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Abstract
Many observations of black hole X-ray spectra indicate features of broad emission lines.
These features are a result of relativistic reflection of highly energetic X-ray photons
in the innermost regions of the accretion disk. The effect of general relativity is at its
strongest in this region and have discernible effects on the shape of atomic emission lines.
The broadening of the iron line at 6.54 keV, in particular, can be used as a diagnostic
tool to extract physical parameters of the black hole, e.g. the spin. The relxill code,
with its associated model flavors was designed for this purpose. However, in order to
make more accurate spin measurements, it is necessary to constrain more precisely
the geometry of the irradiating source. Additionally, X-ray measurements made of the
highly variable supermassive black hole Markarian 335 (Mrk 335) indicate that the X-ray
spectrum is best described by a primary source with radial extension that contracts in
periods of low flux and expands in periods of high flux. For this purpose, I introduce two
new models, rellineExt and rellxillExt, which model the line profiles and reflected
spectra resulting from an emissivity created by a ring-shaped source that rotates around
the rotational axis of the black hole, respectively.

In this work I first present the necessary theory for solving the equations of motion
for photons in the Kerr space-time. With these, I briefly describe the functioning of the
relxill code, and then discuss the geometric considerations and relevant quantities for
the calculation of the emissivity assuming a lamp post model. In an analogous fashion
I discuss the relevant calculations necessary for the determination of the ring source
emissivity. This emissivity is subsequently integrated into the relxill kernel, creating
the rellineExt and rellxillExt models. The resulting line profiles from the ring
source emissivity are shown, as well as reflected spectra. It is then shown that, in the
appropriate limit, the ring source model replicates the behavior of the lamp post model
and exhibits the same parameter sensitivities for this limited case, however, there still
remain relevant discrepancies between the new ring source and lamp post models in the
limit where they should coincide. The effect of the new ring radius parameter, d, was
then analyzed and compared to the lamp post model. The models are then used to
analyze 2014 NuSTAR observations of Mrk 335. The preliminary results are in rough
agreement with previous observations. However, there appear signs of systemic issues
in the calculation of the reflected spectra. Furthermore, certain results indicate that
the determination of specific parameters may contribute to the observed discrepancies.
Further work on alleviating these issues is necessary. However, despite these issues, the
newly implemented ring source constrains the primary source in a manner that appears
to agree with previous emissivity profile calculations and indicates the viability of this
approach.
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Zusammenfassung
Viele Röntgenbeobachtungen von Schwarzer Löcher weisen breite Emissionsslinien auf.
Diese entstehen durch relativistische Reflektion von hochenergetischen Röntgenphotonen
in den innersten Regionen der Akkretionsscheibe. Die Effekt, beschrieben durch die
Allgemeine Relativitätstheorie, sind in dieser Region am stärksten und haben erkennbare
Auswirkungen auf die Form der atomaren Emissionslinien. Insbesondere die Verbreitung
der Eisenlinie bei 6,54 keV kann verwendet werden, um physikalische Parameter des
Schwarzen Lochs, wie beispielsweise den Drehimpuls, zu bestimmen. Der Code relxill
wurde zu diesen Zweck entwickelt. Um genauere Spinmessungen durchzuführen ist es
jedoch notwendig, die Geometrie der Strahlungsquelle besser einzuschränken. Zusätzlich
deuten Beobachtungen des hochvariablen supermassiven Schwarzen Lochs Markarian 335
darauf hin, dass das Röntgenspektrum am besten durch eine Primärquelle mit radialer
Ausdehnung beschrieben werden kann. Bei niedrigem Fluss zieht sich diese Primärquelle
zusammen, und dehnt sich bei hohem Fluss aus. Um Beobachtungen dieser Art zu
modellieren, führe ich zwei neue Modelle ein, rellineExt und rellxillExt, die die
Linienprofile und die reflektierten Spektren berechnen. Diese Spektren resultieren aus
einem Emissionsprofil, das von der rotierenden, ringförmigen Quelle erzeugt wird. In dieser
Arbeit stelle ich zunächst die notwendige Theorie zur Lösung der Bewegungsgleichungen
für Photonen in der Kerr-Raumzeit vor. Anhand dieser Gleichungen beschreibe ich die
Funktionsprinzip des rellxill Codes und erörtere die geometrischen Überlegungen und
relevanten Größen für die Berechnung des Emissionsprofils unter der Annahme, dass sich
die Quelle auf der Rotationsachse des Schwarzen Loches befindet (Lamp-Post Modell).
In gleicher Weise erörtere ich dann die relevanten Berechnungen, die für die Bestimmung
des Emissionsgrades der Ringquelle erforderlich sind. Die neuen Modelle rellineExt
und rellxillExt implementieren dieses Emissionsprofil. Die sich daraus ergebenden
Linienprofile werden ebenso gezeigt wie die reflektierten Spektren. Es wird gezeigt, dass
das Ringquellenmodell asymptotisch das Verhalten des Lamp-Post Modells nachbildet
und für diesen begrenzten Fall dieselben Eigenschaften aufweist. Es bestehen jedoch
noch immer Diskrepanzen zwischen dem neuen Ringquellen- und dem Lamp-Post-Modell
in der Grenze, in der sie übereinstimmen sollten. Anschließend wird die Auswirkung des
neuen Ringradiusparameters, d, analysiert und mit dem Lamp-Post Modell verglichen.
Die Modelle werden dann verwendet, um eine NuSTAR Beobachtungen von Markarian
335 zu analysieren. Die vorläufigen Ergebnisse stehen in grober Übereinstimmung mit
früheren Beobachtungen. Es gibt jedoch Anzeichen für systemische Abweichungen bei
der Berechnung der reflektierten Spektren. Weiterhin kann die Bestimmung bestimmter
Parameter zu den beobachteten Diskrepanzen beitragen. Deshalb sind weitere Arbeiten
zur Behebung dieser Probleme notwendig. Trotz dieser Probleme schränkt die neu
implementierte Ringquelle die primäre Quelle in einer Weise ein, die mit früheren
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Berechnungen des Emissionsprofils übereinstimmt und somit die generelle Machbarkeit
dieses Ansatzes zeigt.
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1 Introduction

1.1 Introduction to black holes
Black holes have been a source of intrigue and mystery for physicists since the derivation
of the Schwarzschild solution (1916) to the Einstein Field Equations (Einstein 1916).
Due to the many strange physical paradoxes created by black holes, their existence was
initially rejected at large by the scientific community. However, with the discovery of
Cygnus X-1 (Clark et al. 1968) and the failure of other sufficient models to explain the
data, particularly the radial velocity (Webster & Murdin 1972), the existence of the
first detected black hole was gradually accepted. The Schwarzschild solution describes
the gravitational field resulting from a point particle. The main consequence of this
solution is that there exists a region around the central point where the effect of gravity
is sufficiently strong such that light itself cannot even escape. This boundary is known as
the ”event horizon.” The relation between the radius at which this event horizon occurs
is given as

rS = 2GM
c2 , (1.1)

where M is the mass of the black hole, c is the speed of light, and G is the Newtonian
gravitational constant. In theory, any body of matter could become a black hole, if
packed sufficiently dense enough. The earth, for example, if packed inside an spherical
volume with a radius of approximately 9.8 mm, would become a black hole. Due to the
intense forces required to compress matter densely enough, however, the physical avenues
for their formation are rather limited and, as a result, there are two general categories.
Galactic black holes (GBHs) are formed at the end of a star’s life after the resulting
supernova and usually contain a few solar masses (Mirabel 2017). These are usually
found in binary systems i.e., they orbit a neighboring star. The black hole is able to feed
itself using the mass of the nearby star which slowly gathers around the black hole. The
resulting radiation, having an appreciable luminosity in the X-ray spectrum (Shakura
& Sunyaev 1973), can be detected by telescopes on satellites and their spectra can be
analyzed. In addition both types of black holes can be detected due to ”gravitational
lensing”, which is an effect caused by the bending of light around the massive object.

The second class of black holes are known as super-massive black holes (SMBHs).
As the name suggest these are generally quite massive, typically containing millions or
billions of solar masses. The quasar TON 618 was estimated to contain a black hole of
nearly 66 billion solar masses (Shemmer et al. 2004), making it one of the largest black
holes ever observed. All of the known SMBHs are found at the center of galaxies. A
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1 Introduction

subset of these black holes are known as active galactic nuclei (AGN) and are notable
for their very bright appearance. Compared to other SMBHs, these typically are quite
bright over the entire electromagnetic spectrum, from radio waves to intense gamma
rays. Unfortunately the formation of SMBHs are not as well understood as their smaller
counterparts. A linear hierarchy of black holes ranging in size from smaller to GBH to
SMBHs is not likely to exist (Richards et al. 2006). SMBHs are either believed to have
formed as a result of various runaway processes (Rees 1984), or gravitational potentials
of clumps of dark matter, which originated from density fluctuations as a result of the
Big Bang, act as a catalyst for the formation of SMBHs (Ferrarese & Merritt 2000).

Most observable black holes contain an accretion disk, which is the result of matter
congregating around the black hole. There exist a variety of models for these disks
with the most basic being the standard alpha disk (Shakura & Sunyaev 1973), which
presents a model based on hydrodynamics lacking magnetic fields. In this model, the
accreting matter spirals around the black hole in a disk which is geometrically thin
but optically thick. The particles that compose this disk all have their own angular
momenta and corresponding angular velocities. In the course of their orbit they undergo
turbulent flow, interacting with and bouncing off other particles in the disc, reducing
their overall momentum and angular velocity around the black hole. Taking magneto-
hydrodynamics into account, it can be shown that this turbulence and the shear forces
caused by small magnetic fields can create an effective viscosity, which transports the
deprived angular momentum outwards. The lost angular momentum of the particle
causes it to fall into a orbits closer to the black hole and thereby gaining kinetic energy
from the converted gravitational potential (Balbus & Hawley 1991). The increased speed
causes frictional heating and as a result the innermost region of the accretion disk has
the highest temperatures, which can reach up to 108K (Shakura & Sunyaev 1973). As a
result of these high temperatures it is believed that the matter flow in this region consists
mainly of plasma, which would explains the disk’s optical thickness/opacity (Shakura &
Sunyaev 1973).

Although GBHs and SMBHs differ greatly in size, they share many properties in
common. The same solutions to Einstein’s equations describe both small and large black
holes alike and both can be described by the parameters mass, spin and electric charge
(Carter 1971). Thus black holes are also some of the simplest objects in physics. Because
the universe is electromagnetically neutral the charge is can be neglected. This leaves us
with just two parameters, the spin a and mass M , which describe black holes in their
entirety. The spin parameter in particular, a = J/M , is related to the angular momentum
J of the black hole and can theoretically range from -1 to 1. However it was shown
that due to the interaction of photons from the accretion disk a more practical limit is
|amax| = 0.998 (Thorne 1974), where negative values indicate the retrograde spinning of
the black hole with respect to the accretion disk.
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1.2 Spectroscopy

1.2 Spectroscopy

The field of X-ray astronomy is younger than its visible light and radio wave counterparts.
Unlike those sources of electromagnetic radiation, X-rays are effectively blocked from
reaching the surface by the earth’s atmosphere. Gamma rays, UV, and infrared radiation
suffer from this problem as well, as is illustrated in Fig. 1.1. In order to effectively
measure X-rays emitted by black hole systems, it is necessary to get detectors above the
earth’s atmosphere. This was initially done in a variety of ways the first being in 1948
when American researchers utilizing confiscated V-2 rockets made the first solar X-ray
measurements. Rockets were in continued use, leading to first discovery of an X-ray
source outside the solar system, Scorpius X-1. The first X-ray measurements of AGNs
were taken such satellite-attached detectors aboard the Aerobee rocket in 1965, which
provided evidence for Cygnus A and M87 (Byram et al. 1966).

