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Chapter I – Introduction

Light, in ordinary sense, is a phenomenon that provides us with information
about our surroundings. Almost all the light we perceive in our eyes is
reflected from surfaces. The reflected light of objects gives information of
distance, size and shape. Light, in a more general sense, as well, provides
information especially about the generation process of the radiation.

This information is what is of great value to understand objects that
otherwise provide no or only little insights. In astronomy the information
one can receive from distant objects is the radiation astronomical objects
send out due to intrinsic processes. To study and understand those objects it
is important to have devices allowing a quantitative measure of the incoming
radiation as well as a detailed understanding of the fundamental processes
generating light.

Scientific devices were developed to gather information over all wave-
lengths, from long radio waves to high energetic gamma rays. These devices
not only extend the accessible light range but also allow us to test theories of
the world against observations. Radio receivers provide insights in the motion
and distribution of gas clouds, optical devices show us the distributions and
development of stars in the universe and gamma-ray detectors give access to
the physics of the most violent environments in the universe.

Many of the processes which generate X-ray radiation involve accelerated
charges or the transition of electrons in atomic systems. For example, the
radiation which is emitted by the transition of the hydrogen atom from the
first excited state to the ground state produces light waves with the energy
of E ≈ 13.6 eV (Demtröder 2018) located at the lower end of the X-ray
spectrum.

The great insights which are provided by the observations in the X-ray
regime does also face the astronomer with a problem. The high energy of
X-ray photons do not allow the to pass the atmosphere of the earth without
interaction. This is the reason why X-ray observatories need to be put up in
space with all its complications and costs.

It is this effort, that has to be made, to obtain scientific data from X-ray
sources, why one wants to get the most out of the instruments. This requires
that the instruments are understood in great detail such that each value
the device reports has a meaning. For the X-ray astronomy the information
that gives the most information is the distribution of the photons across the
energy range. From these spectra it is possible to deduce what the generating
process for the photons is. The comparison with theoretical models gives
detailed insights in the source and its environment. For this reason is the
exact energy calibration a compelling requirement. Otherwise, derivations
from miscalibrated data will end in a wrong picture of our universe.

In this work a method for calibration of the energy scale of such an X-ray
detecting device will be performed. The goal is to test if the method can
be used for the intended purpose and to discover any problems that might
come along.

Additionally, data from a measurement campaign for measuring the
oxygen edge of neutral oxygen gets calibrated. The calibration relies on a
nouvelle reference method for laboratory astrophysics and should in principle
increase the accuracy for line measurements drastically.
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Chapter II – The Physics of Atoms

1 Electromagnetic interaction

In order to understand the atomic model and the observations that led to the
development of the quantum mechanical model of the atom the knowledge of
electromagnetic interactions is required. Every material that is around us in
our daily life can be described and understood only with the electromagnetic
interaction. Just a small number of effects require the understanding of the
other fundamental forces(1) and as such a complete description of the atom
down to the fundamental particles.

For the purpose of this work and for most of the effects that can be
observed in e.g., astronomical sources it is sufficient to describe the atomic
model by the electromagnetic interaction only. This section will give a
brief overview of the development and the current understanding of the
interaction between charged particles. A complete derivation may be found
in e.g., Griffiths (2013); Jackson (1999).

1.1 A brief history of Electromagnetism

Electric phenomena where known to all mankind at least in the manifestation
of lightning and thunder. In the ancient cultures all over the world people
have realized that some materials have forces interacting between them.
The obvious discoveries include natural magnets and magnetized metals.
Famously, amber, found by the ancient Greeks was discovered to attract
lightweight objects when rubbed (Whittaker 1910) and is the origin of the
word electricity. Amber, Greek ἤλεκτρον (ēlektron), as one of the prominent
curiosities that showed electrical properties led to the invention of the Latin
word electrica by Gilbert (1600).

While most of electric phenomena, which are described in ancient text,
were merely used for entertainment, there are examples which indicate a
more technologically focused use case, e.g., the Baghdad battery (Keyser
1993).

The systematic study of electrical phenomena started, at least from a
modern scientific point of view, in the late 16th century (Park 1898). Initially
new materials were found possessing similar properties as amber. Later also
properties of the electrical interaction itself got examined and described,
prominently by Robert Boyle (1675).

During mid-17th century the first machines designed to show electrostatic
effects appeared (e.g., the electrostatic generator by Otto von Guericke,
although not recognized as such, Heathcote 1950). In the beginning of the
18th century a more systematic study of electrical effects lead to the discovery
of conducting and non-conducting as well as to sorts of electricity by Charles
Fraņcois de Cisternay (Keithley 1999) laying the foundation for the concept
of positive and negative charges.

