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Abstract

Several observations of black holes clearly show broadened reflection features in the
received energy spectrum. These features are explained by the relativistic reflection of
high-energetic X-ray photons at the innermost regions of the black hole’s accretion disk.
In these regions, special- and general relativistic effects have noticeable influence on the
photon’s trajectories. Therefore, various parameters, such as the black hole spin parameter
or the location of the irradiating X-ray source are encoded in the relativistic smearing of
the reflection features. There exist models, that predict the observed spectra by assuming
an X-ray source on the axis of symmetry of the black hole system, illuminating the
accretion disk. These models however are not applicable for potential X-ray sources
deviating from the axis of symmetry or extended sources that do not lie completely on
said axis. The main goal of this thesis is to provide a physical approach to model the
relativistic reflection for a general photon source in Kerr-spacetime.
Although models using the lamp post geometry, i.e., irradiation by an X-ray source
on the axis of symmetry of the black hole system, can explain many of the observed
features, a treatment of general photon sources is needed to investigate whether the lamp
post geometry is unique in explaining these features and quantifying the conformity of
the chosen source geometry to observed spectra. The treatment of a general photon
source is realized in this thesis, based on the YNOGK -code for null-like trajectories in
Kerr-spacetime provided by Yang & Wang (2013). The results of the model are shown
to agree with previous works on the lamp post geometry and on general point sources.
Additionally, results for the illumination of the accretion disk by ring sources of varying
height and radius, centered around the axis of symmetry are shown and the dependency
on the source parameters is discussed. The angular dependence of the irradiation by
a point source is investigated as well and the possibility of constructing any general
photon source of finite extent by superposition of multiple point sources is discussed.
Finally, the modelling of the reflection features by concatenation of the presented method
with existing reflection models such as the relxill model is outlined. The possibility of
extracting parameters of the black hole system from the model is presented and the
possibility of including modelling of different disk geometries into the here developed
approach is briefly sketched.
In summary, the method developed within the frame of this thesis allows for modelling of
the illumination of the accretion disk by a general photon source in Kerr-spacetime and
can be used to physically model the source geometry by comparison with observations.
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1. Introduction

1. Introduction
Ever since they were first suggested by the Schwarzschild solution to Einsteins Field
equations (Schwarzschild 1916), black holes puzzled the scientific community. As per
their defining properties, they constitute a region in spacetime that by no means can
be tested directly. Only their effects on the surrounding environment can be tested and
conclusions on the inner workings must be derived from this data indirectly.

Being the cause of many paradoxes (such as the still unresolved information loss para-
dox and the firewall paradox), the existence of black holes was rejected by the scientific
community at first. The first hard evidence for their existence however was found by
Murdin & Webster (1971) and Webster & Murdin (1972) by investigating Cygnus X-1.
Nowadays, the number of black holes inside the milky way galaxy alone is estimated to
be above ten million (Nagaraja 2019). On April 10th 2019, the Event Horizon Telescope
(EHT) obtained the first ever direct visual evidence for a supermassive black hole (Messier
87). A supermassive black hole (SMBH) is a type of black hole, that is typically found
at the center of galaxies with typical masses between 106 and 109 M�. The other type
of black holes is the so called Galactic Black Holes (GBHs), whose typical mass ranges
only up to a few tens of solar masses. They are created by supernovae of massive stars.
Despite their immense difference in mass, the physical processes associated with SMBHs
and GBHs are the same for both types. The main difference of the processes is the scale
of their gravitational effects.
In the face of the astounding amount of indications and evidence, the existence of black
holes is generally accepted by the scientific community. All the more pressing becomes
the question of the nature and mechanisms inherent to such an object.

1.1. Black Holes and Accretion
Most of the observable black holes are typically surrounded by a so-called accretion disk,
which consists of in-falling matter from the vicinity. There are several descriptions/models
for such accretion disks, however Shakura & Sunyaev (1973) presented a widely accepted
model based on hydrodynamics without magnetic fields (see also Novikov & Thorne,
1973). This model is also called the Shakura-Sunyaev-Disk (SSD) or Standard Disk.
In the SSD model, the in-falling matter is spiraling around the central black hole in a
geometrically thin, but optically thick disk. The qualitative flow of the matter can be
explained as follows: A particle within the flow may have a certain angular momentum
and the according angular velocity around the accreting object. As the matter in the
accretion disk flows turbulently, rubs and bounces may reduce the particles angular
momentum, thereby reducing its angular velocity. Magneto-hydrodynamic considerations
show that the turbulence in the disk and shear forces due to small magnetic fields can
create an effective viscosity of the disk material which can be used to transport the
deprived angular momentum outwards (see also Krolik 1999; Krishan & Mahajan 2008,
Balbus & Hawley 1991) The lower angular momentum then forces the particle to move
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1. Introduction

Figure 1.1: Folded NuSTAR energy spectrum of NGC 4388 (a) alongside fit residuals
for (b) a simple power-law model, (c) an absorbed power law with an Fe Kα line, (d) an
absorbed power law with Fe Kα line and a reflection component incorporated using the
pexrav model. Black points correspond to FPMA data while points in red correspond to
FPMB. Figure taken from Kamraj et al. (2017)

into an orbit closer to the central object, acquiring kinetic energy from falling into the
gravitational potential in the process. In total, the particle has thus lost energy and
angular momentum, travels on an orbit closer to the black hole and has gained speed.
Through this higher speed, frictional heating is increased. Hence, the disk has its highest
temperatures at its innermost region. The maximal temperature can be up to a few
108 K (Shakura & Sunyaev 1973). Hence the matter flow is believed to consist mainly of
ionized material, or plasma, which explains the above mentioned property of the disk to
be optically thick/opaque.

Due to the high temperature and high optical depth, the accretion disk is expected
to emit black body radiation. As the temperature for an optically thick disk decreases
with the distance from the black hole as r−3/4 (Shakura & Sunyaev 1973) the spectrum
resembles a stretched black body spectrum. The observed spectrum shows a strong
component in high X-ray energies additionally to the thermal contribution. The shape of
this additional component can be approximated by a power law E−Γ with the so called
‘photon index’ Γ. The energy spectrum of the Seyfert-2 galaxy NGC 4388 taken by
NuSTAR on Dec. 27 2013 is depicted in Fig. 1.1. Though the origin of this power law
contribution is not yet determined, the prevailing theory assumes that thermal photons
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1. Introduction

Figure 1.2: Artists rendition of a black hole and the surrounding accretion disk, emitting
a relativistic jet. Credit: Illustration: ESO, ESA/Hubble, M.Kornmesser/N.Bartmann;
Labels: NASA/CXC

emitted from the disk are inverse-Compton up-scattered in a corona of hot electrons
(Sunyaev & Truemper, 1979) and reilluminate the accretion disk, leading to multiple
absorption and emission features. This will be touched upon further in Sec. 1.3.

As observed with many stellar objects, surrounded by an accretion disk, the region
around a black hole can emit an astrophysical jet, which is an outflow of ionized matter
in the form of an extended beam along the axis of rotation. The nature and formation of
such jets is not yet completely understood, however, the formation of a jet is believed
to be linked to the spin parameter a of the black hole (Blandford 1999). An artists
illustration of a black hole with accretion disk and relativistic jet is depicted in Fig. 1.2.

1.2. The Spin of a Black Hole
Although black holes may seem to be highly complex objects, they indeed rank among the
simplest objects in physics. A black hole is completely determined by as few as three pa-
rameters: Their massM , the spin parameter a and lastly the electric charge q. Even more,
the electric charge is in most cases negligible (see e.g., Orito & Yoshimura, 1985). A black
hole with a significant electric charge would be neutralized again by vacuum polarization
(see Reynolds & Nowak, 2003). So in reality the black hole is completely determined by
two parameters M and a. The mass is responsible for most of the gravitational effects
and can mostly be inferred from the motion of nearby objects (e.g. Orosz et al., 2011)
or its effect on photons, i.e., gravitational lensing (for a review, see Bartelmann, 2010).
As such, determining the mass of a black hole to a reasonable uncertainty is easily possible.

The spin parameter a = J/M , with J being the black holes angular momentum and
M its mass, can in principal range from −1 to 1. Negative spin parameter in this case
means, that the accretion disks angular momentum is antiparallel to the black holes
angular momentum. Considering the black hole’s interaction with thermal photons from
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1. Introduction

the accretion disk, Thorne (1974) showed, that the maximal value for a is somewhere
below 1, namely amax = 0.998. In turn, this means that the maximal negative value a
can take is −amax = −0.998. These are also the maximal/minimal values adopted for
the sake of this thesis.

The black hole spin only has noticeable effect at the innermost regions. Hence, the
methods for determining the black hole mass are not well suited for the determination
of its spin parameter. Still, the importance of a becomes clear, when reminded of the
discussion in the previous subsection 1.1. The thermal photons are emitted mainly
from the inner edges of the disk, meaning that the spin parameter a greatly affects the
spectrum received from the inner region around a black hole. In order to understand
the additional component at high X-ray energies, understanding and measuring the spin
parameter of a black hole is crucial.

The formation of the relativistic jets of black holes may also be linked to the spin
parameter. Many models, simulating the formation of such jets (e.g. Blandford & Znajek,
1977), connect the existence and the power of the jet of a black hole to the black hole
spin a. These considerations lead to the so called ‘spin paradigm’, which states that (to
first order) the value of a determines whether a strong radio jet is produced or not (see
Wilson & Colbert, 1995 and Blandford, 1999). On the other hand, Garofalo et al. (2010)
argue that the most powerful jets are emitted by black holes with maximal negative spin.
A distribution of jet power over black hole spin of several objects might provide further
insight and constraints for jet models.

Similarly to the hard X-ray component in the spectrum, the emission lines are greatly
influenced by the black hole spin. Since the energy of these lines is well known they are
suited to infer the spin parameter from their smearing. As the lines are created in close
vicinity to the black hole, relativistic effects that are dependent on a affect the line width,
the line position, and the line shape. From this information as well as taking into account
the influence of the relativistic effects, the spin parameter can be measured. However, the
presumption to do this measurement, namely theoretical knowledge about the formation
of the emission line, which includes the disk geometry, the corona geometry and the exact
description of the inverse-Compton up-scattering are crucial to draw reliable conclusions
from the spectrum. Previous studies have concentrated on a small number of accretion
geometries and therefore their uniqueness could degree of conformity could not be tested.
Consequently, it is necessary to generalize the existing models.

1.3. The Primary Source
As mentioned in the previous section, the spectrum observed from the vicinity of a
black hole usually shows significant emission features, which indicates the existence of
a hard X-ray source in the proximity of the black hole that illuminates the accretion
disk. Initially it was assumed that this source consists of a hot corona around the inner
most regions of the accretion disk, leading to inverse-Compton up-scattering of the
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1. Introduction

Figure 1.3: Photon Index Γ (upper panel) and reflection strength RDC (lower panel)
for varying primary flux (PLC) of MCG–6-30-15. Both parameters show little variation,
while the continuum flux varies by large amounts. (Figure adapted from Fabian &
Vaughan, 2003.

thermal photons which then re-illuminate the disk. Assuming that the intensity of the
re-illumination by the corona is proportional to the disk emissivity, the irradiation of the
accretion disk would follow a power law of I(r) ∝ r−3 at the outer parts of the disk and
flatten towards the inner regions.

This corona geometry however faces multiple inconsistencies when compared to obser-
vational data. In many observations, the data showed disk emissivities that are much
steeper at the inner regions of the accretion disk (see Wilms et al., 2001; Fabian et al.,
2002; Brenneman et al., 2011; Gallo et al., 2011; Dauser et al., 2012; Risaliti et al.,
2013). Further, one would expect a positive correlation between the continuum flux and
the reflected flux. A higher continuum flux indicates higher disk emissivity which means
that more photons can be reflected at the corona back onto the disk which leads to a
higher irradiation intensity on the disk. This means that a higher continuum flux should
also come with a higher emission line flux. Observations of MCG–6-30-15 by Fabian &
Vaughan (2003) as well as Miniutti et al. (2003), for example, showed large variation
in the continuum flux while the reflected flux stayed constant. The data of Fabian &
Vaughan (2003) are depicted in Fig. 1.3.

In contrast, a primary source that is located on the rotational axis of the black hole at
a height h can explain the observed data very well (see Martocchia et al., 2002; Fabian
& Vaughan, 2003; Miniutti et al., 2003, Vaughan & Fabian, 2004). This geometry is
also called the lamp post geometry. Unlike the standard disk corona, the primary source
is hereby located on the axis of the black hole. Both the lamp post geometry and the
standard disk corona geometry are depicted in Fig. 1.4. In the lamp post geometry, the
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1. Introduction

Figure 1.4: Sketch of the lamp post geometry (left) and the standard corona geometry
(right). The primary source (blue) is located on the rotational axis (left) or encapsulating
the accretion disk (right) respectively. A part of the primary photons (green) is emitted
towards the observer directly, whereas a part is reflected on the disk and reaches the
observer indirectly (red). Image inspired by Dauser (2014)

steepening of the emissivity profile at the inner regions can be explained by the effects of
focusing of the radiation onto the inner parts of the accretion disk due to light bending
and the effect of energy shift. The observed relation between the continuum flux and
the reflected flux is explained by this picture as well; A primary source located close to
the black hole (i.e., small h), the photons are strongly focused on the inner parts of the
accretion disk, creating a strong reflection component and leaving fewer photons for the
continuum flux (Miniutti & Fabian, 2004). For increased height h of the X-ray source,
the focusing becomes less prevalent, meaning that more photons can escape, thereby
enhancing the continuum flux (Miniutti & Fabian, 2004).

1.4. Aim of this Thesis
There exist several tools for calculating the spectrum of an irradiated accretion disk from
a Jet-Base corona (see Dauser et al., 2013; García et al., 2014; Fukumura et al., 2009), as
well as some tools for the simulation of the spectra of extended sources (see e.g. Wilkins
& Fabian, 2012). The former lack the ability to investigate corona geometries that are
not located on the axis of symmetry, while the latter lack in speed as they commonly use
Monte Carlo simulations on graphic cards to compute the spectra. For fitting simulated
spectra to observed data, both the computational speed and the possibility to modify
the corona geometry is necessary. The model presented in this thesis aims at meeting
both of these requirements and ultimately obtain the spectra for various geometries and
parameter in a way that is suitable for comparing them to observations.

The remainder of this thesis is structured as follows. In Chapter 2 the derivation of
the Kerr-spacetime is briefly outlined. The equations of motion for a massless particle
are given in Section 2.3 and the motion of the accretion disk is discussed in Section 2.4.
Chapter 3 is divided into two parts; The first part, Section 3.1 summarizes the treatment
of the lamp post geometry. The second part, Section 3.2 generalizes the treatment of the
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1. Introduction

first part to emission from an arbitrary source by following the work of Yang & Wang
(2013). In the same way as Chapter 3 is divided into lamp post geometry and general
approach. The results are presented and compared in 4 in two Sections; The results for
the lamp post geometry are presented in Chapter 4.2, together with the comparison to
previous work of Dauser (2014). Section 4.3 then presents the results for some off-axis
geometries as examples for which comparative data was partially available. Finally, the
conclusion and a further outlook are given in Chapter 5.
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2. Basic Theory of Black Holes

2. Basic Theory of Black Holes
In 1916, barely over a month after the publication of Einstein’s theory of general relativity,
famous German physicist Karl Schwarzschild presented a solution to Einsteins Field
Equations assuming a spherically symmetric and static vacuum. This solution is best
known as the outer Schwarzschild solution or the outer Schwarzschild metric. Remarkably,
if the object sourcing the above mentioned gravitational field is compact enough, there
exists a region in spacetime from which neither massive nor massless worldlines can
escape. This region is called a black hole. Its boundary is called the event horizon of the
black hole. The ability to permit black holes is not unique to the Schwarzschild solution
but was found even in a family of solutions to the Einstein field equations, namely the
Kerr Solution (Kerr, 1963) and the Kerr-Newman solution (Newman et al., 1965). The
derivation of the former will be presented in the following. Due to its relevance for the
description of most known black holes, it will be at the center of this thesis.

