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Abstract

Shock waves are an important phenomenon in astrophysics, since they arise in the inter-
stellar medium (ISM) in many different context. Building on a discussion of supernova
remnants (SNRs), the remains of supernova (SN) explosions, which provide one example
for shocks in the ISM, a theoretical discussion of shock waves is performed in this thesis.
Shock solutions are derived via a detailed analysis of neutral fluid hydrodynamics. A mi-
croscopic consideration of the behaviour of fluid particles leads to macroscopic conservation
laws for mass, momentum and energy, from which sound wave solutions and then shock
waves can be derived. These shocks are uniquely defined for neutral fluids, though not
for collisionless plasmas, which are the usual case in astrophysical contexts. For plasmas,
explicit solutions are only derived for the special case of a Maxwellian distributed electron-
proton plasma in this thesis.
Shock waves, especially in SNRs, are capable of accelerating particles to relativistic ener-
gies. This makes them an ideal candidate for the explanation of the origin of cosmic rays
(CR) (Helder et al., 2012). For further analyzing the acceleration of particles in SNRs, the
unicorn code by S. Richter and F. Spanier has been used. This code performs numerical
simulations of particle acceleration in shock waves inside the jets of active galactic nuclei
(AGNs) (Richter and Spanier, 2016). The physical parameters of this code were adapted
for describing SNRs instead of the more extreme situation inside AGN jets. Unfortunately,
this approach did not yield useful results so far, and thus it is not discussed in this thesis.
Still, the numerical simulation of particle acceleration in SNR shocks is an intriguing goal
and will be pursued further, possibly in a following study.
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1 Introduction

Shock waves are a common feature of the interstellar medium (ISM) and arise in different
contexts, e.g. supernova (SN) explosions, expanding HII regions, stellar winds or merging
galaxies. A shock front is an abrupt transition between subsonic and supersonic flow of a
fluid and thus leads to a discontinuous change of the fluids physical properties. Probably,
the most popular example of a shock wave is the Mach cone created by an airplane (or
any other object) flying with supersonic speed through the air: The plane perturbs the air
as it moves through it. Since these perturbations propagate with the speed of sound, they
are slower than the plane itself and the region ahead of it has no information about the
incoming obstacle. This results in a rapid change of state in the gas, and thus in a shock
wave.
A very important example of shocks in astrophysics are supernova remnants (SNRs). These
bubble-like structures are the remains of the SNe that end the lives of stars, and consist of
the fast propagating ejecta of their progenitor star. These stellar ejecta cause shock waves
in the ambient ISM and heat it up. They are of special importance for astronomy, since
they distribute heavy elements bred in their progenitor in the ISM and since their shock
waves are capable of accelerating particles to energies of up to 100 TeV (Koyama et al.,
1995). For this reason, SNRs are a main candidate for explaining the origin of the galactic
share of cosmic rays (CR), high energetic charged particles that bombard the atmosphere
of earth (Helder et al., 2012).

In the framework of hydrodynamics, the theoretical study of fluids, one can find shock
solutions which satisfy the governing conservation laws, e.g. for mass, momentum and en-
ergy. These shocks can be considered to be large-scale sound waves, since they arise due to
non-linearities in the wave equation. The non-linearities can be neglected for small-scale
perturbations. For physical shocks, the second important condition for the creation of
shocks are dissipative processes, which limit the steepening of the large scale waves due to
non-linearities.
Based on these analyses, so-called jump conditions can be derived which describe the dis-
continuous change of state at the shock front for several physical quantities, e.g. density,
pressure and temperature or the magnetic field strength for shocks in plasmas.
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2 Motivation: Supernova Remnants

One important example for shock waves in the ISM, which will be discussed in more detail
in this thesis, are the remnants of supernova explosions, abbreviated SNRs: The material
which is radially ejected during a SN shocks the ambient gas and thus compresses and heats
it. This results in an expanding bubble-like structure that sweeps up the surrounding ISM.
An X-ray image of the Tycho remnant, which resulted from an SN observed in 1572 by
Tycho Brahe, can be seen in figure 2.1.
SNRs emit photons in a variety of wavebands, most importantly radio, optical and X-ray.

Figure 2.1: Chandra X-ray image of the Tycho supernova remnant. The forward shock in
the ISM can be seen in blue, the ejected stellar material in green and red. The remnant is
transitioning from free expansion to Sedov phase. Image credit: NASA/CXC/SAO

Since an SNR shock contains material of a former star, where heavier elements were bred,
they are of special importance for the enrichment of the ISM with metal. Thus they
influence the formation of new star and planetary systems, e.g. the solar system.
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2 Motivation: Supernova Remnants

Furthermore, they are also supposed to be an important source for the acceleration of
cosmic ray particles. CRs are high energetic charged particles with energies up to 1020 eV.
They originate from the sun, galactic and even extra-galactic sources, but because of the
turbulence of the galactic magnetic field, which influences their trajectories, they cannot
be correlated with specific extra-solar sources. Shock acceleration in SNRs could provide
an efficient mechanism for creating a large amount of the CRs from our galaxy (Helder
et al., 2012).

2.1 Supernova Explosions

Supernovae are massive explosions that occur at the end of a star’s lifetime. These events
are the most energetic stellar processes known, with released energies in the order of mag-
nitude of 1051 erg (Seward and Charles (2012), p. 98). If they happen in close proximity to
earth, they can be observed with the naked eye and appear as a new star in the sky. These
events build up in a relatively short time and take months or even years to fade away.
SNe are classified using their spectra and the element lines that are contained within them,
i.e. Type I without hydrogen lines and type II with hydrogen lines. These types them-
selves have several sub-types, but in principle SNe can be distinguished via the two possible
processes through which they occur:

Thermonuclear supernovae are identical with type Ia. Their progenitors are binary
systems of a compact white dwarf (WD) and another star of any type (even another
WD). WDs are the compact remnants of stellar cores which remain after the death
of a star with M < 10M�. They consist of electron-degenerate matter and are sta-
bilized against gravitational collapse through the degenerate electron pressure inside
them. In a binary system, a WD will accrete mass from its companion star and so
become more massive itself. Once its mass is higher than ≈ 1.44M�, the so-called
Chandrasekhar limit, the degenerate pressure can no longer stabilize it against gravi-
tation. The WD collapses and the resulting extreme pressure and temperature inside
it cause a thermonuclear explosion which gives rise to a type Ia supernova.

Core-collapse supernovae are the end-point of the lives of stars with M & 10M�.
They do not need a companion for a SN explosion. As time goes, the star consumes
the hydrogen in its core and burns it to helium. Once the hydrogen in its core is
depleted, it starts burning helium, then carbon and oxygen, and so on. In the end,
the star has an onion like structure with layers of different elements that get heavier
towards the core. The core stops nuclear burning once it consists of iron, the most
stable element. This iron core grows through the remaining fusion in the adjacent
layer, until it reaches the Chandrasekhar limit and collapses into a neutron star. The
gravitational energy set freely by the infalling matter causes a shock wave that ejects
the surrounding layers of the star and thus gives rise to a supernova. SNe of Type
II, as well as Type Ib and Ic are core-collapse SNe.
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2 Motivation: Supernova Remnants

For a core-collapse supernova, the beginning of the actual SNR is marked by the shock
breakout: Once the core collapses, the resulting shock inside it propagates outward from
the neutron star and then accelerates the surrounding material to velocities in the order
of magnitude of 107 m s−1, which causes a high Mach number shock in the ISM (Soderberg
et al. (2008), Helder et al. (2012)).

2.2 Evolution of Supernova Remnants

As a simple approximation, we can assume SNe to eject stellar material radially and
isotropically into all directions. These ejecta propagate through the ambient ISM and
sweep up the surrounding gas, thus slowing down over time. Ahead of the ejecta, a forward
shock is created.
The evolution of an SNR can be separated into three distinct phases: In the free expansion
phase, the ejecta travel with a uniform velocity, until the mass of the swept up material
equals the mass of the ejected material. This condition marks the beginning of the Sedov
phase or blast wave phase, in which most kinetic energy has been transferred to the shock-
heated shell. In this phase, the SNR expands adiabatically, as radiative processes are
negligible. As the material behind the shock wave cools down, radiative processes become
more and more important until the SNR enters the radiative phase, where radiative cooling
dominates its expansion.
A schematic of the different evolutionary stages of an SNR can be seen in figure 2.2.

2.2.1 Phase I: Free Expansion Phase

Through a supernova explosion, stellar material is ejected into the ISM with energies in
the range of ESN = 1051 erg. The ambient gas is swepted up by the rapidly expanding
forward shock wave, which is formed ahead of the ejecta. This leaves behind a low density
region in the interior of the SNR. As it grows in size, the material density inside its shell
decreases until it is optically thin (Seward and Charles (2012), p. 107).
As long as the mass of the swept up material is negligible in comparison to the ejected mass
Mej, the velocity of the shock front VS can be assumed to stay constant at its initial value
V0. For this reason, this phase is called the free expansion phase. The initial forward shock
velocity is identical to the initial velocity of the ejected material and can be calculated via
the kinetic energy ESN . For an ejected mass of Mej = M�, this yields

V0 =

√
2ESN
Mej

= 109 cm s−1. (2.2.1.1)

This equals approximately 3% of the speed of light. For a sound speed cs = 106 cm s−1,
this corresponds to a Mach number of M := V0/cs = 1000.
The free expansion phase’s end is defined as the point when the swept up ambient mass
equals the ejected mass Mej.
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2 Motivation: Supernova Remnants

Figure 2.2: Evolution of an SNR: First it expands freely into the surrounding space. As it
grows in mass, it is considerably slowed down and cools, until radiative cooling becomes
efficient and further accelerates its fading away into the ISM (Seward and Charles (2012),
Fig. 8.11).