Late 18th century there was good understanding of electric flows (Jean-
Antoine Nollet discovered the finite speed of currents, Guarnieri 2016), the
discovery of capacitors (Guarnieri 2016) and the connection between lightning
and electricity by Franklins famous kite experiment. However, a concise
theory of the observations was missing.

An important step towards a theoretical understanding of electric inter-
actions was made by Charles-Augustin de Coulomb (Magie 1935, p. 408 ff.)
discovering the inverse square law of charged bodies. Also, around the turn
of the century Luigi Alyisio Galvani discovered the chemoelectrical effect
(Magie 1935, p. 420 ff.) which led to the construction of the first battery by
Alessandro Volta (Magie 1935, p. 427 ff.).

1) Besides gravity, which is unavoidable on earth but also negligible when in competition
with the other forces.
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1. Electromagnetic interaction

Figure 2.1: Schematic visualization of the field
of a positive point charge.

During the 19th century a significant fraction of the mathematical frame-
work that is still in use today (in some form or the other) was invented.
Prominent names generalizing the description of electric (and also magnetic)
interactions include Farraday (Magie 1935, p. 472 ff.), Ampère (Magie 1935,
p. 446 ff.) and George Green (2008). On the experimentalists side similar
well known persons contributed important discoveries, most prominently
Georg Simon Ohm (Magie 1935, p. 465 ff.).

The (classical) theory of electromagnetism as in use today was developed
by Maxwell (Magie 1935, p. 528 ff.), Hertz (Magie 1935, p. 549 ff.), Thomson
(Magie 1935, p. 583 ff.) and others. From there work the complete description
of electrodynamic was developed and can be concisely expressed in Maxwell’s
equations in differential form (Griffiths 2013)

∆E =
ρ

ε0
∆B = 0

∆×E = −∂B
∂t

∆×B = µ0I +
1

c2
∂E

∂t

(2.1)

where the problem describing parameters are the charge density ρ and the
electric current I. ε0, µ0 and c are the permittivity and permeability of free
space and the speed of light in vacuum, respectively.

Einstein could show that these equations are not preserved by under
Galilei transformations (Einstein 1905) which is key to Newtons equation
of motion. He therefore worked out a different equation of motion obeying
the same symmetry as the Maxwell equations, namely the theory of special
relativity. The predictions from this theory are of great importance to
understand the observations from atom transition experiments which will be
described in the following sections.

1.2 Charge-Charge interactions

This section will summarize the effects that can occur between charged
particles. From the first equation in Eq. (2.1) one can see that the electrical
field of a point charge is radially symmetric field with field lines which
(depending on the charge sign) point radially to or away from the charge
(Figure 2.1).

Because Maxwell’s equations are linear the superposition principle holds.
This fact makes it trivial to construct the electrical fields of static point charge
distributions as the solution is simply the superposition of all individual
charge fields.

Any charge that is exposed to a electric field feels the force of that field
and moves along the field lines either in the direction of the field if positively
charged or in the opposite direction if negatively charged. This also means
that a positive and a negative charge move closer to each other and eventually
combine to a particle zero charge.

This is of importance as it was found that all matter consists of funda-
mental particles which may carry a charge that is either positive or negative.
Although the same rules for electromagnetic interaction apply to those par-
ticles they have not combined to neutral particles. And still, the force that
binds together the substances in our world is the attractive force between
positive and negative charges.

To answer this question was one of the challenges that where faced when
the theory of matter was developed during the 20th century.

Besides this rather direct electrostatic interaction between charged parti-
cles there can also be an interaction involving the magnetic field produced
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Chapter II – The Physics of Atoms

by a moving charge(2). This interaction is of importance as a small rotating
charged sphere does produce a magnetic field. This effect is of importance
in the atomic model as will be seen later.

1.3 Charge-Field interactions

In general all interactions between charges are really the impact the fields of
all other charges have on one charged particle and as such also charge-field
interactions. But there are additional solutions to Maxwell’s equations that
have a charge distribution of zero and still have non vanishing electric and
magnetic fields.

By manipulating Maxwell’s equations one gets the wave equation for
electromagnetic waves, i.e., light(

c2∆ 2 − ∂2

∂t2

)
E = 0(

c2∆ 2 − ∂2

∂t2

)
B = 0.

(2.2)

The solutions to this equations describe the periodic time and space dependent
variations of the magnetic field that, according to those equations, propagate
forever once created.