For readers well versed in the formalism of general relativity and black hole physics,
some of the following sections may be omitted, as their content is usually covered by any
standard textbook on black holes (e.g. Misner et al. 1973; Carter 1968; Kerr 1963). In
particular the derivation in the following chapters is based on Chandrasekhar (1983).
However, not exclusively but especially for readers not accommodated in the field, it
is instructive to read the following chapter to clear up any possible confusion arising
by notation or definitions. As such by defining the assumption of stationary spacetime
in terms of mathematical expressions avoids the danger of using ones own intuition or
possibly textbooks with other definitions of such terms to understand the issue at hand.

2.1. Derivation of the Kerr metric
A general and exact solution to the Einstein field equations has not yet been found.
However, under certain symmetry assumptions, it is indeed possible to systematically
derive exact solutions. For example to obtain the Schwarzschild metric, a static, spheri-
cally symmetric vacuum is assumed. In the following, we will loosen the assumption on
spherical symmetry and staticity to only axial symmetry and stationarity, which allows
for consideration of non-vanishing angular momentum of the central object. This is a
very necessary generalization, as during stellar collapse and the formation of black holes,
the angular momentum is conserved and transfers onto the resulting black hole. Thus,
black holes in reality are expected to have non-vanishing angular momentum.

In the following, the sketched procedure to deriving the Kerr solution is in spirit
analogous to a possible derivation of the Schwarzschild solution however the technicalities
are more sophisticated. Starting with the sought after metric tensor g in its most general
form, the symmetry conditions are applied and g is regarded in a suitable chart. Then
the coefficients of the Christoffel Symbols and the Ricci tensor are calculated from this
constrained form of the metric tensor and lastly all found expressions inserted into the
Einstein field equations. This will provide the final set of conditions on the metric tensor

- 11 -



2. Basic Theory of Black Holes

g to uniquely determine it.

As mentioned above, we may start with a general metric g, which is supposed to be the
solution to the Einstein field equations under the aforementioned symmetry conditions
of a stationary and axisymmetric spacetime. The requirement of stationarity translates
to the existence of a timelike Killing vector ξ , whereas axial symmetry corresponds to
the existence of a Killing vector X with spacelike, closed orbits and the requirement
of both symmetries simultaneously also enforces the compatibility condition that the
Lie-derivative LξX = 0. These chart independent assumptions are equivalent to the
requirement that, at least locally, a coordinate system (t, φ, x1, x2) exists in which the
components of the metric are independent of t, φ, that is gab(r, φ, x1, x2) = gab(x1, x2)
(see Ludvigsen 1999). In contrast to the assumptions used for deriving the Schwarzschild
metric, here the metric tensor is supposed to only be invariant under simultaneous
inversion of the t and the φ coordinate. Explicitly in the aforementioned coordinate
system this means that for the coordinate transformation (t, φ, x1, x2)→ (−t,−φ, x1, x2),
the metric components are invariant. Since under this transformation it is always true
that g02 → −g02, g03 → −g03 and g12 → −g12, g13 → −g13, we find that these components
must vanish (as well as the components with the indices switched, as gab is symmetric).
What remains is the line element

ds2 = g00dt2 + 2g01dφdt+ g11dφ2 + [g22(dx2)2 + 2g23dx2dx3 + g33(dx3)2]. (2.1)

It can be shown that the expression in square brackets can be brought to a ‘diagonal’
form (see Chandrasekhar 1983, or Appendix A), such that the line element may be
written as

ds2 = −e2ν(dt)2 + e2ψ(dφ− ωdt)2 + e2µ2(dx̃2)2 + e2µ3(dx̃3)2, (2.2)
where ν, ψ, ω, µ2 and µ3 are functions of the coordinates x̃2, x̃3 and µ2 and µ3 are free to
be restrained by a coordinate choice. The line element in equation (2.2) is often referred
to as the standard form of the line element of a general axisymmetric and stationary
spacetime.

Fundamentally, the only further information required to deriving the specific stationary,
axisymmetric, vacuum solution known as the Kerr solution is the use of the vacuum
Einstein field equations, that is

Rab −
1
2gabR = Gab = 0 (2.3)

and a practical choice of coordinate condition on µ2 and µ3. As it is not very instructive
to work through the multitude of simplifications of equations derived from the vacuum
Einstein field equations, it suffices here to regard the choice of coordinate condition forced
on µ2 and µ3.

The particular choice of gauge presented below in fact implies no loss of generality (see
Chandrasekhar 1983), however it is strongly motivated by physical reasoning. Conve-
niently, the polar angle θ with respect to the axis of symmetry is chosen as x̃3 and x̃2
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2. Basic Theory of Black Holes

will from now on be denoted as r. The sought after metric is desired to admit an event
horizon, that is, a smooth null-surface. This definition is compatible with the one made
earlier in this chapter. Considering a general 2-dimensional null-surface, its equation
may be given in the form

N(x1, x2) = 0, (2.4)
and the condition that it be null is

gabN,aN,b = 0 a, b = 1, 2 (2.5)

for a smooth function N . The null condition in other words means that the surfaces
normal vectors at every point are null. The vectors η tangent to the null-surface obey
the condition gabηaN,b = 0 by definition. Thus, N,a itself is a tangent vector, i.e.
N,a = gab

dγb(t)
dt for some curve γ(t) that lies inside the null-surface. Thus at every point

of the surface, there exists a tangent vector ξ for which ξaξa = 0. As a geometrical
interpretation, along this direction, the null-surface at every point is tangent to the
light cone at that point. Consequently, the light cone lies completely on one side of the
null-surface and is at that point tangent to it. The smoothness of both, the function N
and the metric tensor field g now also show that all the light cones along the null-surface
lie on the same side. The future-pointing world line of a massive or massless particle can
thus only cross the null-surface in one direction and hence the null-surface forms an event
horizon as characterized earlier in this chapter. Note that for the sake of generality, a
2-dimensional null-surface was considered. Commonly, an event horizon in 4-dimensional
spacetime refers to a 3-dimensional null-surface, however a 3-dimensional null-surface
automatically contains a 2-dimensional hypersurface that is null. As such, considering a
2-dimensional null-surface retained generality in this case and as shown in Chandrasekhar
(1983), existence of such a surface indeed does not specialize the case whatsoever.

As our particular spacetime of interest was enforced axisymmetry about the φ-
coordinate as well as stationarity, the function describing the surface of the event
horizon is solely dependent on the coordinates r, θ, so it has the form

N(r, θ) = 0, (2.6)

for some smooth function N and the tangent space of the surface at each point is spanned
by the two vectors ∂

∂t
and ∂

∂φ
. Again the condition, that the surface be null is

gabN,aN,b = 0 a, b = r, θ, (2.7)

and for the standard form of the metric of an axisymmetric, stationary spacetime, this
takes the form

e2(µ3−µ2)(N,r)2 + (N,θ))2 = 0. (2.8)
Using the special choice of gauge, let

e2(µ3−µ2) = ∆(r), (2.9)
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2. Basic Theory of Black Holes

where ∆(r) is some function of r, for now unspecified. From Eq. (2.8) it then follows
that the equation of the null-surface is given by

∆(r) = 0. (2.10)

Employing the second condition, namely that the surface be spanned by ∂
∂t

and ∂
∂φ

requires that the determinant of the metric of the subspace (t, φ) vanish on the surface.
Thus,

e2ψ+2ν = 0 on the null-surface (2.11)

Since ∆(r) was left unspecified, suppose that

eψ+ν = ∆1/2f(θ), (2.12)

i.e. that it is separable in the variables r and θ with some function f(θ) that is regular
on the entire null-surface. Using parts of the vacuum Einstein field equation

R11 +R00 ≡ 0 + 0 = 0, (2.13)

together with Eq. (2.9) and (2.12) and the requirements of regularity of f(θ) and the
convexity of the event horizon, it follows

∆,r,r = 2 and f(θ) = sin(θ). (2.14)

Thus ∆(r) can be written as

∆(r) = r2 − 2Mr + a2, (2.15)

where M and a here appear merely as constants of integration, however they acquire a
physical meaning of the mass and the angular momentum per unit mass of the black
hole, when later the limits of the Kerr solution are investigated. So with this particular
choice (again this choice conserves the generality of the situation, see Chandrasekhar
1983) which is consistent with the existence of an event horizon,

eµ3−µ2 = ∆(r)1/2 and eψ+ν = ∆(r)1/2 sin(θ) (2.16)

Completing the derivation of the Kerr solution, the end result can be expressed by the
line element as

ds2 = −Σ ∆
ρ2 (dt)2 + ρ2

Σ

(
dφ− 2aMr

ρ2 dt
)2

sin2(θ) + Σ
∆(dr)2 + Σ(dθ)2, (2.17)

where Σ = r2 + a2 cos2(θ), ∆ = r2 − 2Mr + a2 and ρ2 = (r2 + a2)2 − a2∆ sin2(θ). The
functions e2ν , e2ψ, e2µ2 and e2µ3 for which the standard form of the line element of a
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general axisymmetric and stationary spacetime (Eq. (2.2)) turns into the Kerr solution
can now be identified by comparing the coefficients of Eq. (2.2) and (2.17). Substituting

e2ν = Σ∆
ρ2

e2ψ = ρ2 sin2(θ)
Σ

e2µ2 = Σ
∆

e2µ3 = Σ

ω = 2aMr

ρ2 (2.18)

in Eq. (2.2) then yields the Kerr line element.

As announced earlier, investigating the limits of the Kerr solution gives a physical
meaning to the constants a andM . Letting r →∞, the Kerr solution element approaches
the Schwarzschild solution

ds2
Schwarzschild = −

(
1− 2M

r

)
dt2 + 1

1− 2M
r

dr2 + r2dθ2 + r2 sin2(θ)dφ2, (2.19)

meaning that at a point sufficiently far away from the central mass, the Schwarzschild
and the Kerr metric are identical. Thus it immediately follows that the Kerr solution is
asymptotically flat as well. Further, in this limit, M takes the same role as the mass
of the gravitating object appearing in the Schwarzschild solution, so we also identify
M in the Kerr solution (2.17) as the gravitating mass of the black hole. The limit
a→ 0 also yields the Schwarzschild solution, which describes the gravitational field of a
non-rotating body. Thus, a is related to the angular momentum of the black hole and
a closer investigation of Eq. (2.17) permits the physical interpretation as the angular
momentum per unit rest mass of the black hole.

From the explicit form of the Kerr metric in Eq. (2.17), the condition ∆(r) = 0 for the
event horizon can be evaluated. As ∆ = r2 − 2r + a2 is a quadratic polynomial, its roots
are

r± = 1±
√

1− a2. (2.20)
Thus, in general, the Kerr spacetime has two separate event horizons. The outer event
horizon r+ is the one that determines the size of the black hole. As such, if the size of the
black hole is mentioned in any of the following parts, it refers to the outer event horizon
at r+ = 1 +

√
1− a2. The inner horizon at r− = 1 −

√
1− a2 constitutes a Cauchy

horizon. Within the region enclosed by this horizon, closed time-like curves can exist.

Lastly we turn our attention to the fact that the coefficient in front of dφdt in (2.17)
is unequal to zero for non-vanishing angular momentum. This is a key feature of the
Kerr solution (or more generally of a general axisymmetric, stationary solution of the
Einstein field equations) and leads to interesting effects.
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2.2. Frame Dragging Effect
The effect of frame dragging due to non-vanishing angular momentum of the black hole
will be discussed in terms of the general axisymmetric, stationary solution of the Einstein
field equations Eq. (2.2), at the end however, the specialization to the case of the Kerr
solution is trivial and will briefly be mentioned as well.

From (2.2) the basis vectors

e(0)i = ( −eν , 0 , 0 , 0 )
e(1)i = (−ωeψ,eψ, 0 , 0 )
e(2)i = ( 0 , 0 ,eµ2 , 0 )
e(3)i = ( 0 , 0 , 0 ,eµ3) (2.21)

form a tetrad frame. To distinguish tetrad frame indices from coordinate indices, the
tetrad indices are denoted in brackets. The corresponding covariant form then becomes

e(0)
i = (e−ν ,ωe−ν , 0 , 0 )

e(1)
i = ( 0 , e−ψ , 0 , 0 )

e(2)
i = ( 0 , 0 ,e−µ2 , 0 )

e(3)
i = ( 0 , 0 , 0 ,e−µ3) (2.22)

It is now easy to verify, that

e(a)
ie(b)i = η(a)(b) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (2.23)

which means that in the frame chosen as in Eq. (2.21) the Kerr metric Eq. (2.17) is
Minkowskian, that is, this choice of frame locally represents an inertial frame. Let a
particle in this initial frame have the velocity

u(a) = (1, 0, 0, 0) , (2.24)

i.e., it is stationary with respect to its own frame of reference. In other words, in this
frame the particle is at rest. Its velocity as seen by a distant observer however can be
calculated as

ua = e(i)
au(i) =

(
e−ν , ωe−ν , 0, 0

)
. (2.25)

Remarkably, the velocity component in rotational direction about the axis of symmetry
is non-vanishing. So the velocity, the distant observer sees the particle moving with is

φ̇ = dφ
dt = dφ

ds
ds
dt = uφ

ut
= ω ∝ 2aM

r3 . (2.26)
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Figure 2.1: Velocity ω due to the effect of Frame Dragging as function of the distance
from the black hole for different values of the spin parameter a and in the equatorial
plane θ = π/2.

This velocity is displayed for different spin parameters in fig. 2.1

A similar, visual display of this effect is the geodesic of a particle with zero angular
momentum about the axis of symmetry falling towards the black hole from a far distance.
A distant observer will see the particle start to spin about the axis of rotation as it gets
closer to the black hole, effectively spiraling towards it instead of falling ‘straight’ into it.
The particle however will feel as if falling straight towards the black hole, the same way a
particle would feel falling straight onto earth. An example of this for a photon trajectory
starting at r = 8 rg with only non-vanishing initial momentum in r-direction can be seen
in fig. 2.2. The x and y coordinate in this figure are given in terms of gravitational radii,
which is given as

rg = GM

c2 , (2.27)

where G ≈ 6.67 · 10−11 m3

kg s2 is the gravitational constant, M is the mass of the black hole
and c is the speed of light. In the further used natural units, where G = m = c = 1, the
gravitational radius becomes unity as well.
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Figure 2.2: Frame Dragging effect on a photon trajectory. The plot shows the view of a
distant observer on the rotational axis viewing onto the x-y-plane of the black hole. The
photon trajectory starts at r = 8 rg with initial momentum solely in r-direction. The
distant observer however will see the photon start spiraling in φ-direction, due to the
effect of frame dragging.