2.2.2 Phase II: Sedov Phase

In the Sedov phase, enough material has been swept up in order to considerably slow
down the ejected material. Since the radiation emitted by the shocked ejecta is still small
compared to their internal energy, radiative processes can be neglected and the SNR can
be assumed to expand adiabatically. Thus, its behaviour is only determined by its initial
conditions ESN and Mej and the density of the ISM n. For this, we have a typical value
of n = 1 cm−3 (Helder et al., 2012).
The condition for the beginning of the Sedov phase is Mej = 4πR3

Sρ0, where RS is the
radius of the SNRs forward shock and ρ0 is the mass density of the ISM: ρ0 ≈ mpn, with
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2 Motivation: Supernova Remnants

the proton (hydrogen) mass mp. Thus, the remnant’s radius at the beginning of the Sedov
phase, RSedov, is

RSedov =

(
3Mej

4πρ0

) 1
3

= 2.1 pc. (2.2.2.1)

This corresponds to an age of the SNR of

tSedov =
RSedov

V0

= 210 yr. (2.2.2.2)

From this point on, assuming that the total explosion energy is conserved, the propagation
of the forward shock in the ISM is governed by the equation

RS(t) = RSedov

(
t

tSedov

) 2
5

. (2.2.2.3)

Its velocity VS is

VS(t) =
dRS

dt
(t) =

2RSedov

5tSedov

(
t

tSedov

)− 3
5

. (2.2.2.4)

Reverse Shock

During the Sedov phase, the velocity of the ejected material decreases faster than the
velocity of the forward shock, which propagates in the ISM. Thus, the forward shock
separates from the ejecta. In figure 2.1 one can see the forward shock in blue, and in
contrast the ejecta in green and red. The boundary between ejected mass and the ambient
gas is called the contact discontinuity. Additionally, the resistance of the swept up material
causes another shock wave to arise in the ejecta. It is called the reverse shock, since
it propagates from the contact discontinuity through the ejected material towards the
center of the SNR. This shock’s speed increases over time in the rest frame of the contact
discontinuity, as the mass of the swept up material increases.
The material is only heated between the forward and the reverse shock. The material
ahead of the contact discontinuity is heated and compressed by the ejecta, while the ejecta
themselves are slowed down and compressed by the pressure of the interstellar gas.

Rayleigh-Taylor Instabilities

During our considerations of the evolution of SNRs we have assumed the ambient medium
to be homogeneous. In nature, the ISM contains irregularities which will influence the
expansion of a remnant: fluctuations of density, dense molecular clouds, the stellar winds
of the progenitor star and other obstacles. This structure of the surrounding material
is reflected by the appearance of SNRs, since the intensity of thermic X-ray emission is
proportional to the square of the density.
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2 Motivation: Supernova Remnants

Even if the initial SN explosion is completely spherical, the ejected material will fragment
into so-called Rayleigh-Taylor (RT) instabilities. These instabilities occur when a heavy
fluid pushes into a lighter one, e.g. a large amount of water falling through air and breaking
into droplets. For an SNR, this means that at the contact discontinuity the ejected material
will push into the shocked ISM ahead of it and create filamentary structures. These
structures themselves are unstable and subdued to turbulences and will mix up with the
ISM gas.
For an adiabatic shock, the RT instabilities are expected to extend halfway towards the
forward shock front. They can even extend up to and beyond the forward shock, if energy
is removed from the region behind the shock via particle acceleration. This is clearly visible
for Tychos SNR in figure 2.1 (Seward and Charles (2012), p. 110).

Figure 2.3: Planar slice through a 3D simulation of an SNRs shock structure. The remnant
expands from left to right, density increases from white to black. The grey-white boundary
to the right is the forward shock front, the grey-black boundary to the left is the reverse
shock front. The ejecta are in black. One can clearly see the RT instabilities formed by
them (Seward and Charles (2012), Fig. 8.14).

2.2.3 Phase III: Radiative Phase

Once the remnant has swept up enough material it will have cooled down enough for radia-
tive processes to dominate the further evolution. This somewhat surprising result stems
from the fact that after the temperature drops below approximately 2× 105 K, enough
electrons can recombine with carbon and oxygen ions for rendering UV line emission effi-
cient. This marks the beginning of the radiative phase, which occurs at an SNR age in the
order of magnitude of 104 years (Helder et al., 2012).
The radiative phase lasts approximately for 105 years. During this time, radiative cooling
will give rise to bright optical filaments and reduce the internal energy of the SNR. Because
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2 Motivation: Supernova Remnants

of this, it becomes fainter overall, until it becomes indistinguishable from the ambient ISM.
This final process, which marks the end of an SNR, is sometimes called the merging phase.

2.3 Observational Signatures of Supernova Remnants

Today, we know more than 290 SNRs in the Milky-way and more than 50 in the Magel-
lanic Clouds, and more are being discovered, even in nearby galaxies (Dubner and Giacani
(2015), Seward and Charles (2012), p. 121). Each of them has a unique structure that
reflects the individual initial conditions of the progenitor star and the ambient medium.
Most of the galactic remnants have been discovered during radio surveys, where they could
be seen as extended sources. They are distinguishable from HII regions due to their rela-
tively flat radio spectra, which stem from a non-thermal emission process. Usually, SNRs
are round in shape and appear as ring-like structures due to limb brightening, since emis-
sion mainly comes from the shock shell.
SNRs can emit photons over the entire electromagnetic spectrum, but they shine especially
bright in radio and X-ray. Bright optical filaments can mainly be seen during the radia-
tive phase, which is caused by cooling through optical and UV line emission. If there is
interstellar dust near the SNR, it can be heated by the shock which can cause additional
radiation in the infra-red band.

2.3.1 Radio Observations

A great majority of SNRs are radio sources. Their spectra do not stem from a thermal
emission process, but are of non-thermal nature. More specifically, the radio emission from
SNRs is synchrotron emission. A radio image of the Cassiopeia A remnant can be seen in
figure 2.4.
An electron moving perpendicularly to a magnetic field B emits synchrotron continuum
radiation. The intensity has its maximum for the critical frequency νc (Dubner and Giacani,
2015):

νc =
3e

4πmc0

B

(
E

mc2
0

)2

, (2.3.1.1)

where m is the mass and E the energy of the electron. We assume an observed critical
frequency of νc = 1.5 GHz, which lies in the radio band, and a magnetic field B = 10µG -
typical values for B in an SNR reach from the order of magnitude of 10 to 100µG (Reynolds
et al., 2011). Radiation with such a frequency is produced by an electron with E = 3 GeV.
This is a relativistic energy, and the question arises how electrons in an SNR acquire these
energies.
To explain the radio spectra of SNR, active acceleration of electrons through the remnant
is necessary (Helder et al., 2012). This happens via so-called diffusive shock acceleration,
where the angular distribution of superthermal charged particles is isotropized via scat-
tering at magnetic irregularities. Some of these particles then pass the shock front, gain

8



2 Motivation: Supernova Remnants

energy and their angular distribution is again isotropized, so that some of them can pass
the shock again and gain even more energy. This process repeats itself until a particle has
enough energy for completely leaving the SNR.

Observations of the polarization of radio photons can be used for deriving the geome-
try of the magnetic fields of SNRs. It is seen that young remnants have a mostly radial
magnetic field structure, which can be explained via stretching of the field by the RT fila-
ments. Older SNRs have more of a circumferential magnetic field structure, which results
from compression of the ambient magnetic field by the forward shock (Helder et al., 2012).

Figure 2.4: Very Large Array (VLA) radio image of the Cassiopeia A supernova remnant.
Image credit: L. Rudnick, T. Delaney, J. Keohane B. Koralesky, image composite by T.
Rector

2.3.2 X-ray Observations

SNRs can emit thermal X-ray photons from the shock-heated ejected material behind the
forward shock. The spectra in these regions show prominent line emission and result from
a plasma with temperatures of approximately 106 K (Seward and Charles (2012), p. 111).
Remnants can also show a featureless non-thermal X-ray spectrum from the region around
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2 Motivation: Supernova Remnants

the forward shock, which stems from synchrotron radiation. Synchrotron emission in the
radio band corresponds to electron energies of about 1 GeV, but the presence of X-ray
synchrotron radiation means that electrons are accelerated up to energies of E = 10 −
100 TeV. This was first observed for the remnant SN1006 by Koyama et al. (1995), and
since then has also been confirmed for younger remnants like Tycho. For these younger
SNRs the X-ray synchrotron emission is concentrated to narrow filaments at the forward
shock front. Thermal and non-thermal spectra from the Tycho remnant can be seen in
figure 2.5.

Figure 2.5: Chandra X-ray spectra from small regions of Tycho’s SNR. Top: Featureless
non-thermal spectra from the forward shock. Bottom: Thermal spectra from Fe-rich and
Si-rich regions inside the ejecta (Seward and Charles (2012), Fig. 8.15).
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3 Theoretical Discussion: Neutral Fluid
Hydrodynamics

The interstellar medium (ISM) between the stars in a galaxy consists mainly of hydrogen
gas and thus can be regarded as a fluid: A fluid is a substance that deforms continually if
a shear stress is applied to it, e.g. a liquid, gas or plasma. The study of the properties and
flow of fluids is the topic of fluid hydrodynamics, which can be used for describing shock
waves in the ISM.
In this chapter, we only consider neutral fluids, i.e. fluids that consist of particles without
charges. We start with the microscopic properties of fluid particles and then derive the
fluid’s macroscopic behaviour and finally shock solutions. In nature, astrophysical fluids
are often not neutral, but plasmas, which we will analyze in chapter 4.
The discussions in this chapter are mostly based upon chapter 8, Neutral Fluid Hydrody-
namics, of T. Padmanabhan’s Theoretical Astrophysics: Volume 1, Astrophysical Processes
(Padmanabhan, 2000).

3.1 Distribution Function and Boltzmann Equation

For describing fluids at a microscopic level, we consider the microscopic particles of which
they consist, e.g. atoms or molecules. In the ISM, these are mostly hydrogen atoms, but
also helium and small amounts of metals. Each particle is defined by its spatial position
and momentum (x,p) inside the six-dimensional phase-space. Thus, the entire fluid can
be described with the distribution function f(x,p, t), which is defined via

dN(t) = f(x,p, t)d3xd3p. (3.1.0.1)

N is the average number of particles inside the phase-space volume element (d3x, d3p)
for the time t. This means that the distribution function f(x,p, t) gives the phase-space
density of fluid particles for a certain phase-space volume element and time. Further, we
demand that f(x,p, t) ≥ 0, since a density cannot be negative, and f(x,p, t) = 0 for
p −→∞ sufficiently rapidly for the energy of a finite number of particles to not diverge.
Macroscopic properties of the fluid can be determined from this microscopic consideration
via integration of the fundamental distribution function f(x,p, t) over the entire momen-
tum space Vp, e.g.
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3 Theoretical Discussion: Neutral Fluid Hydrodynamics

the particle density n(x, t) =

∫
Vp

d3pf(x,p, t), (3.1.0.2)

the mass density ρ(x, t) = mn(x, t), (3.1.0.3)

the bulk velocity V (x, t) = 〈v〉 = n−1

∫
Vp

d3pvf(x,p, t), (3.1.0.4)

the average of any quantity A 〈A〉 = n−1

∫
Vp

d3pAf(x,p, t), (3.1.0.5)

where m is the mass and v is the velocity of a single particle.
The distribution function can change over time through two different physical processes:
External macroscopic force fields, for example a gravitational field or an electromagnetic
one for charged fluid particles, can cause a force Fex = −∇Uex(x, t) on the particles, which
can be derived from the external potential Uex(x, t).
The other process which can influence the distribution of fluid particles are collisions
between said particles. On a fundamental level these collisions are caused by the repulsive
inter-particle forces between molecules or atoms. The probability of a collision is described
by the interaction cross-section σ(Ω), which depends on the two angular coordinates Ω =
(θ, φ).
The evolution of f(x,p, t) in time is then described via the so-called Boltzmann equation

∂f

∂t
+ v∇f =∇Uex∇pf + C[f ], (3.1.0.6)

where ∇pf :=
∑

i(∂f/∂pi)ei and ei the unit vector in direction i.
The two terms on the left hand side of equation (3.1.0.6) describe the change of f in time
and space. The first term on the right hand side represents the influence of external force
fields on f and the second term C[f ] is the so-called collision integral.

