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Abstract

Several observations of black holes clearly show broadened reflection features in the
received energy spectrum. These features are explained by the relativistic reflection of
high-energetic X-ray photons at the innermost regions of the black hole’s accretion disk.
In these regions, special- and general relativistic effects have noticeable influence on the
photon’s trajectories. Therefore, various parameters, such as the black hole spin parameter
or the location of the irradiating X-ray source are encoded in the relativistic smearing of
the reflection features. There exist models, that predict the observed spectra by assuming
an X-ray source on the axis of symmetry of the black hole system, illuminating the
accretion disk. These models however are not applicable for potential X-ray sources
deviating from the axis of symmetry or extended sources that do not lie completely on
said axis. The main goal of this thesis is to provide a physical approach to model the
relativistic reflection for a general photon source in Kerr-spacetime.

Although models using the lamp post geometry, i.e., irradiation by an X-ray source
on the axis of symmetry of the black hole system, can explain many of the observed
features, a treatment of general photon sources is needed to investigate whether the lamp
post geometry is unique in explaining these features and quantifying the conformity of
the chosen source geometry to observed spectra. The treatment of a general photon
source is realized in this thesis, based on the YNOGK-code for null-like trajectories in
Kerr-spacetime provided by Yang & Wang (2013). The results of the model are shown
to agree with previous works on the lamp post geometry and on general point sources.
Additionally, results for the illumination of the accretion disk by ring sources of varying
height and radius, centered around the axis of symmetry are shown and the dependency
on the source parameters is discussed. The angular dependence of the irradiation by
a point source is investigated as well and the possibility of constructing any general
photon source of finite extent by superposition of multiple point sources is discussed.
Finally, the modelling of the reflection features by concatenation of the presented method
with existing reflection models such as the relzill model is outlined. The possibility of
extracting parameters of the black hole system from the model is presented and the
possibility of including modelling of different disk geometries into the here developed
approach is briefly sketched.

In summary, the method developed within the frame of this thesis allows for modelling of
the illumination of the accretion disk by a general photon source in Kerr-spacetime and
can be used to physically model the source geometry by comparison with observations.
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1. INTRODUCTION

1. Introduction

Ever since they were first suggested by the Schwarzschild solution to Einsteins Field
equations (Schwarzschild 1916), black holes puzzled the scientific community. As per
their defining properties, they constitute a region in spacetime that by no means can
be tested directly. Only their effects on the surrounding environment can be tested and
conclusions on the inner workings must be derived from this data indirectly.

Being the cause of many paradoxes (such as the still unresolved information loss para-
dox and the firewall paradox), the existence of black holes was rejected by the scientific
community at first. The first hard evidence for their existence however was found by
Murdin & Webster (1971) and Webster & Murdin (1972) by investigating Cygnus X-1.
Nowadays, the number of black holes inside the milky way galaxy alone is estimated to
be above ten million (Nagaraja 2019). On April 10th 2019, the Event Horizon Telescope
(EHT) obtained the first ever direct visual evidence for a supermassive black hole (Messier
87). A supermassive black hole (SMBH) is a type of black hole, that is typically found
at the center of galaxies with typical masses between 10° and 10° M. The other type
of black holes is the so called Galactic Black Holes (GBHs), whose typical mass ranges
only up to a few tens of solar masses. They are created by supernovae of massive stars.
Despite their immense difference in mass, the physical processes associated with SMBHs
and GBHs are the same for both types. The main difference of the processes is the scale
of their gravitational effects.

In the face of the astounding amount of indications and evidence, the existence of black
holes is generally accepted by the scientific community. All the more pressing becomes
the question of the nature and mechanisms inherent to such an object.

1.1. Black Holes and Accretion

Most of the observable black holes are typically surrounded by a so-called accretion disk,
which consists of in-falling matter from the vicinity. There are several descriptions/models
for such accretion disks, however Shakura & Sunyaev (1973) presented a widely accepted
model based on hydrodynamics without magnetic fields (see also Novikov & Thorne,
1973). This model is also called the Shakura-Sunyaev-Disk (SSD) or Standard Disk.
In the SSD model, the in-falling matter is spiraling around the central black hole in a
geometrically thin, but optically thick disk. The qualitative flow of the matter can be
explained as follows: A particle within the flow may have a certain angular momentum
and the according angular velocity around the accreting object. As the matter in the
accretion disk flows turbulently, rubs and bounces may reduce the particles angular
momentum, thereby reducing its angular velocity. Magneto-hydrodynamic considerations
show that the turbulence in the disk and shear forces due to small magnetic fields can
create an effective viscosity of the disk material which can be used to transport the
deprived angular momentum outwards (see also Krolik 1999; Krishan & Mahajan 2008,
Balbus & Hawley 1991) The lower angular momentum then forces the particle to move
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Figure 1.1: Folded NuSTAR energy spectrum of NGC 4388 (a) alongside fit residuals
for (b) a simple power-law model, (¢) an absorbed power law with an Fe Ka line, (d) an
absorbed power law with Fe Ka line and a reflection component incorporated using the

pexrav model. Black points correspond to FPMA data while points in red correspond to
FPMB. Figure taken from Kamraj et al. (2017)

into an orbit closer to the central object, acquiring kinetic energy from falling into the
gravitational potential in the process. In total, the particle has thus lost energy and
angular momentum, travels on an orbit closer to the black hole and has gained speed.
Through this higher speed, frictional heating is increased. Hence, the disk has its highest
temperatures at its innermost region. The maximal temperature can be up to a few
108 K (Shakura & Sunyaev 1973). Hence the matter flow is believed to consist mainly of
ionized material, or plasma, which explains the above mentioned property of the disk to
be optically thick/opaque.