2.3. General Equations of Motion
In the theory of general relativity, an uncharged particle, that is a particle free from
all external forces, follows a geodesic. Geodesics geometrically generalize the concept
of a straight line to curved geometry. The idea that particles follow ‘straight’ curves is
equivalent to the variational principle of Hamiltonian mechanics. A curve γ in spacetime
is called a geodesic if it satisfies the equation

d2xa

dλ − Γabc
dxb
dλ

dxc
dλ = 0, (2.28)

where x(λ) is the representation of γ(λ) in any chart (U, x) and Γabc are the coefficients
of the Christoffel-Symbols, which are the Levi-Civita connection in general relativistic
spacetime. The geodesic equation (2.28) is indeed nothing but the Euler-Lagrange
equation for the action functional

S(g; γ] = 1
2

∫
dλ gγ(λ)(γ̇(λ), γ̇(λ)) , (2.29)

where the square/round bracket is meant to indicate that the functional S is functionally
dependent on the variables appearing after the semicolon and only dependent, but not
functionally dependent, on the variables appearing before the semicolon.

Now, as mentioned in section 2.1, the Kerr solution, as any stationary, axisymmetric
spacetime, admits two Killing vector fields ξ and X. Thus, in local coordinates they
fulfill the Killing equation

∇(aYb) = 0, (2.30)
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where ∇a is a-th component of the covariant derivative and the brackets around the
indices indicate symmetrization. It follows that along a geodesic γ = x−1 ◦x, the quantity

Ya
dxa
dλ = const. where Y ∈ {ξ,X} (2.31)

is conserved. To see this, consider its change along the geodesic

d
dλ

(
Ya

dxa
dλ

)
= dxa

dλ ∇a

(
Yb

dxb
dλ

)
. (2.32)

Due to the product rule for differential operators, the expression on the right side of
Eq. (2.32) can be written as

dxa
dλ Yb∇a

(
dxb
dλ

)
︸ ︷︷ ︸

=0 due to geodesic equation

+ dxa
dλ

dxb
dλ ∇a(Yb)︸ ︷︷ ︸

=0 due to the Killing condition

= 0. (2.33)

So indeed, the claim that for any Killing vector Y satisfying the Killing condition (2.30)
the quantity Ya dx

a

dλ is conserved along the geodesic x(λ). The conserved quantities that
arise from the aforementioned ξ and X, i.e., from the stationarity and the axisymmetry
are the angular momentum l and the energy E. From a physical standpoint, the rest
mass of a test particle is also expected to be conserved, however this conserved quantity
does not follow from a Killing vector, as it is notrelated to a geometrical symmetry.

Mathematically, the conservation of rest mass corresponds to the constancy of the
Hamiltonian, which can be derived from Eq. 2.29. The resulting Hamiltonian is

H = 1
2Σ

(
∆pr2 + pθ

2 − ρ2

∆pt
2 +

(
1

sin2(θ) −
a2

∆

)
pφ

2 − 4aMr

∆ ptpφ

)
, (2.34)

where

pt = −
(

1− 2Mr

Σ

)
ṫ− 2Mar

sin2(θ)
Σ φ̇

pr = Σ
∆ ṙ

pθ = Σθ̇

pφ =
(
r2 + a2 + a

ρ2

Σ ω sin2(θ)
)

sin2(θ)φ̇− ρ2

Σ ω sin2(θ)ṫ. (2.35)

Since the Hamiltonian is not explicitly dependent on the coordinates φ and t, they are
cyclic variables, in agreement with the discussion above about the conserved quantities
corresponding to the Killing vector ξ and X. Thus, the angular momentum l can be
identified as pφ = l and the energy can be identified as −pt = E. However, it can also
clearly be seen that the Hamiltonian induces the conservation of a test particle’s rest
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mass. Finally, from this Hamiltonian it is possible to use the Hamilton-Jacobi formalism
to extract a further conserved quantity, which was demonstrated by Carter (1968). The
conserved quantity

Q = pθ
2 + cos2(θ)

[
a2
(
µ2 − pt2

)
+ pφ

2

sin2(θ)

]
where µ =

1 for massive particles
0 for massless particles

,

(2.36)
is therefore called the Carter constant. It does not arise from a symmetry in the standard
sense, but from a separation ansatz in the Hamilton-Jacobi formalism in the coordinates
θ and r. Finding a geodesic of a particle in the 4-dimensional spacetime is generically a
‘4-dimensional problem’, however due to the four conserved quantities presented above,
the geodesic is indeed uniquely determined. Thus, from a theoretical standpoint, the
framework is set and the remaining problem is to solve for the respective geodesic.

Following Bardeen et al. (1972) the general equations of motion for a massless particle
(i.e. µ = 0 and in natural units G=M=c=1) derived from the above are

Σ dt
dσ = −a(aE sin2(θ)− λ) + (r2 + a2)T∆

Σdr
dσ = ±

√
Vr

Σdθ
dσ = ±

√
Vθ

Σdφ
dσ = −a

(
a− λ

sin2(θ)

)
+ a

T

∆ , (2.37)

where σ is an affine parameter for massless particles or the proper time for a massive
particle and where

Vr = r4 − (q + λ2 − a2)r2 + 2
[
q + (λ− a)2

]
r − a2q (2.38)

Vθ = q2 + a2 cos2(θ)− λ2 cot2 θ (2.39)
T = r2 + a2 − λa (2.40)

λ = l

E
q2 = Q

E2 . (2.41)

The signs in Eq. (2.37) can be chosen independently and represent the direction of the
particle’s movement. Carter (1968) found these equations of motion to be integrable and
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gave the integral form of the equations of motion for a massless particle as

±
∫ r dr′√

Vr(r′)
= ±

∫ θ dθ′√
Vθ(θ′)

(2.42)

σ =
∫ r r′2√

Vr(r′)
dr′ + a2

∫ θ cos2(θ′)√
Vθ(θ′)

dθ′ (2.43)

t = σ + 2
∫ r r′T

∆
√
Vr(r′)

dr′ (2.44)

φ = a
∫ r T

∆
√
Vr(r′)

dr′ +
∫ θ λ− a2 sin2(θ′)

sin2(θ′)
√
Vθ(θ′)

dθ′ (2.45)

Solving these equations for the special lamp post Geometry following the work of Dauser
(2010) will be the topic of chapter 3.1. Solving these equations for a general photon
source will be the topic of 3.2. In both of these cases, the accretion disk of the black hole
will be modeled as a standard ‘razor thin’ accretion disk. This model and its dynamics
will be described in the following section 2.4

2.4. Accretion Disk Model
The accretion disk model used in the following chapters assumes a thin disk on a stable
orbit in the equatorial plane. This condition immediately implies

θ̇ = 0 and θ = π

2 . (2.46)

From Eq. (2.36) and (2.35) then follows Q = q = 0. Indeed, q=0 is both a necessary
and a sufficient condition for motion, that initially started in the equatorial plane to
remain in it. Further, the disk is most easily modeled by a continuum of particles on
circular orbits with different radii. For each of these orbits it must then hold that

r̈ = 0, ṙ = 0 and r = const, (2.47)

from which Eq. (2.37) it follows
dVr
dr = 0 and Vr = 0. (2.48)

These equations can be solved simultaneously for E and l, which results in (see Bardeen
et al. 1972)

E

µ
= r3/2 − 2Mr1/2 + aM 1/2

r3/4 (r3/2 − 3Mr1/2 + 2aM 1/2) (2.49)

l

µ
=

M 1/2
(
r2 − 2aM 1/2r1/2 + a2

)
r3/4 (r3/2 − 3Mr1/2 + 2aM 1/2) . (2.50)
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This results in an angular velocity of the particles of

Ω = dφ
dt =

√
M

r
√
r + a

√
M
, (2.51)

which holds for both a ‘co-rotating’ as well as a ‘counter-rotating’ disk, as for the counter-
rotating case, a simply becomes negative. Thus, the four-velocity of the accretion disk
becomes

udisk = udisk
t (∂t + Ω∂φ) , (2.52)

with
udisk

t = r
√
r + a

√
M

√
r
√
r2 − 3Mr + 2a

√
M
√
r
. (2.53)

Following Bardeen et al. (1972), the condition for the particles constituting the disk to
be on stable orbits additionally gives the restriction d2Vr

dr ≤ 0. This yields the condition

r ≥ rms, (2.54)

with

rms = M
(

3 + Z2 − sign(a)
√

(3− Z1)(3 + Z1 + 2Z2)
)

Z1 = 1 + (1− a2) 1
3
[
(1 + a) 1

3 + (1− a) 1
3
]

Z2 =
√

3a2 + Z1
2. (2.55)

For a maximally rotating, non-rotating and maximally counter-rotating disk this means
that the disks cannot approach the black hole closer than

rms =


1.24 rg for a = 0.998

6 rg for a = 0
8.994 rg for a = −0.998

. (2.56)

The radii of the outer and inner event horizon as well as the radius of marginal stability
are depicted together in Fig. 2.3.
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Figure 2.3: Outer event Horizon r+, inner event horizon r− and radius of marginal
stability rms depicted for different spin parameter a from a = −0.998 to a = 0.998.

3. Raytracing
Now that the spacetime of interest has been described, the irradiation of the accretion
disk from a photon source can be investigated. The interesting quantity is the incident
energy flux on the disk, that is the intensity profile that the photon source causes on
the accretion disk. In the first part of this Chapter, the jet-base/lamp post geometry is
investigated as an instructive example that simultaneously provides comparative data for
the generalized case. The second part will then outline the theory for the calculation
of the intensity profile caused by a point source at an arbitrary location in the vicinity
of the black hole. The approach to both cases may roughly be outlined as follows:
First the equations of motion are reduced and simplified as much as possible such that
their integration can be done as quickly as possible. Then the constants of motion
are calculated in dependence of the initial data so that the geodesics are completely
determined. Lastly the contribution of relativistic effects, such as length contraction
and the energy shift along the geodesic is taken into account. Finally, the resulting
intensity profile is expressed as a function of the incident photon flux on the disk –
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which is calculated from the equations of motion – and the relativistic corrections in the
subsequent Chapter 4. The results will hence also be displayed in Chapter 4 for means
of comparison and discussion.

3.1. Lamp Post Model
Before tackling the calculation of the intensity profile caused by a source located any-
where in the vicinity of the black hole, it is instructive to first consider a simplified case.
Equatorial circular motion has already been touched on in Sec. 2.4, when discussing the
motion of the accretion disk. The simplification there is that the problem is basically
reduced to the φ-direction only, as equatorial motion constrains θ to be π/2 and circular
motion constrains the r-coordinate of the geodesic to be constant as well. As this was
already touched on, we may look for another special situation that is easier to calculate
than the general case, but still might teach techniques and concepts that are applicable
more generally.

A well-developed model for a source of photons in Kerr spacetime is the so called lamp
post model. The model assumes an isotropically emitting point source located on the
rotational axis of the black hole (θ = 0). The model proves to be a good explanation for
the observed focusing on the inner region of the accretion disk as discussed in Sec. 1.3.
Further, it has a physical foundation in the base of the jet, emitted by a black hole. The
lamp post model is hence worth investigating due to its efficiency in the description of
the observed spectra in its own right. Furthermore, it also constitutes a simplification of
a general point source in Kerr spacetime, as its location on the axis of symmetry also
constitutes a symmetry in the possible trajectories (details on that in Sec. 3.1.1). A
heuristic explanation of this simplification can be given by a geometrical consideration.
The directions on a sphere may be completely parametrized by the θ- and the φ- direction,
or in other terms, the East-West and the North-South direction. For a person standing
on the north pole (or on the south pole for that matter), the notion of φ-, or East-West
direction no longer makes sense. Each direction the person is looking at is always in θ, or
North-South direction. This means that initially, the person on the north pole can not
move in the φ-direction, which in turn will lead to them having no angular momentum.
Thus, one of the four constants of motion are already determined from the location of
the source alone. A more rigorous description, however, will follow in Subsec. 3.1.1.

As the consideration of the lamp post model only serves as an instructive example
and provides results for comparisons later on, the treatment will not be as detailed as
in papers with their focus on this model. Hence, the interested reader may be referred
to the work of Dauser (2010, 2014), Dauser et al. (2013), Fukumura et al. (2009) and
García et al. (2014). The following sections on the lamp post geometry are based mainly
on Dauser (2010, 2014).
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3.1.1. Reduced Equations of Motion

The equations of motion for a photon in Kerr spacetime were derived in Subsec. 2.3 and
given in Eq. (2.37) and Eq. (2.35) or Eq. (2.42) - (2.45) respectively. If we now consider
the case of a source on the rotational axis, the initial condition θ = 0 can be applied. This
simplifies the calculation of the initial momenta tremendously, as any term containing
only a θ dependency can immediately be evaluated. However, from the form of the
potential Vθ in Eq. (2.39), it is apparent that we run into difficulties actually applying
θ = 0, as the cot(0) is not defined. Even worse, looking at the θ equation of Eq. (2.37),
for λ 6= 0 and θ → 0, the coordinate velocity in θ direction for any photon emitted in the
vicinity of θ = 0 would either be complex or infinite, depending on the sign of λ. So even
the limit of θ → 0 is unphysical. But it does not seem physically reasonable that photon
trajectories can not start from the rotational axis. To avoid divergence of the λ cot (θ)
term, it is necessary that

lim
θ→0

∣∣∣∣ λ2

sin2(θ)

∣∣∣∣ <∞, and therefore

lim
θ→0

λ = 0. (3.1)

The notation (limθ→0 x <∞) was here used to denote that the term x is not definitely
divergent. A direct consequence of this is that any photon emitted by a source on the
axis of symmetry must have vanishing angular momentum. This consideration yields a
substantial simplification of the equations of motion, as it already determines one of the
two important constants of motion to be vanishing. As it is therefore established, that
photons originating from the axis of symmetry have vanishing angular momentum λ we
may for any value of θ consider only those geodesics with vanishing λ. The considerations
above ensure that no photon geodesic starting at the axis of symmetry is dismissed by
restricting concern to this subset of trajectories. Doing so, the potential Vθ for this subset
takes the simpler form of

Vθ(θ) = q2 + a2 cos2(θ). (3.2)

For this expression the transition to θ = 0 is well-defined and the resulting potential can
be expressed as

Vθ(0) = q2 + a2, (3.3)

for which the root is well defined. We have thus found the description of geodesics with
zero angular momentum starting from the rotational axis. As per the previous argument,
that for λ 6= 0 already the limit θ → 0 leads to unphysical results, the zero angular
momentum geodesics are in fact the only geodesics permitted to start from the rotational
axis meaning that the vanishing angular momentum requirement meant no restriction
for this special case.
As an aside; The problem arises in an analogous fashion to the problem of defining

the East-West-direction for a person standing on the north pole, as mentioned earlier.
For a photon starting on the rotational axis, the φ-direction simply is not defined and
as such, the photon can not move in this (undefined) direction. Further, both of these
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problems arise only due to the special choice of coordinates and do not represent any
physical limitation on the movement of an object on the rotational axis. As a further
remark; Since for each geodesic a point along the geodesic can be regarded as a new
starting point for the remainder of the trajectory, it is already conceivable that each
photon geodesic running through the rotational axis must be one with vanishing angular
momentum. This is true no matter the source geometry.

The above considerations imply that the initial direction of the photon trajectories
starting on the axis of symmetry are determined by a single angle δ. From this geometric
consideration, the relation between the constant of motion q and the emission angle δ
becomes (Dauser 2010)

sin(δ) = (ph)a(n(θ)
h )a

(ph)b(uh)b
=

√
Vθ
Σ

∣∣∣
θ=0

−uht
=
√
h2 − 2h+ a2

h2 + a2

√
q2 + a2, (3.4)

where n(θ)
h is the normal vector in θ-direction. The non-vanishing component uth of the

four velocity can be calculated from the condition

1 != uau
a = (uht)2gtt(h) = −(uht)2 ∆(h)

h2 + a2 . (3.5)

Solving Eq. (3.4) for q yields

q =
√

sin2(δ) (h2 − 2h+ a2)
h2 + a2 . (3.6)

Since the angular momentum of the geodesics in the lamp post geometry must be vanish-
ing, the trajectory is completely determined by the constant q and, by means of Eq. (3.6),
it is determined by the initial height h above the black hole and the emission angle δ.