Figure 1.1: Plot of Earth’s atmospheric opacity to various wavelengths of electromagnetic
radiation. Credit: NASA

In order to understand these measured spectra, it is necessary to understand have a
basic understanding of spectroscopy. A brief introduction of these concepts are given
here. According to the classical theory of electromagnetism, charged particles under
an acceleration emit radiation. The photons emitted by such freely moving charged
particles give rise to a continuous spectrum of energies. There are, however, many
processes involved in the creation of the continuous spectral component, however an
important one for AGNs is inverse Compton scattering, which will be discussed in the next
section. However, quantum mechanics tells us that electrons within a bound potential
(e.g. in an atom) are limited to discrete states as illustrated for hydrogen in Fig. 1.2.
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Figure 1.2: A diagram showing the principal energy levels of hydrogen and corresponding
wavelength of the emitted radiation. Credit: math-science-resources.com

Figure 1.3: Example emission
and absorption
lines. Credit: Dr.
Travis A. Rector
& Dr. Andrew W.
Puckett

The orbiting electrons can be excited into higher states
by incoming photons where it absorbs the photon con-
taining exactly the energy difference between the two
states. These causes dips in the detected spectra, known
as absorption lines. When these excited electrons return
back to their original states, they will emit radiation cor-
responding to the energy difference of those two states,
which can be seen as a sharp peak in the spectrum,
referred to as an emission line. Normally these lines are
quite narrow, corresponding to the need for a precise
photon energy to cause the transition but in the context
of AGNs and black holes more generally, the emitted ra-
diation undergoes severe gravitational distortion causing
these lines to broaden, which is discussed in more detail
in Section 1.3. As a quick nomenclatural side-note, the
innermost atomic shell, which is associated with the
quantum number n = 1 is known as the K-Shell, fol-
lowed by L, and M, for n = 2 and n = 3 etc. We denote
ionization states with Roman numerals, where I denotes
the neutral state, II is once ionized and the pattern
continues. They can also be labeled by the number of
electrons contained, for example one electron would be
called ”hydrogen-like,” and ”helium-like” with two. The
electron number is what determines which transitions
are possible so this choice of naming convention is quite
appropriate. These peaks and dips allow us to determine
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the chemical composition of many astrophysical bodies, due to each element having its
own unique emission and absorption spectrum, a theoretical example being shown in Fig.
1.3.

1.3 The X-ray Spectrum
Because black holes do not emit radiation of their own, the measured spectra is a
result of the accretion disk. It is believed that low-energy photons are inverse Compton
scattered by relativistic electrons near the black hole above the accretion disc (Haardt &
Maraschi 1991) with a cut-off for high energy photons due to the limited distribution
of the relativistic electrons. Due to disk’s temperature decreasing as r−3/4 (Shakura &

Figure 1.4: Typical 0.1-1000 keV spectrum of an unabsorbed AGN. Credit: Ricci et al.
2011, PhD thesis

Sunyaev 1973), the spectrum is a stretched black body spectrum. The observed spectra
show a significant component in the high energy region. The up-scattered photons also
re-illuminate the accretion disc resulting in an additional reflected spectral component
resulting in a ”reflection hump” as is illustrated in Fig. 1.4. This reflected radiation makes
up a large contribution to the overall spectrum and is modeled by the XILLVER model
(Garćıa et al. 2013). Of particular note is the emission line at approximately 6.4 keV,
which is due to the Kα transition in iron, which is relatively abundant in the accretion

5



1 Introduction

disk. This reflected radiation is heavily distorted due to its close vicinity of the black hole
and this effect is modeled by relxill (Dauser 2010) which this thesis makes significant
use of. The degree and shape of this distortion allows us to determine properties of
the black hole, such as the spin (Dauser et al. 2016) (need better reference here). The
presence of this reflection hump indicates and the resulting relativistic distortion suggests
the existence of a hard X-ray source near the black hole. The initial assumption was
that there was a hot corona near the inner accretion disk. Assuming the intensity of this
corona is proportional to the disk emissivity (Shakura & Sunyaev 1973)

I(r) ∝ 1
r3

(
1−

√
rin

r

)
, (1.2)

with rin being the inner radius of the accretion disc, we can see for large values of
r, the spectrum is proportional to r−3 and will flatten towards the inner edge of the
disk. However, the introduction of high signal-to-noise ratio data from satellites such as
XMM-Newton showed a disagreement with this assumption. In various observations, it
was shown that the data was explained quite well by emissivities which are substantially
steeper in the inner regions of the disk (Wilms et al. 2001; Brenneman et al. 2011; Gallo
et al. 2011). Furthermore, it would stand to reason that there would be a positive
correlation between the reflected flux and the continuum flux. A higher continuum

Figure 1.5: A sketch of the lamp-post model. The corona is modeled as a point source at
height h along the rotational axis of the black hole. The radiation that hits
the disk does so at the inclination given by δi and is re-emitted at an angle
of δe. Credit: (Caballero-Garcia et al. 2016)

flux corresponds to higher disk emissivity, which in turn would ultimately lead to more
up-scattered radiation being reflected by the disk. Unfortunately, observations of MCG-
6-30-15 (Fabian & Vaughan 2003; Miniutti et al. 2003) showed large variation in the
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continuum flux while the reflected component stayed relatively constant. Instead of a
standard corona, in what is also known as the ”Lamp Post” model, a primary source
which is found along the rotation axis of the black hole at a given height, h, can explain
the detail quite well (Martocchia et al. 2002; Vaughan & Fabian 2004) and this model is
illustrated in Fig 1.5. The steeper emissivity in the inner regions can be explained by the
concentration of the radiation into the inner regions of the disk, due to light-bending and
energy shift, which will be described in detail in Chapter 3. In addition, the observed
relation between the continuum flux and the reflected flux are succinctly explained. The
increased concentration of inner radii photons result in a higher reflected component and
less photons for the continuum (Miniutti & Fabian 2004). Increasing the height decreases
the inner photon concentration, meaning more photons can escape, thereby adding to
the continuum flux.

1.4 Thesis Aim
There are a number of tools for the calculation of spectra of irradiated accretion disks
from Jet-Base corona (Dauser et al. 2013; Garćıa et al. 2013; Fukumura et al. 2009) and
even tools to simulate the emissivities of extended sources (Wilkins & Fabian 2012). The
former cannot, however, model sources which are not located along the rotational axis
and the latter suffer from long run times, due to their reliance on Monte Carlo simulations
to compute spectra. This thesis attempts to present a new relxill-based model of a
ring shaped primary source as an extended version of the existing relxill lamp-post
model (relxill lp), which can be utilized in comparison and fitting to measured spectral
data from X-ray satellites such as XMM-Newton and NuSTAR. Much of the ray-tracing
simulations for the creation of the necessary data tables were done by Licklederer (2019),
which we will discuss here as well. However this thesis integrates this data to create a
new usable model as part of relxill for use in X-ray analysis software such as XSPEC
(Arnaud 1996) or ISIS (Houck & Denicola 2000) for direct comparison with measured
data, and attempts to use it to analyze data from the AGN, Mrk 335.

A introduction to the necessary theory governing motion around black holes will be
covered in Chapter 2 as well as very brief discussion on the ray-tracing simulations.
Chapter 3 will focus on the relxill code, the computation of the relativistic line (relline)
profile, and the computation of the full relxill model as well as with the general ring
shaped source. In Chapter 4 we analyze first the relline profiles and then the full relxill
spectra of the ring source and compare them to the simpler lamp post model. A detailed
analysis of the fitting results to Mrk 335 will be given in Chapter 5 as well as a comparison
to lamp post fitting for the same source. Finally, in Chapter 6 we give a conclusion and
outlook for potential further research.
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2 Black Hole Theory
Shortly after the publishing of Einsteins Field Equations, Karl Schwarzschild presented
his solutions assuming spherical symmetry, known as the Schwarzschild metric. This
gives rise to a region around the spherical center where neither massive or massless
particles cannot escape typically referred to as the event horizon, and anything contained
within that is know well known as the so called ”black hole.” However the Schwarzschild
solution is not unique in its ability to describe black holes. The Kerr solution (Kerr
1963) solution also shares this trait, with the assumption that the black hole spins on a
rotational axis.

As the Kerr metric serves as the mathematical basis for nearly all of the work in
this thesis and related work, a short treatment of the related equations and relevant
properties for this thesis will be discussed in this chapter. The formalism here follows the
most closely the work of Chandrasekhar (1983) and heavily draws from the introduction
to black hole theory given by (Licklederer 2019). For those well versed in the formalism
of general relativity and black hole physics, some following sections may be skipped
without much consequence, however one might still find it instructive so that the precise
mathematical notation is understood as it can vary from reference to reference. All
formula here are given in natural units (i.e. G ≡ c ≡ 1).

2.1 The Kerr Metric
There exists no general solution to the Einstein field equations. However, by assuming
certain symmetries, one can derive particular exact solutions. In the Schwarzschild metric,
one assumes a static, spherically symmetric vacuum. However for the Kerr metric, we
relax the assumption on spherical symmetry and instead only require that the metric
be axially symmetric and static. This generalization is quite necessary as during stellar
collapse and black hole formation, angular momentum is conserved and leads to the
existence of black holes with non-vanishing angular momentum.

Starting with the metric tensor g, in its most general form, we apply the symmetry
conditions for using a suitable chart. The requirement of the previously mentioned
symmetry conditions of a stationary and axis-symmetric spacetime translate to the
existence of a time-like Killing vector ξ, and space-like Killing vector X, with space-like,
closed orbits, respectively. In addition we also require that both symmetries ensure
compatibility with the condition that the Lie-derivative LξX = 0. In contrast to the
Schwarschild metric, we require only that the metric tensor in a coordinate system is
invariant under simultaneous inversion of the t and φ coordinates, i.e. (t, φ, x1, x2) →
(−t,−φ, x1, x2). As a result we see that g02 → −g02, g03 → −g03, and g12 → −g12,
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2 Black Hole Theory

g13 → −g13 implying that they must vanish. This leaves us with

ds2 = g00dt
2 + 2g01dφdt+ g11dφ

2 + [g22(dx2)2 + 2g23dx
2dx3 + g33(dx3)2]. (2.1)

The term in the square brackets can can be brought into a ”diagonal” form (?) (change
reference):

ds2 = −e2ν(dt)2 + e2ψ(dφ− ωdt)2 + e2µ2(dx̃2)2 + e2µ3(dx̃3)2 (2.2)

where ν, ψ, µ2, and µ3 are functions of the coordinates x̃2, x̃3, and µ2 and µ3 are free to
be restrained by a coordinate choice. The only other information required at this point
is the use of the vacuum Einstein field equations, that is

Rab −
1
2gabR = Gab = 0 (2.3)

and a practical choice of coordinate on µ2 and µ3. Because it is not that instructive
to work through full derivation and simplification of the resulting equations from the
vacuum field equations, it is sufficient to regard the choice of coordinate condition forced
on µ2 and µ3.