Due to the high temperature and high optical depth, the accretion disk is expected
to emit black body radiation. As the temperature for an optically thick disk decreases
with the distance from the black hole as r~** (Shakura & Sunyaev 1973) the spectrum
resembles a stretched black body spectrum. The observed spectrum shows a strong
component in high X-ray energies additionally to the thermal contribution. The shape of
this additional component can be approximated by a power law £~ with the so called
‘photon index” I'. The energy spectrum of the Seyfert-2 galaxy NGC 4388 taken by
NuSTAR on Dec. 27 2013 is depicted in Fig. 1.1. Though the origin of this power law
contribution is not yet determined, the prevailing theory assumes that thermal photons
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Figure 1.2: Artists rendition of a black hole and the surrounding accretion disk, emitting
a relativistic jet. Credit: Illustration: ESO, ESA /Hubble, M.Kornmesser/N.Bartmann;
Labels: NASA/CXC

emitted from the disk are inverse-Compton up-scattered in a corona of hot electrons
(Sunyaev & Truemper, 1979) and reilluminate the accretion disk, leading to multiple
absorption and emission features. This will be touched upon further in Sec. 1.3.

As observed with many stellar objects, surrounded by an accretion disk, the region
around a black hole can emit an astrophysical jet, which is an outflow of ionized matter
in the form of an extended beam along the axis of rotation. The nature and formation of
such jets is not yet completely understood, however, the formation of a jet is believed
to be linked to the spin parameter a of the black hole (Blandford 1999). An artists
illustration of a black hole with accretion disk and relativistic jet is depicted in Fig. 1.2.

1.2. The Spin of a Black Hole

Although black holes may seem to be highly complex objects, they indeed rank among the
simplest objects in physics. A black hole is completely determined by as few as three pa-
rameters: Their mass M, the spin parameter a and lastly the electric charge q. Even more,
the electric charge is in most cases negligible (see e.g., Orito & Yoshimura, 1985). A black
hole with a significant electric charge would be neutralized again by vacuum polarization
(see Reynolds & Nowak, 2003). So in reality the black hole is completely determined by
two parameters M and a. The mass is responsible for most of the gravitational effects
and can mostly be inferred from the motion of nearby objects (e.g. Orosz et al., 2011)
or its effect on photons, i.e., gravitational lensing (for a review, see Bartelmann, 2010).
As such, determining the mass of a black hole to a reasonable uncertainty is easily possible.

The spin parameter a = J/M, with J being the black holes angular momentum and
M its mass, can in principal range from —1 to 1. Negative spin parameter in this case
means, that the accretion disks angular momentum is antiparallel to the black holes
angular momentum. Considering the black hole’s interaction with thermal photons from
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the accretion disk, Thorne (1974) showed, that the maximal value for a is somewhere
below 1, namely apnax = 0.998. In turn, this means that the maximal negative value a
can take is —apax = —0.998. These are also the maximal/minimal values adopted for
the sake of this thesis.

The black hole spin only has noticeable effect at the innermost regions. Hence, the
methods for determining the black hole mass are not well suited for the determination
of its spin parameter. Still, the importance of a becomes clear, when reminded of the
discussion in the previous subsection 1.1. The thermal photons are emitted mainly
from the inner edges of the disk, meaning that the spin parameter a greatly affects the
spectrum received from the inner region around a black hole. In order to understand
the additional component at high X-ray energies, understanding and measuring the spin
parameter of a black hole is crucial.

The formation of the relativistic jets of black holes may also be linked to the spin
parameter. Many models, simulating the formation of such jets (e.g. Blandford & Znajek,
1977), connect the existence and the power of the jet of a black hole to the black hole
spin a. These considerations lead to the so called ‘spin paradigm’, which states that (to
first order) the value of a determines whether a strong radio jet is produced or not (see
Wilson & Colbert, 1995 and Blandford, 1999). On the other hand, Garofalo et al. (2010)
argue that the most powerful jets are emitted by black holes with maximal negative spin.
A distribution of jet power over black hole spin of several objects might provide further
insight and constraints for jet models.

Similarly to the hard X-ray component in the spectrum, the emission lines are greatly
influenced by the black hole spin. Since the energy of these lines is well known they are
suited to infer the spin parameter from their smearing. As the lines are created in close
vicinity to the black hole, relativistic effects that are dependent on a affect the line width,
the line position, and the line shape. From this information as well as taking into account
the influence of the relativistic effects, the spin parameter can be measured. However, the
presumption to do this measurement, namely theoretical knowledge about the formation
of the emission line, which includes the disk geometry, the corona geometry and the exact
description of the inverse-Compton up-scattering are crucial to draw reliable conclusions
from the spectrum. Previous studies have concentrated on a small number of accretion
geometries and therefore their uniqueness could degree of conformity could not be tested.
Consequently, it is necessary to generalize the existing models.

1.3. The Primary Source

As mentioned in the previous section, the spectrum observed from the vicinity of a
black hole usually shows significant emission features, which indicates the existence of
a hard X-ray source in the proximity of the black hole that illuminates the accretion
disk. Initially it was assumed that this source consists of a hot corona around the inner
most regions of the accretion disk, leading to inverse-Compton up-scattering of the
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Figure 1.3: Photon Index I' (upper panel) and reflection strength RDC (lower panel)
for varying primary flux (PLC) of MCG—6-30-15. Both parameters show little variation,
while the continuum flux varies by large amounts. (Figure adapted from Fabian &
Vaughan, 2003.

thermal photons which then re-illuminate the disk. Assuming that the intensity of the
re-illumination by the corona is proportional to the disk emissivity, the irradiation of the
accretion disk would follow a power law of I(r) oc 7= at the outer parts of the disk and
flatten towards the inner regions.

This corona geometry however faces multiple inconsistencies when compared to obser-
vational data. In many observations, the data showed disk emissivities that are much
steeper at the inner regions of the accretion disk (see Wilms et al., 2001; Fabian et al.,
2002; Brenneman et al., 2011; Gallo et al., 2011; Dauser et al., 2012; Risaliti et al.,
2013). Further, one would expect a positive correlation between the continuum flux and
the reflected flux. A higher continuum flux indicates higher disk emissivity which means
that more photons can be reflected at the corona back onto the disk which leads to a
higher irradiation intensity on the disk. This means that a higher continuum flux should
also come with a higher emission line flux. Observations of MCG—6-30-15 by Fabian &
Vaughan (2003) as well as Miniutti et al. (2003), for example, showed large variation
in the continuum flux while the reflected flux stayed constant. The data of Fabian &
Vaughan (2003) are depicted in Fig. 1.3.