With the constants of motion λ and q determined from the initial data, the momentum
of a photon

pa = E

(
−1,±

√
Vr

∆ ,±
√
Vθ, λ

)
(3.7)

is determined and the solution of the equations of motion Eq. (2.42)–(2.45) becomes
a problem of numerical integration. This has been done in Dauser (2010), based on
the code presented by Speith et al. (1995) for the calculation of Cunningham’s transfer
function (see also Cunningham, 1975). To calculate the position at which the photon
hits the accretion disk, Eq. (2.42) is numerically integrated. For the θ-integration, the
lower and the upper limits are known from the initial and incident angle being θ = 0
and θ = π/2 respectively. For the r-integration, only the lower limit, that is the emission
height, is known, whereas the incident radius is sought after. So the value of the upper
limit of the r-coordinate is gradually increased, until the r- and the θ- integrals match
(up to a certain precision). The corresponding upper limit rincident of the r-integration is
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the radius at which the photon is incident on the disk.

It is hence possible to calculate the radius at which the photon trajectory crosses
the accretion disk. Since the situation is symmetric about the rotational axis, the
φ-coordinate is of no interest and the θ-coordinate of the incident position is trivially π/2.
By simulating the emission from a source and then numerically solving for the incident
radius, a radial distribution of photons incident on the disk can be calculated. Usually,
to obtain the intensity distribution, a Monte Carlo simulation of photon trajectories is
generated and the amount of photons incident in a within a range of ∆r are counted.
The intensity profile would then arise as the histogram of the amount of photons per
radial bin divided by the respective area segment of that bin. However due to relativistic
effects, there are multiple corrections that have to be made before creating the histogram.
For one, the area corresponding to a radial bin ∆r is not simply given as 2πr∆r as would
be expected from a ring. Instead, following Wilkins & Fabian (2012), the proper area of
such a ring at radius r with width ∆r is given as

A(r,∆r) = 2π
√
r4 + a2r2 + 2a2r

r2 − 2r + a2 ∆r (3.8)

in the observer’s frame of rest. This effect is displayed in Fig. 3.1.
To calculate the irradiation on the disks surface in the rest frame of the accretion disk,
its rotation has to be considered as well. Using the disk velocity given in Eq. (2.51), the
corresponding Lorentz factor is given as (Wilkins & Fabian 2012; Bardeen et al. 1972)

γ(φ) =
√
r2 − 2r + a2(r3/2 + a)

r1/4
√
r
√
r + 2a− 3

√
r
√
r3 + a2r + 2a2

. (3.9)

The effect of the Lorentz contraction due to the rotation of the disk is displayed in
Fig. 3.2

With these two corrections, the photon flux on the disk from a monoenergetic source
can be calculated from the initial data on the emitting source. The physically interesting
quantity however would be the energy flux incident on the disk. Assuming a truly
isotropic point source, the energy is evenly distributed into every direction, and as such,
each emitted photon starts with the same energy. However, due to relative motion of the
emitter as well as general relativistic effects (such as gravitational redshift), the energy
of the incident photons may vary. The formula to calculating the resulting energy shift
is given in the following section 3.1.2. From there it will be possible to calculate the
complete intensity profile on the accretion disk.

3.1.2. Energy Shift in the Lamp Post Case

As motivated in the previous section, the energy shift of a photon along its geodesic
is necessary to calculate the intensity spectrum on the disk. Fortunately the formulas
simplify for the case of the lamp post model. The formula for the general case will be
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Figure 3.1: Correction factor to the area of an annulus of the accretion disk in flat
spacetime as a function of the radius for different spin parameters a. The correction arises
by comparing the area in flat spacetime to the area detected by a distant observer as
noted in Eq. 3.8. As expected, the correction has noticeable effect only at the innermost
regions of the accretion disk.

derived in Sec. 3.2.5. The initial four-momentum at the primary source is given as

uh
a = (uht, 0, 0, 0), (3.10)

with uth as defined in Eq. (3.5). The corresponding four-momentum on the accretion disk
is

ud
a = ud

t(1, 0, 0,Ω), (3.11)
as in Eq. (2.51)- (2.53). In combination with Eq. (3.7), the energy shift can be calculated
as

g = Ei

Ee
= paud

a

pbuhb
= (ri

√
ri + a)

√
h2 − 2h+ a2

√
ri
√
ri2 − 3ri + 2a√ri

√
h2 + a2

(3.12)

The flux emitted by a physical source is expected to show some kind of energy dependence,
more precisely, the X-ray spectra detected from the vicinity of black holes can be described
by a power-law of the form N (a) = E−Γ, where N is the photon number density and Γ
is called the photon index. This dependency has to be modeled as well an can easily be
taken care of with the help of the energy shift, by multiplying the overall profile by gΓ

instead of g1. The effect of the energy shift is visualized in Fig. 3.3 for emission at height
h = 8 rg and a spin parameter of a = 0.998 and photon indices Γ = 1, 2, 3. The energy
of a photon is related to its frequency by

EPhot = hf, (3.13)
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Figure 3.2: Correction factor to the area of an annulus of the accretion disk as a function
of the radius for different spin parameters a. The correction arises due to the rotational
velocity of the disk, causing special relativistic Lorentz contraction.
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Figure 3.3: The energy shift a photon undergoes along its geodesic from its emission
point on the rotational axis until it reaches the disk as a function of the incident radius r.

where h is the Planck constant and f is the frequency of the photon. Using this relation
together with Eq. 3.80 yields

fi = gfe, (3.14)

- 29 -



3. Raytracing

where fi is the photon’s frequency at impact and fe is the photon’s frequency at emission.
This consideration helps understanding the physical meaning of the energy shift g.
Photons that reach the disk at the section of the energy shift and the constant 1-line
in Fig. 3.3 are neither red- nor blueshifted, i.e., fi = fe. Photons reaching the disk at a
radius closer to the black hole – where the energy shift is greater than one – have gained
energy along their trajectory and are thus blueshifted, i.e., fi > fe, whereas photons
reaching the disk at a farther radius have lost energy along the way and are redshifted,
i.e., fi < fe. The section point of the energy shift and the 1-line is approximately at
the same radius as the point of emission, which is not surprising. Consider a black hole
without angular momentum. The gravitational field generated by such a black hole
is spherically symmetric (see Schwarzschild, 1916), as such, the potential energy of a
particle at height 8 rg and an equal particle on the accretion disk at radius 8 rg is the
same and thus moving from one place to the other results neither in an energy gain nor
loss. So for a black hole with spin parameter a = 0, the energy shift becomes unity when
the incident radius is equal to the emission radius. Although the angular momentum
breaks the spherical symmetry, the effects of the non-vanishing spin parameter are only
noticeable at the innermost radii. As such, for emission heights far from the black hole,
spacetime can be approximated as spherically symmetric again and the deviations are
expected to be negligible. This explains why also in the case for a = 0.998 depicted
in Fig. 3.3, the energy shift becomes unity at about the same radius as the height of
emission.

3.2. Raytracing in a Generalized Set-Up
The treatment of the special lamp post geometry in the previous part of this chapter
serves multiple purposes in the further development. For one, it is an instructive example
how to calculate the intensity profile, in terms of the numerical and analytic methods used.
Probably even more important, however, is its purpose as a testing tool for any further ma-
chinery developed in this thesis, as the results from any algorithm for the calculation of the
intensity profile from a general source geometry must coincide with – or at least resemble
– the results obtained from the previous chapter in the case of the lamp post geometry. As
such, even though the explicit simplifications and theory developed in chapter 3.1 may not
be employable to the general formalism, the detailed analysis will prove to be of much use.

In the following, the theory behind the public YNOGK -code provided by Yang &
Wang (2013) will be presented following closely their detailed description. This chapter is
therefore to be taken as a summary with a few explanatory comments of their work. It is
worth mentioning the code of Dexter & Agol (2009), as large parts of the YNOGK -code
is based on this earlier work. The main difference is the longer runtime of the older code
and that information about the turning points has to be provided beforehand in the code
of Dexter & Agol.

The approach to solving the equations of motion can be summarized as follows: The
coordinates (t, φ, r, θ) are expressed by an affine parameter p, defined in Eq. (3.15). Thus
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the equations of motion themselves are expressed as equations of the constants of motion
as well as the affine parameter p only. Subsequently, these emerging ‘new’ equations of
motion are brought to a standard form which can be evaluated using Carlson’s method
(see Carlson 1989, 1991, 1992). What remains then is the determination of the constants
of motion from the initial conditions. This is done by providing an expression of λ and q
in terms of the affine parameter p as well. The problem of finding the incident radius of
a photon on the thin disk from general initial data then becomes a matter of root finding.
Finally, the equation for calculating the energy shift a photon undergoes along its way
onto the disk is presented and therefore all of the essential parts for constructing the
intensity profile are gathered.

To express the coordinates in terms of the parameter p however, it will prove useful
to first consider a general property of the photon geodesics. Their turning points with
respect to the r and θ coordinate.

3.2.1. Turning Points

From the equations of motion (2.37) it is apparent that Vr and Vθ must be non-negative.
The points where Vr(r) = 0 and Vθ(θ) = 0 are called turning points and their coordinates
are denoted by rtp for turning points in radial direction and θtp for turning points in θ
direction. Due to Vr being solely dependent on r and Vθ being solely dependent on θ, for
a photon emitted at rinitial and θinitial, its motion is confined between two turning points
rtp1 and rtp2 as well as θtp1 and θtp2. From these turning points, it can be determined
whether a photon propagates along a bound or unbound trajectory, i.e., if it stays within
a certain distance of the black hole or eventually travels to ‘infinity’ or if a photon
actually plunges into the black hole. These three cases correspond to Vr either having
two real roots rtp1, rtp2 > rEH, a real root rtp1 < rEH or having no real roots respectively.
However, if all turning points rtp < rEH are − for our purposes − identified with rEH
and infinity is also regarded as a special turning point in the sense that a photon may
approach both these turning points, but never return from them, then canonically, every
photon has exactly two turning points in r direction. Without loss of generality, we may
require rtp1 ≤ rtp2 and θtp1 ≤ θtp2.

Regarding Eq. (2.35) and Eq. (2.37) it immediately follows that for a photon with
initial momentum pr = 0 (or pθ = 0), the potential Vr (or Vθ) vanishes as well and thus
rinitial = rtp (or θinitial = θtp), meaning that the initial coordinate already constitutes a
turning point. Further, Shakura (1987) showed that θ = 0 and θ = π are not roots of Vθ,
and thus can not constitute a turning point in θ direction.
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3.2.2. Coordinates as Functions of p

As already outlined, the first step is to rewrite the coordinates as a function of a parameter
p. It turns out that defining p from Eq. (2.42), that is

p := ±
∫ r dr′√

Vr(r′)
= ±

∫ θ dθ′√
Vθ(θ′)

(3.15)

is convenient for that matter. Since in Eq. (3.15) the sign in front of the integral com-
pensate the sign of the differentials under the integral, p is always positive and further,
p is monotonically increasing along the geodesic of a photon. The desired outcome of
the following calculations is to express the coordinates t, φ, r, θ in terms of p using the
Weierstrass’ and Jacobi’s elliptical integrals.

Substituting the coordinate θ by µ := cos(θ) alters Eq. (3.15) to

p = ±
∫ r dr′√

Vr(r′)
= ±

∫ µ dµ′√
Vµ(µ′)

, (3.16)

where
Vµ = q − (q + λ2 − a2)µ2 − a2µ4. (3.17)

This substitution is useful as now Vµ is a polynomial in µ. However, it is still cumbersome
that Vr and Vµ are quartic polynomials in r and µ respectively, whereas the polynomials
appearing in Weierstrass’ elliptical integral are only cubic. Indeed, Yang & Wang (2013)
show that a variable transformation can reduce the polynomials appearing in the square
root of the denominator in Eq. (3.16) to cubic polynomials in the new variable. First,
define

b0 := −4a2µtp1
3 − 2(q + λ2 − a2)µtp1

b1 := −2a2µtp1
2 − 1

3(q + λ2 − a2)

b2 := −4
3a

2µtp1

b3 := −a2, (3.18)

where µtp1 := cos(θtp1). From this, the new variable τ can be defined as

τ := b0

4
1

(µ− µtp1)
+ b1

4 . (3.19)

The transformation from µ to τ results for p in

p = ±
∫ τ(µ) dτ√

4τ 3 − g2τ − g3
, (3.20)
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with

g2 = 3
4(b1

2 − b0b2)

g3 = 1
16(3b0b1b2 − 2b1

3 − b0
2b3)

Using the definition of Weierstrass’ elliptical function ℘(z; g2, g3) from Abramowitz &
Stegun (1965), thus from Eq. (3.20) it follows that τ = ℘ (p± Πµ; g2, g3), with

Πµ =
∣∣∣℘−1(τ(µinitial; g2, g3)

∣∣∣. (3.21)

In addition, solving Eq. (3.19) for µ, one can express µ as a function of p,

µ(p) = b0

4℘ (p± Πµ; g2, g3) . (3.22)

For the practical application, it will of course be crucial to calculate the Weierstrass’
elliptic function numerically. Thus the numerical calculation of ℘(z; g2, g3) is a central
part of the YNOGK -code provided by Yang & Wang (2013). The sign in front of Πµ in
Eq. (3.22) depends on the initial four momentum in θ direction pθ as

pθ > 0 +

pθ = 0


θinitial = θtp1 Πµ = nω ±

θinitial = θtp2 Πµ =
(1

2 + n
)
ω ±

pθ < 0 −

, (3.23)

with ω being the period of ℘(z; g2, g3) and n ∈ N. The sign in front of Πµ for the case
pθ = 0 does not matter and is taken to be positive.

The reader may have noticed that the variable transformation indeed assumed at least
one turning point in theta direction (see Eq. 3.18), however from Eq. (3.17) it is clear
that at least one real root exists and thus at least one real turning point exists.

The same can not be said about Vr. So the approach to express r as a function of p
will have to also consider the case that Vr = 0 has no real solutions rtp. This will be
done by involving the Jacobi’s elliptic functions sn(z|k2) and cn(z|k2).
First, regarding the case that the equation Vr = 0 as real roots, then rtp1 exists and the
variable transition can be made analogously to the variable transition for the θ coordinate,
that is

c0 := 4rtp13 − 2(q + λ2 − a2)rtp1 + 2
[
q + (λ− a)2

]
c1 := 2rtp12 − 1

3(q + λ2 − a2)

c2 := 4
3rtp1

c3 := 1 (3.24)
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helps define the new variable

κ := c0

4
1

(r − rtp1)
+ c1

4 . (3.25)

Now similar to the µ-transformation, the r-part of Eq. (3.16) turns into

p = ±
∫ κ(r) dκ√

4κ3 − h2κ− h3
, (3.26)

with

h2 = 3
4
(
c1

2 − c0c2
)

h3 = 1
16
(
3c0c1c2 − 2c1

3 − c0
2c3
)
. (3.27)

Again, taking the inverse of Eq. (3.26), the new variable is obtain as a function of p, that
is κ = ℘(p±Πr;h2, h3). And – also analogously to the treatment of the µ transformation
– solving Eq. (3.25) for r,

r(p) = c0

4℘(p± Πr;h2, h3)− c1
+ rtp1, (3.28)

with
Πr =

∣∣∣℘−1 (κ(rinitial;h2, h3)
∣∣∣ (3.29)

is obtained. The sign in front of Πr is dependent on the initial momentum in r direction
in the same way as the sign in front of Πµ was dependent on the initial momentum in
θ-direction. So if Vr = 0 has real roots, the treatment of the r coordinate is also finished
here. However, as already mentioned, this is not necessarily the case.