The simplest solution for the wave equation is that of a plane wave

E(r, t) = E0 cos (ωt− kr) , (2.3)

here for the electric field component, which can be simply shown by inserting
in the wave equation. E0 is the amplitude of the wave, ω its angular frequency
and k the wave vector giving the propagation direction. The electric field is
linked to the magnetic field via

c2
∂B

∂t
=
∂E

∂t
(2.4)

according to Farradays law (Griffiths 2013).
Electromagnetic waves can be produced by periodically moving charges.

The mechanism behind the wave production lies in the finite velocity of light.
When a charged particle is accelerated the change in the electromagnetic field
spreads with the speed of light and propagates, as predicted by Maxwell’s
equations towards infinity. The knowledge of how light is generated is not
only necessary to understand the origin of natural light but also to build
devices which emit artificially and well defined light waves that can be used
to systematically probe the interaction between light and matter.

2 Particle waves and probabilities

During the end of 19th and mainly in the 20th century it was discovered that
matter consists of small particles now called atoms. And it was discovered,
that the rules of the world of those particles is fundamentally different from
the daily experience we have in our day to day life (Demtröder 2018).

Rutherford (1911) discovered, that those atoms any matter is made off,
itself have a structure. Plucker, Hittorf, Thomson and others could show,
with gas discharge tube experiments, that such atoms which have zero net
charge can be separated into positive and negative charges (Demtröder 2018).

2) In the framework of special relativity there is only the electric field, however, in a
moving reverence frame the electric field appears as an magnetic field as defined by the
Lorentz force (Griffiths 2013)
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2. Particle waves and probabilities

e−

e−

Core

Figure 2.2: The planetary model of atoms de-
scribes how the electrons move in circular paths
around the nucleus

In 1897 Thomson was able to measure the ratio of e/m (charge over mass)
for the negative charges and could also show the this radio is 4 orders of
magnitude larger compared with the positive charges (Demtröder 2018). The
former was identified as the core of the atom, the latter as electrons.

As mentioned before, was it challenging for classical theories to find
a mechanism that could explain why such structures could exist. The
electromagnetic interaction between the positive nucleus and the negative
electrons should attract each other until they fall together. According to
Rutherfords atomic model do the electrons move in circles around the nucleus,
just like the planets around the sun. Bohr, however, thought of the electrical
field the charges produce and the energy they must radiate away due to
the circular motions (Bohr 1913; ?). Due to this, he concluded, the atoms
cannot be stabilized and additional physics need to be considered.

The solution was found by solving a different problem. It was observed
that any body(3) with a temperature T emits the same spectrum of light.
The explanations deduced from the classical theories could only predict parts
of the spectrum and giving unphysical results (the ultraviolet catastrophe,
Demtröder 2018).

The solution for this black body radiation was left to Planck (1914) who
introduced the idea that energy can not be exchanged arbitrarily but only in
integer values of the modes of the radiation field ∆E = nhν (n ∈ N) where
h is Planck’s constant and relates the frequency ν of a radiation mode to its
energy value.

This idea of discrete steps was successively applied also to the atomic
model by Bohr. But instead of the energy changing in integer quantities the
angular momentum of the electrons can only change in discrete steps given
by L = n h

2π (n ∈ N). By this restriction there exists a lowest orbit that can
be realized which cannot lose energy anymore due to radiation.

This discretization of the angular momentum was justified by the interpre-
tation of matter also as waves rather than point like particles. This idea was
first published by De Broglie, Louis (1925) who inserted the momentum of a
particle into Planck’s energy relation expressed with the photon momentum
p = E/c = h/λ, giving particles a wavelength.

It was found experimentally that particles indeed show wave characteris-
tics as predicted by de’Broglies wavelength for particles (Thomson & Reid
1927). Now, demanding that the path of an electron around the nucleus
must be a standing wave one obtains the relation for the angular momentum
as used in Bohrs atomic model.

2.1 Equation of motion of microscopic particles

The discovery that also particles show wave properties, i.e., interference
patterns when moving through a slit hat to be covered by the equation
of motion that describes those particles. To retain the properties of point
like particles the wave character of microscopic particles was interpreted in
a probabilistic way. In this interpretation the time dependent position of
a particle is replaced by a time dependent probability distribution of the
particles position P (r, t) = |ψ(r, t)| where ψ is the particles wave function
in analogy to the wave function for electromagnetic waves.