In contrast, a primary source that is located on the rotational axis of the black hole at
a height h can explain the observed data very well (see Martocchia et al., 2002; Fabian
& Vaughan, 2003; Miniutti et al., 2003, Vaughan & Fabian, 2004). This geometry is
also called the lamp post geometry. Unlike the standard disk corona, the primary source
is hereby located on the axis of the black hole. Both the lamp post geometry and the
standard disk corona geometry are depicted in Fig. 1.4. In the lamp post geometry, the
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Figure 1.4: Sketch of the lamp post geometry (left) and the standard corona geometry
(right). The primary source (blue) is located on the rotational axis (left) or encapsulating
the accretion disk (right) respectively. A part of the primary photons (green) is emitted
towards the observer directly, whereas a part is reflected on the disk and reaches the
observer indirectly (red). Image inspired by Dauser (2014)

e

steepening of the emissivity profile at the inner regions can be explained by the effects of
focusing of the radiation onto the inner parts of the accretion disk due to light bending
and the effect of energy shift. The observed relation between the continuum flux and
the reflected flux is explained by this picture as well; A primary source located close to
the black hole (i.e., small h), the photons are strongly focused on the inner parts of the
accretion disk, creating a strong reflection component and leaving fewer photons for the
continuum flux (Miniutti & Fabian, 2004). For increased height h of the X-ray source,
the focusing becomes less prevalent, meaning that more photons can escape, thereby
enhancing the continuum flux (Miniutti & Fabian, 2004).

1.4. Aim of this Thesis

There exist several tools for calculating the spectrum of an irradiated accretion disk from
a Jet-Base corona (see Dauser et al., 2013; Garcia et al., 2014; Fukumura et al., 2009), as
well as some tools for the simulation of the spectra of extended sources (see e.g. Wilkins
& Fabian, 2012). The former lack the ability to investigate corona geometries that are
not located on the axis of symmetry, while the latter lack in speed as they commonly use
Monte Carlo simulations on graphic cards to compute the spectra. For fitting simulated
spectra to observed data, both the computational speed and the possibility to modify
the corona geometry is necessary. The model presented in this thesis aims at meeting
both of these requirements and ultimately obtain the spectra for various geometries and
parameter in a way that is suitable for comparing them to observations.

The remainder of this thesis is structured as follows. In Chapter 2 the derivation of
the Kerr-spacetime is briefly outlined. The equations of motion for a massless particle
are given in Section 2.3 and the motion of the accretion disk is discussed in Section 2.4.
Chapter 3 is divided into two parts; The first part, Section 3.1 summarizes the treatment
of the lamp post geometry. The second part, Section 3.2 generalizes the treatment of the
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first part to emission from an arbitrary source by following the work of Yang & Wang
(2013). In the same way as Chapter 3 is divided into lamp post geometry and general
approach. The results are presented and compared in 4 in two Sections; The results for
the lamp post geometry are presented in Chapter 4.2, together with the comparison to
previous work of Dauser (2014). Section 4.3 then presents the results for some off-axis
geometries as examples for which comparative data was partially available. Finally, the
conclusion and a further outlook are given in Chapter 5.

- 10 -
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2. Basic Theory of Black Holes

In 1916, barely over a month after the publication of Einstein’s theory of general relativity,
famous German physicist Karl Schwarzschild presented a solution to Einsteins Field
Equations assuming a spherically symmetric and static vacuum. This solution is best
known as the outer Schwarzschild solution or the outer Schwarzschild metric. Remarkably,
if the object sourcing the above mentioned gravitational field is compact enough, there
exists a region in spacetime from which neither massive nor massless worldlines can
escape. This region is called a black hole. Its boundary is called the event horizon of the
black hole. The ability to permit black holes is not unique to the Schwarzschild solution
but was found even in a family of solutions to the Einstein field equations, namely the
Kerr Solution (Kerr, 1963) and the Kerr-Newman solution (Newman et al., 1965). The
derivation of the former will be presented in the following. Due to its relevance for the
description of most known black holes, it will be at the center of this thesis.

For readers well versed in the formalism of general relativity and black hole physics,
some of the following sections may be omitted, as their content is usually covered by any
standard textbook on black holes (e.g. Misner et al. 1973; Carter 1968; Kerr 1963). In
particular the derivation in the following chapters is based on Chandrasekhar (1983).
However, not exclusively but especially for readers not accommodated in the field, it
is instructive to read the following chapter to clear up any possible confusion arising
by notation or definitions. As such by defining the assumption of stationary spacetime
in terms of mathematical expressions avoids the danger of using ones own intuition or
possibly textbooks with other definitions of such terms to understand the issue at hand.

2.1. Derivation of the Kerr metric

A general and exact solution to the Einstein field equations has not yet been found.
However, under certain symmetry assumptions, it is indeed possible to systematically
derive exact solutions. For example to obtain the Schwarzschild metric, a static, spheri-
cally symmetric vacuum is assumed. In the following, we will loosen the assumption on
spherical symmetry and staticity to only axial symmetry and stationarity, which allows
for consideration of non-vanishing angular momentum of the central object. This is a
very necessary generalization, as during stellar collapse and the formation of black holes,
the angular momentum is conserved and transfers onto the resulting black hole. Thus,
black holes in reality are expected to have non-vanishing angular momentum.

In the following, the sketched procedure to deriving the Kerr solution is in spirit
analogous to a possible derivation of the Schwarzschild solution however the technicalities
are more sophisticated. Starting with the sought after metric tensor g in its most general
form, the symmetry conditions are applied and g is regarded in a suitable chart. Then
the coefficients of the Christoffel Symbols and the Ricci tensor are calculated from this
constrained form of the metric tensor and lastly all found expressions inserted into the
Einstein field equations. This will provide the final set of conditions on the metric tensor

- 11 -
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g to uniquely determine it.