3.2 Collision Integral and Collisional Shocks

The collision integral in the Boltzmann equation takes the form

C[f1] =

∫
Vp

d3p2

∫
S

dΩ|v1 − v2|(f ′1f ′2 − f1f2)σ(Ω), (3.2.0.1)

where S is the entire solid angle of a complete sphere.
Here, v1, f1 and f ′1 denote properties of the first particle participating in the collision, and
the variables with index 2 denote properties of the second particle. For collisions between
identical particle types, the two types of distribution functions are identical.
The dashed f’s are the distribution functions after the collision and the undashed ones the
functions prior to the collision.
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3 Theoretical Discussion: Neutral Fluid Hydrodynamics

In general, we can distinguish two different types of fluids regarding collisions: The first
one is the case of effective collisions, where the mean free path of particles l ≈ (nσ)−1 is
very small compared to the typical size scale R of the considered system: l � R. Fluids
with efficient collisions are called collisional fluids. The short-range interaction of particles
inside them causes viscosity to arise and thus leads to dissipation. This is of special im-
portance for the formation of physical shocks (Burgess and Scholer (2015), p. 10), as we
will briefly discuss in section 3.4.4.
The second type are collisionless fluids with inefficient collisions. For a very large mean
free path compared to the typical system scale, l � R, the collision integral in the Boltz-
mann equation can be neglected. Without short-range interaction between particles and
without viscosity, shocks can only arise in the presence of external potentials, especially
electromagnetic potentials. We will see this in our discussion of collisionless plasmas in
chapter 4.

3.3 Derivation of Continuity Equations

We have defined macroscopic properties of a fluid, e.g. mass density ρ or bulk velocity V , in
section 3.1 via integration of the distribution function f multiplied with the corresponding
microscopic quantity over the entire momentum space Vp. In this section, based on Höfner
(2008), we use the same method for deriving continuity equations for macroscopic mass,
momentum and energy conservation from the microscopic Boltzmann equation.

3.3.1 Moments of the Boltzmann Equation

The moments of the Boltzmann equation are formed by multiplying it with an arbitrary
conserved microscopic quantity Q(p) and integrating over the entire momentum space:∫

Vp

d3pQ(p)

(
∂f

∂t
+ v∇f −∇Uex∇pf

)
=

∫
Vp

d3pQ(p)C[f ] =: I(Q). (3.3.1.1)

Consideration of the Collision Integral

First, we want to consider the right-hand side of this equation, the integrated collision
integral I(Q), and show that it equals zero. Through this we will see that the collision
term vanishes for macroscopic conservation equations, regardless the efficiency of collisions.
Without loss of generality, we rename the subscripts in I(Q) and write

I(Q) :=

∫
Vp

d3p1

∫
Vp

d3p2

∫
S

dΩQ(p1)|v1 − v2|(f ′1f ′2 − f1f2)σ(Ω). (3.3.1.2)

13



3 Theoretical Discussion: Neutral Fluid Hydrodynamics

Switching the indices of the two particle types in the collision obviously doesn’t change the
value of the integral, since it’s another simple renaming of variables. We get

I(Q) =
1

2

∫
Vp

d3p1

∫
Vp

d3p2

∫
S

dΩ (Q(p1) +Q(p2)) |v1 − v2|(f ′1f ′2 − f1f2)σ(Ω). (3.3.1.3)

Due to crossing symmetry, for every collision there is an inverse collision with the same
cross-section. So, we also have

I(Q) =
1

2

∫
Vp

d3p′1

∫
Vp

d3p′2

∫
S

dΩ′ (Q(p′1) +Q(p′2)) |v′1 − v′2|(f1f2 − f ′1f ′2)σ(Ω′)

= −1

2

∫
Vp

d3p1

∫
Vp

d3p2

∫
S

dΩ (Q(p′1) +Q(p′2)) |v1 − v2|(f ′1f ′2 − f1f2)σ(Ω), (3.3.1.4)

with d3p′1d3p′2 = d3p1d3p2, dΩ′ = dΩ, σ(Ω′) = σ(Ω). |v′1 − v′2| = |v1 − v2| follows from
microscopic momentum and energy conservation.
By combining equation (3.3.1.3) and equation (3.3.1.4), we get

I(Q) =
1

4

∫
Vp

d3p1

∫
Vp

d3p2

∫
S

dΩ (∆Q(p1) + ∆Q(p2)) |v1−v2|(f ′1f ′2−f1f2)σ(Ω), (3.3.1.5)

with ∆Q(p1) := Q(p1)−Q(p′1) and ∆Q(p2) equivalently.
Now, if Q is a conserved quantity during the collision, i.e.

∆Q(p1) + ∆Q(p2) = (Q(p1) +Q(p2))− (Q(p′1) +Q(p′2)) = 0, (3.3.1.6)

we get I(Q) = 0. This means that our further considerations regarding continuity equations
are equally applicable for collisional and for collisionless fluids.

Consideration of the Moments of the Boltzmann Equation

For conserved quantities Q the moments of the Boltzmann equation now take the form∫
Vp

d3pQ(p)

(
∂f

∂t
+ v∇f −∇Uex∇pf

)
= 0. (3.3.1.7)

After having eliminated the collisional term, we want to further simplify the formula for the
moments of the Boltzmann equation and thus make the following calculations of continuity
equations easier:
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3 Theoretical Discussion: Neutral Fluid Hydrodynamics

Since Q(p) is a conserved quantity, it is independent of t and can be pulled inside the
time derivative, and since it is also independent of x, it can be pulled inside the spatial
divergence. Thus, we get

∂

∂t

(∫
Vp

d3pfQ(p)

)
+∇

(∫
Vp

d3pfvQ(p)

)
−
∫
Vp

d3pQ(p)∇Uex∇pf = 0. (3.3.1.8)

We notice the averages over Q and vQ according to equation (3.1.0.5) in the first two
terms:

∂

∂t
(n〈Q(p)〉) +∇ (n〈vQ(p)〉)−

∫
Vp

d3pQ(p)∇Uex∇pf = 0. (3.3.1.9)

For simplifying the term with the external potential Uex, we use partial integration:

−
∫
Vp

d3pQ(p)∇Uex∇pf = − [Q(p)∇Uexf ]∂Vp +

∫
Vp

d3p∇p (Q(p)∇Uex) f (3.3.1.10)

∂Vp is the boundary of the region Vp and since f doesn’t diverge, it vanishes at this
boundary. So, the moments of the Boltzmann equation can be written as

∂

∂t
(n〈Q(p)〉) +∇ (n〈vQ(p)〉) = −n〈∇p (Q(p)∇Uex)〉. (3.3.1.11)

For the moment, we want to derive the continuity equations in the absence of an external
potential Uex interacting with the fluid. This is the case for neutral fluids without a
gravitational potential. Thus, we get

∂

∂t
(n〈Q(p)〉) +∇ (n〈vQ(p)〉) = 0. (3.3.1.12)

3.3.2 Mass Conservation

First, we consider the case Q(p) = m, where m is the mass of a fluid particle. According
to equation (3.3.1.12), we get the zeroth moment of the Boltzmann equation

∂

∂t
(n〈m〉) +∇ (n〈mv〉) = 0. (3.3.2.1)

With 〈m〉 = m, ρ := nm and V := 〈v〉, the continuity equation for mass conservation is

∂

∂t
ρ+∇ (ρV ) = 0. (3.3.2.2)

This equation tells us that the change in mass density ρ inside a region of the fluid over
time has to equal the negative divergence of the mass flux j := ρV . In other words: The
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3 Theoretical Discussion: Neutral Fluid Hydrodynamics

mass density inside a region can only change if mass flows into or out of this region.
Since the mass of a single particle m is also conserved, this conservation law for mass
density is completely equivalent to the conservation law for the particle density n:

∂

∂t
n+∇ (nV ) = 0. (3.3.2.3)

3.3.3 Momentum Conservation

For deriving a continuity equation for momentum conservation, we use Q(p) = mv and
thus the first moment of the Boltzmann equation. Notice that Q is a vector quantity this
time. Because of this, we have to use the outer product ⊗ inside the divergence term, since
mv has to be conserved for every component of v separately:

∂

∂t
(nm〈v〉) +∇ (n〈mv ⊗ v〉) = 0. (3.3.3.1)

We can separate the velocity v = V + u into the bulk velocity V and the random
component of particle movement u. By definition, we have 〈v〉 = V and since u describes
random motion 〈u〉 = 0.
The first moment of the Boltzmann equation becomes

∂

∂t
(ρV ) +∇ (ρ(〈V ⊗ V 〉+ 〈u⊗ u〉+ 〈V ⊗ u〉+ 〈u⊗ V 〉)) = 0, (3.3.3.2)

∂

∂t
(ρV ) +∇ (ρ (V ⊗ V ) + ρ〈u⊗ u〉) = 0. (3.3.3.3)

We define the gas pressure P := 1
3
ρ〈u2〉 and the viscous stress tensor π := ρ

(
1
3
〈u2〉I − 〈u⊗ u〉

)
with the unity tensor I, and thus get

∂

∂t
(ρV ) +∇

(
ρ (V ⊗ V ) + PI − π

)
= 0. (3.3.3.4)

Now, we can define the stress tensor T as the sum behind the divergence operator: T :=

ρ〈V ⊗ V 〉+ PI − π. This way, we can write the momentum conservation law as

∂

∂t
(ρV ) +∇T = 0. (3.3.3.5)

This equation describes momentum conservation, since ρV is a momentum density and T
describes the momentum flux. For an ideal fluid without viscosity, we have π = 0, and
thus

Tij = ρViVj + Pδij. (3.3.3.6)