Considering the case that Vr has no real roots, the goal is then to express r via Jacobi’s –
rather than Weierstrass’ – elliptic function. From Vieta’s rules it is now clear that for
the roots r1, r2, r3, r4 of the polynomial Vr satisfy

r1 + r2 + r3 + r4 = −a3 = 0, (3.30)

as the cubic contribution in Vr is vanishing. Using this condition together with the
knowledge that complex roots only appear in conjugate pairs, the roots can be rewritten
as

r1 = u− iw r2 = u+ iw

r3 = −u− iv r4 = −u+ iv. (3.31)

Now, define

λ1/2 = 1
2w2

[
4u2 + v2 + w2 ±

√
(4u2 + w2 + v2)2 − 4w2v2

]
, (3.32)
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for which λ1 > 1 > λ2 and a new variable

ε :=
√

λ1 − 1
(λ1 − λ2) [(r − u)2 + w2]

(
r − uλ1 + 1

λ1 − 1

)
. (3.33)

Transforming from r to the variable ε, the r-part of Eq. (3.16) becomes

p =
∫ ε 1

w
√
λ1

√
(1− ε2)

(
1− λ1−λ2

λ1
ε2
) dε, (3.34)

which is the standard Legendre elliptic function. Using the definition of Jacobi’s elliptic
function sn(z|k2) from Abramowitz & Stegun (1965), ε is obtained as a function of p,
namely ε = sn

(
pw
√
λ1 ± Π0|λ1−λ2

λ1

)
, with

Π0 =
∣∣∣sn−1

(
ε(rinitial)|

λ1 − λ2

λ1

) ∣∣∣. (3.35)

Solving Eq. (3.33) for r yields

r±(p) = u+
−2u± w(λ1 − λ2)sn

(
pw
√
λ1 ± Π0|λ1−λ2

λ1

) ∣∣∣cn (pw√λ1 ± Π0|λ1−λ2
λ1

) ∣∣∣
(λ1 − λ2)sn2

(
pw
√
λ1 ± Π0|λ1−λ2

λ1

)
− (λ1 − 1)

.

(3.36)
The case distinction denoted by the ± refers to the initial momentum in r direction
being positive (pr > 0→ ‘+’) or negative (pr < 0→ ‘−’). In the case that pr = 0, the
initial position represents a turning point in r-coordinate and thus a root of Vr, as can be
seen from the discussion in Sec. 3.2.1. Therefore the transform into Weierstrass’ elliptic
integral discussed in Sec. 3.2.2 can be used.

With this calculation, the coordinates r and θ have been expressed as functions of p.
The remaining coordinates can now simply be expressed by the parameter p by using r(p)
and θ(p) in Eq. (2.44) and (2.45). The interested reader is referred to Yang & Wang
(2013) for more details.

3.2.3. Carlson’s Elliptical Integrals

Now that the coordinates r, t, θ, φ and the affine parameter σ have been expressed as
functions of the new parameter p, it is clear from the previous section that many elliptical
integrals need to be calculated. Following Yang & Wang (2013), crucial elliptic integrals
are reduced into standard forms and subsequently evaluated by Carlson’s method as
presented by Dexter & Agol (2009).

Firstly, the standard forms

Jk(h) =
∫ x2

x1

dx
(x− h)k

√
4x3 − d2x− d3

(3.37)

Ik(h) =
∫ x2

x1

dx
(x− h)k

√
(x2 − 2ux+ u2 + w2)(x2 + 2ux+ u2 + w2)

, (3.38)
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with constants d2, d3, u and w and k ∈ Z are introduced. From this, Eq. (2.42), Eq. (2.38)
and Eq. (3.17), it follows that

J0(h) = J0 =
∫ x2

x1

dx√
4x3 − d2x− d3

(3.39)

will be of importance. If Vr has a real root, then from the discussion in Sec. 3.2.2 it is
straight forward to see that the left side of Eq. (2.42) takes the form J0 with d2 = h2
and d3 = h3. The same goes for the right side of Eq. (2.42), seeing from Sec. 3.2.2 it
takes the form J0 for d2 = g2 and d3 = g3. Thus together with Eq. (3.15), this becomes
p = J0. The remaining integrals in the equations of motion (Eq. 2.43,2.44 and 2.45) may
be reduced to standard form in a similar fashion.

The radial integral of Eq. (2.43) can be reduced to

σr = c0
2

16 J2

(
c1

4

)
+ c0rtp1

2 J1

(
c1

4

)
+ rtp1

2J0 (3.40)

The radial integral of Eq. (2.44) can be expressed as

tr = σr + c0

2 J1

(
c1

4

)
+ (2rtp1 + 4 + At+ − At−)p−Bt+J1(t+) +Bt−J1(t−), (3.41)

where

r± = 1±
√

1− a2

At± = 2 (r±(4− aλ)− 2a2)
(r+ − r−)(rtp1 − r±)

Bt± = (r±(4− aλ)− 2a2) c0

2(r+ − r−)(rtp1 − r±)2

t± = c1

4 ±
c0

4(r± − rtp1)
. (3.42)

The radial integral in Eq. (2.45) can be brought to the form

φr = a
((
Aφ+ − Aφ−

)
J0 −Bφ+J1(t+) +Bφ−J1(t−)

)
, (3.43)

where

Aφ± = 2r± − aλ
(r+ − r−)(rtp1 − r±)

Bφ± = (2r± − aλ)c0

4(r+ − r−)(rtp1 − r±)2 . (3.44)

Therefore, for the case that Vr has a real root, only the standard forms J0, J1 and J2 are
needed. However, as discussed before, the situation gets a bit more complicated if Vr has
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no real roots. Then the standard forms Ik(h) are involved.

Following again Yang & Wang (2013) for the case that Vr has no real roots, the radial
integrals of Eq. (2.43)-(2.45) can be expressed as

σr = I−2(0) (3.45)
tr = σr + 4J0 + 2I−1(0) + Ct+I1(r+)− Ct−I1(r−) (3.46)
φr = a

(
Cφ+I1(r+)− Cφ−I1(r−)

)
, (3.47)

with
Ct± = 2 (r±(4− aλ)− 2a2)

r+ − r−
; Cφ± = 2r± − aλ

r+ − r−
. (3.48)

Thus all the radial integrals in the equations of motion Eq. (2.42)-(2.45) are reduced
to the standard forms. What remains is the treatment of the θ-, or equivalently the
µ-integrals.

Since the dependence of Eq. (2.44) on µ is the same as for Eq. (2.43), what remains
is the reduction of the µ-integrals in the expression for σ, i.e. Eq. (2.43) and in the
expression for φ, i.e. Eq. (2.45). This is readily done by Yang & Wang (2013) and results
in

σµ = tµ = a2
(
b0

2

16 J2

(
b1

4

)
+ b0µtp1

2 J1

(
b1

4

)
+ µtp1

2J0

)
(3.49)

and
φµ = λ

(
J0

1− µtp12 +Wµ+J1(t+)−Wµ−J1(t−)
)
, (3.50)

where

Wµ± = b0

8(±µtp1 − 1)2 (3.51)

t± = b1

4 + b0

4(−1± µtp1)
. (3.52)

Thus in conclusion the simple looking expressions

σ = σr+σµ (3.53)
t = tr+ tµ (3.54)
φ = φr+φµ (3.55)

are found, in which every single expression is determined by the standard forms Jk and
Ik defined in Eq. (3.37) and Eq. (3.38). The remaining task thus becomes calculating
the integrals of these standard forms. This is done using Carlson’s method.
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If the polynomial 4x3 − d2x− d3 has three roots e1, e2, e3, Carlson (1988) showed that
Jk(h) takes the form

Jk(h) = sh
1
2

∫ y

z

dx√
(x− e1)(x− e2)(x− e3)(x− h)2k

= sh
1
2 [−1,−1,−1,−2k] , (3.56)

where sh = sign
(
(z − h)k

)
and Carlson’s symbol [p1, . . . , pk] is defined as

[p1, . . . , pk] :=
∫ y

z

k∏
i=1

(ai + bit)pi/2 dt. (3.57)

The study of these elliptic integrals was intensively done by Carlson (1988, 1989, 1991,
1992), who give formulae for the explicit calculation of integrals of the form Eq. (3.57).
This takes care of the Jk. What remains is the treatment of the Ik, which are necessary
in the case that Vr has no real roots. As Carlson (1992) showed, the Ik integrals reduce
in a similar fashion to

Ik(h) = sh

∫ y

z

dr√
(r2 − 2ur + u2 + w2)(r2 + 2ur + u2 + v2)(r − h)2k

= sh [−1,−1,−1,−1,−2k] , (3.58)

where sh and [p1, . . . , pk] have the same meaning as in Eq. (3.56).

Summarizing, in Sec. 3.2.2 the coordinates and thus equations of motion Eq. (2.42)-
(2.45) were expressed as functions of the parameter p. This was done solely by using
the knowledge about turning points of the geodesic (see Sec. 3.2.1) – that is the roots
of Vr and Vθ – as well as the constants of motion λ and q and initial coordinates and
momenta. The resulting functions were composed of Weierstrass’ and Jacobi’s elliptic
integrals which lead to the investigation of a convenient way to calculate those integrals.
In Sec. 3.2.3, the coordinates as functions of p were rewritten as combinations of standard
elliptic integrals Jk and Ik defined in Eq. (3.37) and (3.38) which can readily be solved
by Carlsons method, described by Carlson (1988, 1989, 1991, 1992). The calculation of
the integrals is thus no longer an issue. The determination of the turning points rtp and
µtp is a matter of root finding and several algorithms for finding the root of a quartic
polynomial already exist. The only other information that entered the process described
above that is not directly given as initial data, are the motion constants λ and q. In order
to solve the equations of motion completely, it is thus essential to extract the equations
of motion from the initial data.

3.2.4. Constants of Motion as Function of p

First we may choose a chart in which the equations take a conveniently ‘simple’ form.
Specifically here, the locally non-rotating observers will provide the desired charts. If
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the initial conditions are given with respect to any other kind of reference frame, the
components with respect to a locally non-rotating observer at that point can readily be
calculated by a general Lorentz transformation.
Following Bardeen et al. (1972), the locally non-rotating frame (LNRF) is constructed
by the basis vectors

e(a)(LNRF) = eν(a)∂ν , (3.59)

where

eν(a) =


e−ν 0 0 ωe−ν

0 e−µ2 0 0
0 0 e−µ3

0 0 0 e−ψ

 . (3.60)

Note that this definition of the frame vectors is identical – up to order of the coordinates
– to the definition of frame vectors of Eq. (2.22) in Sec. 2.2, which we identified as
representing an inertial frame. Due to convention, the order used in Sec. 2.1 was
(t, φ, r, θ), whereas now the order is (t, r, θ, φ). Seeing this resemblance to the frame
vectors discussed before, this choice of vectors here indeed constitutes a frame and the
property

ei(a)e(b)i = η(a)(b) (3.61)

is in conformity with the notion of a locally non-rotating observer. Again, as in Sec. 2.2
the bracketed indices denote coordinates of the tetrad frame, whereas non-bracketed
indices denote chart coordinates, more specifically the Boyer-Lindquist coordinates (Boyer
& Lindquist 1967). The constants of motion will take a convenient form if expressed by
the initial momenta with respect to the locally non-rotating frame. This shall suffice as
reason to introduce the frame here once again, which is completely equivalent to any
other reference frame.

Now, in accordance to the Hamiltonian Eq. (2.34), (2.35) and (2.42)- (2.45), the
components of the four-momentum of a photon can be expressed in Boyer-Lindquist
coordinates as

pµ = E

(
−1, sr

√
Vr

∆ , sθ
√
Vθ, λ

)
, (3.62)

where sr and sθ are the signs of the r- and the θ-component respectively. Since these are
components of a covector, they can readily be transformed into components with respect
to the trad frame by

p̄(a) = eµ(a)pµ, (3.63)

where p̄(a) are the components of the four-momentum with respect to a locally non-
rotating frame, pµ are the components in the Boyer-Lindquist coordinates and eµ(a) are as
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defined in Eq. (3.60). Thus (see Shakura 1987)

p̄(t) = −Ee−ν (1− λω) (3.64)

p̄(r) = srEe
−µ2

√
Vr

∆ (3.65)

p̄(θ) = sθEe
−µ3

√
Vθ (3.66)

p̄(φ) = Eλeψ. (3.67)

From Eq. (3.64) and (3.67), λ can be determined as

λ =
sin(θ) p̄(φ)

p̄(t)

−Σ
√

∆
ρ2 + ω sin(θ) p̄(φ)

p̄(t)

. (3.68)

Eq. (3.64) also yields
E = − p̄(t)e

ν

(1− λω) (3.69)

Inserting the result for E and λ into Eq. (3.66), the constant of motion q can be expressed
as

q =




p̄(φ)
p̄(t)

−Σ
√

∆
ρ2 + ω sin(θ) p̄(φ)

p̄(t)


2

− a2

 cos2(θ) +
[
p̄(θ)

p̄(t)
(1− λω)

]2
ρ2

∆ (3.70)

Thus the motion constants can be calculated from the components of the four-momentum
p̄(a) with respect to the LNRF. However, the components of the four-momentum may not
be given with respect to the LNRF, but to some other choice of frame. It is convenient
to use a general Lorentz transformation from that choice of frame into the LNRF and
continue the calculations with these components.

Considering a reference frame with physical velocities vr, vθ, vφ with respect to the
LNRF. The two systems of reference are connected by p̄(a) = α(b)

a p
′
(b), where p̄(a) are the

components of the four-momentum in the LNRF and p′(b) are the components of the
four-momentum in the reference frame of choice. The term α(b)

a connecting the two is
the Lorentz matrix given by (Misner et al. 1973)

α(b)
a =


γ −γvr −γvθ −γvφ
−γvr 1 + γ2vr2

1+γ
γ2vrvθ

1+γ
γ2vrvφ
(1+γ)

−γvθ γ2vrvθ
(1+γ) 1 + γ2vθ

2

(1+γ)
γ2vθvφ
(1+γ)

−γvφ γ2vrvφ
(1+γ)

γ2vθvφ
(1+γ2 1 + γ2vφ

2

(1+γ)

 . (3.71)

With this in mind the crucial quotient p̄(a)
p̄(t)

appearing in Eq. (3.68) and (3.70) can be
expressed from the components of the four-momenta with respect to another frame as

p̄(a)

p̄(t)
=
α(t)
a + α(α)

a

p′(α)
p̄′(t)

α
(t)
t + α

(α)
t

p′(α)
p′t

. (3.72)
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This concludes the technical treatment of the solution of the equations of motion. The
geodesics can now be calculated, once the initial position and the initial four-momentum
of the photon is provided. The remaining task is to derive the physical quantities from
these considerations, which in turn permit the calculation of the intensity profile on the
disk. Next to geometrical considerations like the proper area and the Lorentz factor of
the disk, which remain as in Sec. 3.1, a formula for the energy shift in the general case is
necessary.

3.2.5. Energy Shift

The energy shift a photon undergoes on its way from the emitter to the accretion disk is
defined as the ratio

g = Eobs

Eem
, (3.73)

where Eobs is the energy of the photon measured by the observer (the disk) and Eem is
the energy of the photon measured by the emitter. Thus it is clear that Eem = −p′(t)
and Eobs = −pa uobsa, where uemµ is the four-velocity of the emitter.