As mentioned above, we may start with a general metric g, which is supposed to be the
solution to the Einstein field equations under the aforementioned symmetry conditions
of a stationary and axisymmetric spacetime. The requirement of stationarity translates
to the existence of a timelike Killing vector £ , whereas axial symmetry corresponds to
the existence of a Killing vector X with spacelike, closed orbits and the requirement
of both symmetries simultaneously also enforces the compatibility condition that the
Lie-derivative £;X = 0. These chart independent assumptions are equivalent to the
requirement that, at least locally, a coordinate system (¢, ¢, 2!, %) exists in which the
components of the metric are independent of ¢, ¢, that is gu(r, ¢, 21, 2?) = gup (2!, 2?)
(see Ludvigsen 1999). In contrast to the assumptions used for deriving the Schwarzschild
metric, here the metric tensor is supposed to only be invariant under simultaneous
inversion of the ¢ and the ¢ coordinate. Explicitly in the aforementioned coordinate
system this means that for the coordinate transformation (¢, ¢, !, 2%) — (—t, —¢, 2!, 2?),
the metric components are invariant. Since under this transformation it is always true
that goo — —9go2, o3 — —go3 and g12 — —gi12, g13 — —¢g13, we find that these components
must vanish (as well as the components with the indices switched, as g4 is symmetric).
What remains is the line element

d$2 = goodt2 + 2g01d¢dt + 911d¢2 + [922((:11172)2 + 2923(1.1'2(1]73 + g33(d$3)2]. (21)

It can be shown that the expression in square brackets can be brought to a ‘diagonal’
form (see Chandrasekhar 1983, or Appendix A), such that the line element may be
written as

dS2 _ —eQV(dt)2 + ew(dqb o wdt)2 + 62“2 (di,2>2 + 62“3((31.%3)2, (2'2)

where v, 1, w, tis and 3 are functions of the coordinates 72, #3 and py and ps are free to
be restrained by a coordinate choice. The line element in equation (2.2) is often referred
to as the standard form of the line element of a general axisymmetric and stationary
spacetime.

Fundamentally, the only further information required to deriving the specific stationary,
axisymmetric, vacuum solution known as the Kerr solution is the use of the vacuum
Einstein field equations, that is

1
Rab - §gabR = Gab =0 (23)

and a practical choice of coordinate condition on uy and pg. As it is not very instructive
to work through the multitude of simplifications of equations derived from the vacuum
Einstein field equations, it suffices here to regard the choice of coordinate condition forced
on s and 3.

The particular choice of gauge presented below in fact implies no loss of generality (see
Chandrasekhar 1983), however it is strongly motivated by physical reasoning. Conve-
niently, the polar angle  with respect to the axis of symmetry is chosen as * and 72

- 12 -
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will from now on be denoted as r. The sought after metric is desired to admit an event
horizon, that is, a smooth null-surface. This definition is compatible with the one made
earlier in this chapter. Considering a general 2-dimensional null-surface, its equation

may be given in the form
N(z' 2%) =0, (2.4)

and the condition that it be null is
g’ N,N, =0 a,b=1,2 (2.5)

for a smooth function N. The null condition in other words means that the surfaces
normal vectors at every point are null. The vectors n tangent to the null-surface obey
the condition ¢%n,N, = 0 by definition. Thus, N, itself is a tangent vector, i.e.
N, = gab%t(t) for some curve 7(t) that lies inside the null-surface. Thus at every point
of the surface, there exists a tangent vector ¢ for which £%¢, = 0. As a geometrical
interpretation, along this direction, the null-surface at every point is tangent to the
light cone at that point. Consequently, the light cone lies completely on one side of the
null-surface and is at that point tangent to it. The smoothness of both, the function N
and the metric tensor field g now also show that all the light cones along the null-surface
lie on the same side. The future-pointing world line of a massive or massless particle can
thus only cross the null-surface in one direction and hence the null-surface forms an event
horizon as characterized earlier in this chapter. Note that for the sake of generality, a
2-dimensional null-surface was considered. Commonly, an event horizon in 4-dimensional
spacetime refers to a 3-dimensional null-surface, however a 3-dimensional null-surface
automatically contains a 2-dimensional hypersurface that is null. As such, considering a
2-dimensional null-surface retained generality in this case and as shown in Chandrasekhar
(1983), existence of such a surface indeed does not specialize the case whatsoever.

As our particular spacetime of interest was enforced axisymmetry about the ¢-
coordinate as well as stationarity, the function describing the surface of the event
horizon is solely dependent on the coordinates 7,8, so it has the form

N(r,0) =0, (2.6)
for some smooth function N and the tangent space of the surface at each point is spanned
by the two vectors % and a%' Again the condition, that the surface be null is

gabN,aN,b =0 a, b= r, 97 (27)

and for the standard form of the metric of an axisymmetric, stationary spacetime, this
takes the form
A=) (N )2 4 (Ng)* = 0. (2.8)

Using the special choice of gauge, let

e Ha=h2) — A(r), (2.9)

- 13 -
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where A(r) is some function of r, for now unspecified. From Eq. (2.8) it then follows
that the equation of the null-surface is given by

A(r) =0. (2.10)

Employing the second condition, namely that the surface be spanned by % and 8%

requires that the determinant of the metric of the subspace (¢, ¢) vanish on the surface.
Thus,
e? T2 =0 on the null-surface (2.11)

Since A(r) was left unspecified, suppose that

eVt = A2 £(8), (2.12)

i.e. that it is separable in the variables r and 6 with some function f(6) that is regular
on the entire null-surface. Using parts of the vacuum Einstein field equation

R11 + ROO =0+0= O, (213)

together with Eq. (2.9) and (2.12) and the requirements of regularity of f(6) and the
convexity of the event horizon, it follows

A,,=2 and  f(0) =sin(h). (2.14)
Thus A(r) can be written as
A(r) =r* —2Mr + a?, (2.15)

where M and a here appear merely as constants of integration, however they acquire a
physical meaning of the mass and the angular momentum per unit mass of the black
hole, when later the limits of the Kerr solution are investigated. So with this particular
choice (again this choice conserves the generality of the situation, see Chandrasekhar
1983) which is consistent with the existence of an event horizon,

etz = A(r)2 and  e¥t = A(r)"*sin(0) (2.16)

Completing the derivation of the Kerr solution, the end result can be expressed by the
line element as

2aMr
2

ds? = —zé(@ht)2 + v dep — dt 2 sin?(6) + E(olr)2 + ¥(d)? (2.17)
T2 b)) A ’ '

where ¥ = 72 + a2 cos?(#), A = r? — 2Mr + a® and p* = (r? + a?)? — a®?Asin?(0). The
functions €%, e?¥, e*2 and €% for which the standard form of the line element of a

- 14 -
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general axisymmetric and stationary spacetime (Eq. (2.2)) turns into the Kerr solution
can now be identified by comparing the coefficients of Eq. (2.2) and (2.17). Substituting

YA
621/ — —
P
o2 — /)2 SmQ(@)
by
>
2p2 . =
¢ A
e = Y
2aM
w o= (2.18)
p

in Eq. (2.2) then yields the Kerr line element.

