming rate . 19
17. The spatial representation of processed to incoming events 20
18. The temporal representation of processed to incoming events 21
19. The impact of the filters and the clear state as function of the energy . . 22
20. The spatial representation for the offset pointing 23
21. The Hp- and Mp-rates for the original state, filters, and offset pointing . 24

List of Tables

1. The parameters for the CPU load formula 11

8. References

Dauser T., Falkner S., Lorenz M., et al., 2019, 630, A66

Dauser T., Wilms J., Peille P., et al., 2023, SIXTE MANUAL, http://www.sternwarte.uni
-erlangen.de/~sixte/data/simulator_manual.pdf Accessed: 2024-02-20

Hodges-Kluck E., 2023, Observing Bright Sources with Resolve, https://heasarc.gsfc.nas
a.gov/docs/xrism/analysis/workshops/doc_feb23/Hodges-Kluck_Bright_Sources.

pdf Accessed: 2023-10-17

Ishisaki Y., Yamada S., Seta H., et al., 2016, In: den Herder J.W.A., Takahashi T., Bautz M.
(eds.) Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Vol. 9905.
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 99053T

McCammon D., 2005, Thermal Equilibrium Calorimeters - An Introduction. In: Enss C. (ed.)
Cryogenic Particle Detection, Vol. 99., p. 1

27

http://www.sternwarte.uni-erlangen.de/~sixte/data/simulator_manual.pdf
http://www.sternwarte.uni-erlangen.de/~sixte/data/simulator_manual.pdf
https://heasarc.gsfc.nasa.gov/docs/xrism/analysis/workshops/doc_feb23/Hodges-Kluck_Bright_Sources.pdf
https://heasarc.gsfc.nasa.gov/docs/xrism/analysis/workshops/doc_feb23/Hodges-Kluck_Bright_Sources.pdf
https://heasarc.gsfc.nasa.gov/docs/xrism/analysis/workshops/doc_feb23/Hodges-Kluck_Bright_Sources.pdf

Mizumoto M., Tsujimoto M., Cumbee R.S., et al., 2022, In: den Herder J.W.A., Nikzad S.,
Nakazawa K. (eds.) Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray,
Vol. 12181. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
p. 121815Z

Tsujimoto M., Tashiro M.S., Ishisaki Y., et al., 2018, Journal of Low Temperature Physics
193, 505

XRISM Science Team 2020, Science with the X-ray Imaging and Spectroscopy Mission
(XRISM), White paper (arXiv:2003.04962)

XRISM Science Team 2022, arXiv e-prints arXiv:2202.05399

28

A. Algorithm in python code

from astropy.io import fits

import numpy as np

from collections import deque

def whichcpu(event , dictwhich):

return (dictwhich[event["PIXID"]][1] - 1)

class CPU():

def __init__(self , max_fifo_len , numfifos , dictwhich , a, bp , bs , cp

, cs , e):

self.fifos = []

for i in range(numfifos): self.fifos.append(deque())

self.max_fifo_len , self.dictwhich = max_fifo_len , dictwhich

self.a, self.bp , self.bs , self.cp , self.cs , self.e = a, bp , bs ,

cp , cs, e

self.queue = deque(np.arange(0, numfifos))

self.numfifos = numfifos

self.executed = []

self.notexecuted = []

self.currentTime = 0

def gradtotime(self , event):

hp, mp, ms, lp, ls = 0, 0, 0, 0, 0

if event["GRADING"] == 0: hp = 1

if event["GRADING"] == 1: mp = 1

if event["GRADING"] == 2: ms = 1

if event["GRADING"] == 3: lp = 1

if event["GRADING"] == 4: ls = 1

return (self.a*hp + self.bp*mp + self.bs*ms + self.bs*ls + self

.cp*lp + self.cs*ls) / (1-

self.e)

def whichfifo(self , event):

return self.dictwhich[event["PIXID"]][0] - 1

def insert_event(self , event):

self.propagate_queue(event["TIME"])

fifoidx = self.whichfifo(event)

if len(self.fifos[fifoidx]) >= self.max_fifo_len:

self.notexecuted += self.fifos[fifoidx]

self.fifos[fifoidx].clear()

self.fifos[fifoidx].append(event)

def propagate_queue(self , timing):