To get a concise notation, we define

ft := p̄(t)

p′(t)
= α

(t)
t + α

(i)
t

p′(i)
p′(t)

, (3.74)

where p′(t) is the t-component of the four-momentum in the emitters frame of reference
and p̄(t) is the t-component of the four momentum with respect to the LNRF. Using this
definition with Eq. (3.64), we find

Eem = −p′(t) = p̄(t)
p′(t)
p̄(t)

= Ee−ν(1− λω) 1
ft
. (3.75)

This provides a formula to evaluate the denominator of Eq. (3.73) from the initial mo-
mentum p′.

It remains to find such an expression for the numerator. Using knowledge about the
special form of the disk velocity given in Eq. (2.51) quickly leads to the desired expression.
However, cases in which the disk velocity is modified due to physical circumstances may
be interesting as well. So keeping uobsa unrestricted gains the possibility of modifying the
disk motion later on and indeed does not cause too much extra effort. The simplification
to the standard disk model will then come as a simple reduction of the general formula.
May the coordinate velocities be uobsa = dxa

dτ

(
ut, ur, uθ, uφ

)
with τ being the observer’s

proper time. Then from Eq. (3.62) the energy of the photon measured by the observer
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can be expressed as

Eobs = E

(
ut + sr

√
Vr

∆ ur + sθ
√
Vθu

θ + λuφ
)

(3.76)

= Eut
(

1 + sr

√
Vr

∆
dr
dt + sθ

√
Vθ

dθ
dt + λ

dφ
dt

)
. (3.77)

Then the general formula for the energy shift a photon undergoes from the emitter to an
observer can be written as

g = Eobs

Eem
=

(
ut + sru

r
√
Vr

∆ + sθu
θ
√
Vθ + λuφ

) ∣∣∣∣∣
obs(

e−ν(1− λω) 1
ft

) ∣∣∣∣∣
em

(3.78)

=

(
ut
(
1 + sr

dr
dt

√
Vr

∆ + sθ
dθ
dt
√
Vθ − λdφ

dt

)) ∣∣∣∣∣
obs(

e−ν(1− λω) 1
ft

) ∣∣∣∣∣
em

, (3.79)

where (. . . )
∣∣∣
obs/em

means that the terms appearing in the brackets are to be evaluated
at the position of the observer/emitter respectively. The disk was assumed to exhibit
circular motion in the equatorial plane, that is urdisk = dr

dt = uθdisk = dθ
dt = 0. For such an

accretion disk the energy shift amounts to

gequat,circ =
utdisk (1− Ωλ)

∣∣∣∣∣
obs(

e−ν(1− λω) 1
ft

) ∣∣∣∣∣
em

. (3.80)

Indeed, for the case of the lamp post model, i.e. an emitter on the rotational axis (λ = 0)
and the standard accretion disk as the observer (utdisk as in Eq. 2.53), the formula for
the energy shift reduces down to the ‘lamp post formula for the energy shift’ derived
in Chapt. 3.1. As such, Eq. (3.79) is the generalization of the formula presented in the
theory of the lamp post model.

In summary, in this chapter, the equations of motion have been reduced to elliptical
integrals in a standard form and solving them has become a mere problem of root finding
and application of Carlson’s method. The evaluation of these integrals in this form is
much faster than direct Legendre quadrature of the general equations (2.42) (2.45) and
the root finding process can be done using the Newton-Raphson procedure or a bisection
method. The energy shift formula (Eq. 3.79) found in this section now enables us to
generalize the calculation of the intensity profile from a general emitter in the vicinity
of a black hole. From the above, it is clear that all the tools to calculate the intensity
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profile of a point source are assembled. Owing to the fact that the incident energy is an
additive quantity, the intensity profile of an extended source may then be approximated
by the sum of the intensities of multiple point sources. This method trivially extends to
extended source of any type of geometry, exhibiting motion of constant velocity. In the
following chapter, the intensity profiles for the lamp post geometry calculated by Dauser
(2010) and calculated from this code are compared. Once the validity of the method is
supported by this comparison, the intensity profile for off-axis and extended sources will
be compared to other works, namely Wilkins & Fabian (2012).
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4. Illumination of the Accretion Disk

4.1. Implementation
The previously discussed theory allows us to calculate calculation of the intensity profile
on the accretion disk from apoint source at a given location in spacetime. This section
serves as a short introduction to the code developed by this thesis. The code simulates an
isotropically emitting point source at height specified height h and distance x from the
rotational axis and calculates the incident intensity on the accretion disk of a black hole
with given spin parameter a due to this source. To do so, the radii at which the simulated
photons hit the accretion disk are calculated in a first step and this information is then
further converted into the incident intensity in a second step. Unless further specified,
the data for the figures in the following sections 4.2 and 4.3 was produced using this code.

To calculate the incident radii of the simulated photons on the disk, the code requires
the user to provide information about the black hole spin parameter a, the coordinates r
and θ of the source’s location in the Boyer-Lindquist system and the number of photons
N that the code is supposed to simulate. The information about the source’s location in
terms of the height h above the black hole/accretion disk and the distance x to the axis
of symmetry may be calculated from the given coordinates r and θ as

x =
√
r2 + a2 sin(θ) (4.1)

h = r cos(θ). (4.2)

Conversely, if the user was to simulate the emission for a source at given height h and x,
the equation

x =
√
h2 tan(θ)2 + a2 sin(θ)2 (4.3)

has to be solved for θ and r is then obtained as

r = h

cos(θ) . (4.4)

The user then provides the code with the results for r and θ. Additionally, the algorithm
is set up to also take information about where to store the calculated data from the input
file.
To uniquely characterize the emitting source, the source’s velocity has to be specified as
well. As it is difficult to provide meaningful velocity models for the source via an input
file, the information about the source’s velocity is given in the code itself. To change the
velocity model of the source, the code itself has to be altered.
The velocity model used in the further sections assumes that the source is co-rotating
with the accretions disk element at the same distance to the axis of symmetry. The
reasoning behind this model is that any source with a finite distance to the axis of
symmetry must have an angular velocity as to sustain this distance and not fall onto
the rotational axis. For sources close to the accretion disk, the co-rotation model serves
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as an approximation of the required angular velocity for circular orbits. If the X-ray
source originates from the magnetic reconnection in poloidal field lines emerging from the
ionized accretion disk, the emitting source is also expected to move along the rotating
disk (see Wilkins & Fabian, 2012). This velocity model was also chosen in calculations
of Wilkins & Fabian (2012) for off-axis sources and therefore it comes with the advantage
of having a set of reference data provided by these previous calculations. In the case of a
lamp post source, the velocity model reduces to a stationary point source.

Now, given the above mentioned information, the output of the program is a file,
containing the incident radii, initial azimuthal and polar emission angles, the initial
momenta and the constants of motion λ and q of the simulated photon. Additionally,
the code echoes back the information about the source into the output file, so that all
necessary information for further analysis of the data is gathered in a single file. The
post processing of the output file into an intensity and photon flux profile is done via a
separate script in python.

Once the information about the source is loaded into the code, the velocity of the
source for that location is calculated as

vµ = (vr, vθ, vφ) = (0, 0, vφ) with (4.5)

vφ = eψ−ν

 1(√
r2 + a2 sin(θ)

)3/2
− ω

 (4.6)

which is just the aforementioned model of co-rotation with the disk element at distance√
r2 + a2 sin(θ) from the black hole. Following the determined angular velocity, the

emission angles of the photons are determined. To this end, an azimuthal emission angle
φin is drawn from a uniform random distribution in the range of [0, 2π] and a polar
angle θin is calculated from a further random number y – drawn from a uniform random
distribution – as

θin = arccos(1− 2y). (4.7)

These two distributions come from the fact that the solid angle element at an angle θ is
given by

dA = sin(θ)dφ dθ (4.8)

and then using inverse transform sampling on this (Kolonko 2008) .
By choosing this Monte Carlo approach of determining the emission angles, we make
sure that no systematic effects are introduced from the specific choice of emission angles.
An example for such systematic effects arises from the axisymmetry of Kerr spacetime.
Two photons that are emitted under the same θin in the lamp post geometry are bound
to arrive at the same incident radius on the disk. Were the emission angles given for
example as fixed, equally spaced angles, the photons would bunch to discrete incident
radii. In the case of the lamp post geometry, this problem can indeed be avoided while
still maintaining fixed emission angles (as done by Dauser, 2014), however such systematic
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effects arise in a more complex form for off-axis sources. We therefore avoid possible
systematic effects by using this Monte Carlo approach, at the cost of possible longer
computational time to achieve a representative sampling.
Once the code has established the emission angles, it calculates the parameter pinc, already
used in the previous chapter, for which θ(p) = π/2. This is done using the function
pemfind of the YNOGK -code of Yang & Wang (2013). The remaining coordinates
rinc = r(pinc) and φinc = φ(pinc) are then calculated by the ynogk function again provided
in the likewise named code by Yang & Wang (2013). Lastly, the above initially mentioned
information is written into a data file from which the incident photon- and intensity flux
can be calculated.
The results shown in the following sections were created using simulations of 108

photons for each combination of initial parameters. Each of these simulations had a
runtime of between 20-30 minutes on a standard desktop computer with an Intel Core i7
7700 (QuadCore), 3.6 GHz processor.

4.2. The Lamp Post Model
The functionality of the code can be tested best on the simpler case of the lamp post
geometry. With all of the effects discussed in Chap. 3 taken into account it is possible to
calculate the intensity profile on the surface of the accretion disk caused by a source on
the rotational axis of the black hole. As mentioned before, the emission from a stationary
point source on the axis of symmetry is determined by the location of the source and the
emission angle δ. It is therefore sufficient to provide the coordinates of the source and an
emission model to derive the corresponding intensity profile on the disk. Although it is
possible to consider anisotropic emitters, at this point there is no reason to artificially
distinguish a certain direction. Hence in the following, a stationary, isotropic source will
be modeled.

The photon flux I can be calculated as

I = NPhoto(r,∆r)
2πr∆r , (4.9)

with NPhoto(r,∆r) being the number of photons incident in a radius interval of width
∆r centered around the radius r. This number of photons is determined by the incident
radii – calculated by using the methods described in Sec. 3.1 – and the area 2πr∆r of
a radial bin, which is calculated as the area of an annulus of radius r, with width ∆r
in euclidean space. The result for varying source heights h and spin parameters a are
depicted in Fig. 4.1 and Fig. 4.2. Figure 4.1 clearly shows that the biggest influence of the
spin parameter a is the determination of the inner edge of the disk. The photon fluxes
for different parameters a are close to identical to each other. The main difference being
that for large positive spin parameter a, the accretion disk extends further down towards
the black hole and as such, photons are also incident at smaller radii. The maximum
value for any parameter is always achieved at the innermost radius, which is expected,
as the flux is expected to be largest close to its source. At large radii, far away from the
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Figure 4.1: Photon flux on
the disk generated by an
isotropically emitting point
source at height 5 rg and vary-
ing spin parameter a. As appar-
ent from the figure, the biggest
influence of the spin parameter
on the photon flux profile is the
determination of the innermost
stable radius.
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Figure 4.2: Photon flux on the disk generated by isotropically emitting point source at
varying heights and a spin parameter a = 0.99. As apparent from the figure, the height
influences the qualitative behavior of the photon flux.

black hole, the spectra resemble a power law directly proportional to r−3.
The photon flux for different source heights h can be seen in Fig. 4.2. From this, it is
apparent that the height of the primary source influences the qualitative behavior of the
photon flux profile. For large source heights, the profile remains shallow until rinc ≈ h/2,
where it transitions into a power law shape like r−3 again. For low emission heights, the
profile steepens early and transitions into the same power law for large radii.
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Figure 4.3: Sketch to visualize the geometric considerations that lead to Eq. 4.10.

To highlight the effect of gravity on the incident photon flux, the case of flat space,
i.e. the absence of mass that would generate a gravitational field may be regarded as
well. Since spacetime is then globally described by the Minkowski metric, that is, the
spatial part is simply euclidean, the photon flux can be calculated analytically. From
geometric considerations on Fig. 4.4, the incident flux in flat spacetime is obtained as
(see also Dauser, 2014)

Iflat(r) = 1
A(r,∆r) = cos(δ)

(r2 + h2) = h

(r2 + h2)3/2
. (4.10)

As discussed in Sec. 2.1, the Kerr spacetime is asymptotically flat for r → ∞. As
such, the incident photon flux on the disk for any combination of the parameters h,M
and a is expected to converge towards the theoretical photon flux in flat spacetime
Eq. 4.10. For large radii r, the initial height of the source is negligible and as such,
the statement above reduces to the expectation that the photon flux far away from the
influence of the black hole follows a power law, with radial dependency of I(r) ∝ r−3.
This is in agreement with the behavior of the fluxes in Fig. 4.2 and can clearly be
seen in Fig. 4.4. On the inner regions of the accretion disk however, the effects of
gravitation are significant, as the photon flux calculated for Kerr spacetime is noticeably
higher than expected for flat spacetime. This increase in photon flux at the inner regions
is readily explained by the light bending in the strong gravitational field of the black hole.

The obtained photon flux is consistent with the expectations. The maximal illumi-
nation is always reached closest to the source’s location and at large radii, the flux
profile approaches a constant power law, as expected in flat spacetime. As a final
step, the results for the photon flux achieved in this thesis are compared to previous
results. The photon flux presented in the work of Dauser et al. (2013) is used for reference.

Summarizing the investigation of the calculated photon flux, we find that the influence
of the spin parameter a expresses itself mostly by determining radius of the inner edge of
the accretion disk. The emission height h has qualitative influence on the flux profile, as
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Figure 4.4: Photon flux I of a point source on the rotational axis of the black hole
for different emission heights and the respective photon fluxes in flat spacetime. The
fluxes are normalized to match at large radii. The flux in Kerr spacetime at small radii
is enhanced compared to flat spacetime due to gravitational light bending.

the profiles are shallow until rinc ≈ h/2 and then transition into a power law shape of r−3

for large radii. The power law shape at large radii is in conformity with the asymptotical
flatness of Kerr spacetime far away from the central object as the photon flux in euclidean
spacetime follows the same shape (see Eq. 4.10).