As announced earlier, investigating the limits of the Kerr solution gives a physical
meaning to the constants a and M. Letting r — oo, the Kerr solution element approaches
the Schwarzschild solution

2M 1

ASZchwarsschild = — (1 - r) dt* + - sardr? + 176 + 1% sin(0)dg?, (2.19)

meaning that at a point sufficiently far away from the central mass, the Schwarzschild
and the Kerr metric are identical. Thus it immediately follows that the Kerr solution is
asymptotically flat as well. Further, in this limit, M takes the same role as the mass
of the gravitating object appearing in the Schwarzschild solution, so we also identify
M in the Kerr solution (2.17) as the gravitating mass of the black hole. The limit
a — 0 also yields the Schwarzschild solution, which describes the gravitational field of a
non-rotating body. Thus, a is related to the angular momentum of the black hole and
a closer investigation of Eq. (2.17) permits the physical interpretation as the angular
momentum per unit rest mass of the black hole.

From the explicit form of the Kerr metric in Eq. (2.17), the condition A(r) = 0 for the
event horizon can be evaluated. As A = r? — 2r 4+ a? is a quadratic polynomial, its roots

are
ry =1+V1—a? (2.20)
Thus, in general, the Kerr spacetime has two separate event horizons. The outer event
horizon 7 is the one that determines the size of the black hole. As such, if the size of the
black hole is mentioned in any of the following parts, it refers to the outer event horizon
at 7y = 14+ /1 —a? The inner horizon at r_ = 1 — /1 — a? constitutes a Cauchy
horizon. Within the region enclosed by this horizon, closed time-like curves can exist.

Lastly we turn our attention to the fact that the coefficient in front of d¢dt in (2.17)
is unequal to zero for non-vanishing angular momentum. This is a key feature of the
Kerr solution (or more generally of a general axisymmetric, stationary solution of the
Einstein field equations) and leads to interesting effects.
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2.2. Frame Dragging Effect

The effect of frame dragging due to non-vanishing angular momentum of the black hole
will be discussed in terms of the general axisymmetric, stationary solution of the Einstein
field equations Eq. (2.2), at the end however, the specialization to the case of the Kerr
solution is trivial and will briefly be mentioned as well.

From (2.2) the basis vectors

ey =(—€",0,0,0)
()i (—we¥,e”,0,0)
ep=1( 0 ,0," 0)
emi=( 0 ,0,0 ") (2.21)

form a tetrad frame. To distinguish tetrad frame indices from coordinate indices, the
tetrad indices are denoted in brackets. The corresponding covariant form then becomes

ey = (e we ™, 0 ,0)
e(l)i:<07€*¢7070>
e’ =(0, 0 e, 0)
e ' =(0, 0,0 ) (2.22)
It is now easy to verify, that
-1 0 0 0
i 0 100
C@ewi =MNa®» = o o 1 0 (2.23)
0 001

which means that in the frame chosen as in Eq. (2.21) the Kerr metric Eq. (2.17) is
Minkowskian, that is, this choice of frame locally represents an inertial frame. Let a
particle in this initial frame have the velocity

' = (1,0,0,0), (2.24)

i.e., it is stationary with respect to its own frame of reference. In other words, in this
frame the particle is at rest. Its velocity as seen by a distant observer however can be
calculated as

u® = e(i)au(i) = (e‘”,we‘”, 0, 0) : (2.25)

Remarkably, the velocity component in rotational direction about the axis of symmetry
is non-vanishing. So the velocity, the distant observer sees the particle moving with is

G0 _dods w2l
dt dsdt out r3

. (2.26)
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Figure 2.1: Velocity w due to the effect of Frame Dragging as function of the distance
from the black hole for different values of the spin parameter a and in the equatorial
plane 6 = 7/2.

This velocity is displayed for different spin parameters in fig. 2.1

A similar, visual display of this effect is the geodesic of a particle with zero angular
momentum about the axis of symmetry falling towards the black hole from a far distance.
A distant observer will see the particle start to spin about the axis of rotation as it gets
closer to the black hole, effectively spiraling towards it instead of falling ‘straight’ into it.
The particle however will feel as if falling straight towards the black hole, the same way a
particle would feel falling straight onto earth. An example of this for a photon trajectory
starting at r = 8 r, with only non-vanishing initial momentum in r-direction can be seen
in fig. 2.2. The = and y coordinate in this figure are given in terms of gravitational radii,
which is given as

(2.27)
where G = 6.67 - 10_11% is the gravitational constant, M is the mass of the black hole

and c is the speed of light. In the further used natural units, where G = m = ¢ =1, the
gravitational radius becomes unity as well.
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—— photon trajectory

y — coordinate [ry]
o

—2 0 2 4 6 8
x — coordinate [r,]

Figure 2.2: Frame Dragging effect on a photon trajectory. The plot shows the view of a
distant observer on the rotational axis viewing onto the z-y-plane of the black hole. The
photon trajectory starts at r = 8 r, with initial momentum solely in r-direction. The
distant observer however will see the photon start spiraling in ¢-direction, due to the
effect of frame dragging.