29

num_empty_fifos = 0

while num_empty_fifos < self.numfifos:

ififo = self.queue[0]

if len(self.fifos[ififo])!=0:

num_empty_fifos = 0

event = self.fifos[ififo][0]

if timing - self.currentTime >= self.gradtotime(event):

self.currentTime += self.gradtotime(event)

self.executed.append(event)

self.queue.rotate(-1)

self.fifos[ififo].popleft ()

else:

break

else:

num_empty_fifos += 1

self.queue.rotate(-1)

if num_empty_fifos == self.numfifos:

self.currentTime = timing

def finnish_sim(self):

self.propagate_queue(self.currentTime + 1000)

def build_cpus(num_cpus , max_fifo_len , numfifos , dictwhich , a, bp , bs ,

cp , cs , e):

CPUs = []

for i in range(num_cpus): CPUs.append(CPU(max_fifo_len , numfifos ,

dictwhich , a, bp , bs , cp , cs , e

))

return CPUs

def processevents(cpus , dictwhich , infile):

data = fits.open(infile)[1].data

timesort = np.argsort(data["TIME"])

data = data[timesort]

dtype = data.dtype

lenexec , lennotexec = 0, 0

offsetexe , offsetnotexe = 0, 0

for event in data:

cpu = whichcpu(event , dictwhich)

cpus[cpu].insert_event(event)

for icpu in cpus:

icpu.finnish_sim ()

lenexec += len(icpu.executed)

lennotexec += len(icpu.notexecuted)

30

processed , notprocessed = np.zeros(lenexec , dtype=dtype), np.zeros(

lennotexec , dtype=dtype)

for icpu in cpus:

for ieve in range(len(icpu.executed)):

for nam in processed.dtype.names:

processed[ieve + offsetexe][nam] = icpu.executed[ieve][

nam]

for ieve in range(len(icpu.notexecuted)):

for nam in notprocessed.dtype.names:

notprocessed[ieve+offsetnotexe][nam] = icpu.notexecuted

[ieve][nam]

offsetexe += len(icpu.executed)

offsetnotexe += len(icpu.notexecuted)

return processed , notprocessed

def writeevents(out , outfitsname):

primary_hdu = fits.PrimaryHDU ()

exec_hdu = fits.BinTableHDU(data = out[0], name = "Processed")

notexec_hdu = fits.BinTableHDU(data = out[1], name = "NotProcessed"

)

hdul = fits.HDUList([primary_hdu , exec_hdu , notexec_hdu])

hdul.writeto(outfitsname)

31

List of abbreviations

XRISM X-ray Imaging and Spectroscopy Mission
JAXA Japan Aerospace Exploration Agency
NASA National Aeronautics and Space Administration
ESA European Space Agency
SXS Soft X-ray Spectrometer
SIXTE Simulation of X-ray Telescopes
PSP Pulse Shape Processor
FPGA Field Programmable Gate Array
CPU Central Processing Unit
EDB Event Dual Buffer
FIFO First-In-First-Out
SMU Satellite Management Unit
DR Data Receiver
Hp High resolution primary
Mp Medium resolution primary
Ms Medium resolution secondary
Lp Low resolution primary
Ls Low resolution secondary
SIMPUT Simulation Input

32

Erklärung

Hiermit bestätige ich, dass ich diese Arbeit selbstständig und nur unter Verwendung
der angegebenen Hilfsmittel angefertigt habe.

Ort, Datum David Lochner

33

	Introduction
	Resolve
	Event grading and CPU load
	SIXTE and CPU model
	Introduction to SIXTE
	Modelling and algorithm

	Analysis and testing
	Branching ratios of the event grades
	CPU load per grade
	Application of the algorithm
	Filter and offset pointing

	Conclusion and outlook
	Acknowledgements
	References
	Algorithm in python code