16



3 Theoretical Discussion: Neutral Fluid Hydrodynamics

3.3.4 Energy Conservation

With Q(p) = 1
2
mv2, we get the second moment of the Boltzmann equation, which will lead

us to energy conservation:

1

2

∂

∂t

(
nm〈v2〉

)
+

1

2
∇
(
nm〈v2v〉

)
= 0 (3.3.4.1)

Again, we separate v into the bulk velocity V and the random velocity u and get

1

2

∂

∂t

(
ρ〈V 2 + u2 + 2V u〉

)
+

1

2
∇
(
ρ〈
(
V 2 + u2 + 2V u

)
(V + u)〉

)
= 0. (3.3.4.2)

Since 〈u〉 = 0, we can drop all terms that contain this quantity only a single time. Keep in
mind that again we have to use an outer product for the term that contains u two times:

1

2

∂

∂t

(
ρ〈V 2 + u2〉

)
+

1

2
∇
(
ρ〈V 2V + u2V + 2u⊗ uV + u2u〉

)
= 0 (3.3.4.3)

∂

∂t

(
1

2
ρ〈V 2〉+

1

2
ρ〈u2〉

)
+∇

(
1

2
ρ〈V 2V 〉+

1

2
ρ〈u2V 〉+ ρ〈u⊗ uV 〉+

1

2
ρ〈u2u〉

)
= 0

(3.3.4.4)
Now, we define the internal energy per unit mass of the fluid as

ε :=
1

2
〈u2〉 =

3

2

1

m
T (3.3.4.5)

with the temperature T in units of energy. The kinetic energy per unit mass of the fluid
is defined by combinig this internal energy with the bulk kinetic energy:

ε :=
1

2
m〈V 2〉+mε. (3.3.4.6)

Thus we can write

∂

∂t
(nε) +∇

(
nεV + ρ〈u⊗ u〉V +

1

2
ρ〈u2u〉

)
= 0, (3.3.4.7)

where nε is the total kinetic eenrgy density of the fluid. For simplifying the divergence

term, we use ρ〈u⊗ u〉 = PI − π and define the conduction heat flux

C :=
1

2
ρ〈u2u〉. (3.3.4.8)

With these considerations, the continuity equation for energy conservation is

∂

∂t
(nε) +∇

(
nεV +

(
PI − π

)
V +C

)
= 0. (3.3.4.9)
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3 Theoretical Discussion: Neutral Fluid Hydrodynamics

We can simplify this equation further by defining the total kinetic energy flux q as the
term behind the divergence operator:

∂

∂t
(nε) +∇q = 0 (3.3.4.10)

In an ideal fluid without heat conduction C or viscosity π, we can write the total kinetic
energy flux as

q = nεV + PV =

(
1

2
〈V 2〉+ w

)
ρV , (3.3.4.11)

where w is the heat function or enthalpy per unit mass of the fluid:

w = ε+
P

ρ
(3.3.4.12)

3.3.5 Conservation Laws for Neutral Fluids

In total, we have derived the three continuity equations for mass, momentum and energy,

∂

∂t
ρ+∇ (ρV ) = 0, (3.3.5.1)

∂

∂t
(ρV ) +∇T = 0, (3.3.5.2)

∂

∂t
(nε) +∇q = 0. (3.3.5.3)

For an ideal fluid, one can also write the equations of mass and momentum conservation
as

d

dt
ρ+ ρ∇V = 0, (3.3.5.4)

∂

∂t
V + V∇V =

d

dt
V = −1

ρ
∇P. (3.3.5.5)

For this conversion we have used the material derivative d/dt := ∂/∂t+v∇ and in equation
(3.3.5.5) the property π = 0 of an ideal fluid (equation (3.3.3.6)).
For an ideal fluid, there are also no dissipative processes and fluid elements do not exchange
heat during their motion. For this reason, the entropy per fluid element s := S/N is
conserved:

∂

∂t
s+ V∇s =

d

dt
s = 0 (3.3.5.6)

This equation is equivalent to equation (3.3.5.3).

18



3 Theoretical Discussion: Neutral Fluid Hydrodynamics

3.4 Sound Waves and Derivation of Shock Solutions

Next, we want to study the behaviour of a compressible fluid, for which density variations
inside it have to be considered during its flow. Such a fluid can support small-amplitude
density oscillations, which are called sound waves. In this chapter, we want to derive a
theoretical description of these waves, which will lead us to a linear solution for small-
amplitude waves and a non-linear solution for large-scale waves. The non-linear wave
solution will eventually give rise to shock waves.

3.4.1 Derivation of Sound Waves

For deriving a wave equation from the continuity equations for an ideal fluid, we first
consider the equation of momentum conservation (3.3.5.5), which is also called Euler’s
equation. By using the identity

(V∇)V =
1

2
∇V 2 − V ×∇× V (3.4.1.1)

and the vorticity of the fluid Ω :=∇× V , we can write Euler’s equation as

∂

∂t
V − V ×Ω = −1

2
∇V 2 − 1

ρ
∇P. (3.4.1.2)

We consider only irrotational flows V =∇ψ, so the curl of the velocity field vanishes and
thus Ω = 0. Using this approach, we get

∂

∂t
V = −1

2
∇V 2 − 1

ρ
∇P. (3.4.1.3)

Next, we use the perturbation ansatz P = P0+P ′, ρ = ρ0+ρ′ and V = V ′ and linearize the
Euler equation (3.4.1.3) and the equation of mass conservation (3.3.5.4). This is justified
since we only consider small-amplitude disturbances of the fluid at the moment. We can
drop the quadratic term inside the Euler equation - for small oscillations, the velocity will
be small too, and the square term can be neglected. This gives the linearized equations

∂

∂t
ρ′ + ρ0∇V ′ = 0,

∂

∂t
V ′ +

1

ρ0

∇P ′ = 0. (3.4.1.4)

Since we consider an ideal fluid, all motion inside it can be taken to be adiabatic in
approximation, and thus we have P ′ = (∂P/∂ρ)sρ

′, where the index s denotes a derivative
at constant entropy. Using this relation, we can transform the first equation of (3.4.1.4)
into

∂

∂t
P ′ + ρ0

(
∂P

∂ρ

)
s

∇V ′ = 0. (3.4.1.5)

19
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Now, we can use the irrotational ansatz V ′ = ∇ψ for the velocity field in the second
equations of (3.4.1.4) and in equation (3.4.1.5) and combine these equations, which yields
the wave equation

∂2

∂t2
ψ −

(
∂P

∂ρ

)
s

∇2ψ = 0. (3.4.1.6)

We can further simplify this expression by defining the sound velocity cs inside the fluid
via c2

s := (∂P/∂ρ)s, which gives

∂2

∂t2
ψ − c2

s∇2ψ = 0. (3.4.1.7)

3.4.2 Physical Properties of Sound Waves

The solutions of this homogeneous partial differential equation (in one dimension) is given
by the d’Alembert solution and yields sound waves with the shape ψ(x, t) = f(x − cst) +
g(x + cst), where x is the propagation direction of the waves that are moving with the
velocity cs. This solution describes a wave with two components, one propagating to the
right and one propagating to the left. Since we derived this solution from the linearized
wave equation, the shape of the two components of the sound wave is preserved. As we
will see in chapter 3.4.4, this is not the case for the general non-linear equations, and thus
the shape of large-scale oscillations changes as they propagate.
Since V ′ =∇ψ is parallel to the x-axis, the sound waves are longitudinal with oscillations
along the direction of propagation. They propagate in various physical quantities like
velocity V density ρ or pressure P , though not in entropy s or vorticity Ω. These two
quantities are conserved for each fluid element separately, in the case of an ideal fluid, and
thus don’t move relatively to the fluid.
In our consideration we assumed an ideal fluid, and because of this neglected viscosity and
heat conduction. In general, these processes will have to be taken into account, which will
lead to a dampening of the sound waves amplitude and dissipation of their energy as heat.

3.4.3 Supersonic Flows

In our derivation of sound waves and study of their properties we assumed that the unper-
turbed fluid, through which the waves are propagating, was at rest, so V0 = 0. Now we
want to analyze the behaviour of sound waves in a fluid that is moving with a steady and
constant velocity V from the point of view of the lab frame K. On the other hand, the
frame K ′ with coordinates r′ is co-moving with the fluid.
According to our analysis in Section 3.4.2, the oscillation of physical quantities in the
co-moving frame K ′ will occur according to the relation ψ ∼ exp i(kr′ − kcst) and for
r′ we have r′ = r − V t. From this follows an oscillation in K according to ψ ∼
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exp i(kr − (kcs − kV )t) and the group velocity of wave propagation

Vg =∇kω = V + csn̂, (3.4.3.1)

where n̂ is the unit vector in the direction of propagation and ∇kf =
∑

i(∂f/∂ki)ei.
This result tells us that the net velocity of perturbation in the fluid consists of two compo-
nents with respect to the lab system K: First, the sound waves are moving along with the
fluid’s flow with the bulk velocity V , and second, the sound waves are propagating into all
directions in a radial symmetry, since n̂ gives an arbitrary direction of propagation. Now,
we want to consider a disturbance starting at point O with respect to the lab system K.
After a time t0 has passed, the disturbance will have reached every point on the edge of the
circle with center at V t0 and radius cst0. One can see a visualization of this consideration
in figure 3.1.

Figure 3.1: Propagation of a perturbation starting at point O in a fluid moving with velocity
V . After a finite time, the perturbation reaches every point on the circles’ boundaries.
Left: Subsonic flow with v < cs, where the perturbation reaches every point of the fluid
after some time. Right: Supersonic flow with v > cs, where the perturbation can’t reach
the upstream fluid (Padmanabhan (2000), Fig. 8.1).

We have to distinguish two different results of this analysis:
The fluid is moving subsonically for the case V < cs. This means that the vector n̂cs is
longer than the vector V and the perturbation will propagate from point O into every
direction and eventually reach every point of the fluid.
On the other hand, for supersonic fluids we have V > cs and thus a perturbation starting
at point O cannot reach any other point of the fluid. The direction into which the dis-
turbance propagates can only lie within a cone with vertex O and a semi-vertical angle of
α ≈ cs/V .
The existence of supersonic flows has important consequences for our study of fluid hydro-
dynamic: We consider an object inside a fluid, which rests with respect to the lab frame
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while the fluid flows around it with supersonic speed. The object perturbs the fluid around
itself, but the perturbations can only reach the downstream regions of the fluid. Down-
stream means in direction of the fluid flow and upstream the opposite direction. Thus,
the fluid in the upstream region stays unperturbed and contains no information about the
body, until it flows around it and gets perturbed in the downstream region.