The defining equation for the particle wave functions was first expressed
by Erwin Schrödinger (1926). One can follow Schrödingers approach by
starting from a plane wave of a free particle, such that p = h

2πk = ~k and

3) Actually not just bodies as in solid body but all extended matter bodies as gas clouds
and fluids
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Chapter II – The Physics of Atoms

E = hν = ~ω = Ekin. (Epot. = 0, hence, free particle). Inserting this into
the wave function one obtains

ψ(r, t) = Ae
i
~ (pr−Ekin.t) (2.5)

where Ekin. = p2

2m given by classical theory.
Taking the second derivative of this function with respect to space and

time respectively one obtains the wave equation

∂2ψ

∂r2
=

1

u2

∂2ψ

∂t2
(2.6)

with the phase velocity u = ω/k and ∂2

∂r2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 the Laplace

operator(4)

Throwing the quantities together and adding the potential energy for a
particle inside a potential independent of space and time, one obtains

− ~2

2m

∂2ψ

∂t2
+ Epot.ψ = Eψ. (2.7)

The Schrödinger equation is then obtained by replacing the kinetic energy
with the equation

∂ψ

∂t
= − i

~
Ekin.ψ. (2.8)

Schrödinger claimed that this equation still holds when the constant potential
energy is replaced by a general potential and therefore the equation of motion
is

i~
∂ψ(r, t)

∂t
= − ~2

2m

∂2ψ(r, t)

∂r2
+ Epot.ψ(r, t). (2.9)

A more detailed description of the development of the theory of quantum
mechanics and all the experimental milestones that lead to the current
picture of the microscopic world is outlined, for example, in Demtröder
(2018), Bransden et al. (2003) or Griffiths & Schroeter (2018).

2.2 The physical picture of probability waves

In contrast to the classical theory of motion where a intuitive picture can be
drawn of the problem, the quantum theory does not really give this intuitive
access. At least not in the quantum mechanical framework as described by
Schrödinger.

A more intuitive interpretation for quantum mechanical mechanical
interactions was given by Richard Feynman (1948). He was thinking about
the physical action(5) and that, although it plays a key role in the classical
theory, it is not present in quantum mechanics.

Feynman found a different representation that is mathematical identical
to Schrödingers theory but did include the action. In the classical theory
solutions for a problem are given by the processes where the action is
minimal. In Feynmans interpretation the probability for a process to happen
is dependent on the value of the action and is largest for the classical solution.

The physical interpretation of this description is that instead of the
probability waves we still have point like particles but the path a particle is
may take depends on the possible paths that there are for this particle and
interactions it cant take part in. This interpretation is referred to as the path
integral formulation of quantum mechanics and besides very simple problems
not solvable. It did, however, lay the foundation for the modern theory of
fundamental particles as of today, namely the quantum field theory.

4) Usually the Laplace operator is denoted with ∆, however, with this notation it is more
clear that it is a derivative of the spatial part
5) The naive interpretation of the the action is the integrated energy conversion from

potential to kinetic energy and vice versa in a process.
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3. The simplest atomic system: The Hydrogen Atom

r(r, ϕ, ϑ)

ϕ

ϑ

z

y

x

Figure 2.3: Space vector representation in spher-
ical coordinates.

3 The simplest atomic system: The Hydro-
gen Atom

In 1885 Balmer found that the emission spectrum of Hydrogen consists
of several sharp lines. He also found a very simple relation between the
wavelengths of the emitted lines

1

λ
= Ry

(
1

n1
− 1

n2

)
(2.10)

where n1 = 2, n2 ∈ [2, 3, 4, . . .] and Ry the experimentally determined
Rydberg constant. Later, Lyman (1906, 1914) and Paschen (1908) found
also lines that could be described with n1 = 1 and n1 = 3.

With Bohrs atomic model it was possible to understand this relation
because the distance between core and electron is restricted to discrete values
by the angular momentum constraint. The allowed distance values can be
calculated by setting the Coulomb force between core and electron equal
to the centripetal force and further restrict r according to 2πr = nλdB.
Rearranging gives

rn =
n2

Z
a0 (2.11)

with the classical atomic radius or Bohr radius a0 = ε0h
2

πµZe2 of the electron

(µ is the reduced mass of the electron-nucleus system).
The kinetic energy in the center of mass system is given by

Ekin. =
µ

2
=

1

2

Ze2

4πε0r
= −1

2
Epot. (2.12)

where the velocity is given by the equality of forces. From this the total
energy is given by

E = Ekin. + Epot. = −1

2

Ze2

4πε0r
. (2.13)

Inserting the expression for the radius one obtains the same expression as
found empirically when subtracting two energy levels

1

λ
=
En
hc

= −Ry

hc

Z2

n2
. (2.14)

The Rydberg constant is therefore related to the other quantities via Ry =
µe4

8ε20h
3c

.