The particular gauge choice presented here implies no loss of generality (Chandrasekhar
1983), however is strongly motivated by physical considerations. The polar angle θ with
respect to the axis of symmetry is chosen as x̃3 and the radial coordinate r as x̃3. The
metric we seek should emit an event horizon i.e. a smooth null-surface. Following
Licklederer (2019), a general 2-dimensional null-surface can be given by

N(x1, x2) = 0 (2.4)

and the null condition being

gab(∂aN)(∂bN) = 0 a, b = 1, 2 (2.5)

for a smooth function N . The null condition means that the normal vectors of the
surface at every point are null. The vectors, η, that are tangent to the null-surface obey
the condition gabηa∂bN = 0 by definition. Therefore ∂aN itself is a tangent vector, i.e.
∂aN = gab

dγb(t)
dt

for a curve γ that lies inside the null-surface. Thus at every point of the
surface, there exists a tangent vector η for which ηaηa = 0. Geometrically the null-surface
at every point is tangent to the light cone at that point. As a result, the light cone is
entirely on one side of the null-surface and is at that point tangent to it. The smoothness
of the function N and as well as the metric tensor field g also show that all the light cones
along the null-surface lie on the same side. The future-direction world line of a massive
or massless particle can only cross the null-surface in one direction. The null-surface
then forms an event horizon as characterized earlier in this chapter. Note that for the
sake of generality, a 2-dimensional null-surface was considered.

Because of the aforementioned axis-symmetry of the coordinate φ and stationarity,
the function that describes the surface of the event horizon depends solely on r and θ
(Licklederer 2019), thus

N(r, θ) = 0, (2.6)

10



2.1 The Kerr Metric

for a smooth function N and the tangent space of the surface is spanned by ∂t and ∂φ.
Taking the condition that the surface be null (Eq. 2.5) and the standard form for the
axis-symmetric (Eq. 2.2), stationary spacetime, we have

e2(µ3−µ2)(∂rN)2 + (∂θN)2 = 0. (2.7)

Using our special gauge choice let

e2(µ3−µ2) = ∆(r), (2.8)

where ∆(r) is simply some function of r. From Eq. 2.7, it follows that the equation for
the null-surface is given by

∆(r) = 0. (2.9)
Using the latter condition, that the surface be spanned by ∂t and ∂φ, necessitates that
the determinant of the subspace (t, φ) vanish on the surface. Thus,

e2ψ+2ν = 0. (2.10)

Since we did not specify ∆(r) previously, let us assume

eψ+ν = ∆1/2f(θ), (2.11)

allowing us to separate the parts dependent on r, and θ, for some f(θ) which is regular
on the entire null-surface. Making use of parts of the vacuum field equations

R11 +R00 ≡ 0 + 0 = 0, (2.12)

and Eqs. 2.8 and 2.11 as well as the regularity of f(θ) and the convexity of the event
horizon, it then follows

∂2

∂r2 ∆ = 2 f(θ) = sin θ. (2.13)

This allows us to write ∆(r) as

∆(r) = r2 − 2Mr + a2, (2.14)

where M and a are simply constants of integration, however when investigating limits
of the Kerr solution, they acquire the physical meaning of mass and angular momentum
per unit mass of the black hole, respectively. With this particular choice, we have

eµ3−µ2 = ∆(r)1/2 eψ+ν = ∆(r)1/2 sin θ. (2.15)

This completes the derivation of the Kerr solution and the end result can be expressed by
the following line element, given in Boyer-Lindquist (Boyer & Lindquist 1967) coordinates
as

ds2 = −Σ ∆
ρ2 (dt)2 + ρ2

Σ

(
dφ− 2aMr

ρ2 dt

)2

sin2 θ + Σ
∆(dr)2 + Σ(dθ)2, (2.16)

11



2 Black Hole Theory

where

Σ = r2 + a2 cos2 θ (2.17)
∆ = r2 − 2Mr + a2 (2.18)
ρ2 = (r2 + a2)2 − a2∆ sin2 θ. (2.19)

We can return from Boyer-Lindquist coordinates back to Cartesian coordinates (see
Carroll (2004)) by

x =
√
r2 + a2 sin θ cosφ (2.20)

y =
√
r2 + a2 sin θ sinφ (2.21)

z = r cos θ (2.22)

The functions e2ν , e2ψ, e2µ2 , and e2µ3 from Eq. 2.2, can then be identified by comparing
the coefficients of the Kerr metric, giving

e2ν = Σ∆
ρ2 (2.23)

e2ψ = ρ2 sin2 θ

Σ (2.24)

e2µ2 = Σ
∆ (2.25)

e2µ3 = Σ (2.26)

ω = 2aMr

ρ2 . (2.27)

As previously mentioned, taking the limits of the Kerr metric we can understand the
meaning of the constants M , and a. By taking r →∞, the Kerr metric approaches the
Scharzschild solution

ds2
Schwarzschild = −

(
1− 2M

r

)
dt2 + 1

1− 2M
r

dr2 + r2(dθ2 + sin2 θdφ2). (2.28)

We can identify M as the mass of the black hole. If we take the limit as a→ 0 we also
retrieve the Schwarzschild solution. As the Schwarzschild solution describes a non-rotating
body, we can deduce that a is related to the angular momentum, and investigating the
Kerr metric we can physically interpret it as the angular momentum per unit rest mass
of the black hole. The Kerr metric gives rise to various physical phenomena, such as
frame-dragging first described by Lense-Thirring precession (Lense & Thirring 1918),
which has been confirmed by experiments like the Gravity Probe B (Everitt et al. 2011).

The condition ∆(r) = 0 can be evaluated as this causes a coordinate singularity
according to 2.16, from which we can determine the event horizon,

r± = 1±
√

1− a2. (2.29)

This gives us two event horizons, where the outer horizon r+ determines the size of the
black hole. The inner horizon is a Cauchy horizon, a region in which the existence of
close time-like curves can exist (Licklederer 2019).
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2.2 Equations of Motion

2.2 Equations of Motion
In order to calculate the paths that particles take it is necessary to calculate the geodesic,
which can be thought of as the ”straightest” path through curved spacetime. Following
Licklederer (2019), we can find geodesics by minimizing the action

S(g;γ] = 1
2

∫
dλ gγ(λ)(γ(λ), γ̇(λ)) (2.30)

where γ is the curve through spacetime. Finding the functional minimum of this action
we can derive the geodesic equation.

d2xa

dλ2 − Γabc
dxb

dλ

dxc

dλ
= 0 (2.31)

where x(λ) is the representation of γ(λ) in any chart (U, x) and Γabc. Due to the stationary
nature of the Kerr metric, there exists a time-like Killing vector ξ, and its axial symmetry
corresponds to the existence of a Killing vector X with space-like, closed orbits. As
solutions to the Killing equation

∇(aYb) = 0, (2.32)

where ∇ is a covariant derivative and the brackets indicate symmetrization of the indices.
It follows that along a geodesic, γ = x−1 ◦ x, the quantity

Ya
dxa

dλ
= const, where Y ∈ {ξ,X} (2.33)

is conserved. To demonstrate this we can take its change along the geodesic

d

dλ

(
Ya
dxa

dλ

)
= dx

dλ
∇a

(
Yb
dxb

dλ

)
. (2.34)

Expanding this out, we have

dxa

dλ
Yb∇a

(
dxb

dλ

)
+ dxa

dλ

dxb

dλ
∇a(Yb) = 0. (2.35)

We know the first term is zero due to the geodesic equation, and second term is zero due
to the Killing condition. Thereby confirming the conservation of Ya dx

a

dλ
. The resulting

conservation of these quantities for ξ and X correspond to the energy E and angular
momentum l, respectively. The rest mass is also conserved, however this is not a result
of a spacetime symmetry. The conservation of the rest mass corresponds to having a
constant valued Hamiltonian. The Hamiltonian can also be derived from the action and
has the following form

H = 1
2Σ

(
∆p2

r + p2
θ −

ρ2

∆p2
t +

(
1

sin2 θ
− a2

∆

)
p2
φ −

4aMr

∆ ptpφ

)
, (2.36)
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2 Black Hole Theory

where

pt = −
(

1− 2Mr

Σ

)
ṫ− 2Mar

sin2 θ

Σ φ̇ (2.37)

pr = Σ
∆ ṙ (2.38)

pθ = Σθ̇ (2.39)

pφ = −
(
r2 + a2 + a

ρ2

Σ ω sin2 θ

)
sin2 θφ̇− ρ2

Σ ω sin2 θṫ. (2.40)

The Hamiltonian does not depend on neither φ nor t , as these give rise to related
conserved quantities, which we can identify as the angular momentum, pφ = l, and the
energy, −pt = E, confirming the conservation quantities from the Killing condition. We
can make use of Hamiltonian-Jacobi formalism to obtain a further conserved quantity
known as the Carter (1968) constant and defined as

Q = p2
θ + cos2 θ

[
a2(µ2 − p2

t ) +
p2
φ

sin2 θ

]
, (2.41)

with µ = 1 for massive particles and µ = 0 for massless particles. This is not a standard
symmetry but arises from a separation ansatz in the Hamiltonian-Jacobi formalism for θ
and r. Due to the four conserved quantities the geodesic is uniquely determined and thus
we are able to solve for it. The equations which describe photon trajectories (Bardeen
et al. 1972) (in natural units G = M = c = 1) are given by

Σ dt

dσ
= −a(aE sin2 θ − λ) + (r2 + a2)T∆ (2.42)

Σ dr

dσ
= ±

√
Vr (2.43)

Σ dt

dσ
= ±

√
Vθ (2.44)

Σ dt

dσ
= −a

(
a− λ

sin2 θ

)
+ a

T

∆ (2.45)

where σ is an affine parameter or the ”proper time” for a massless particle, where

Vr = r4 − (q + λ2 − a2)r2 + 2
[
q + (λ− a)2

]
r − a2q (2.46)

Vθ = r4 − q2 + a2 cos2 θ − λ2 cot2 θ (2.47)
T = r2 + a2 − λa (2.48)

λ = l

E
(2.49)

q2 = Q

E2 (2.50)

The different signs in Eqs. 2.43-2.44 are for increasing (positive) and decreasing (negative)
values of r and θ. Carter was able to determine that these equations are integrable and
derived their corresponding integral forms (for a massless particle) (Carter 1968) as
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2.2 Equations of Motion

±
∫ r dr′√

Vr(r′)
= ±

∫ θ dθ′√
Vθ(θ′)

(2.51)

σ =
∫ r r′2√

Vr(r′)
dr′ + a2

∫ θ cos2 θ′√
Vθ(θ′)

dθ′ (2.52)

t = σ + 2
∫ r r′T

∆
√
Vr(r′)

dr′ (2.53)

φ = a
∫ r T

∆
√
Vr(r′)

dr′ + a2
∫ θ λ− a2 sin2 θ′

sin2 θ′
√
Vθ(θ′)

dθ′. (2.54)

where

∆ = r2 − 2r + a2 (2.55)
Vr = (r2 + a2)2 −∆(q2 + a2) (2.56)

Vθ = q2 − cos2 θ

[
λ2

sin2 θ
− a2

]
(2.57)

with r being the distance from and a being the spin of the black hole. The equations are
given in units where G ≡M ≡ c ≡ 1.