3.4.4 Steepening of Sound Waves

In section 3.4.1 we derived a linear wave equation from the continuity equations of an
ideal fluid, using the assumption of small-amplitude disturbances through the waves. The
d’Alembert-solutions of this wave equation lead to V , ρ and P each depending on (x± cst)
alone. Because of this, these three quantities could be expressed in terms of each other
and the derived sound waves didn’t change their shape over the course of time.
The linearization approach is no longer valid when we want to consider perturbations with
large amplitudes. In particular, we have to bear in mind that the sound velocity cs is
proportional to ρ1/3, and thus the propagation speed of the wave is higher in regions of
higher density. This will lead to a distortion and steepening of the wave’s shape over time,
since high-density regions will overtake low-density regions. To understand this process in
detail, we have to consider the non-linear mass conservation equation (3.3.5.1) and Euler
equation (3.4.1.3):

∂ρ

∂t
+
∂(ρV )

∂x
= 0,

∂V

∂t
+
V ∂V

∂x
+

1

ρ

∂P

∂x
= 0 (3.4.4.1)

While keeping the analysis general, we assumed a sound wave propagating along the x-axis,
so we could write the velocity field as Vx = V (x, t), Vy = 0 and Vz = 0 and replace the
divergence operators with one-dimensional spatial derivations.
An ideal fluid’s flow is adiabatic in the absence of shock waves, and if the fluid is homoge-
neous at some initial instance, it’s flow is also isentropic. In this case, the pressure inside
the fluid depends on the density alone: P = P (ρ). On the other hand, we consider a flow
with a velocity Vx = V (ρ) that also depends only on the density. Using these assumptions,
we can write the equations (3.4.4) as

∂ρ

∂t
+

d(ρV )

dρ

∂ρ

∂x
= 0,

∂V

∂t
+

(
V +

1

ρ

dP

dV

)
∂V

∂x
= 0. (3.4.4.2)

Now we can use implicit derivation, i.e. (∂x/∂t)ρ = −[(∂ρ/∂t)/(∂ρ/∂x)] and equivalently
for ρ substituted with V and thus derive from these equations(

∂x

∂t

)
ρ

=
d(ρV )

ρ
= V + ρ

dV

dρ
,

(
∂x

∂t

)
V

= V +
1

ρ

dP

dV
. (3.4.4.3)

Since we have ρ = ρ(V ), it follows that (∂x/∂t)ρ = (∂x/∂t)V and we can equate the two
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former expressions. With further simplification, we arrive at

V = ±
∫

dρ
cs
ρ

= ±
∫

dP

ρcs
. (3.4.4.4)

We can substitute the derived expression for dP back into the second equation of (3.4.4.3),
which leads us to (

∂x

∂t

)
V

= V ± cs(V ) (3.4.4.5)

Via integration, we obtain the relation

x = t[v ± cs(V )] + f(V ), (3.4.4.6)

where f(V ) is an arbitrary function of V , that has to be determined through the initial
conditions.
This equation determines the velocity V , and thus also the sound velocity cs, as an implicit
function of the spatial coordinate x and time t. This means, that the propagation speed
of a disturbance in the fluid is different for different regions in the fluid.
This result for the non-linear wave equation for large-amplitude perturbations is qualita-
tively different from the solution for small-scale perturbations in section 3.4.1. Still, the
propagation velocity of any perturbation has two components in the lab frame K: The
bulk velocity V of the fluids flow and the sound velocity cs of the perturbation in the rest
frame of the co-moving fluid. In particular, the latter one, cs = cs(ρ), depends on the
density of the fluid and in general increases with density.
Hence, regions of higher density inside the fluid will slowly overtake regions of lower density
with time, and thus cause a steepening of the density profile between such two regions.
This change will continue and, in theory, cause the density to become a multi-valued func-
tion of the spatial coordinate after a finite duration of time.
Such a solution would be unphysical and cannot be the case in reality: Instead of actually
becoming multi-valued, the density profile forms a sharp discontinuity at the transition
point between the high- and low-density region. This discontinuity is called a shock front.
A visualization of the steepening of a large-scale shock wave over time can be seen in figure
3.2.

Limiting of Steepening

In reality, one limiting factor for the steepening of waves is the viscosity of the fluid, which
we neglected due to our assumption of an ideal fluid. Viscosity arises due to particle
collisions and leads to dissipation. This can exemplary be seen using Burger’s equation

∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂t2
, (3.4.4.7)
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Figure 3.2: Steepening of a large-amplitude density wave. Time evolves from top to bottom.
In the last graphic, one can see that ρ(x) would become a multi-valued function (dashed
line), if it wasn’t limited to a discontinuity (Padmanabhan (2000), Fig. 8.4).

where u = u(x, t) is an arbitrary quantity which experiences wave steepening due to non-
linearity. On the right-hand side, we have the viscous term with parameter ε. For a small
value of ε, this term will stay unimportant for small gradients of u, but become bigger
for increasing gradients and eventually limit the steepening of the wave. Thus, u will not
become a multi-valued function and the system remains physical. In our limit of an ideal
fluid, with ε −→ 0, the viscous term will limit the steepening to a discontinuous shock
front (Burgess and Scholer (2015), pp. 5, 6).
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3 Theoretical Discussion: Neutral Fluid Hydrodynamics

Location of the Discontinuity

The discontinuity’s location inside the fluid can be easily calculated. We label the time of
the shock’s formation t0. At the time t = t0, the gradient of velocity V at the location
of the shock front x0 becomes infinite, and so we have (∂x/∂V )t = 0. On the other
hand, the point x0 is a point of inflection for the function x(V ). This is described by
(∂2x/∂V 2)t = 0, and we get the requirements that determine the location and time of
formation of the discontinuity:(

∂x

∂V

)
t

= 0,

(
∂2x

∂V 2

)
t

= 0 (3.4.4.8)

Together with equation (3.4.4.6) and some additional information about the considered
fluid, these expressions allow the calculation of the shock’s initial position.
For the special case of a discontinuity formed between moving and stationary fluid, these
conditions have to be modified. Since the velocity will vanish everywhere on the stationary
side, the second derivative of x need not vanish. Instead, the condition (∂c/∂t)v = 0 has
to be satisfied at the shock’s surface.

3.4.5 Shock Waves

A shock is an abrupt transition between a supersonic and a subsonic flow. They arise when
a solid obstacle moves with supersonic speed relative to a fluid, as discussed in section 3.4.3.
In the lab frame K, this can be the case for a stationary fluid and an obstacle moving with
supersonic speed, or a stationary obstacle and a supersonic flow of the fluid around it. For
the obstacle to move through the fluid, the fluid ahead of it has to be diverted around it,
which will cause a transition from the supersonic flow ahead of the obstacle to a subsonic
flow adjacent to it. This has to be the case, since otherwise the pressure force of the obsta-
cle, which propagates with the speed of sound, would be swept downstream and could not
interact with the fluid ahead of the obstacle. Thus, the fluid’s flow could not be diverted
around the obstacle. This rapid transition from supersonic to subsonic flow caused by the
obstacle gives rise to a shock wave. The shock wave can be regarded as a large-amplitude
oscillation with a discontinuity in its density profile at the transition point, as derived in
section 3.4.4.
In this section, we want to analyze the effect of a shock wave on the physical quantities
density ρ, pressure P and temperature T . For doing so, we approximate the shock front
as planar. In the case of SNRs, whis would be justified if a small enough region of their
sphere surface is considered. We study the fluid’s behaviour in the rest frame of the shock
front, thus the shock front is considered to be stationary and, for an SNR, the interstellar
medium surrounding it is flowing perpendicularly through the shock front. This shock
geometry can also be seen in figure 3.3. We define the gas to the left of the shock front as
the ISM gas, and thus as the upstream region from which gas is flowing with supersonic
speed through the shock front to the right. The physical quantities on the left-hand side
are denoted with an index 1: ρ1, P1 and T1. The region to the right of the shock front
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3 Theoretical Discussion: Neutral Fluid Hydrodynamics

is the downstream region, in which the shocked gas is moving to the right with subsonic
speed in the rest-frame of the shock front. The quantities in this region have the index 2:
ρ2, P2 and T2.

Figure 3.3: Geometry of a shock transition in a neutral fluid in the shock front’s rest frame.
Left: Unshocked upstream region of the fluid. Right: Shocked downstream region.

The physical quantities in the shocked and un-shocked region are related by the continuity
equations for mass (3.3.5.1), momentum (3.3.5.2) and energy (3.3.5.3). We can integrate
these conservation laws over a suitable volume which spans the discontinuity, and thus
derive jump conditions for the shock front. Since mass, momentum and energy density
don’t change over time on each side of the shock, we can drop the time derivatives. Then,
we get the conservation of mass as

ρ1V1 = ρ2V2 = j, (3.4.5.1)

with the mass flux j as the mass passing through a unit surface per unit of time. The
conservation of momentum flux can be written as

P1 + ρ1V
2

1 = P2 + ρ2V
2

2 . (3.4.5.2)

Since we consider an ideal fluid, we can drop the heat conduction flux and viscosity in the
equation of energy conservation and use equation (3.3.4.11), which expresses the kinetic
energy flux through the enthalpy w. This way, the conservation of energy at the shock
front becomes

w1 +
1

2
V 2

1 = w2 +
1

2
V 2

2 . (3.4.5.3)

This set of jump conditions is called the Rankine-Hugoniot relations.
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3 Theoretical Discussion: Neutral Fluid Hydrodynamics

We consider a poltropic fluid, i.e. a fluid where the relation PV γ
S = const. holds. Here,

VS is the volume of the gas and γ is called the polytropic index. Then we can express the
enthalpy w via the formula

w =
γ

γ − 1

P

ρ
=

γ

γ − 1
kBT, (3.4.5.4)

and thus relate our conservation laws to the temperature T of the gas.