2.3. General Equations of Motion

In the theory of general relativity, an uncharged particle, that is a particle free from
all external forces, follows a geodesic. Geodesics geometrically generalize the concept
of a straight line to curved geometry. The idea that particles follow ‘straight’ curves is
equivalent to the variational principle of Hamiltonian mechanics. A curve v in spacetime
is called a geodesic if it satisfies the equation

d?z® dab da¢

where () is the representation of v(\) in any chart (U, x) and I'%,. are the coefficients
of the Christoffel-Symbols, which are the Levi-Civita connection in general relativistic
spacetime. The geodesic equation (2.28) is indeed nothing but the Euler-Lagrange
equation for the action functional

Slgi7) = 5 AN gy (). 40V). (229)

where the square/round bracket is meant to indicate that the functional S is functionally
dependent on the variables appearing after the semicolon and only dependent, but not
functionally dependent, on the variables appearing before the semicolon.

Now, as mentioned in section 2.1, the Kerr solution, as any stationary, axisymmetric
spacetime, admits two Killing vector fields £ and X. Thus, in local coordinates they
fulfill the Killing equation

VY =0, (2.30)
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where V, is a-th component of the covariant derivative and the brackets around the
indices indicate symmetrization. It follows that along a geodesic v = x~! oz, the quantity

d a
Yad—m)\ = const.  where Y € {£, X} (2.31)

is conserved. To see this, consider its change along the geodesic

d dx® dx® da?
Y ("m) e (”m) ' (2:32)

Due to the product rule for differential operators, the expression on the right side of
Eq. (2.32) can be written as

dx® da? dz® dz?
Y o JE— a Y e O 233
Y (dA) T e (2:33)
=0 due to geodesic equation = =0 due to the Killing condition

So indeed, the claim that for any Killing vector Y satisfying the Killing condition (2.30)
the quantity Ya%\a is conserved along the geodesic (). The conserved quantities that
arise from the aforementioned £ and X i.e., from the stationarity and the axisymmetry
are the angular momentum [ and the energy E. From a physical standpoint, the rest
mass of a test particle is also expected to be conserved, however this conserved quantity

does not follow from a Killing vector, as it is notrelated to a geometrical symmetry.

Mathematically, the conservation of rest mass corresponds to the constancy of the
Hamiltonian, which can be derived from Eq. 2.29. The resulting Hamiltonian is

1 0> 1 a? daMr
H=_—_(Ap? 2 P2 gt 2.34
22( S N sn2(0) ~ A Do A Pebs ) s (2.34)

where

. 2 .
’ :_<1_ 2MT>1§—2Marsm (9)¢

by by
2
Dr = Zr
Po = 20
2 2
Do = (7’2 +a® + a%w sin2(9)> sin®(0)¢p — %w sin®(0)f. (2.35)

Since the Hamiltonian is not explicitly dependent on the coordinates ¢ and ¢, they are
cyclic variables, in agreement with the discussion above about the conserved quantities
corresponding to the Killing vector £ and X. Thus, the angular momentum [ can be
identified as py = [ and the energy can be identified as —p, = E. However, it can also
clearly be seen that the Hamiltonian induces the conservation of a test particle’s rest
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mass. Finally, from this Hamiltonian it is possible to use the Hamilton-Jacobi formalism
to extract a further conserved quantity, which was demonstrated by Carter (1968). The
conserved quantity

2

1 f i ticl
Q= p92 + 0082(9) [ag (MQ . ptg) + 'pf ] where = { or massive particles
sin”(6)

0 for massless particles
(2.36)
is therefore called the Carter constant. It does not arise from a symmetry in the standard
sense, but from a separation ansatz in the Hamilton-Jacobi formalism in the coordinates
f and r. Finding a geodesic of a particle in the 4-dimensional spacetime is generically a
‘4-dimensional problem’, however due to the four conserved quantities presented above,
the geodesic is indeed uniquely determined. Thus, from a theoretical standpoint, the
framework is set and the remaining problem is to solve for the respective geodesic.

Following Bardeen et al. (1972) the general equations of motion for a massless particle
(i.e. =0 and in natural units G=M=c=1) derived from the above are

Z(?; = —a(aEsin?(0) — \) + (r* + az)i

zi’; —+/V;

zjﬁ —+/Vi

Zjﬁ =—a (a — st)\(Q)) + ai, (2.37)

where ¢ is an affine parameter for massless particles or the proper time for a massive
particle and where

Vi=r*—(qg+ XN —a*)r*+2 [q + (A= CL)Q} r—a’q (2.38)

Vo = ¢* + a®cos*(0) — A\? cot? 0 (2.39)

T =r*+a*> - \a (2.40)
1 s 9

y =L P= (2.41)

The signs in Eq. (2.37) can be chosen independently and represent the direction of the
particle’s movement. Carter (1968) found these equations of motion to be integrable and
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gave the integral form of the equations of motion for a massless particle as

v 0 ag
+ / o / \/%7 (2.42)

- [ cos” 2.43
7 / \ﬁ / \/%7 (2:43)
r T
t= 2| ——dr 2.44
o+ / AV r (2.44)
r , o \—a?sin?(0)

= —d de 2.45
i a/ AV V(r) ' +/ sin?(0")4/Va(9") (249)

Solving these equations for the special lamp post Geometry following the work of Dauser
(2010) will be the topic of chapter 3.1. Solving these equations for a general photon
source will be the topic of 3.2. In both of these cases, the accretion disk of the black hole
will be modeled as a standard ‘razor thin’ accretion disk. This model and its dynamics
will be described in the following section 2.4

2.4. Accretion Disk Model

The accretion disk model used in the following chapters assumes a thin disk on a stable
orbit in the equatorial plane. This condition immediately implies

=0 and 6= g (2.46)

From Eq. (2.36) and (2.35) then follows Q = ¢ = 0. Indeed, ¢=0 is both a necessary
and a sufficient condition for motion, that initially started in the equatorial plane to
remain in it. Further, the disk is most easily modeled by a continuum of particles on
circular orbits with different radii. For each of these orbits it must then hold that

7 =0, 7=0 and r = const, (2.47)
from which Eq. (2.37) it follows
i‘f =0 and V,=0. (2.48)

These equations can be solved simultaneously for E and [, which results in (see Bardeen
et al. 1972)

E 2 — M2 + aMV? 5 49
o (R = 3Mr2 4 2a M) (249)
l M'? <T2 — 2aM "' 4 az)

wo (R = 3Mr2 4 2a M)
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This results in an angular velocity of the particles of

0-90_ L, (2.51)
dt r\/F + a\/M
which holds for both a ‘co-rotating’ as well as a ‘counter-rotating’ disk, as for the counter-
rotating case, a simply becomes negative. Thus, the four-velocity of the accretion disk
becomes
Ugisk = Udisk' (O + Q0) , (2.52)

with

T+ av M
\/7_"\/7"2 —3Mr+2a\/M\/F.