The analysis of the incident photon flux on the accretion disk already gave great
insight on the importance of the parameters a and h and their influence on the photon
trajectories. The physically more interesting quantity however is the proper energy flux
incident on the accretion disk. To determine this incident intensity, the proper area of a
disk element, the accretion disk’s Lorentz factor and the energy shift of the photons along
their trajectory have to be taken into account. This can be done from the discussion of
these effects in Sec. 3.1.1 and Sec. 3.1.2. Following Dauser et al. (2013), the intensity
profile on the disk can be calculated as

Fi(ri, h) =
[

sin(δ)
] gΓ

A(r,∆r)γ(φ) , (4.11)

where Γ is the photon index that arises from the power law shape of the emitted radiation.
On average, sources showing relativistic reflection are observed to have a photon index
of around Γ = 2 (see Walton et al., 2013; Fig. 1.3 upper panel). The factor sin(θ) is
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sity profile on the ac-
cretion disk, caused
by a point source
at emission height
h = 5 rg and vary-
ing spin parameters.
Similarly to the pho-
ton flux, the biggest
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parameter on the in-
tensity profile is the
determination of the
innermost radii of
the accretion disk.

written in gray and encapsulated in brackets to denote the fact that in the work of Dauser
(2014), the emission was modeled into equally spaced angles. The sine term corrects
this model to an isotropic emission. In the calculations presented here, the source is
already implemented as isotropic (see eq. 4.7) and the correction term is not needed.
Note also that the photon flux is contained in the above formula in the area term in the
denominator, since Dauser (2010) chose the binning of the photon flux in such a way
that always one photon is counted per bin. This choice was not adapted for the sake
of this thesis, as it would amplify the statistical noise caused by drawing the emission
angles from a probability distribution. So the incident intensity is here calculated as

Fi(ri, h) = gΓ

γφ
· NPhoton(ri,∆ri)
AKerr(ri,∆ri)

= gΓ

γ(φ) ·
AFlat(ri,∆ri)
AKerr(ri,∆ri)

· I(ri,∆ri). (4.12)

The intensity profiles for varying spin parameters a are depicted in Fig. 4.5 and for
varying emission heights in Fig. 4.6. Similarly to the discussion of the photon flux, the
dependence of the intensity profile on the spin parameter a is limited to the determination
of the inner edge of the accretion disk. Also analogous to the discussion of the photon flux,
the profile is generally flattened until rinc ≈ h/2 at which point the profile transitions into
a power law shape. In the intensity profile however, a steep drop at the innermost radii
can be seen for all emission heights. This steep drop can not be seen if the profile starts at
large radii due to low spin parameters. This largely enhanced intensity towards small radii
is explained by the energy shift of those photons. As displayed in Fig. 3.3, the energy shift
enhances the intensity at low radii up to a factor of 100 and drops off very quickly towards
the outer radii. The energy shift thus has a stronger influence on the intensity profile
on the inner parts of the disk than the light bending effects that were displayed in Fig. 4.3.
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Figure 4.6: Inten-
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the deviation from the reference data. The oscillation is attributed to statistical noise
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The result of Fig. 4.6 can be expressed in a form that is more easily connected to
observations. The spectra that are actually measured from the vicinity of a black hole
are usually energy spectra. To extract the radial distribution of intensity on the disk, a
power law is modeled to the accretion disk and the contribution of several disk elements
to the total spectrum is calculated. If the data is good enough, a single power law will
prove to be a bad model for the illumination of the disk. As such, usually the power
law index is free to vary for each modeled disk segment. Thus the physical quantity
belonging to the illumination of the disk that can be fit to measured data is usually not
the intensity itself, but the power law exponent that describes the illumination of each
respective disk segment. The intensity profile may thus locally be expressed as a power
law

F (r, h) ∝ r−ε, (4.13)
where the exponent ε is a measure for the steepness of the profile. For large radii, the
intensity profile resembles a power law F (r, h) ∝ r−3, whereas the profile flattens at
intermediate radii and steepens at small radii. In a double logarithmic presentation of
the intensity profile, the emissivity index ε arises as the local slope of the profile. The
emissivity index for different emission heights is depicted in Fig. 4.8. For each source
height h, the profile of the emissivity index can be divided into three regions. Firstly,
for large radii (i.e. r ≥ 2h), the emissivity index approaches a constant value of 3 as
expected in flat space. for intermediate radii, the emissivity profile first rises towards
low radii, which may be attributed to gravitational light bending and the effect of the
energy shift and towards smaller radii, this increase transitions into a drop off. At the
innermost radii, below about 2 rg, the profile is dominated by a strong steepening of
the profile towards the inner radii. This steepening is explained by the effect of the
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gravitational energy shift and in turn on the photon index Γ of the primary photon
source. Especially at large radii and low emission heights, statistical noise is visible
in the emissivity index profile. This noise becomes dominant for large radii, as fewer
photons arrive at large incident radii and thus the statistic is worse than at the inner
regions. This is worst for sources at low emission heights, as even fewer photons reach
large radii. Although this kind of statistical noise is already present in the profiles of
the photon flux and the energy intensity, the emissivity index is extracted from those
spectra via the slope, i.e. a derivative, of the data in double logarithmic presentation.
Thus, even small fluctuations in the intensity data can appear as large variations in
the emissivity index. The noise can be reduced by simulating more photons at cost of
computational time or by computing the slope of the data over more data points. The
latter however comes with the disadvantage of also moderating sudden changes in the
profile that may not necessarily come from statistical noise. The high statistical noise
in the undersampled regions may also be reduced by adapting the angular distribution
of the simulated photons using some kind of statistical weight in such a way, that all
regions are sampled fairly equally and correcting for the modified photon emission post
simulation. This was however not done within the scope of this thesis.

Although the qualitative discussion of the photon flux-, intensity-, and emissivity index
profile is in agreement with previous works on the lamp post geometry, a quantitative
comparison is still necessary to confirm the validity of the results. The reference data
was taken from the relxill model v1.3.3 (see García et al. 2014). An example comparison
of the results to the reference data can be seen in Fig. 4.7 for a isotropic point sources
located on the axis of symmetry at height 6 rg and 10 rg above a black hole with spin
parameter a = 0.99. For closer investigation of the differences, the quotient of the
calculated emission profile and the reference profile is depicted in the second panel of
Fig. 4.7. Especially from the second panel, it is apparent that statistical noise dominates
the deviation of the two spectra. The fluctuations decrease with increasing number of
simulated photons and it is suspected that the calculated profile converges towards the
reference profile. The comparison in Fig. 4.7 was created with the data of the simulation
of 108 photons and the spectrum differs from the reference data by less than 1.2%. Since
the photon flux can be calculated by multiplication of the intensity profile with the
correction factors for proper area, Lorentz boosting, and energy shift, the agreement
of the intensity profiles also implicates agreement of the photon fluxes. Further, since
the emissivity index profile is also extracted directly from the calculated intensities, the
emissivity profile is expected to agree with the reference data quantitatively as well. As
such, the model indeed reproduces the results of previous works on the lamp post geometry.

Overall, the energy shift g and the spectral shape of the emitted photons that determines
the photon index Γ have the most influence on the profile at the innermost region of the
accretion disk. At intermediate radii, the emission height is the determining parameter
for the shape of the irradiation profile at intermediate radii. At large radii, all profiles
transition towards a r−3 power law as in flat spacetime.
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4.3. The General Model
Since the results for the lamp post geometry were in agreement with previous works
both qualitatively and quantitatively, the confidence in the presented code is sufficient
to test it in the general case. The method of doing so will be similar to the testing
in the lamp post geometry, i.e. we investigate the qualitative behavior of the photon
flux and the intensity when changing the determining parameters and then compare the
spectra to previous work for a quantitative assessment. In the lamp post case, there
were two determining parameters: The spin parameter a of the black hole and the height
h of the source above the black hole. For a general point source, the distance of the
source to the rotational axis may also be varied. This leaves us with three variable
parameters. Furthermore, the source may now also have an angular velocity around the
axis of symmetry which can be modeled as well. In the following, a source at distance x
from the axis of symmetry is assumed to be co-rotating with the disk element at distance
x from the black hole, as mentioned in Sec. 4.1.

A point source with non-vanishing distance to the rotational axis breaks the otherwise
symmetric geometry of the black hole system, as the irradiation on the disk will now
also be dependent on the coordinate φ. The results for such a point source are thus most
conveniently displayed in a 2D representation. An example for emission by a co-rotating
point source at height h = 5 rg and at distance x = 5 rg to the rotational axis at φ = 0
can be found in Fig. 4.9 As expected, the illumination is not symmetric around the
rotational axis. A region of high photon flux is visible close to the point of emission. The
deviation of the center of this so called hotspot can be explained by two effects that have
the same fundamental cause. First of all, the emission of the photons is focused in the
direction of the current velocity of the source due to Lorentz boosting. In this case, as
the source is moving in a circular counter clockwise orbit, the emission is focused in the
negative y-direction. Therefore the hotspot is shifted to in polar coordinates towards
negative φ values, whereas the source location is at φ = 0. Secondly, the already discussed
effect of frame dragging drags the emitted photons along a seemingly counter clockwise
rotating trajectory, leading to a shift towards negative φ values (see 2.2). Increasing the
source height results in the center of the hotspot being shifted even further away from the
source’s location, as the photons travel further along their spiraling trajectory. Further,
this representation provides a concise demonstration of the effect the energy shift has on
the photons. In the presentation of the photon flux on the disk, that is Fig. 4.9 (a), the
hot spot is quite clearly visible at a radius of r ≈ 5 rg. A similar photon flux is however
also visible at the innermost edges of the accretion disk, where the enhanced flux in this
region comes entirely from the effect of light bending. Once the energy shift is factored in,
the intensity on the inner edge of the accretion disk completely overshadows the hotspot,
despite their similar flux in photons. The photons incident on the inner edge of the disk
were shifted to much higher energies, whereas the photons incident close to the location of
emission barely received any energy shifting. One can imagine that the photons incident
on the inner edge ’fell into the gravitational well’ of the black hole and thereby converted
their ’potential energy into kinetic energy’, whereas the photons incident close to the
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Figure 4.9: Illumination of the accretion disk by a point source at height h = 5 rg and
located at x = 5 rg and y = 0 rg. The figures display (a) a map of the incident flux and
(b) a map of the incident intensity on the accretion disk in Cartesian coordinates x and y.
The spin parameter of the black hole was chosen as a = 0.99 and the source is co-rotating
with the accretion disk element at r = 5 rg, in this case that is in a clockwise direction.
Comparing (a) and (b) shows the relativistic effects the photons undergo along their
trajectory. The intensity that is incident on the innermost radii of the disk is enhanced
due to the energy shift and consequently overshadows the incident intensity on the rest
of the disk.

location of emission stayed around the same equipotential line and did thus not ’gain
further kinetic energy’. Note that the color scale was chosen linearly, as opposed to
the logarithmic scales for flux and intensity chosen so far and also in the following sim-
ply for demonstrational purposes as the mentioned effects are best shown with this choice.

As the spacetime around a Kerr black hole is axisymmetric, a point source that strays
from the rotational axis is likely to have its origin outside the black hole system itself. If
the source is believed to be generated by the black hole system itself, the axisymmetry
of Kerr spacetime strongly motivates an axisymmetric primary source. The simplest
such source that does not trivially coincide with the lamp post case is a ring source
with height h and distance x from the axis of symmetry. Such a ring source can be
modeled as a continuum of point sources at the respective height and distance and
varying φ coordinates. Due to the symmetry of Kerr spacetime, each of these point
sources generates the same flux and intensity on the disk, only shifted in φ coordinate.
As such it suffices to simulate a single point source and project the resulting flux and
intensity onto the radius coordinate only. The flux and intensity of a ring source can
therefore also be regarded as the projection of the respective spectrum of a point source
onto the radial coordinate. This treatment was also used in former works on off axis
sources such as Wilkins & Fabian (2012) and ensures comparability of the results.
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Figure 4.10: Photon flux profile for different source distances to the axis of symmetry.
The ring source is located at a height h = 5 rg and the black hole has a spin parameter of
a = 0.99. For source far away from the axis, an increase in photon counts in the region,
where r ≈ x can be seen. The increase is expected, as the source is located directly above
the corresponding disk segment.

The photon flux for a ring source is calculated according to Eq. 4.9 and is depicted in
Fig. 4.11 for different emission heights and a distance to the axis of symmetry of 4 rg.
Figure 4.10 for an emission height h = 5 rg and varying distances to the axis of symmetry.
A depiction of the profile for varying spin parameter a was deliberately omitted, as
similarly to the lamp post case, it only had minor effect on the spectra. The resulting
intensity profiles are depicted in Fig. 4.12 for varying emission height and in Fig. 4.13 for
varying distances to the axis of symmetry.
For source heights h� x, the spectra are hardly distinguishable from the results for the
lamp post geometry. This is expected, as for large source heights, a small deviation in
the distance to the black hole can be regarded as negligible. At large radii r � x, the
intensity profile tends again towards the r−3 power law as expected in flat spacetime.
A significant difference to the lamp post geometry can only be seen for a parameter
combination where h ≤ x. For such combinations the profiles follow a similar trend as
in the lamp post case, with an additional increase of intensity and flux at r ≈ x. This
increase is explained by the enhanced photon flux close to the source location. The effect
is further enhanced for increasing distance to the axis of rotation, as can be seen in
Fig. 4.13. If the source is close to the black hole, i.e. for low x, the peak that arises at
r ≈ x is broadened due to gravitational effects. This explains why the peaks seem to
increase for increasing distance x to the axis of symmetry.
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Figure 4.11: Photon flux profile for different primary source heights h. The ring source’s
distance to the axis of symmetry is x = 4 rg and the black hole spin parameter has a
value of a = 0.99. Especially for a low source height, the increase of photon flux in the
region r ≈ x is noticeable. The spectra of source heights much bigger than x show little
difference to the lamp post case (i.e. x = 0).

These results can again be expressed in terms of the emissivity index ε as already done
in the lamp post case. The emissivity index for different values of emission height h can
be seen in Fig. 4.15 and for varying distances to the axis of symmetry in Fig. 4.14. The
increase in intensity at r ≈ x is represented in the emissivity index by first dropping,
then steepening at around this region. The steepening of the emissivity index at the
innermost radii is still seen almost independently of the combination of x and h.

For a quantitative assessment of the developed model in the case of an off-axis primary
source, reference was extracted from the pdf-file of Fig.7 and Fig.13 in Wilkins & Fabian
(2012). The results are compared in Fig. 4.16. For clarity’s sake, the results for x = 25-
,5-,1.235-, and 0 rg are depicted separately in Fig. 4.17. Both figures show, that the
qualitative behaviour of the presented results matches that of results from previous works.
However, some significant deviations are discernible. For large x, the peak, that arises
due to the enhanced photon flux in the proximity of the source is does not coincide with
the peak in the reference data. At large distances, gravitational effects are expected to
become negligible. That is, in the case of x = 25 rg, the gravitational effect on photons,
that are not emitted towards the black hole, are negligible and the ‘peak’, that is visible
is expected to be ‘directly beneath’ the photon source, that is, the r-coordinate of the
center of the peak is expected to be at r = x = 25 rg. As depicted in Fig. 4.17, in the
case of x = 25 rg, the peak has its maximum hat around r = 24.93 rg, whereas the
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Figure 4.12: Intensity profile of a primary ring source at different heights with distance
to the rotational axis x = 4 rg and a black hole spin parameter of a = 0.99. Again, for
low source heights, the peak due to the source location can be clearly seen, whereas for
large heights the effect of the source’s distance to the rotational axis becomes negligible.

reference data has it’s peak maximum at around r = 22.91 rg, significantly closer to the
axis of symmetry than the photon source. A second peculiarity arises when inspecting
the transition from off-axis sources close to the axis of symmetry to the lamp post case.
Whereas for small distances to the axis of symmetry the predicted intensity at small
radii is always well above the reference data, this relation is suddenly inverted when
regarding the lamp post case. If assumed that the intensity profile varies smoothly with
the distance to the rotational axis, such an abrupt change in behaviour is not expected.
The intensity predicted by the model developed in this thesis matches very well with
the assumption of smoothness when transitioning form off-axis to lamp post geometry,
whereas the reference data exhibits a sudden change in behaviour under this transition.
Although no definite conclusions about the validity of the developed model can be made
from the comparison to the reference data, it does show, that the qualitative behaviour
does match to previous work. On a quantitative level, the developed model matched the
expectations even better than the reference data did.