We solve this system of equations via straightforward algebraic manipulation and express
the solutions in terms of the upstream Mach number M1 := V1/cs. What we get are for-
mulas for the relations between the value of a physical quantity in the shocked and in the
unshocked region, e.g. ρ2/ρ1 =: r, V2/V1 etc., where r is called the shock compression ratio.
We find that

r :=
ρ2

ρ1

=
V1

V2

=
(γ + 1)M2

1

(γ + 1) + (γ − 1)(M2
1 − 1)

, (3.4.5.5)

P2

P1

=
(γ + 1) + 2γ(M2

1 − 1)

(γ + 1)
, (3.4.5.6)

T2

T1

=
[(γ + 1) + 2γ(M2

1 − 1)][(γ + 1) + (γ − 1)(M2
1 − 1)]

(γ + 1)2M2
1

. (3.4.5.7)

Since the gas on the left-hand side of the shock front, which is denoted with index 1, is
unshocked and flows with supersonic speed to the right, its Mach number is bigger than
1: M1 > 1. Hence the mass density, pressure and temperature of the shocked gas is larger
than that of the unshocked gas. One can see the plotted results in figure 3.4 and figure 3.5.
On the other hand, the velocity of the unshocked gas is higher than that of the shocked:
ρ2 > ρ1, P2 > P1, T2 > T1, but V2 < V1. Thus, the shock wave compresses and heats up
the ISM as it sweeps it up, and slows it down in respect to the rest-frame of the shock front
- in the rest-frame of the ISM, this corresponds to the shock wave entraining the ambient
gas.
Now we want to analyze the derived ratios quantitatively for the limit of the strongest
shock M1 −→ ∞. The compression ratio becomes r = ρ2/ρ1 = (γ + 1)/(γ − 1). For a
mono-atomic gas, the polytropic index is γ = 5/3, and thus the maximum possible com-
pression ratio is r = 4. In the same limit, we don’t get a finite value for the ratios of
pressure and temperature: P2/P1 and T2/T1 diverge in the limit of the strongest shock.

Our derivation of the jump conditions relies on conservation of mass, momentum and
energy being applicable at the shock front. Though this condition is usually satisfied for
the first two of these quantities, there are several processes which can change the total
energy at the shock front, especially in the case of an SNR. First, chemical or nuclear
reactions can occur around the shock front and thus energy can be added to the flow of
the fluid. Second, once the shock wave has cooled down enough and entered the radiative
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3 Theoretical Discussion: Neutral Fluid Hydrodynamics

phase, as described in section 2.2.3, radiative cooling will start to become efficient and
the shock front will loose energy through radiation. Third, particles can be accelerated to
superthermal speeds at the shock front and diffuse ahead of it. Then they will preheat the
incoming upstream gas and thus remove energy from the shock itself. This will lead to a
thickening of the shock front and it can no longer be approximated as a discontinuity. As
we have seen, this process happens in SNRs, too, due to their ability to accelerate particles
to high energies.
When the conservation of mass, momentum and energy each hold and none of these effects
are relevant, the shock is called adiabatic. For SNRs, the phase of adiabatic expansion is
the Sedov phase, as described in section 2.2.2.

Figure 3.4: Shock compression ratio r = ρ2/ρ1 in dependence of the upstream Mach number
M1 for different polytropic indices γ. For the limit of very high Mach numbers, the com-
pression ratio approaches a finite value. This value itself approaches 1 for higher polytropic
indices.
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3 Theoretical Discussion: Neutral Fluid Hydrodynamics

Figure 3.5: Ratio between the upstream and downstream values for pressure, P2/P1, and
temperature, T2/T1, in dependance of the upstream Mach number M1. These ratios diverge
for higher Mach numbers.
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4 Theoretical Discussion: Collisionless Plasmas

In our analysis in chapter 3 we only considered neutral fluids and thus neglected the in-
fluence of electric and magnetic fields. For these types of fluid, small-scale dissipative
processes are necessary to limit the steepening of sound-waves and thus allowing physical
shocks to form. These dissipative processes arise due to particle collisions inside the fluid.
Now, we consider an interstellar hydrogen gas with a typical density n ≈ 1 cm3 and a shock
wave propagating through it with velocity V ≈ 1000 km s−1. This yields a mean free path
for particles l ≈ 1× 1015 m (Sasaki, 2019). Such a large mean free path renders collisions
utterly inefficient, and hence dissipative processes via viscosity too.
The fluids of interstellar shock-waves are in general collisionless plasmas, and thus the
participating particles are charged and the collective motion of the plasma results in elec-
tric and magnetic fields. The interaction of the fluid’s particles with these electromagnetic
potentials provides the short-range coupling necessary for shock-waves with dissipative fea-
tures (Burgess and Scholer (2015), p. 11).
The main source for our analysis of shocks in collisionless plasmas in this chapter is Col-
lisionless Shocks in Space Plasmas by Burgess and Scholer, especially chapter 2.2 Shock
conservation relations.

4.1 Vlasov-Maxwell Equations

As for neutral fluids, the starting point for our analysis of collisionless plasmas is the
microscopic Boltzmann equation

∂f

∂t
+ v∇f =∇Uex∇pf + C[f ]. (4.1.0.1)

We drop the collision integral, since the mean free path of particles in interstellar plasmas
renders collisions inefficient. On the other hand, we can no longer drop the term which
describes an external potential, since we consider charged particles. Their charges q are
influenced by the electric field E and the magnetic field B. Then the external potential
Uex is the electromagnetic potential, which leads to the Lorentz-Coulomb force on a single
particle

−∇Uex = q(E + v ×B). (4.1.0.2)
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As before, v is the velocity of a fluid particle. Inserted into the Boltzmann equation, the
electromagnetic potential yields the Vlasov equation (4.1.0.3). Combined with the four
Maxwell equations, we get the Vlasov-Maxwell system of equations, which is sufficient for
describing a collisionless plasma:

∂fj
∂t

+ v∇fj + qj(E + v ×B)∇pfj = 0, (4.1.0.3)

∇E =
1

ε0

∑
j

qj

∫
Vp

d3pfj, (4.1.0.4)

∇B = 0, (4.1.0.5)

∇×E = −∂B
∂t

, (4.1.0.6)

∇×B = µ0

∑
j

qj

∫
Vp

d3pvfj +
1

c2
0

∂E

∂t
. (4.1.0.7)

c0 is the speed of light in vacuum, ε0 is the vacuum permittivity and µ0 is the vacuum
permeability, with c2

0 = 1/(ε0µ0). The subscript j denotes the the particle species, e.g.
electrons e, protons p or ions i. This becomes especially important, since these particle
types can not only differ in distribution, mass and absolute charge, but also in charge sign.
Further, we define the electric charge density

ρem,j :=

∫
Vp

d3pqjfj, (4.1.0.8)

and the electric charge flux

jem,j :=

∫
Vp

d3pqjvfj. (4.1.0.9)

4.2 Derivation of Continuity Equations

As we did with the Boltzmann equation in section 3.3, we can derive macroscopic continuity
equations for mass, momentum and energy by taking the moments of the Vlasov equation:

∂

∂t
(n〈Q(p)〉) +∇ (n〈vQ(p)〉) = −n〈∇p (Q(p)∇Uex)〉. (4.2.0.1)

Since the external potential doesn’t vanish in the case of plasmas, but is the electromagnetic
potential, our new conservation laws will be modified by terms for the electromagnetic
momentum density and energy density.
From our analysis in the previous chapter, we already know the left-hand terms of the
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4 Theoretical Discussion: Collisionless Plasmas

above equation for the first three moments of the Vlasov equation and can simply read
them from section 3.3.5. Thus, we only have to analyze the right-hand terms here.

4.2.1 Mass Conservation

The conservation of mass for a collisionless plasma is described by the zeroth moment of
the Vlasov equation,

∂

∂t
ρj +∇ (ρjV ) = −nj〈∇p (mj∇Uex)〉. (4.2.1.1)

We insert the electromagnetic potential on the right-hand side, which becomes

−n〈∇p (mj∇Uex)〉 = njmjqj〈∇p(E + v ×B)〉. (4.2.1.2)

The electric field E doesn’t depend on the momentum p and the product v×B is perpen-
dicular to p, since v ‖ p. Hence, equation (4.2.1.2) equals zero and the mass continuity
equation is

∂

∂t
ρj +∇ (ρjV ) = 0. (4.2.1.3)

As one can see, the conservation law for mass in a collisionless plasma is identical to the
one in a neutral fluid. The only difference is the consideration of different particles species
in this case, but since mass is conserved for each particle type separately, it is easily shown
through summing up over j that the total fluid mass also is conserved:

∂

∂t
ρ+∇ (ρV ) = 0. (4.2.1.4)

4.2.2 Momentum Conservation

Our starting point for deriving the momentum conservation law is the first moment of the
Vlasov equation,

∂

∂t
(ρjV ) +∇

(
T j

)
= −nj〈∇p (mjv∇Uex)〉. (4.2.2.1)

We use the product rule on the right-hand side, and since ∇p(mjv) = 1, we have

nj〈∇p (mjv∇Uex)〉 = njqj〈E + v ×B〉
= 〈ρem,jE + jem,j ×B〉.

(4.2.2.2)
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Again, we can sum up over all particle species and the momentum conservation law for a
collisionless plasma becomes

∂

∂t

(∑
j

ρjV

)
+∇

(∑
j

T j

)
= 〈ρemE + jem ×B〉. (4.2.2.3)

Next, we want to express the right-hand side of this equation purely in terms of divergences
and time derivatives of E and B and thus combine it with the left-hand side. First, we use
the Ampère-Maxwell law (4.1.0.7) for substituting the electric charge flux jem and further
include a vanishing term for symmetry reasons via Kelvin’s law (4.1.0.5):

jem ×B =

(
1

µ0

∇×B − ε0
∂E

∂t

)
×B +

1

µ0

(∇B)B. (4.2.2.4)

Similarly, we use Gauss’s law (4.1.0.4) for expressing the charge density ρem via the electric
field and add a vanishing term with Faraday’s law (4.1.0.6). We get

ρemE = ε0 (∇E)E + ε0

(
∇×E +

∂B

∂t

)
×E. (4.2.2.5)

Now, we combine the two above equations. Using the relation ∂/∂t(E × B) = E ×
∂B/∂t + ∂E/∂t×B and taking into account the vector product’s anti-symmetry during
our transformations, we have

ρemE + jem ×B =− ∂

∂t
[ε0E ×B]− ε0 [E × (∇×E)− (∇E)E]

− 1

µ0

[B × (∇×B)− (∇B)B] .
(4.2.2.6)

The terms to the right of the time derivative can be written as the divergence of the
so-called electromagnetic stress tensor:

ε0 [E × (∇×E)− (∇E)E] +
1

µ0

[B × (∇×B)− (∇B)B] =∇T em. (4.2.2.7)

The tensor T em is defined as

T em :=
1

2
I

(
ε0E

2 +
1

µ0

B2

)
− ε0E ⊗E −

1

µ0

B ⊗B. (4.2.2.8)
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These transformations allow us to write the momentum continuity equation for a collision-
less plasma as

∂

∂t

(∑
j

ρjV + 〈ε0E ×B〉

)

+∇
(∑

j

T j +

〈
I
ε0 (E2 + c2

0B
2)

2
− ε0E ⊗E −

1

µ0

B ⊗B
〉)

= 0.