2.2.1 Lamp Post Source
For the lamp post model, we can make the assumption that θ = 0. However, given the
form of Vθ, this leads to difficulties as the equation diverges. This divergence is not a
physical one, as there is no physical reason why the source could not be located on the
rotational axis of the black hole, but a mathematical one. To avoid this divergence, one
simply applies the following conditions (Licklederer 2019)

lim
θ→0

∣∣∣∣∣ λ2

sin2 θ

∣∣∣∣∣ <∞ (2.58)

lim
θ→0

λ = 0. (2.59)

The first condition eliminates the divergence in Vθ, however a consequence is that any
photon which is emitted along the axis of symmetry must have zero angular momentum.
This allows for a massive simplification the equations of motion. The restriction in Eq.
2.58 allows us to simplify Vθ to

Vθ(θ) = q2 + a2 cos2 θ, (2.60)

for which now θ = 0 is well defined, resulting in

Vθ(0) = q2 + a2. (2.61)
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2 Black Hole Theory

This problem can be easily understood by considering the fact that along the symmetry
axis, the idea of a φ-direction makes no sense. If you are on the north pole, which
direction is east, or west? There is only south. The situation described above is directly
analogous. With this in mind, we can deduce that the initial direction of the photon
trajectories which start on the rotational axis are determined by a singular angle δ. We
can then determine the relation between this emission angle q (Dauser 2010)

sin δ = (ph)a(n(θ)
h )a

(ph)b(uh)b
=

√
Vθ
Σ |θ=0

−uth
=
√
h2 − 2h+ a2

h2 + a2

√
q2 + a2, (2.62)

where n(θ)
h is the normal vector in the θ-direction. We can find the single non-zero com-

ponent of the particle four-velocity, uth, which can be determined from the normalization
condition

1 != uau
a = (uth)2gtt(h) = −(uth)2 ∆(h)

h2 + a2 . (2.63)

From this we can determine the expression for q,

q = sin2 δ

√
h2 − 2h+ a2

h2 + a2 . (2.64)

Finally with the constants of motion q and λ, we can specifically determine the photon
momentum

pa = E
(
−1,±Vr∆ ,±

√
Vθ, λ

)
, (2.65)

and now we are able to solve the equations of motion numerically.

2.2.2 General Source
Having determined the relevant equations of motion for the lamp post model, I determine,
following very closely the work of (Licklederer 2019), the relevant equations of motion
for a general source. For a more general model, and the ring source which is presented in
this thesis, it is efficient to choose a chart in which the equations of motion are simplest
and locally non-rotating observers will provide these charts. If the initial conditions are
specified in another reference frame, it is possible to change to a locally non-rotating
observer with a general Lorentz transformation. Following Licklederer (2019) (and by
extension Bardeen et al. (1972)), we construct the locally non-rotating frame (LNRF) by
the basis vectors

e(a)(LNRF) = eν(a)∂ν (2.66)

where

eν(a) =


e−ν 0 0 ωe−ν

0 e−µ2 0 0
0 0 e−µ3 0
0 0 0 e−ψ

 (2.67)
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which constitute a frame with the property

ei(a)e(b)i = η(a)(b) (2.68)

and ω indicates the rotational velocity of the LNRF with respect to the coordinate frame.
If expressed in terms of the initial momenta with respect to the LNRF, the equations
of motion will take a simple form. Using the Hamiltonian Eq. 2.36, Eq. 2.40 and Eqs.
2.42-2.45 we can express the four-momentum of a photon in Boyer-Lindquist coord. as

pµ = E

(
−1, sign(r)

√
Vr

∆ , sign(θ)
√
Vθ, λ

)
. (2.69)

Because they are the components of a co-vector, they can be easily transformed into
components in the LNRF by

p̄(a) = eµ(a)pµ, (2.70)
where p̄(a) are the components of the four-momentum in the LNRF. Following Shakura
(1987) we have

p̄(t) = −Ee−ν(1− λω) (2.71)

p̄(r) = sign(r)Ee−µ2

√
Vr

∆ (2.72)

p̄(θ) = sign(θ)Ee−µ3
√
Vθ (2.73)

p̄(φ) = Eλeψ. (2.74)

From Eqs. 2.71 and 2.71 we can calulate λ:

λ =
sin θ p̄(φ)

p̄(t)

−Σ
√

∆
ρ2 + ω sin θ p̄(φ)

p̄(t)

, (2.75)

and Eq. 2.71 gives us
E = − p̄(t)e

ν

(1− λω) . (2.76)

Although it is possible to calculate these quantities from components of the four-
momentum p̄(a) with respect to the LNRF, it may be the case that the components are
given with respect to another frame. It is then possible to a general Lorentz transformation
to obtain the desired LNRF components. Considering a reference frame with physical
velocities vr, vθ and vφ with respect to the LNRF. One can obtain the LNRF components
via p̄(a) = α(b)

a p
′

(b) where p′ and α(b)
a is the Lorentz matrix (Misner 1973) given as

α(b)
a =


γ −γvr −γvθ −γvφ
−γvr 1 + γ2v2

r

1+γ
γ2vrvθ

1+γ
γ2vrvφ
(1+γ)

−γvθ γ2vrvθ
(1+γ) 1 + γ2v2

θ

(1+γ)
γ2vθvφ
(1+γ)

−γvφ γ2vrvφ
(1+γ)

γ2vθvφ
(1+γ2 1 + γ2v2

φ

(1+γ)

 . (2.77)
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2.3 The Accretion Disk
A good understanding of the accretion disc is needed for the following chapters and we
describe the model here. We assume a geometrically thin accretion disc on a stable orbit
in the equatorial plane which gives us

θ̇ = 0 and θ = π

2 . (2.78)

From Eqs. 2.41 and 2.50, we can see under these assumptions that Q = q = 0. The disk
is most easily modeled by a continuum of particles each on circular orbits with varying
radii. For these orbits the following is necessary that

r̈ = 0, ṙ = 0 and r = const, (2.79)
which leads to

dVr
dr

= 0 and Vr = 0. (2.80)

It is then possible to solve for E and L (Bardeen et al. 1972) which are given:
E

µ
= r

√
r − 2M

√
r + a

√
M

r3/4
√
r
√
r − 3M

√
r + 2a

√
M

(2.81)

L

µ
=

√
M(r2 − 2a

√
Mr + a2)

r3/4
√
r
√
r − 3M

√
r + 2a

√
M

(2.82)

Using these, we can calculate the angular velocity of the disk:

Ω = dφ

dt
=

√
M

r
√
r + a

√
M

(2.83)

This applies to both pro- and retrograde orbits with respect to the spin of the black hole
itself i.e. a > 0 and a < 0. In keeping with Bardeen et al. (1972), the stable orbits on
the orbiting disk imposes

d2Vr
dr
≤ 0 (2.84)

and solving for the resulting system of equations reveals that only certain radii r ≥ rms
where

rms = M
(

3 + Z2 − sign(a)
√

(3− Z1)(3 + Z1 + 2Z2)
)

(2.85)

Z1 = 1(1− a2) 1
3
[
(1 + a) 1

3 + (1− a) 1
3
]

(2.86)

Z2 =
√

3a2 + Z2
1 . (2.87)

If we evaluate Eq. 2.85 for maximally, non-rotating, and maximally counter-rotating
disks we obtain rms = 1.24 rg for a = 0.998, rms = 6 rg for a = 0, and rms = 8.994 rg
for a = −0.998. If we assume that the inner radius of the accretion disk is the rms,
then we can see that for black holes in which the spin and disk rotation are aligned, the
accretion disk reaches much closer to the black hole. This effect is critically relevant in
understanding the concentration of photons in the inner region of the disk.
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2.4 Ray Tracing
In order to generate the necessary tables for integration in the model for the relxill code
ray-tracing simulations were necessary. This work was done by Licklederer (2019) using
the publicly available YNOGK-code created by Yang & Wang (2013), adapted for this
purpose. Using Weierstrass and Jacobi elliptical functions, it is possible to express all
coordinates and affine parameters as analytical and numerical functions of a parameter p,
which is simply an integral value along the geodesic. This improves on earlier work done
by Dexter & Agol (2009), the main differences being the faster computational times and
no longer needing to specific the ”turning points” in advance.

The general approach to solving the equations of motion is to express the coordinates
(t, φ, r, θ) by an affine parameter p. The equations of motions are then expressed as
equations of the constants of motion as well as the affine as well as the parameter p.
These new equations can then be brought into a standard form which can be evaluated
using Carlson’s method (Carlson 1989, 1991, 1992, 1995). Then what remains is to
determine the constants of motion from the initial conditions, which can be done by
providing expressions of λ and q in terms of the affine parameter p. In the end, finding
the incident radius of an emitted photon on the disk becomes simply a problem of root
finding. More details into the exact inner workings of the code can be found in both
Licklederer (2019) and Yang & Wang (2013).
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3 Modeling Relativistic Reflection
Among the various models available for modeling X-ray spectra of black holes, such
as kerrdisk (Brenneman et al. 2011) or reflionx (Ross & Fabian 2005), this thesis
makes use of and expands upon relxill (Dauser 2014). relxill combines the xillver
(Garćıa et al. 2013) and relline (Dauser 2010) code, and features a proper angular
treatment of reflected radiation (Garćıa et al. 2014) as well as the ability to constrain
the reflection fraction (Dauser et al. 2014).

3.1 The Purpose of the Model
The relxill code is the combination of the previous relline (Dauser 2010) and
xillver (Garćıa et al. 2013) codes. xillver calculates the reflected spectrum from
an accretion disk by solving the equations of radiative transfer, energy balance, and
ionization equilibrium in a Compton-thick medium. It makes use of xstar (Kallman
1999) routines for the calculation of the ionization structure of the photo-ionized gas,
as well as using its atomic data. relline describes the emission lines broadened due
to relativistic smearing (Dauser 2010). Unlike the simple convolution of relconv and
xillver, which smears the angle-averaged reflection, relxill properly takes into account
the relativistic effects for each region in the accretion disk. This is necessary because
the angle of emission from the disk is not necessarily the same as its inclination (Garćıa
et al. 2014). The emission angle changes drastically near the black hole and therefore
a proper treatment of this angular variation must be taken into account. At higher
inclinations differences between the angle-averaged convolution and the relxill model
are more prevalent as demonstrated in Figure 3.1, which is due to increased relativistic
effects. relxill also permits the direct fitting of the reflection fraction for relativistically
smeared spectra (Dauser et al. 2014) and can be used to constrain the spin of the black
hole. This can provide us with the opportunity to determine more accurately the precise
geometry of the illuminating source.

3.2 Calculation of the Line Profile
The relline model (Dauser 2010) calculates an emission line which undergoes the
relativistic distortion due to the black hole gravitational potential as well as the rotation
of the accretion disk. While calculations of line profiles from black holes with negative
spin values existed (Jaroszynski 1997), the models that existed for use in isis (Houck &
Denicola 2000) or xspec (Arnaud 1996) for line profiles such as diskline (Fabian et al.
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Figure 3.1: Reflected spectrum for relxill for varying inclination angles. In gray is the
simple convolution of relconv on the xillver spectra. Credit: Garćıa et al.
(2014)

1989), laor (Laor 1991), or kerrdisk (Brenneman & Reynolds 2006) did not. We give
here a brief summary of the derivation of the line profile following the work of Dauser
(2010).