Following Bardeen et al. (1972), the condition for the particles constituting the disk to
be on stable orbits additionally gives the restriction % < 0. This yields the condition

(2.53)

t
Udisk =

T 2 Tms, (2.54)

with

=

Fos = M (3 + Z, —sign(a)/B— Z) (3 + Z1 + 222))

Wl

Zy =14 (1—a?3 [(1+a)i + (1 —a)i]

Zy =\/3a2 + Z,°. (2.55)

For a maximally rotating, non-rotating and maximally counter-rotating disk this means
that the disks cannot approach the black hole closer than

1.24 r, for a = 0.998
Tims = 67y fora=0 . (2.56)
8.994 r, for a = —0.998

The radii of the outer and inner event horizon as well as the radius of marginal stability
are depicted together in Fig. 2.3.
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Figure 2.3: Outer event Horizon r,, inner event horizon r_ and radius of marginal
stability r,s depicted for different spin parameter a from a = —0.998 to a = 0.998.

3. Raytracing

Now that the spacetime of interest has been described, the irradiation of the accretion
disk from a photon source can be investigated. The interesting quantity is the incident
energy flux on the disk, that is the intensity profile that the photon source causes on
the accretion disk. In the first part of this Chapter, the jet-base/lamp post geometry is
investigated as an instructive example that simultaneously provides comparative data for
the generalized case. The second part will then outline the theory for the calculation
of the intensity profile caused by a point source at an arbitrary location in the vicinity
of the black hole. The approach to both cases may roughly be outlined as follows:
First the equations of motion are reduced and simplified as much as possible such that
their integration can be done as quickly as possible. Then the constants of motion
are calculated in dependence of the initial data so that the geodesics are completely
determined. Lastly the contribution of relativistic effects, such as length contraction
and the energy shift along the geodesic is taken into account. Finally, the resulting
intensity profile is expressed as a function of the incident photon flux on the disk —
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which is calculated from the equations of motion — and the relativistic corrections in the
subsequent Chapter 4. The results will hence also be displayed in Chapter 4 for means
of comparison and discussion.

3.1. Lamp Post Model

Before tackling the calculation of the intensity profile caused by a source located any-
where in the vicinity of the black hole, it is instructive to first consider a simplified case.
Equatorial circular motion has already been touched on in Sec. 2.4, when discussing the
motion of the accretion disk. The simplification there is that the problem is basically
reduced to the ¢-direction only, as equatorial motion constrains 6 to be 7/2 and circular
motion constrains the r-coordinate of the geodesic to be constant as well. As this was
already touched on, we may look for another special situation that is easier to calculate
than the general case, but still might teach techniques and concepts that are applicable
more generally.

A well-developed model for a source of photons in Kerr spacetime is the so called lamp
post model. The model assumes an isotropically emitting point source located on the
rotational axis of the black hole (6 = 0). The model proves to be a good explanation for
the observed focusing on the inner region of the accretion disk as discussed in Sec. 1.3.
Further, it has a physical foundation in the base of the jet, emitted by a black hole. The
lamp post model is hence worth investigating due to its efficiency in the description of
the observed spectra in its own right. Furthermore, it also constitutes a simplification of
a general point source in Kerr spacetime, as its location on the axis of symmetry also
constitutes a symmetry in the possible trajectories (details on that in Sec. 3.1.1). A
heuristic explanation of this simplification can be given by a geometrical consideration.
The directions on a sphere may be completely parametrized by the 8- and the ¢- direction,
or in other terms, the East-West and the North-South direction. For a person standing
on the north pole (or on the south pole for that matter), the notion of ¢-, or East-West
direction no longer makes sense. Each direction the person is looking at is always in 6, or
North-South direction. This means that initially, the person on the north pole can not
move in the ¢-direction, which in turn will lead to them having no angular momentum.
Thus, one of the four constants of motion are already determined from the location of
the source alone. A more rigorous description, however, will follow in Subsec. 3.1.1.

As the consideration of the lamp post model only serves as an instructive example
and provides results for comparisons later on, the treatment will not be as detailed as
in papers with their focus on this model. Hence, the interested reader may be referred
to the work of Dauser (2010, 2014), Dauser et al. (2013), Fukumura et al. (2009) and
Garcia et al. (2014). The following sections on the lamp post geometry are based mainly
on Dauser (2010, 2014).
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3.1.1. Reduced Equations of Motion

The equations of motion for a photon in Kerr spacetime were derived in Subsec. 2.3 and
given in Eq. (2.37) and Eq. (2.35) or Eq. (2.42) - (2.45) respectively. If we now consider
the case of a source on the rotational axis, the initial condition § = 0 can be applied. This
simplifies the calculation of the initial momenta tremendously, as any term containing
only a 6 dependency can immediately be evaluated. However, from the form of the
potential Vj in Eq. (2.39), it is apparent that we run into difficulties actually applying
0 = 0, as the cot(0) is not defined. Even worse, looking at the § equation of Eq. (2.37),
for A # 0 and @ — 0, the coordinate velocity in # direction for any photon emitted in the
vicinity of # = 0 would either be complex or infinite, depending on the sign of A. So even
the limit of # — 0 is unphysical. But it does not seem physically reasonable that photon
trajectories can not start from the rotational axis. To avoid divergence of the A cot (6)
term, it is necessary that