(4.2.2.9)

As we can see now, the term ε0E ×B describes the electromagnetic momentum density,

while the stress tensor T em describes the electromagnetic momentum flux. The mechanic
momentum density is no longer a conserved quantity - instead, the total momentum density
is conserved.

4.2.3 Energy Conservation

We take the second moment of the Vlasov equation for deriving the energy conservation
law for collisionless plasmas:

∂

∂t
(njεj) +∇qj = −nj

〈
∇p

(
1

2
mjv

2∇Uex
)〉

. (4.2.3.1)

Again, we use the product rule for derivations on the right-hand term, which yields

−nj
〈
∇p

(
1

2
mjv

2∇Uex
)〉

= njqj 〈v (E + v ×B)〉

= 〈jem,jE〉 .
(4.2.3.2)

Thus, energy conservation in a collisionless plasma is described by the equation

∂

∂t

(∑
j

njεj

)
+∇

(∑
j

qj

)
= 〈jemE〉 . (4.2.3.3)

As in the case of momentum conservation, we want to eliminate the electric current jem
and express the electromagnetic term solely through E and B. First, we use the Ampère-
Maxwell law (4.1.0.7):

jemE =

(
1

µ0

∇×B − ε0
∂

∂t
E

)
E

=
1

µ0

(∇×B)E − ε0
2

∂

∂t
E2,

(4.2.3.4)
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where we used the chain rule for the electric term in the second transformation. Next, we
use the identity ∇(E ×B) = B(∇ × E) − E(∇ ×B) and Faraday’s law (4.1.0.6), and
thus get

jemE =
1

µ0

[B(∇×E)−∇(E ×B)]− ε0
2

∂

∂t
E2

=
1

µ0

(
−B ∂

∂t
B

)
− 1

µ0

∇(E ×B)− ε0
2

∂

∂t
E2

= − 1

µ0

∇(E ×B)− ε0
2

∂

∂t
E2 − 1

2µ0

∂

∂t
B2.

(4.2.3.5)

Plugged into equation (4.2.3.6), the conservation law for energy in a collisionless plasma
becomes

∂

∂t

(∑
j

njεj +

〈
ε0 (E2 + c2

0B
2)

2

〉)
+∇

(∑
j

qj +

〈
1

µ0

E ×B
〉)

= 0. (4.2.3.6)

The electric energy density is described by the term (ε0/2)E2 and the magnetic energy
equivalently by (1/(2µ0))B2. The electromagnetic energy flux is described by the so-called
Poynting vector S := (1/µ0)E ×B.

4.2.4 Continuity Equations for Collisionless Plasmas

In total, we have the three continuity equations for mass, momentum and energy in a
collisionless plasma:

∂

∂t
ρj +∇ (ρjV ) = 0, (4.2.4.1)

∂

∂t

(∑
j

ρjV + 〈ε0E ×B〉

)

+∇
(∑

j

T j +

〈
I
ε0 (E2 + c2

0B
2)

2
− ε0E ⊗E −

1

µ0

B ⊗B
〉)

= 0, (4.2.4.2)

∂

∂t

(∑
j

njεj +

〈
ε0 (E2 + c2

0B
2)

2

〉)
+∇

(∑
j

qj +

〈
1

µ0

E ×B
〉)

= 0. (4.2.4.3)
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Additionaly, the Vlasov equation fulfills the relation

∂

∂t

∫
Vp

d3pφ(f) +∇
∫
Vp

d3pvφ(f) = 0, (4.2.4.4)

where φ(f) is an arbitrary function that satisfies vφ(f) −→ 0 for v −→ ±∞. One can
derive this relation by multiplying the Vlasov equation with ∂φ/∂f and integrating over
the entire momentum space.

4.3 Shock Conservation Relations

Now we want to analyze the behaviour of these conservation laws at a shock and thus
relate the values of different physical quantities on both sides of the shock front, as we did
in section 3.4.5 for neutral fluids. Again, we choose the rest frame of the shock front. We
define the x-axis as perpendicular to the shock surface and consider a planar shock, where
all quantities only depend on x.
As we did for the velocity v, we separate the electric and magnetic field into an averaged
macroscopic part and a fluctuating microscopic part: E = 〈E〉+ δE and B = 〈B〉+ δB.
The averages of the fluctuating fields equal zero. We write the shock conservation relations
in integral form, to keep the consideration general at the moment. Dropping the time
derivatives in our continuity equations, since macroscopic quantities are time-stationary
on both sides of the shock front, we have

∫
Vp

d3pvxfj = const., (4.3.0.1)

∑
j

∫
Vp

d3pmjvvxfj +
ε0
2

(〈E〉2 + c2
0〈B〉2 + 〈δE〉2 + c2

0〈δB〉2)ex

− ε0(〈E〉〈Ex〉+ c2
0〈B〉〈Bx〉+ 〈EδEx〉+ c2

0〈BδBx〉) = const., (4.3.0.2)

∑
j

∫
Vp

d3p
1

2
mjv

2vxfj +
1

µ0

(〈E〉 × 〈B〉+ 〈δE × δB〉)ex = const., (4.3.0.3)

where ex is the unit vector parallel to the x-axis. From equation (4.2.4.4), we get

∑
j

∫
Vp

d3pvx〈φ(f)〉 = const. (4.3.0.4)
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Additionally, we can use the Maxwell equations for deriving further constrains on the E and
B field’s behaviour at the shock. From Faraday’s law (4.1.0.6) we learn that the electric
fields tangential component (relative to the shock) is conserved, and from Kelvin’s law
(4.1.0.5) that the magnetic field’s normal component is conserved:

〈Et〉 = const. (4.3.0.5)

〈Bx〉 = const. (4.3.0.6)

If there are no gradients or turbulances far from the shock, we can further assume the
Coulomb-Lorentz force vanishes at this boundary:

〈E〉+ V × 〈B〉 = 0, x −→ ±∞. (4.3.0.7)

Combined with equation (4.3.0.5), this yields

[V ×B]t = const. (4.3.0.8)

The system of equations from equation (4.3.0.1) to equation (4.3.0.8) are the conservation
relations for a shock front in a collisionless plasma. Other than the Rankine-Hugoniot
relations in the case of a neutral fluid, this set of equations does not have a unique solution
for the relations between upstream and downstream quantities. This is due to the quantity
φ(f) in equation (4.3.0.4) being arbitrary, which basically allows an infinite number of
solutions for this problem.
Thus, we need further assumptions about the nature of the considered fluid and the shock
wave, if we want to derive actual jump conditions. One should bear in mind that these
assumptions are obviously not fulfilled for every shock in a collisionless plasma, especially
not in every real astrophysical context.
First, we assume an electron-proton plasma, which has a drifting Maxwellian distribution.
Electrons and ions move with a common bulk velocity V , but the electron temperature Te
and the ion temperature Ti are distinct. The ion distribution function is

fi =
ni

(2πv2
i )

3/2
exp

(
−(v − V )2

2v2
i

)
, (4.3.0.9)

and the electron distribution function has a similar form. vi is the ions’ thermal velocity,
which is defined via

vi,e =

(
kBTi,e
mi,e

)1/2

. (4.3.0.10)

From this point on, additionally to the particle species index, we use the subscripts u and
d for denoting upstream and downstream quantities in the fluid. Since we have already as-
sumed the absence of turbulences far from the shock for equation (4.3.0.7), the microscopic
fluctuating fields 〈δE〉 and 〈δB〉 can be neglected everywhere outside the shock transition
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Figure 4.1: Geometry of a shock transition in a collisionless plasma in the shock front’s rest
frame. Left: Unshocked upstream region of the fluid. Right: Shocked downstream region.
Other than in the case of neutral fluids, the flow direction of the fluid can be changed
through the shock.

itself, and we drop the average notation for the electromagnetic fields E and B.
Now, we choose a rest frame in which the upstream bulk velocity of the fluid is directed
normal to the fluid. The coordinate system is defined so that Vu = Vuex and Bu both lie
in the x-z-plane. With equation (4.3.0.7) we have

Eu = VuBuzey (4.3.0.11)

with ey the unit vector parallel to the y-axis.
The angle between the upstream magnetic field and the normal vector of the shock front is
called θBn, thus Bx = Bu cos θBn and Buz = Bu sin θBn. Bear in mind that Bx = Bux = Bdx,
since the magnetic field’s normal component is conserved through the shock (equation
(4.3.0.6)). The geometry of the considered shock transition can be seen in figure 4.1.
We make two further assumptions: First, we assume that there are no charges or current
far from the shock on both sides of the shock front, thus neu,d = niu,d = nu,d and Veu,d =
Viu,d = Vu,d. Second, the downstream quantities Vd and Bd are assumed to lie in the x-z
plane, just like Vu and Bu. This is called the coplanarity theorem.
We use equation (4.3.0.1), the x component of equation (4.3.0.2) and equation (4.3.0.3),
and get
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nuVu = ndVd, (4.3.0.12)

nu
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v̄2
u + V 2

u

)
+

B2
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2µ0mi

= nu
(
v̄2
d + V 2

dx

)
+

B2
dz

2µ0mi

, (4.3.0.13)
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2
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µ0mi

= ndVdx
(
5v̄2

d + V 2
dx + V 2
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)
+

2VdxB
2
dz

µ0mi

− 2VdzBxBdz

µ0mi

, (4.3.0.14)

where we’ve defined

v̄2 = v2
i +

me

mi

v2
e , (4.3.0.15)

and dropped all terms of order me/mi or V 2
u,d/c

2
0, which corresponds to the assumption of

a non-relativistic shock.
We can use the y component of equation (4.3.0.8) for deriving

VuBuz = VdxBdz − VdzBx (4.3.0.16)

and the z component of equation (4.3.0.2) for deriving

BuzBx

µ0mi

=
BdzBx

µ0mi

− ndVdxVdz. (4.3.0.17)

Next, we define the Alfvén Mach number MA, which relates the bulk velocity to the
propagation speed of ion oscillations, and the so-called plasma beta β, which is the ratio of
thermic to magnetic pressure. We also use the shock compression ratio r, which is defined
exactly as for neutral fluids:

r :=
nd
nu

=
Vu
Vdx

, (4.3.0.18)

MA =
Vu

Bu/
√
µ0numi

, (4.3.0.19)

βu =
nukB(Tiu + Teu)

B2
u/(2µ0)

. (4.3.0.20)

Now, we can use equation (4.3.0.12) for solving the equations (4.3.0.16) and (4.3.0.17).
This yields the results

Bdz

Buz

=
r(M2

A − cos2θBn)

M2
A − rcos2θBn

, (4.3.0.21)

Vdz
Vu

=
sin θBn cos θBn(r − 1)

M2
A − rcos2θBn

. (4.3.0.22)
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The first equation relates the z components of the downstream and the upstream magnetic
field. A plot for different angles θBn can be seen in figure 4.2. Since r > 1, the downstream
magnetic field is stronger than the upstream one: The shock compresses the magnetic field.
For the limit of very high Mach numbers MA −→ ∞, we have Bdz/Buz = r, which equals
a ratio of four to one, as we will see in the following considerations.
The second equation relates the z component of the downstream bulk velocity to the up-
stream bulk velocity. Its plot can be seen in figure 4.3. Since the upstream bulk velocity is
parallel to the x axis, its z component equals zero and the ratio Vdz/Vu in principle repre-
sents the deflection of the fluid’s flow at the shock surface. For very high Mach numbers,
this ratio approaches zero, thus the faster the fluid’s supersonic upstream flow, the less it
is deflected.