3.2.1 Radiation Transport
Assuming an observer very far from the system, the black hole can be considered as
a point source. In this case, it is necessary to integrate the local emitted emissivity,
IEe(re, θe), to obtain the observed intensity Iobs

E (θo). This specific intensities depends
only on the radius, re, and the emission angle θe, because of the symmetry of the system.
We define the intensity of photons at energy E as (Misner 1973)

IE = EdN

AdEdΩdt. (3.1)

where dN is the number of photons into the solid angle direction dΩ, which flow through
the area A in the time dt. This quantity is unfortunately not Lorentz invariant as it
depends on the chosen frame of reference. As a result it is necessary to search for a
way to convert emitted intensity IEe at the accretion disk to the measured intensity
IEo . Following Misner (1973), we can show that the number density, N = δN/(VxVp) of
photons is an invariant, with

dN
dλ

= 0 (3.2)
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3.2 Calculation of the Line Profile

Figure 3.2: A sketch of the volumes of the phase space VxVp for the momentum space
Vp as well as the position space Vx, needed to calculate the number density.
Taken from Misner (1973).

which is the collision-less Boltzmann equation in curved space, where VxVp is the phase
space volume of N identical particles. Taking into account explicit considerations (see
Fig. 3.2) leads to Vx = Adt and Vp = dΩE2dE. We also require all particles to be the
same, which from ~p2 = m2 dictates that the four-momenta lie on a hyperboloid. This
allows us identify the specific intensity with the number density and the result is

IE
E3 = N = const. (3.3)

Now we are able to integrate easily over the entire accretion disk, after projecting onto
a plane which is perpendicular to the line of sight. This plane is spanned by impact
parameters α, and β, which are related to the solid angle (Cunningham 1975) by

dαdβ = r2
odΩ, (3.4)

where ro is the distance to the system. The observed intensity now can be expressed as

IE(θ) =
∫ (

E

Ee

)3
IEe(re, θe) dαdβ . (3.5)

We can define the energy shift g = E/Ee where Ee is the energy in the emitter’s frame
and E is the energy in the observer’s frame. The energy shift can be calculated from the
metric. Using the fact that the observer measures in flat Minkowski space, and using
the expressions for the four momentum of the photon in the Kerr metric, the general
expression is given as (Dauser 2010)

g = E

Ee
= − E

peµuµ
=
√
re
√
r2
e − 3Mre + 2a

√
Mre

re
√
re + a

√
M − β(a)

√
Mλ

. (3.6)
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λ is dependent on the rotational direction of the black hole, and as a result changes sign
in the case of negative spin, although the direction of the photon does not. To account
for this we introduce

β(a) =
+1 for a ≥ 0
−1 for a < 0

. (3.7)

This is required, as a change in direction of the rotation implicitly requires one to flip
the coordinate system, but we do not want the photon to change direction. Normally
this would be accounted for the by sign of a however, the case of a = 0 necessitates the
choice of a particular coordinate system.

Knowing at which energy the photon is emitted from the disk and the resulting energy
shift, we are able to calculate the energy at which we should observe it. It is, however,
convenient to express the solid angle Ω in terms of the emission radius re and the relative
redshift g∗. This relative energy energy shift is defined as

g∗ = g − gmin

gmax − gmin
∈ [0, 1]. (3.8)

where gmin and gmax are the min and max energy shifts, respectively. For ease of
calculation, Cunningham (1975) defined the transfer function as

f(g∗, re, θo) = r2
o

πre
g
√
g∗(1− g∗)

∣∣∣∣∣ ∂Ω
∂(g∗, re)

∣∣∣∣∣ . (3.9)

In order to calculate the transfer function for given values re and g∗, we must calculate
the Jacobian after calculating gmin and gmax. Following Dauser (2010), the impact
parameters α and β are related to the constants of motion λ and q by

α = − λ

sin θo
β = ±

√
Vθ(θo) (3.10)

Therefore
r2
odΩ = dαdβ =

∣∣∣∣∣∂(α, β)
∂(λ, q)

∣∣∣∣∣ dλdq = q

sin (θo)β
dλdq (3.11)

and the Jacobian is

r2
0

∣∣∣∣∣ ∂Ω
∂(g∗, re)

∣∣∣∣∣ = q(gmax − gmin)
sin (θo)β

∣∣∣∣∣ ∂(λ, q)
∂(g, re)

∣∣∣∣∣ . (3.12)

Using this, as well as the equations above we can derive a new expression for the
observed intensity

IE(θ) = 1
r2

o

∫ ∞
rrms

∫ 1

0

πreg
2f(g∗, re, θo)√
g∗(1− g∗)

IEe(re, θe) dg∗dr, (3.13)

where rin and rout are the inner and outer radii of the accretion disc. Although we have
parameterized the accretion disk in (re, g∗) space, it is still defined properly as this
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3.3 Analysis of the Emissivity

parametrization leads to conserved quantities λ and q. A more detailed explanation
of the numerical process can be found in Dauser (2010) and Speith et al. (1995) but
I will give a quick summary here. To start, an initial re is chosen representing a ring
within the accretion disk. The corresponding gmin and gmax are calculated and the ring
is split into parts according to their energy shifts using Eq. 3.8. For each g∗ we find
the corresponding λ by rearranging Eq. 3.6, and insert them into the integral equations
Eqs. 2.51 - 2.54, where q is the only undetermined quantity left, which is then solved
numerically for the (g∗, re) values which ensure that the photons actually hit the observer.
After having fully determined the equations of motion, we can calculate the derivative in
Eq 3.12 and thereby determine the transfer function. As the accretion disk is composed
of many concentric rings, the process is then repeated for various re values within the
disk. All of these steps are performed using algorithms created by Speith et al. (1995)
with modifications for negative spins introduced by Dauser (2010).

3.3 Analysis of the Emissivity
In order to more efficiently calculate the line profile Dauser et al. (2010) takes a Green’s
function approach and takes the specific intensity from the disk as mono -energetic at Ee,

IE(re, θe, Ee) = δ(E − Ee)Iε(re, θe), (3.14)

where Iε is the disk emissivity, the determination of which is of great importance and the
topic of this section. If we insert this into Eq. 3.13 and evaluate the integral we derive

IE(θ) =
∫ rout

rin

πg3ref(g∗, re, θ)
Ee(gmax − gmin)

√
g∗(1− g∗)

Iε(re, θe)dre (3.15)

In order to calculate the reflected spectrum then, we must first determine the emissivity.
The emissivity is key to understanding the geometry of the hard X-ray source. For a
given geometry its emissivity can be calculated and, with the help of relxill, compared
to measured X-ray spectra. Although relxill makes use of a simple empirical power
law emissivity, Iε ∝ r−αe , relxill lp makes use of the lamp post geometry. Because
the ring source that I introduce in Chapter 4 resembles the lamp post model, I will, for
the sake of completeness, discuss the determination of the lamp post emissivity here,
concepts from which are also relevant for the ring source model.

3.3.1 Geometric effects
In the simple case of a point source located along the rotational axis, assuming no general
relativistic effects, the emissivity relation (Dauser 2014) is given as

Ii(r, h) ∝ 1
A(ri,∆ri)

= cos δi
r2
i + h2 = h

(r2
i + h2)3/2 , (3.16)

where h is the height of the source above the black hole and r is the radial distance
along the accretion disc. However, due to the strong gravitational field in the vicinity
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3 Modeling Relativistic Reflection

of a black hole, relativistic effects become crucial for understanding the shape of the
emissivity profile. Photons that are emitted from the source in the range [δ, δ + ∆δ] are
distributed on a ring on the accretion disc with an area of A(r,∆r). Following Dauser
et al. (2013), the proper area of a ring at radius r with thickness ∆r is given as

A(r,∆r) = 2π
√
r4 + a2r2 + 2a2r

r2 − 2r + a2 ∆r, (3.17)

in the observer’s rest frame (Wilkins & Fabian 2012). To calculate the irradiation in
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Figure 3.3: The impact on the proper area as a function of the radial distance from the
black hole. Varied for three different spin values.

the rest frame of the disc, it is necessary to take into account its rotation at relativistic
speeds. As a consequence, its area will be contracted. Taking the Keplerian velocity
profile from the Kerr metric (Bardeen et al. 1972; Wilkins & Fabian 2012), we find the
disc’s Lorentz factor to be

γ(φ) =
√
r2 − 2r + a2(r3/2 + a)

r1/4
√
r
√
r + 2a− 3

√
r
√
r3 + a2r + 2a2

. (3.18)

As a result we find that the incident intensity with these geometric considerations taken
into account (Dauser et al. 2013) to be

Igeo
i = 1

A(r,∆r)γ(φ) . (3.19)
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3.3 Analysis of the Emissivity

Due to the relative motion of the emitting source and the accretion disc, as well as
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Figure 3.4: The beaming factor as a function of the radial distance from the black hole.
Varied for three different spin values.

general relativity, there will be a shift in energy of the irradiated spectrum. Following
Dauser et al. (2013), we take into account the fact the number of photons is conserved
we can write

N (ph)
e ∆te∆Ee = const. = N

(ph)
i ∆ti∆Ei. (3.20)

where N (ph)
e (N (ph)

i ) is flux of emitted (incident) photons. If a power-law shape is assumed
for the emitted radiation

N (ph)
e = E−Γ

e (3.21)
where Γ is the photon index, then the photon flux on the accretion disc can be determined
by

N
(ph)
i (r, a) = E−Γ

i glp(r, a)Γ, (3.22)
due to ∆Ee/∆Et = 1/glp and ∆te/∆ti = glp. The flux incident on the accretion disc is
dependent on where the photon makes contact, r, and using this the incident flux can be
calculated as

Iε(r, h) = Igeo
i gΓ = gΓ

A(r,∆r)γ(φ) . (3.23)

From Figs. 3.3 - 3.4 it is easy to see that the geometric effects are largest in magnitude
at the innermost radii. The spin of the black hole is an especially relevant parameter
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3 Modeling Relativistic Reflection

because it determines the radius of marginal stability and it is assumed in the relxill
kernel, by default, that the accretion disk extends down to this radius. For large radii
the differences between the spins as well as the relativistic effects gradually disappear.
This makes sense as one would expect given that at larger distances the Kerr metric
gradually approximates to the Schwarzschild metric.

3.3.2 Energy Shift
Lastly we must determine the energy shift from the source to the disk in order to be
able to calculate the emissivity. The energy shift is dependent on the chosen geometry of
the source. Here we will analyze the result for the lamp-post model and will discuss the
energy shift for the ring source in Chapter 4.
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Figure 3.5: The energy shift undergone by photons along the their geodesics from the
point of emission to the disk as a function of the incident radius r. For this
figure, a = 0.998 and h = 5. The dashed line represents a ratio of 1, and the
dotted line represents the radius at which the ratio of 1 is reached.

Taking the initial four-momentum at the primary source

uµh = (uth, 0, 0, 0) (3.24)

and the four momentum on the disc

uµd = utd(1, 0, 0,Ω) (3.25)
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3.3 Analysis of the Emissivity

as well as the taking the momentum of the photons we can derive the energy relation.
The energy shift (Dauser 2010) is

glp = Ei
Ee

= pµu
µ
d

pνuνh
= (r

√
r + a)

√
h2 − 2h+ a2

√
r
√
r2 − 3r + 2a

√
r
√
h2 + a2

. (3.26)

That the geometric effects are most concentrated in the inner radii, can also be seen in
Figure 3.5, and this effect increases as the photon index increases. Not only are the largest
shifts most concentrated in the inner radii, which one can readily understand as the
gravitational well is most powerful near the black hole, but at a radius of approximately
rg ≈ 7, assuming a source at h = 5, we can see that there is an equilibrium where
the energy remains constant. To understand this better, if one were to imagine the
gravitational field generated by a black hole with no angular momentum. The potential
energy of a particle at 5rg above the black hole, and at the same distance along the
accretion disk are the same. The angular momentum breaks this symmetry, but the
effects of this broken symmetry are only appreciable at the innermost radii. Now that
all of the relativistic effects, as well as the energy shift have been determined we can
calculate the emissivity profile, shown in Fig. 3.6.
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Figure 3.6: Theoretical emissivity profiles of the accretion due to a stationary point
source located at on the rotational axis of a black hole (i.e. lamp post model)
given in arbitrary units. The height of the point source is varied from 1.5 to
22.5.
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4 Radially Extended Lamp Post
After having covered the relxill (Garćıa et al. 2014) code, and discussed in particular
the lamp post model, we now have a basis of comparison for the ring source. In this
chapter I will analyze the emissivity from the ring shaped source in a manner akin to the
lamp post model in Chapter 3, then compare its qualities to that of the lamp post model
and utilize it to calculate blurred emission lines, as well as combining these emission lines
with the xillver (Garćıa et al. 2013) code. These emission lines, as well as the resulting
spectra, will also be compared to those of the lamp post model.