The results presented in this chapter (with the exception of Fig. 4.9 and associated
discussion) were presented under the premise of a ring source, comprised of a continuum
of isotropically emitting point sources. This geometry was preferred over a point source as
the axisymmetry of Kerr-spacetime strongly motivates an axisymmetric primary source.
However, as discussed at the beginning of this section, these results are equivalent to the
results for an isotropically emitting point source at the respective height and distance to

- 58 -



4. Illumination of the Accretion Disk

101 102

radius [rg]

10−2

10−1

100

101

102

103

In
te

n
si

ty
F

[a
rb

u
]

x = 1.5 rg

x = 3.0 rg

x = 5.0 rg

x = 10.0 rg

x = 15.0 rg

x = 20.0 rg

h = 5.0 rg

a = 0.99

Figure 4.13: Intensity profile of a primary ring source at height h = 5 rg above the
black hole for varying distances x to the rotational axis. The black hole spin parameter
has a value of a = 0.99. Similarly to the photon flux, the intensity profile shows an
increase at r ≈ x, where this increase becomes more significant for sources above the
outer regions of the accretion disk.

the rotational axis, if the profiles for the point source are averaged over the φ-coordinate.
Moreover, the presented model does not require the primary source geometry to have any
symmetry whatsoever and can also calculate the φ-dependence of the resulting profiles
as depicted in Fig. 4.9. The assumption of an isotropically emitting source was also
chosen not due to restrictions of the model, but due to the lack of reasons for assuming
directional emission and for the sake of comparability to previous work.
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Figure 4.14: Emissivity index calculated from the intensity profile of a ring source at
height h = 5 rg for varying distances to the axis of symmetry and a spin parameter of
a = 0.99. The increase in intensity at r ≈ x is reflected in the steepening of the emissivity
index ε in this region. Furthermore, it appears that the further out the source is, the
larger the steepening becomes.
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Figure 4.15: Emissivity index calculated from the intensity profile of a source at distance
x = 4 rg from the rotational axis and different emission heights. The black hole spin
parameter is a = 0.99. Again, the increase in photon flux at r ≈ x is reflected by a
steepening of the emissivity index and it appears that this steepening is enhanced if the
source is at low emission heights (and thus close to the black hole). For sources at greater
heights, the steepening at the central parts of the accretion disk becomes negligible.
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Figure 4.16: Comparison of the results for isotropically emitting, co-rotating ring source
at height h = 5 rg and varying distances to the axis of symmetry. Solid lines represent
the results of the model developed in this thesis, while dashed lines represent the results
taken from Wilkins & Fabian (2012). The lamp post case x = 0 rg was included for the
sake of comparability.
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Figure 4.17: Comparison of the results for isotropically emitting, co-rotating ring
sources at height h = 5 rg and varying distances x to the axis of symmetry to the results
presented by Wilkins & Fabian (2012). In order to keep the figure clear, only x = 0 rg,
x = 1.235 rg, x = 5 rg and x = 25 rg are depicted.
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5. Conclusion and Future Research
In summary, this thesis has shown a fruitful approach to improve the modeling and
the interpretation of relativistic reflection features. By expanding the set of possible
primary source geometries in existing fitting models from the lamp post geometry to
arbitrary sources of compact topology, it is possible to describe the irradiation of the
accretion disk by an actual primary source instead of an empirical emissivity profile while
simultaneously providing a quantitative measure on the conformity of the respective
geometry to observations. The model has been compared to previous models, specifically
the lamp post fitting model relxill v1.3.3 (García et al. 2014) and the results for a general
point source provided by Wilkins & Fabian (2012). The here obtained results are in
agreement to both of those previous models. The presented model is therefore suitable
for analyzing relativistic reflection of modern and future X-ray data.

5.1. Alternative Accretion Disk Models
The Accretion Disk geometry assumed in this thesis is a Shakura-Sunyaev-Disk (see
Shakura & Sunyaev 1973), that is an accretion disk that lies completely in the equatorial
plane of the black hole. Similarly to the source in the lamp post geometry, such a disk
can be at most 3-dimensional, which is unphysical. As such, the model can merely be an
approximation of the real disk geometry. Indeed it would be expected that the material
converges towards the equatorial plane only at small radii, whereas further out, the disk
material is distributed within a certain scale height h above the equatorial plane. Further,
theoretical calculations involving small magnetic fields within the disk material show,
that also at the innermost radii, the accretion disk is ’puffed up’, indicating that even at
the most crucial region for relativistic reflection, the standard model is not accurate.

Currently, models for relativistic reflection either only consider standard thin disks
or if they allow for other disk geometries, they only consider specific source geometries.
To date, there is no code that allows for the general modeling of both the source and
the disk geometry. The code developed in this thesis thus far is only applicable to the
standard disk model, however it has the potential to model other disk emissivities as
well. Instead of using the pemdisk-function of the YNOGK -code provided by Yang &
Wang (2013), the generalization would be based of the more general pemfind-function.
Whereas pemdisk searches for the roots of the equation θ(p) − a = 0, for a constant
a (for the disk in equatorial plane: a=0), pemfind takes any algebraic equation of the
coordinates (t, r, θ, φ) and searches for roots of this equation. This generalization was
not implemented yet mainly for two reasons;
Firstly pemfind searches for the root of an equation with 4 variables, whereas pemdisk
generically only takes equations of one variable. As such, pemdisk is much faster and
thus more fitting for the task of creating a table model for the thin disk geometry.
Secondly, tests on the pemfind function showed that not all photon trajectories that
are incident on the disk were marked as such by the pemfind function. Further, some
trajectories were assigned negative values for the photon trajectory parameter p as the

- 64 -



5. Conclusion and Future Research

result of the pemfind-function. However, as defined in eq. 3.15, p is a positive real
meaning that the code did not operate as expected. Fortunately, this does not seem
to be a principal problem with the way the code operates but rather an issue of bug
fixing. The geometry of the disk (as long as it can be expressed in terms of an algebraic
equation or finite compositions thereof) can potentially be considered by the presented
code as well and subsequently included into the model.

5.2. Physical Modeling of the Primary X-ray Source
Expanding on the already existing models for lamp post sources, a method for the
modeling of the illumination of the accretion disk by a general photon source based on
physical parameters of the source geometry was developed in this thesis. Contrary to
current practice, the presented approach allows to model the actual geometry of the
irradiating source instead of assuming a composition of power laws for fit routines. This
helps extract information about the location and shape of the primary source.

Although the lamp post model describes many of the observed phenomena, it assumes
a source with no width along the axis of symmetry. Such a source would be at most 2
dimensional, which is in stark contrast to the 4 dimensional paradigm of general relativity
as well as common intuition. The primary source is therefore suspected to be of finite
extension with the lamp post only being an approximation of a compact source on the
rotational axis.
Through the process of fitting the developed model to observational data, the extension
of the source may be inferred. As an example, in the work of Wilkins & Fabian (2012),
observational data on the narrow Line Seyfert galaxy 1H 0707−495 was compared to
results of their own model, see Fig. 5.1. The emissivity profile of 1H 0707−495 was
determined in Wilkins & Fabian (2011) by fitting for the relative contribution of the
relativistically blurred K emission line components from successive annuli in the accretion
disk. They then determined suitable parameters for the height and distance to the axis
of symmetry of emitting point sources such that the sum of their contributions would
resemble the observed profile. From this, they concluded that a significant portion of the
photons must originate from a source closer than 2 rg to the reflector.
In a similar fashion, Wilkins et al. (2015) investigated the emissivity profile of Mrk 335.
The observed data can be found in Fig. 5.2. From this data, they determined an upper
limit to the source extent of about 5 rg. Both of these analyses provide valuable insight
on the geometry of the primary X-ray source.
Due to the long runtime of the simulations used to determine the theoretical emissivity
profile for different geometries, these parameters however could not be fit to the observed
data. The code developed in this thesis proves to be sufficiently fast to calculate and
subsequently tabulate emissivity profiles for varying source heights and distances to the
rotational axis. The tabulated data for point sources can then be added to construct
extended sources. In this way a table model for general photon sources in the vicinity
of a Kerr black hole arises, which can be used to fit to observational data. From this,
physical parameters for the geometry of the corona can directly be extracted from the fit
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(a) (b)

Figure 5.1: (a) Emissivity profile determined for X-ray reflection from the accretion disk
in 1H 0707-495 in January 2008 by fitting for the relative contributions of components
of the relativistically broadened iron K emission line from successive radii in the disk,
compared with (b), a theoretical emissivity profile due to a radially extended X-ray
source between 2 and 10 rg above the disk plane and extending radially to about 30 rg.
Figures taken from Wilkins & Fabian (2012).

Figure 5.2: Emissivity profile of the accretion disk of Mrk 335 on the decline of the X-ray
flare in 2014 measured by the NuSTAR FPMA spectrum. The profile is determined by
fitting for the contributions of successive annuli in the accretion disk to the components
of the relativistically broadened iron K emission line. Additionally the case of a single
power law ∝ r−3 is added for comparability. Figure taken from Wilkins et al. (2015).
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of the model to measured data.
The here developed model however is capable of additionally providing quantitative
statements on the conformity of the geometry to the data by means of fitting the results
to the observed emissivity profiles.

5.3. Modeling of the Relativistic Reflection
Inferring the emissivity profile from the observed energy spectrum yields rather crude
data, as can be seen in Fig. 5.1 (a). A more self-consistent approach would be to model
the complete observed spectrum and fit the source geometry to this data instead of the
inferred emissivity profile. This can be done by providing updated emissivity profiles for
arbitrary source geometries by means of the here developed method to codes such as the
relxill model (see Dauser et al. 2013; García et al. 2014), which calculate the reflection on
the accretion disk and the relativistic effects occurring on the way from the reemission on
the disk to the observer. Expanding the relxill model in this fashion, one can simulate the
relativistically broadened reflection spectrum seen from the accretion disk for arbitrary
source geometries. The broadened Kα lines for the lamp post geometry were already
calculated before e.g. by Dauser et al. (2013) and are displayed in Fig. 5.3, showing the
effect of relativistic smearing on a δ-distribution like emission. Similarly to the lamp post
case, the reflection spectrum for the case of an arbitrary X-ray source can be calculated
by using the irradiated spectrum on the accretion disk and calculating the fluorescent
emission through involved radiative transfer calculations and taking into account the
fluorescent yield of the various components. The relxill model then determines the
emissivity of the accretion disk based on the incident spectrum and can thus simulate
the observed emission spectrum. Note that in the relxill model, the emissivity of the disk
is not only a fitting parameter, but depends on the incident spectrum, which directly
establishes a connection to the primary source geometry. This treatment allows for
direct comparison of the observed reflection spectrum and the simulation based on the
irradiating source’s geometry.
Additionally to the investigation of the reflection features, information from photons

that reach the observer directly can be used as well. Photons emitted by the primary
source may be reflected on the accretion disk and then reach the observer after reflection
or they can reach the observer on a direct path, i.e. without prior reflection on the disk.
These two types of photons are expected to have different energies, with the photons
that reach the observer directly being in the hard X-ray band and the reflected photons
being in the soft X-ray band of the spectrum. Therefore these two types of photons can
be distinguished in the observed spectrum. Further, depending on the primary source’s
location and geometry, the photons that are reflected on the disk before being observed
generally travel ‘further’ than photons that reach the observer directly. This difference
in path length directly translates into a difference in arrival time of the photons at the
observer. In the vicinity of a black hole of mass M = 2 · 106M�, photons need about
9.8 s to travel a distance of 1 rg (Emmanoulopoulos et al. 2014). Variations in the soft
band of the spectrum are thus expected to noticeably lag behind variations in the hard
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Figure 5.3: Line profiles of the RELLINELP model for different parameters. If not
stated differently a = 0.99 and h = 3 rg is assumed. The inclination is fixed at i = 30◦
and the outer edge of the disc at rout = 400 rg. Note that we always assume that the
inner edge of the accretion disc coincides with the ISCO. All profiles are normalized to
have equal area, i.e. the number of photons producing each reflection feature is equal.
Figure taken from Dauser et al. (2013).
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band of the observed spectrum due to difference in path length of directly observed and
reflected photons. Information about the height of the primary source above the accretion
disk is therefore encoded in these time lags. For the case of the lamp post geometry,
Emmanoulopoulos et al. (2014) presented an approach to systematically investigated the
time lags and infer the height of the emitting source. The method for tracing photons
in Kerr-spacetime presented in this thesis can be used to generalize their approach as
to also include compact sources of arbitrary geometry. Again, this treatment allows for
extraction of physical properties of the primary source by comparison of data from timed
observations with the simulation.
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A. On the derivation of the Kerr metric
For clarity’s sake, the proof of the claimed diagonizability of the metric tensor with
respect to the two coordinates x̃2 and x̃3 (Eq. 2.2) is presented in the appendix rather
than the main part of the thesis. For a more in-depth explanation of this proof and on
the derivation of the Kerr metric in general, the reader is referred to Chandrasekhar (1983).

In section 2.1 it was claimed that the expression

ds2 = g11(dx1)2 + 2g12(dx1dx2) + g22(dx2)2 (A.1)

can be brought to the form

(ds′)2 = g1′1′(dx1′)2 + g2′2′(dx2′)2 (A.2)

by a coordinate transformation. Indeed we will now show (following Chandrasekhar 1983),
that the presented line element (with assumed signature (2,0) or (0,2), i.e. (+,+) or (-,-),
as x1 and x2 are both spatial coordinates) can be brought to the form in Eq. (A.2), even
further, in this form it is achievable that g1′1′ = g2′2′ . For a coordinate transformation
x1′ = ϕ(x1, x2), x2′ = ψ(x1, x2) to reduce the contravariant form of the metric

ds2 = g11(dx1)2 + 2g12(dx1dx2) + g22(dx2)2 (A.3)

to a diagonal from with equal coefficients for (dx1)2 and (dx2)2, it is both necessary and
sufficient, that

g1′2′ = gab
∂x1′

∂xa

∂x2′

∂xb
= 0 a, b = 1, 2 (A.4)

which is the condition to make the resulting metric diagonal, and

g1′1′ − g2′2′ = gab
(
∂x1′

∂xa

∂x1′

∂xb
− ∂x2′

∂xa

∂x2′

∂xb

)
= 0 a, b = 1, 2 (A.5)

which is the condition that the coefficients be equal. Condition (A.4) is fulfilled by any
transformation (ϕ, ψ) of the kind

∂ϕ(x1, x2)
∂x1

= κ

(
g21∂ψ(x1, x2)

∂x1
+ g22∂ψ(x1, x2)

∂x2

)
= κg2k ∂ψ(x1, x2)

∂xk
k = 1, 2

∂ϕ(x1, x2)
∂x2

= −κ
(
g11∂ψ(x1, x2)

∂x1
+ g12∂ψ(x1, x2)

∂x2

)
= −κg1k ∂ψ(x1, x2)

xk
k = 1, 2.

(A.6)

Substituting this into Eq. (A.5) yields the condition(
κ2{g11g22 − (g12)2} − 1

) [
g11(ψ,1)2 + 2g12ψ,1ψ,2 + g22(ψ,2)2

]
, (A.7)
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where the ,k denotes the derivative with respect to the k-th coordinate. For a metric with
positive or negative definite signature, the expression in square brackets in Eq. (A.7)
cannot vanish, thus the condition is only and always fulfilled for

κ2 = 1
g11g22 − (g12)2 = g11g22 − (g12)2 = det(gab). (A.8)

Thus in combination with Eq. A.4, the transformation

ϕ,1 =
√

det(gab)g2kψ,k (A.9)

ϕ,2 =
√

det(gab)g1kψ,k k = 1, 2. (A.10)

The integrability condition then becomes(√
det(gab)gikψ,k

)
,i

= 0, (A.11)

meaning that ψ can be any solution to the Laplace equation in 2-dimensions. The
existence of a solution is guaranteed by the theory of partial differential equations.
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