Figure 4.2: Magnetic field compression ratio Bdz/Buz in dependance of the Alfvén Mach
Number MA for different angles θBn. For the limit of very high Mach numbers, the ratio
approaches the maximum density compression ratio r = 4. For θBn = 0, which corresponds
to an upstream magnetic field parallel to the shock surface, the ratio is constant and
independent of MA.
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4 Theoretical Discussion: Collisionless Plasmas

Figure 4.3: Deflection of the fluid flow Vdz/Vu in dependance of the Alfvén Mach Number
MA for different angles θBn. For the limit of very high Mach numbers, this ratio approaches
zero, which corresponds to zero deflection. For θBn = 0 and θBn = π, which corresponds
to an upstream magnetic field parallel or perpendicular to the shock surface, the ratio is
constant with the value zero.

Further, we can use equation (4.3.0.13) and find an expression for the downstream thermal
velocity v̄ in relation to the upstream bulk velocity Vu:

v̄2
d

V 2
u

=
1

2r

[
βu
M2

A

+
2(r − 1)

r
+

sin2θBn
M2

A

(
1−

(
Bdz

Buz

)2
)]

. (4.3.0.23)

This ratio tells us about the rate, at which upstream bulk kinetic energy is converted into
thermic energy at the shock front.
Next, we want to find the expression for the shock compression ratio r. The last two terms
of equation (4.3.0.14) can be rewritten using equation (4.3.0.16), so they become

2VdxB
2
dz

µ0mi

− 2VdzBxBdz

µ0mi

=
2VuBuzBdz

µ0mi

. (4.3.0.24)
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Thus, we can combine equation (4.3.0.14) with the other equations above, which yields a
quartic polynome in r. One solution is trivial for the case r = 1, which is not a shock-like
solution, since there is no change of state. So, we end up with a cubic for the compression
ratio r:

cos2θBn(2M2
A + 5βucos2θBn)r3

+M2
A(M2

A − cos2θBn(5M2
A + 8 + 10βu))r

2

+M4
A(11cos2θBn + 2M2

A + 5 + 5βu)r − 8M6
A = 0

(4.3.0.25)

In the limit of high Mach numbers and upstream kinetic energies much larger than the
magnetic or thermic energy, MA −→ ∞ and βu −→ 0, one can divide this polynome by
M6

A, which shows that the compression ratios maximal value is r = 4. Further, one sees
that the ratio v̄d/Vu from equation (4.3.0.23) is limited to the maximum value

√
3/4. The

solutions for our shock conservation relations indicate that the high Mach number approx-
imation is justified for MA = 5− 10.
These results have quite important physical interpretations: First, the limiting value for
the compression ratio is identical to the limiting value for neutral fluids and completely
independent of the electromagnetic properties of the system. Second, the limiting value
for v̄d/Vu tells us that bulk kinetic energy is converted to thermic energy very efficiently
for high Mach numbers.

For solving the polynome (4.3.0.25) and thus deriving exact solutions for r, we distin-
guish between two different types of shocks:
Perpendicular shocks have θBn = π/2: The upstream magnetic field is parallel to the shock
surface. The cubic polynome in r then reduces to a quadratic polynome that can easily be
solved. The solution, that is physical and fulfills the condition r > 0, is

r = −
(
M2

A +
5

2
(βu + 1)

)
+

[(
M2

A +
5

2
(βu + 1)

)2

+ 8M2
A

] 1
2

. (4.3.0.26)

As one can see, the compression ratio of the shock is influenced by the magnetic field as
well as the thermal pressure, on which βu depends.

On the other hand, parallel shocks have θBn = 0, thus the upstream magnetic field is di-
rected perpendicular to the shock surface. Using this, we can factorize equation (4.3.0.25)
and derive two different solutions for the value of r. One solution is r = M2

A, where we
have Bdz 6= 0 and Vdz 6= 0. The corresponding shock is called a switch-on shock, since the
magnetic field and the bulk velocity acquire parallel components during their transition
through the shock front.
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The other type of shock has Bdz = 0 and a compression ratio of

r =
4

1 + 5 v̄2u
V 2
u

. (4.3.0.27)

The higher the ratio v̄2
u/V

2
u , the smaller the compression ratio. This means that compres-

sion is more efficient, the more energy of the upstream fluid is bulk kinetic energy instead
of thermal energy.
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Shock waves are an important feature of the interstellar medium, and supernova remnants
are probably one of the most prominent examples for shocks in astrophysics. They are also
of special importance for the study of cosmic rays, since they can accelerate electrons to
relativistic energies.
The evolution of SNRs from a supernova explosion to its fading away into the ISM can
be separated into three different phases: In the free expansion phase, the stellar ejecta of
the SN propagate radially into the ISM with a constant velocity of 109 cm s−1 for a typical
ejecta mass of 1 M� and energy deposited in the ejecta of 1051 erg. These ejecta cause a
shock wave in the ISM and thus heat it up to temperatures of about 106 K. Once the rem-
nant has swept up enough ambient mass, it slows down and enters the Sedov phase, where
it expands adiabatically. In this phase, a reverse shock develops, which travels through
the ejecta into the SNR, and the forward shock separates from the ejecta, since it propa-
gates faster through the ISM than the ejected stellar material. Now the SNRs evolution
only depends on its initial conditions and the properties of the ISM. For a typical density
of interstellar gas of 1 cm−3, the Sedov phase begins after around 200 yr and at an SNR
radius of 2.1 pc. Once the shock heated SNR gas slows down enough and cools down to
app. 5× 105 K, the remnant enters the radiative phase. The transitions happens after
app. 3× 104 yr for the initial conditions mentioned above. In this phase, radiative cooling
from metal lines dominates the further evolution of the remnant. It cools further during
its 105 yr duration, until the SNRs fades away into the ambient gas.
At the forward shock front of an SNR, electrons are accelerated to relativistic energies
and interact with the remnants magnetic field, thus emitting synchrotron radiation. The
typical order of magnitude of an SNRs magnetic field is 100 mG. Synchrotron photons
up to energies in the X-ray band correspond to electron energies of 1014 eV. Thus, SNRs
could be an important source for cosmic rays. The mechanism of acceleration is probably
diffusive shock acceleration, where charged particles are scattered from turbulences in the
magnetic field and thus pass the forward shock front multiple times and acquiring kinetic
energy each time. Due to lack of time, the physics of particle acceleration in the shock
waves of SNRs could not be discussed in detail in this thesis. This would make a suitable
topic for a further study, expanding on this one.

Based on the microscopic phase space distribution function f(x,p, t) for the particles
in a fluid, it was shown that macroscopic conservation laws can be derived for the mass
(or particle number), the momentum and the energy of a fluid. This was done by taking
the moments of the Boltzmann function, which describes the evolution of f . The method
is equally feasible for neutral fluids and for collisionless plasmas. For neutral fluids it was
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shown explicitly that a wave equation for sound waves can be derived. This wave equation
can be solved via a linearization approach for small-scale perturbations, but for large-scale
amplitudes non-linearities have to be considered. These non-linearities lead to the steep-
ening of large-scale sound waves and thus the creation of shocks: Abrupt changes of state
in the physical quantities of a fluid that are caused by a sudden transition from subsonic to
supersonic flow. The jump conditions for these shocks show that the compression ratio, i.e.
the change in density through the shock front, approaches a finite value for faster inflowing
fluids, while the pressure and density ratio diverge.
For physical shocks, some sort of dissipative process is necessary to limit the steepening
of a sound wave. In the case of collisional neutral fluids, this is provided by the viscosity
resulting from the fluid particle’s collisions. Without efficient particle collisions, which is
usually the case in astrophysics, external force fields are necessary for allowing the creation
of shocks. For the case of plasmas, these are the electromagnetic fields. Thus, plasmas
are described by the Vlasov-Maxwell system of equations. As in the case of neutral fluids,
macroscopic continuity equations and jump conditions for shock solutions can be derived.
For the case of collisionless plasmas, these jump conditions are not uniquely defined and
can only be solved if further assumptions about the considered plasma are made. Thus,
there is a large amount of different shock solutions that can be found for actual astrophys-
ical plasmas.
We considerer the special case of an electron-proton plasma with Maxwellian distribution
and derived the jump conditions: The density compression ratio equals the one for neu-
tral fluids in the limit of very fast shocks, as does the compression of the magnetic field
tangential to the shock. We also derived that kinetic energy of the fluids bulk velocity is
converted into thermal energy at the transition through the shock front.
Due to the complexity of the topic of shock waves in plasmas, a detailed study of different
shock solutions was not possible within the scope of this thesis. Further analysis of this
topic in a following study would be reasonable, especially due to the importance of the
electromagnetic properties of the fluid for the mechanism of particle acceleration.

Besides the theoretical discussion of neutral fluids and collisionless plasmas and their shock
solutions, another goal of this thesis was the adaption of S. Richter’s and F. Spanier’s uni-
corn code for SNRs. This code was programmed for numerical simulations of particle
acceleration in the shock waves of the jets of active galactic nuclei. Due to the similar-
ities between particle acceleration in AGNs and SNRs, it seems to be a reasonable goal
to adapt the code’s AGN parameters to the less extreme physical values of SNRs. So far,
this approach did not yield useful results. More specifically, the calculated photon fluxes
that would reach earth due to particle acceleration in an SNR were vanishingly small. For
this reason, the results of the work with the unicorn code are not included in this thesis.
Nevertheless, the goal of adopting the code for SNRs and performing numerical simulations
of particle acceleration in SNRs stays desirable. It will be an element of further study.
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