4.1 Data Tabulation and Preparation
In order to make use of the simulations of the ring source done by Licklederer (2019)
available for use with the relxill kernel, the simulation data was stored in a FITS file
which was provided by Licklederer. One change of note from (Licklederer 2019), is a
change in the velocity profile. In the simulation the velocity profile has been changed and
is no longer the formula given in (Licklederer 2019), as this was in error. The velocity of
the source is now calculated using

vν = (vr, vθ, vφ) = vν where (4.1)

vφ = eψ−ν
( 1
d3/2 + a

− ω
)
, (4.2)

where d is the radius of the ring source. This new velocity profile was then used by
Stefan in the calculation of the FITS table.

Each combination of the black hole spin a, source height h, and ring radius d is a result
of 500,000 simulated photons using the modified YNOGK code (Licklederer 2019). The
radial grid consists of 199 logarithmically spaced bins from the rms to 1000rg. For each
given value of, h, d, and a, the radial dependence of the photon flux, Iε, and the energy
shift, g, are stored. In addition, two further columns contain the qdisc, the fraction of
total photons which are reflected and qesc, the fraction which escape with no reflection,
respectively. They are tabulated for each combination of the corresponding d and h
values. A total of 25 linearly spaced a values ranging from −0.998 to 0.998 are stored.
Additionally, combinations of 25 d and 25 h values that are logarithmically spaced are
tabulated. By default, the h or d ranges from 0 to 35, however if the combination of h
and d lead to a source location within the rms of the black hole for the corresponding a
value, then the minimum value would be such that the combination of the two was equal
or greater than the rms. The table is loaded into the relxill kernel via the relevant
functions in rellp extended.c.
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4 Radially Extended Lamp Post

The reflection fraction, R, is then determined by R = qdisc/qesc. The energy shift to
the power of the chosen photon index, gΓ, is calculated. The photon flux is read from
the table as is the radial grid, and the proper area correction (Eq. 3.17) and Lorentz
contraction (Eq. 3.18) are applied. After these geometric considerations are applied,
the flux is then promptly multiplied by the energy shift, g, as in Eq. 3.23, with the
corresponding photon index, Γ, giving the corresponding emissivity. Once the emissivity
is determined, it is then promptly re-binned on a radial grid of 1000 bins. All values
in the calculation are interpolated linearly. Once these calculations are completed, the
emissivity for the ring source can be integrated into the relxill kernel in the same
manner as the lamp post.

4.2 Energy Shift
Like with the lamp post model, determining the energy shift is a necessary step in the
calculation of the emissivity. It is possible to calculate the energy shift more generally
for other sources. The derivations in this section follow closely the work of Licklederer
(2019). As the energy shift is the ratio of energies for emitted and observed photons we
can take the source location to be our emitter and the disk as our observer. This results
in

Eem = −p′(t) Eobs = −pαuαobs (4.3)

where uobs is the velocity of the observer. For ease of calculation we define

ft := p̄(t)

p′(t)
= α

(t)
t + α

(i)
t

p′(i)
p′(t)

(4.4)

where p′(t) is the t-component of the four-momentum in the frame of the emitter and
p̄(t) is the t-component of the four momentum with respect to the local non-rotating
reference frame (LNRF). ft essentially denotes a Lorentz transformation (Eq. 2.77) of
the ratio of t-components of the emitter and LNRF momenta. We can then, using this
equation along with the t-component of the LNRF momentum (Eq. 2.71), determine
energy of the emitter as

Eem = −p′(t) = p̄(t)
p′(t)
p̄(t)

= Ee−ν(1− λω) 1
ft
. (4.5)

To determine the Eobs it is possible to use the form of the disk velocity, Eq. 2.83.
However, it may be pertinent to consider cases where the disk velocity is modified because
of other physical circumstances. In this way uαobs is kept unrestricted, which allows for
the possibility of modifying the disk rotation later without much added effort. Letting
uαobs = dxα

dτ
(ut, ur, uθ, uφ), with τ as the observer’s proper time, and using Eqs. 2.71-2.74
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4.2 Energy Shift

the observed energy is expressed as

sEobs = E

(
ut + sign(r)

√
Vr

∆ ur + sign(θ)
√
Vθu

θ + λuφ
)

(4.6)

= Eut
(

1 + sign(r)
√
Vr

∆
dr

dt
+ sign(θ)

√
Vθ
dθ

dt
+ λ

dφ

dt

)
. (4.7)

We can then express the energy shift as

g = Eobs

Eem
=

[
ut
(
1 + sign(r)

√
Vr

∆
dr
dt

+ sign(θ)
√
Vθ

dθ
dt

+ λdφ
dt

)]
obs

[e−ν(1− λω)/ft]em
(4.8)

where the brackets indicate that the expression should be evaluated at the position of the
observer/emitter respectively. Assuming that disk only moves in the equatorial plane, i.e.
dr
dt

= dθ
dt

= 0. We can then determine the general energy shift for the disk,

g = [utdisk(1− λΩ)]obs

[e−ν(1− λω)/ft]em
, (4.9)

where ω and Ω are the rotational velocities of the ring source and accretion disk,
respectively.

For a given parameter combination of a, d, and h, the energy shift for each individual
simulated photon is calculated using Eq. 4.9. Due to the axis-symmetry of the lamp post
source, it is possible to analyitcally determine the energy shift value corresponding to a
given radial bin. However, for the ring source, there can be photons in the same radial
bin which vary in their energy shifts, due to their differing initial positions and direction
along the ring source. As a result, it becomes necessary to use the average energy shift
in the ring source case.

In order to make the photon index, Γ, a parameter available for fitting in the
rellineExt and relxillExt models, it is necessary to implement a particular method
of determining the average energy shift for a given parameter combination. In principle,
for a given radial bin, one would simply take the average energy shift of the individual
photons in the radial bin, ri, each to the power of the appropriate photon index, expressed
aptly as

gΓ
avg(ri) = 1

N

N∑
k=0

gΓ
k (ri). (4.10)

As stated in the previous section, however, each parameter combination consists of a
simulation of many photons, which must be run for each combination of parameters h,
d, and a, and consequently store the energy shift information for each photon. For this
reason, it is impractical to generate such tables, as they would be much too large. In the
table generated for use in relxillExt, with nearly 200 radial bins, this means that the
energy shifts of roughly 2,500 photons must be stored for every radial bin.

Instead, for a given radial bin, the photons are sorted in ascending order of energy
shift, and divided into N equally sized groups gn. For each group the average photon
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4 Radially Extended Lamp Post

energy shift, 〈gn〉, is tabulated. The average energy shift for a given photon index, Γ,
and radial bin, ri is then determined by

gΓ
avg(ri) = 1

N

N∑
n=0
〈gn〉Γ(ri), (4.11)

where here N is the number of groups, 〈gn〉 is a group of averaged photon energy shifts,
and Γ is the photon index. The table utilized by rellineExt and relxillExt contains
20 groups per radial bin. It is, however important to note that this calculation does not
give the ”true” average energy shift but rather an approximation of the average of the
”raised” energy shift. This is the quantity by which the photon flux is multiplied by in
Eq. 3.23, and the one which is relevant for determining the emissivity.

4.3 Emissivity
Having found a practical way of determining the energy shift of the ring source, we
can now determine its emissivity, which is necessary to calculate the line profiles and
subsequently the reflected spectra. Since the Kerr-spacetime is axis-symmetric this
suggests that a source extended outward from the rotational axis of the black hole should
also exhibit axis-symmetry. For this reason the emissivities presented here were calculated
assuming a source with a ring shaped geometry. Due to the source’s axis-symmetry, each
point source along the ring will produce the same flux and intensity on the disk, only
being shifted along the φ coordinate. In this case, it is possible to simply simulate a
single point source and to project the resulting spectrum onto the radial coordinate. A
similar treatment was done in (Wilkins & Fabian 2012).

As was the case for the lamp-post model, the parameters h and a denote the height
of the source above the black hole and the black hole’s spin respectively. However, in
addition to these parameters, I introduce d which represents the distance of the source
from the rotational axis. The parameters d and h can be related to the Boyer-Lindquist
coordinates r and θ by

d =
√
r2 + a2 sin θ (4.12)

h = r cos θ. (4.13)

For smaller values of d only minimal differences between the lamp post are to be seen,
however for values where d ≥ h a substantial increase in the flux at r ≈ d can be observed,
while the rest of the emissivity follows a similar pattern, as in the case of the lamp post
model, as seen in Fig. 4.1. The sharp peak at r ≈ d is readily explained by an increase
in the photon flux due to its vicinity of the radiating source. The peaks also increase in
magnitude for increasing distance from the black hole, which can be explained by the
decreased strength of the gravitational field at distances farther from the black hole.

Because of these assumptions however, one would expect that if the radius of the ring
is decreased, we should slowly recover the same results as that of the lamp post model.
Comparing the ring source for d = 0 should yield equivalent results to the lamp post
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Figure 4.1: Emissivity profiles for varying ring distances from the axis of symmetry.
With a height of h = 5.0 and spin of a = 0.998. A significant feature is the
increase around r ≈ d, gradually increasing in significance at larger radii.
The emissivities are given in arbitrary units.
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model. Fig. 4.2 illustrates that the two models indeed agree relatively well. In the inner
regions they are within a roughly 5% difference of the lamp post model. For higher
radii the difference is larger however the most relevant contributions to the spectra from
the emissivity are those in the inner regions and here the accuracy can be considered
sufficient, and in principle the accuracy can be increased by increasing the number of
photons in the simulation used to tabulate the data.

4.4 Line Profiles
After the determination of the ring source emissivity I then integrated it for use in the
relxill kernel, thereby creating the new rellineExt and relxillExt models. Here
I will determine the line profiles and compare them to those of the lamp post model.
Before I examine the effect of the new ring radius parameter, d, I will compare the
ring source model, with d = 0, to the lamp post model. Because a ring with no radius
coincides with a point, the two models should coincide. As with the lamp post model,
the ring source is very sensitive to changes in the height of the source (Figs. 4.3a and
b), as well as to changes to the photon index, Γ. The same behavior can be seen for
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Figure 4.3: Line profiles of the rellineExt, each varying particular parameters, from Γ,
to a. Unless otherwise stated, the default relxill lp parameter values are
used.
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the negatively spinning black hole, albeit to a lesser degree (Fig. 4.3b). Sources near a
highly rotating black hole also vary immensely with a change in the photon index of the
input spectrum (Fig. 4.3c). For varying photon indices, the lines profiles are quite noisy.
This may be an issue from the particular method for determining the energy shift, and
may possibly be alleviated by increasing the number of groups in Eq. 4.11. For sources
near the black hole, the model is also sensitive to the spin, with a substantial narrowing
of the line shape occurring for non-rotating and negatively rotating black holes (Fig.
4.3d). However, for sources located farther from the black hole along the axial direction,
the sensitivity of the line shape to nearly all parameter values vanishes. At h = 25 the
different parameter combinations produce nearly indistinguishable line shapes (Fig. 4.3e
and f), but even with heights as small as 10 rg the sensitivity to parameters such as the
spin and photon index are drastically reduced.