/\2
lim 2’ < 00, and therefore
6—0 |sin®(6)
lim A =0. (3.1)
0—0

The notation (limg_,ox < 00) was here used to denote that the term x is not definitely
divergent. A direct consequence of this is that any photon emitted by a source on the
axis of symmetry must have vanishing angular momentum. This consideration yields a
substantial simplification of the equations of motion, as it already determines one of the
two important constants of motion to be vanishing. As it is therefore established, that
photons originating from the axis of symmetry have vanishing angular momentum A\ we
may for any value of # consider only those geodesics with vanishing A. The considerations
above ensure that no photon geodesic starting at the axis of symmetry is dismissed by
restricting concern to this subset of trajectories. Doing so, the potential Vj for this subset

takes the simpler form of
Vo(0) = ¢° + a® cos®(0). (3.2)

For this expression the transition to # = 0 is well-defined and the resulting potential can
be expressed as
Vo(0) = ¢* + a®, (3.3)

for which the root is well defined. We have thus found the description of geodesics with
zero angular momentum starting from the rotational axis. As per the previous argument,
that for A # 0 already the limit # — 0 leads to unphysical results, the zero angular
momentum geodesics are in fact the only geodesics permitted to start from the rotational
axis meaning that the vanishing angular momentum requirement meant no restriction
for this special case.

As an aside; The problem arises in an analogous fashion to the problem of defining
the East-West-direction for a person standing on the north pole, as mentioned earlier.
For a photon starting on the rotational axis, the ¢-direction simply is not defined and
as such, the photon can not move in this (undefined) direction. Further, both of these
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problems arise only due to the special choice of coordinates and do not represent any
physical limitation on the movement of an object on the rotational axis. As a further
remark; Since for each geodesic a point along the geodesic can be regarded as a new
starting point for the remainder of the trajectory, it is already conceivable that each
photon geodesic running through the rotational axis must be one with vanishing angular
momentum. This is true no matter the source geometry.

The above considerations imply that the initial direction of the photon trajectories
starting on the axis of symmetry are determined by a single angle §. From this geometric
consideration, the relation between the constant of motion ¢ and the emission angle 0
becomes (Dauser 2010)

sin(6) = (p)a(ni™ye %

_ o—o _ VI —2h~|—a2\/qQ+7a27

(2n)o(un)® —up? h? + a?

(3.4)

where nﬁf) is the normal vector in 6-direction. The non-vanishing component u}, of the

four velocity can be calculated from the condition

| A(h
1Lt = () = () (35)
Solving Eq. (3.4) for ¢ yields
sin?(8) (h? — 2h + a?)
7= \/ h2 + a2 ' (36)

Since the angular momentum of the geodesics in the lamp post geometry must be vanish-
ing, the trajectory is completely determined by the constant ¢ and, by means of Eq. (3.6),
it is determined by the initial height A above the black hole and the emission angle 9.

With the constants of motion A and ¢ determined from the initial data, the momentum

of a photon

o1l i) o
is determined and the solution of the equations of motion Eq. (2.42)—(2.45) becomes
a problem of numerical integration. This has been done in Dauser (2010), based on
the code presented by Speith et al. (1995) for the calculation of Cunningham’s transfer
function (see also Cunningham, 1975). To calculate the position at which the photon
hits the accretion disk, Eq. (2.42) is numerically integrated. For the #-integration, the
lower and the upper limits are known from the initial and incident angle being 8 = 0
and 0 = 7 /2 respectively. For the r-integration, only the lower limit, that is the emission
height, is known, whereas the incident radius is sought after. So the value of the upper
limit of the r-coordinate is gradually increased, until the r- and the - integrals match
(up to a certain precision). The corresponding upper limit rj,ciqens Of the r-integration is
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the radius at which the photon is incident on the disk.

It is hence possible to calculate the radius at which the photon trajectory crosses
the accretion disk. Since the situation is symmetric about the rotational axis, the
¢-coordinate is of no interest and the #-coordinate of the incident position is trivially /2.
By simulating the emission from a source and then numerically solving for the incident
radius, a radial distribution of photons incident on the disk can be calculated. Usually,
to obtain the intensity distribution, a Monte Carlo simulation of photon trajectories is
generated and the amount of photons incident in a within a range of Ar are counted.
The intensity profile would then arise as the histogram of the amount of photons per
radial bin divided by the respective area segment of that bin. However due to relativistic
effects, there are multiple corrections that have to be made before creating the histogram.
For one, the area corresponding to a radial bin Ar is not simply given as 27rAr as would
be expected from a ring. Instead, following Wilkins & Fabian (2012), the proper area of
such a ring at radius r with width Ar is given as

rt + a?r? 4 2a?r
Alr, Ar) =2 A 3.8
(r; Ar) 7T\/ r2 —2r + a? " (3.8)

in the observer’s frame of rest. This effect is displayed in Fig. 3.1.

To calculate the irradiation on the disks surface in the rest frame of the accretion disk,
its rotation has to be considered as well. Using the disk velocity given in Eq. (2.51), the
corresponding Lorentz factor is given as (Wilkins & Fabian 2012; Bardeen et al. 1972)

7@)) _ /r2 — O + a2<r3/2 + CL) . (39)
7“1/4\/7“\/F +2a — 3/TV13 + a?r + 2a?

The effect of the Lorentz contraction due to the rotation of the disk is displayed in
Fig. 3.2

With these two corrections, the photon flux on the disk from a monoenergetic source
can be calculated from the initial data on the emitting source. The physically interesting
quantity however would be the energy flux incident on the disk. Assuming a truly
isotropic point source, the energy is evenly distributed into every direction, and as such,
each emitted photon starts with the same energy. However, due to relative motion of the
emitter as well as general relativistic effects (such as gravitational redshift), the energy
of the incident photons may vary. The formula to calculating the resulting energy shift
is given in the following section 3.1.2. From there it will be possible to calculate the
complete intensity profile on the accretion disk.

3.1.2. Energy Shift in the Lamp Post Case

As motivated in the previous section, the energy shift of a photon along its geodesic
is necessary to calculate the intensity spectrum on the disk. Fortunately the formulas
simplify for the case of the lamp post model. The formula for the general case will be
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Figure 3.1: Corre