Fig. 4.4 shows that discrepancies of two parameter combinations, when compared to
the relline lp model. The value of h = 2.3 corresponds to a value directly tabulated
the FITS file, meaning no values were interpolated. The value of h = 2 is located roughly
halfway between two containted values in FITS file, allowing us to assess the accuracy of
interpolated values. It can be seen that for directly tabulated values, the rellineExt
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Figure 4.4: The blurred emission line varying the values of d. The default parameter
values in relline lp are used with a = 0.998 and h = 2. The ring source
model is compared to that of the lamp post, relline lp, in black.

model agrees incredibly well, with deviations less than 2% for nearly the entirety of the
iron line. However, when interpolating to values furthest away from nearest tabulated
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values, a significant degree of error, upwards of 30% is observed, primarily for the lower
energies. While this error is indeed great, it represents the likely maximum possible error,
as the error will likely decrease the closer a tabulated value. This may pose significant
problems for the results in this thesis, but also points to logically straight-forward, if not
necessarily practical solution for this inaccuracy.

Having observed that the ring source reproduces behaviors of the lamp post model
for d = 0, I now analyze the effect of the newly introduced ring radius, d. As illustrated
in Fig. 4.5, an increased radius of the ring serves to narrow the emission line. The
broadened shape of the line is more present at higher ring radii, and gradually narrows
with increasing distance from the rotational axis. The characteristic double peak shape
of the relline lp (Dauser 2010), seen in Fig. 4.5 in black, is still present. However,
at larger ring radii this fades. The effect of increasing d narrows the line in a similar
fashion to increasing the height, h of the source along the rotational axis (Fig. 4.3a).
Drastically increasing the radius of the ring source, such as d = 25, while keeping the
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Figure 4.5: The blurred emission line varying the values of d. The default parameter
values in relline lp are used with a = 0.998 and h = 2. The ring source
model is compared to that of the lamp post, relline lp, in black.

height relatively low makes apparent a sharply asymmetric double peak shape (Figs.
4.3h, and i). This effect can also be seen for negatively spinning black holes, however,
much like height variation, it significantly diminished (Figs. 4.6b,e and h). In a similar
fashion, the greatest sensitivity of the model to parameters can be seen when the source
is closest to the black hole. At small ring radii, the deviation of the shape from that of
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a point source is quite low (Figs. 4.6a-c) while variation can still be seen with varying
source height (Fig. 4.6d). Similarly to Fig. 4.3c, for varying photon index, the line
profiles are quite noisy, suggesting this issue is persistent with lower values from d as
it appears more sharply for higher d values (Figs 4.6c,f, and i). At intermediate disk
radii i.e. d = 10, the line shapes from various spin and photon indices begin to rapidly
coincide (Figs. 4.6e and f), and at h = 25 rg the difference is practically indistinguishable
for all parameter combinations. However, even at very large disk radii, the line shape
exhibits notable sensitivity to changes in the height of the source.
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Figure 4.6: Line profiles of the rellineExt. Unless otherwise stated, default parameter
relline lp values are used.

As the source is no longer assumed to be along the rotational axis of the black hole,
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4 Radially Extended Lamp Post

one might expect to see differing behavior along the azimuthal direction. From Fig. 4.7
it can be seen that, for less compact sources, the greatest increase in luminosity occurs
not for the highest inclination, but rather the most luminous peak is observed at lower
inclinations, in this case d = 8 causes a greater luminosity at θ ≈ 50. In addition to the
shifted luminosity, a great distortion in the shape of the emission can be observed and
this distortion appears asymmetric with respect to peak observed at θ ≈ 50.

The increased ring radii narrow the line shape, much like the introduction of a source
elongated along the rotational axis (Dauser et al. 2013). In a manner similar to an
elongated source, the problem of ambiguity in the measurement of the black hole spin
arises. If a narrow line is measured, it is not necessarily possible to assume that narrow
shape is a result of a low-spin. The shape could be a result of a small and compact source
near a slowly spinning black hole, or it could be a quickly rotating black hole with a
ring source of large radius. The contrary to this, is that if one is able to independently
determine the spin of the black hole, such as with X-ray continuum spectroscopy (Steiner
et al. 2011) or time-domain very long baseline (VLBI) observations of in-falling gas clouds
(Moriyama et al. 2019), one can more accurately determine the precise geometry of the
source.
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Figure 4.7: The blurred emission lines with the ring source (above) and lamp post (below)
emissivities varying the values of θ with a = 0.998, h = 2 and d = 8.
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4.5 Reflection Spectra

4.5 Reflection Spectra
While the newly created rellineExt model lets us model and analyze line profiles and
determine the effect of a radially extended ring source on its broadened shape, in order
to determine the effect this will have on the larger X-ray spectrum, it is necessary to
combine these line profiles with the xillver (Garćıa et al. 2013). Using the newly
created relxillExt, which implements the relxill kernel using the emissivity from
the previously discussed ring source we can compare the results to the corresponding
lamp post source. As illustrated in Fig. 4.8, the effect of blurred emission lines become
clear. The increased distance from the source, as expected from analyzing the line shape,
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Figure 4.8: Comparison of the reflected spectrum of the ring source model with that of
the lamp post (in black) with varying d values for h = 2 and a = 0.998. All
other parameters use their default values unless otherwise stated.

narrows the emission peaks in the overall spectrum. In addition a sharp dip can be
observed before the Compton hump. When varying parameters for the relxillExt,
sensitivity of the spectrum to the height can be seen in the in Figs. 4.9a, 4.9d, and 4.9g.
Sensitivity can also be seen in the spin, a, parameter can be seen for Figs. 4.9b, 4.9e,
and 4.9h. Additionally sensitivity is observed for the photon index, Γ, Figs. 4.9c, 4.9f,
and 4.9i. With respect to all other parameters, the effect of the d is seemingly clear. The
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4 Radially Extended Lamp Post
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Figure 4.9: Comparison of the reflected spectrum of the ring source model with that of
the lamp post (in black) with varying d values for h = 2 and a = 0.998. All
other parameters use their default values unless otherwise stated.

narrowing of the emission lines can be seen in Figs. 4.9, and appears and comparatively
little sensitivity to the other parameters can be seen.
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5 Analyzing Reflected Spectra

With the relxillExt model fully constructed and in working order it can be implemented
in the X-ray analysis of a black hole source. Although this model can in principle be
applied to any source which is believed to be a black hole, the choice of source is relevant
in order to more succinctly explain observations that are less clear from existing models,
like the lamp post model. To that end, Markarian 335 (Mrk 335) was chosen for this
analysis. I will first discuss this source and the reason for its selection, then summarize
the analysis of the source, and finally discuss the results.

5.1 Markarian 335

Mrk 335 is a narrow-line Seyfert 1 galaxy with a redshift of z = 0.026 and mass of
2.6× 107M� (Grier et al. 2012). Observations from 2000 to 2006 indicated the presence
of a bright X-ray source in a high flux state. Regular observation of this source with the
Swift satellite has been occurring since 2007 and found that the flux had subsequently
dropped by a factor of 10 since 2006 (Grupe et al. 2007). The X-ray spectra ranging from
early high flux observations (Crummy et al. 2006; Grupe et al. 2008) to low- (Grupe et al.
2008) and even much later intermediate-flux (Gallo et al. 2013) states can be explained
by X-ray continuum emission from a corona of highly energetic particles which surround
the black hole and illuminate the accretion disk (George & Fabian 1991). This causes
X-ray reflection via Compton scattering, photoelectric absorption and the emission of
fluorescence lines and as well as bremsstrahlung (Ross & Fabian 2005). The resulting
reflection spectrum, particularly the 6.4 keV Kα emission line, is blurred by Doppler
shifts and relativistic distortion caused by the orbital motion of accretion disk in addition
to gravitational redshifts as a result of the strong gravitational field near the black hole
(Fabian et al. 1989; Laor 1991) where the corona contracted to 12rg and 5rg, respectively
(Wilkins & Gallo 2015). An analysis by Wilkins & Gallo (2015) concluded that the in
the low flux state, accretion disk was illuminated by a corona extending out to a 26+10

−7 rg
covering the inner regions of the accretion disk. Additionally it was concluded that the
corona contracted to 12rg and 5rg for the intermediate- and low-flux states, respectively.
The high degree of variability in the flux and the measured shift in the radial extent
of the corona makes Mrk 335 a prime candidate for studying how energy is freed from
accretion flow in active galactic nuclei (AGN), in addition to the change in radial extent
measured by (Wilkins & Gallo 2015).
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5 Analyzing Reflected Spectra

5.2 Spectral Analysis
Having selected the proper source, we can conduct the spectral analysis in this section. I
make use of data from the 75 ks NuSTAR observation on 2014 September 20 (NuSTAR
OBSID 80001020002), using the FPMA and FPMB detectors, which corresponds to the
measured value of d = 5rg as measured by Wilkins et al. (2015). Using isis (Houck
& Denicola 2000) the spectra were binned with at least 20 counts per spectral bin and
a minimum signal-to-noise ratio of 2. This choice of binning allows us to use the χ2

statistic to assess the goodness of fit of the relxillExt model. Due to a not yet resolved
issue with the normalization of the relxillExt, only the reflected component of the
model was used by setting the parameter fixReflFrac = 3. This reflected component
was then added to a power-law spectrum with a high energy cutoff instead, with the
high-energy cutoff and photon index Γ tied to the same values as the relxillExt model,
or in the language of isis,

tbnew simple× (relxillExt + cutoffpl).

The disadvantage of this method is that it is no longer possible to extract information
about the reflection fraction.

Given the availability of a previous analysis using the relxill lp model, this analysis
began starting with best fit parameters obtained there. Following (Wilkins et al. 2015), the
inclination was frozen at θ = 57.1◦ as well as the hydrogen abundance NH = 3.6×1020cm−2

for modeling galactic absorption. In an attempt to recreate the best fit with the
relxillExt model for the lamp post case, the ring source radius parameter, d, was
initially frozen at d = 0. Using the same parameter values as in Wilkins et al. (2015), I
obtained a goodness of fit of χ2/ν = 1.08, compared to the 1.02 given by Wilkins et al.
(2015). The upper bound for the source height, h = 2.1, given in Wilkins et al. (2015)
was then set as the upper soft limit of the h in relxillExt and allowed to fit freely,
while keeping other parameters frozen. However, this did not improve the fit. Allowing
the parameters to vary freely, I was able to obtain a better fit, with a goodness of fit of
χ2/ν = 1.06. The best fit parameters are listed in Table. 5.1. The spin parameter was
frozen at a = 0.998, for both d = 0 and when fitted freely. this was done as initial fits
showed essentially no change in the spin (i.e. a > 0.99789). In addition Wilkins et al.
(2015) did not find evidence of truncation of the inner disk, and the measured value
rin = 1.235rg corresponds to the rms for a = 0.998, confirming the validity of freezing the
spin parameter. The best fit parameters obtained in this case differ slightly from those
in Wilkins et al. (2015). The spectrum is slightly softer, with a reduced photon index,
although contained with the error margins of the Wilkins et al. (2015) measurement.
The ionization value lies within the lower bound of ξ < 53 given by Wilkins et al. (2015).
However this parameter is not very well contained due to its large error margins. The
iron abundance AFe significantly increases. While it is contained within the margin of
error of the Wilkins et al. (2015) result, it is however, near the upper limit.

Once a best fit was achieved with d = 0, the parameter was allowed to fit freely in
order to obtain the best fit for the ring source. Compared to the result with d fixed at 0,
we can see a further softening of the spectrum with a slightly reduced photon index, Γ.
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5.3 Discussion

Table 5.1: Best fitting model parameters to the NuSTAR spectrum of Mrk 335 fit in the
range of 3-50 keV.

Parameter relxillExt with d = 0 relxillExt
h [rg] 1.84+0.06

−0.09 < 1.3
d [rg] 0f 2.17+0.23

−0.12
a 0.998f 0.998f
Γ 2.460+0.008

−0.012 2.414+0.018
−0.016

log ξ 0.3+1.5
−0.3 0.3+1.4

−0.3
AFe [solar] 3.26+0.57

−0.26 3.33+0.08
−0.26

χ2/ν: 1.06 1.04

The ionization value also lies within the lower bound of ξ < 53 given by Wilkins et al.
(2015). However, as with the case with fixed d = 0, the measured ionization has a wide
margin of error. While the best-fit result for the height in the freely fitting model is 1.3rg,
this was a result of the hard lower limit that was set to ensure computational viability.
It is necessary that, for any combination of a, d, and h, the location of the source from
the black hole center is greater than the rms. For a maximally spinning black hole, with
an rms of 1.24rg, the combination of h = 1.3, d = 2.2 leaves little room for error. It is
possible that a general source might be incredibly radially extended but at heights lower
than the rms. Originally the hard limit was set much lower, but after having relxillExt
crash multiple times during fitting, the hard limit was raised to 1.3rg. For this reason,
the best-fit height of 1.3rg may not be reflective of the source’s true height, but should
serve as an upper limit of the source height.

5.3 Discussion
The model fits rather consistently with goodness of fits, χ2/ν, of 1.06 and 1.04 for the
d = 0 and freely fitting d, respectively. All freely fitting relxill parameters fit within
the margin of error obtained by Wilkins et al. (2015). However, they do not a fit as
accurately as the Wilkins et al. (2015) results, where a goodness of fit of 1.02 was
obtained for using relxill lp. In the analysis from Wilkins et al. (2015), out-flowing
absorption components were modeled using the photo-ionization code xstar, where a
best fit improvement of ∆χ2 = 16 (with two additional free parameters) was obtained.
Whether this would have closed the gap in the difference between the results from Wilkins
et al. (2015) and my results is not known, but their inclusion in my analysis would
have most likely improved the goodness of fit. Additionally, Suzaku observations of Mrk
335 from 2013 and 2006 indicate that the most likely explanation which explains the
long-term and rapid variability of Mrk 335 (Gallo et al. 2015) is a rapidly spinning black
hole (a > 0.91), which provides further justification for the decision to freeze a = 0.998.

In Wilkins et al. (2015), the upper bound for the height, h, of the lamp post source was
found to be 2.1rg from the black hole. For relxillExt, keeping d = 0, the source of the
height was 1.84+0.06

−0.09. This is well within the upper bound of the results from Wilkins et al.
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5 Analyzing Reflected Spectra

Figure 5.1: X-ray spectra of Mrk 335 measured by NuSTAR FPMA and FPMB detectors
during the decline of the 2014 flare with the rexlillExt reflected spectra
best fit, with d = 0 fixed.

(2015). When letting d vary freely a upper bound on the height of h < 1.3rg was obtained.
Due to the computational issued mentioned in the previous section, it is possible that the
height is lower than the rms. This would require that the radial extension is sufficiently
large such that the position of the ring remains outside rms. For the case of freely fitting
d, a measured value of 2.17+0.23

−0.12 was obtained. In Wilkins et al. (2015), the measured
emissivity suggests a compact source with a radial extension no larger than 5.1rg (Wilkins
et al. 2015), and the measured value obtained with relxillExt lies well within this
bound, indicating agreement.

The results are plotted in Figs. 5.1 and 5.2. Since they both describe the data relatively
well, they appear very similar. Of note in both figures is the increased discrepancy at
approximately 6.4 keV, which indicates the iron line. The low ionization as detected in
both cases would decrease the prominence of the iron line, possibly explaining observed
behavior of the best fit. This possibly indicates that the fitted value of the ionization
is the result of a local minimum. A higher ionization might explain the data more
accurately but the fit was not given the possibility of escaping the local ”best-fit” value,
reflected in the increased residuals near the iron line.
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5.3 Discussion

Figure 5.2: X-ray spectra of Mrk 335 measured by NuSTAR FPMA and FPMB detectors
during the decline of the 2014 flare with the rexlillExt reflected spectra
best fit, letting d fit freely.
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6 Conclusion and Outlook

The goal of this thesis was to expand upon the already well-established relxill and
relxill lp (Dauser 2014) models. By taking photon simulations using the YNGOK
code (Yang & Wang 2013) for a radially extended ring source the emissivity could be
determined (Licklederer 2019). This emissivity was then integrated into the relxill
kernel allowing for the creation of rellineExt, for the modeling of broadened emission
lines, and relxillExt, for the determination of the angular-resolved spectra. It was
shown that, in the appropriate limit, the ring source model reduces to lamp post model
and exhibits the same parameter sensitivities for this limited case. Just as extending the
reflection model for the lamp post geometry made it possible to probe the geometry of
the source rather than fitting an artificial emissivity, the introduction of a ring source
model as presented in this thesis opens up the possibility to more accurately determine
the precise geometry of the irradiating source.

The effect of the newly introduced source geometry is to narrow the emission line as
discussed in Section 4.4. For large values of ring radius (d ≥ 25) a strongly asymmetric
double peak shape is seen. Additionally it provides the ability to narrow the emission
line in a manner which does not require increasing the height of the source. Instead of a
point source which is assumed to be located far from the black hole, the source might
instead be located much closer but radially extended from the rotation axis. The analysis
of Mrk 335 with relxillExt appears to confirm this hypothesis as well, as a source
with lower heights and radial extension explained the data just as well as a more distant
lamp post source, in fact, slightly better. The obtained disk radius of d = 2.17+0.23

−0.12 is
well within the upper limit of the corona determined by Wilkins et al. (2015). However,
the upper limit from Wilkins et al. (2015) was determined by dividing the iron line into
contributions from reflection at successive radii (Wilkins & Fabian 2011), unlike the ring
source. A continuous disk emissivity of equivalent flux contains more photons in the
inner regions near the black hole, than for a ring source. In order to produce a equivalent
portion of highly distorted photons, the ring source must be then located closer to the
rotational axis, which would bring down the estimated upper limit given by Wilkins
et al. (2015). While the result presented in this thesis is promising, a stronger conclusion
necessitates a more rigorous analysis.

In addition, it must be taken into account that these results are rather preliminary.
There is still a fair degree of discrepancy between the ring source and lamp post emissivity,
and the resulting line profiles in the limits where they should theoretically coincide.
However, the ability to reproduce the many behaviors of the lamp post in the proper
limit, even with limited accuracy, attests to the validity of the approach taken in this
thesis.
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6.1 Extension to a Disk Source

Though the new relxillExt model is not as simple as the lamp post geometry, it is not
an extended generalization. The emissivity profiles resulting from more general sources,
with thickness both along the rotational axis and perpendicular to it, have been analyzed
(Wilkins & Fabian 2012) (see Fig. 6.1). Although emissivity profiles can be and have
been extracted from sources such as the Line Seyfert galaxies 1H 0707-495 (Wilkins &
Fabian 2012) and Mrk335 (Wilkins et al. 2015) that resemble the extended geometries
analyzed by Wilkins & Fabian (2012), no models yet exist, to date, which can calculate
the reflected spectra produced by these geometries.

Given the already functional ring source emissivity provided by relxillExt, a extended
ring source could be effectively simulated by adding together the emissivities emitted
by concentric rings, ranging from din to dout at sufficient density. To add thickness
perpendicular to the equatorial plane, the emissivities of successive heights, hbase to htop,
could be added. As mentioned in the concluding remarks of this thesis, the method
of emissivity calculation divides relativistically broadened iron Kα emission line into
contributions from reflection at successive disk radii (Wilkins & Fabian 2011), making
the obtained ring radius estimate not directly comparable to the results obtained by
Wilkins et al. (2015). Implementing the general disk extension would allow us to compare
more effectively to the emissivity measurements.

Figure 6.1: Extended X-ray source defined by lower and upper heights from the disc
plane and inner and outer radii. Figure taken from Wilkins & Fabian (2012).
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6.2 General Accretion Disks

6.2 General Accretion Disks
The simulations conducted by Licklederer (2019) that were instrumental to the construc-
tion of the relxillExt model, were calculated with the assumption that the accretion
disk follows the Shakura-Sunyaev Disk (Shakura 1973) model, which assumes that the
accretion disk solely inhabits the equatorial plane. However this is not a valid assumption
for all cases. Various accretion disk models exist that do not assume a ”thin” disk
including the ”ringed accretion disk” (Pugliese & Stuchĺık 2015), ”Polish donut”, and
advection-dominated accretion flows (ADAFs) (Abramowicz & Fragile 2013). Combining
the relativistic reflection of relxill with the a more refined model of the accretion disk
could allow us to better understand the physical processes that radiate energy away from
the black hole. This has been done recently for the ”Polish donut” model (Riaz et al.
2020), but, as of the date of publication of this thesis, not for the other models.
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Dauser, T., Garćıa, J., Walton, D. J., et al. 2016, Astronomy and Astrophysics, 590, A76

Dexter, J. & Agol, E. 2009, The Astrophysical Journal, 696, 1616, aDS Bibcode:
2009ApJ...696.1616D

Einstein, A. 1916, Annalen der Physik, 354, 769, aDS Bibcode: 1916AnP...354..769E

Everitt, C. W. F., DeBra, D. B., Parkinson, B. W., et al. 2011, Physical Review Letters,
106, 221101, arXiv: 1105.3456

Fabian, A. C., Rees, M. J., Stella, L., & White, N. E. 1989, Monthly Notices of the Royal
Astronomical Society, 238, 729, aDS Bibcode: 1989MNRAS.238..729F

Fabian, A. C. & Vaughan, S. 2003, Monthly Notices of the Royal Astronomical Society,
340, L28, aDS Bibcode: 2003MNRAS.340L..28F

Ferrarese, L. & Merritt, D. 2000, The Astrophysical Journal, 539, L9, publisher: IOP
Publishing

Fukumura, K., Kazanas, D., & Stephenson, G. 2009, The Astrophysical Journal, 695,
1199, aDS Bibcode: 2009ApJ...695.1199F

Gallo, L. C., Fabian, A. C., Grupe, D., et al. 2013, Monthly Notices of the Royal
Astronomical Society, 428, 1191, aDS Bibcode: 2013MNRAS.428.1191G

56



Bibliography

Gallo, L. C., Miniutti, G., Miller, J. M., et al. 2011, Monthly Notices of the Royal
Astronomical Society, 411, 607, aDS Bibcode: 2011MNRAS.411..607G

Gallo, L. C., Wilkins, D. R., Bonson, K., et al. 2015, Monthly Notices of the Royal
Astronomical Society, 446, 633
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