This relation shows that the electron that is moving around the proton
in the center of the atom can only exist in discrete states. Bohr proposed
in his model that light is emitted when the electron changes from an outer
radius to a inner one releasing a light wave carrying the energy difference
away. In the classical picture the light is emitted by the changing dipole
moment between the electron and the proton.

The rest of this chapter will summarize the predictions made by Schrödinger
theory for atoms and the corrections that have to be made to contain the
experimental findings.

3.1 Wave functions in the Coulomb potential

The remaining part of this chapter mainly summarizes parts of the book from
Demtröder (2018) describing the theory of a particle wave in the Coulomb
potential.
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Chapter II – The Physics of Atoms

Suitable for a spherical symmetric problem is the use of spherical coordi-
nates (Figure 2.3)

x = r sin(ϑ) cos(ϕ)

y = r sin(ϑ) sin(ϕ)

z = r cos(ϑ).

(2.15)

This also changes the form of the Laplace operator to

∂2

∂r2
=

1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

r2 sin2 ϑ

∂2

∂ϕ2
. (2.16)

With this form of the operator and the Schrödinger equation one tries as
a ansatz for the solution a separation of all coordinates

ψ(r, ϑ, ϕ) = R(r)Θ(ϑ)Φ(ϕ). (2.17)

With this wave function the Schrödinger equation gives after multiplication
with r2 sin2 ϑ/ψ

sin2 ϑ

R(r)

d

dr

(
r2 dR

dr

)
+

sinϑ

Θ(ϑ)

d

dϑ

(
sinϑ

dΘ

dϑ

)
+

2m

~2
(E − Epot.(r)) r

2 sin2 ϑ = − 1

Φ(ϕ)

d2Φ

dϕ2
. (2.18)

Where the left side is solely dependent on r and ϑ and the right side solely
on ϕ. From this one can conclude that, because the equation is valid for all
combinations r, ϕ and ϑ, both sides in Eq. (2.18) have to equal a constant
C.

For the right side the solution is then given by

Φ = Ae±i
√
Cϕ (2.19)

and because the solution has to be unique a further constraint is that
Φ(ϕ) = Φ(π + 2πn) such that follows

√
C = m (m ∈ Z).

Additionally, requiring that Φ is normalized when integrated over the
full space, gives A = 1/

√
2π. In combination one obtains the normalized

angular function

Φm(ϕ) =
1√
2π
eimϕ. (2.20)

Now, dividing Eq. (2.18) by sin2 ϑ and rearranging such that one side
has all terms dependent on ϑ and conversely all terms depending on r on
the other side one obtains

1

R

d

dr

(
r2 dR

dr

)
+

2m

~2
r2 (E − Epot.(r)) =

− 1

Θ sinϑ

d

dϑ

(
sinϑ

d

dϑ

)
+

m2

sin2 ϑ
(2.21)

and with the same argument as before both sides are independent and
therefore have to equal a constant C̃.

The right side of Eq. (2.21) can be transformed into the Legendre
differential equation when m = 0. This equation has solutions that can be
written as polynomials, the Legendre’s polynomials. For the case m 6= 0 the
solutions are also known and given by the associated Legendre functions
Pml (cosϑ) which can be obtained from the Legendre’s polynomials

P = a0 + a1 cosϑ+ a2 cos2 ϑ+ . . .. (2.22)

12



3. The simplest atomic system: The Hydrogen Atom

The condition that P must be finite also for ζ = ±1, which corresponds
to ϑ = 0 and ϑ = π, requires only finitely many an 6= 0. Otherwise P would
grow to infinity.

Inserting P in the Legendre equation gives a recurrent relation for the
coefficients an depending on C̃. And because only finitely many an 6= 0 one
can show that C̃ = l(l + 1) (l ∈ N). The associated Legendre functions are
then related to the Legendre’s polynomials

Pml (cosϑ) = const. · (1− cos2)|m|/2
d|m|

d cos|m| ϑ
Pl(cosϑ). (2.23)

From the relation between the Legendre’s polynomials and the associated
Legendre functions one can see that |m| ≤ l has to be fulfilled, else the
|m|th-derivative would not be defined.

Combining the solutions for Θ and Φ one obtains the spherical surface
harmonic functions

Y ml (ϕ, ϑ) = Pml (cosϑ)Φm(ϕ). (2.24)

Those functions have to be normalized when integrated over one sphere,
otherwise the interpretation as probability is not possible∫ 2π

0

dϕ

∫ π

0

dϑ |Y ml (ϕ, ϑ)|2 sinϑ = 1. (2.25)

It is to note that the spherical harmonic functions are independent of r
and are therefore solutions for any radially symmetric potential.

Expressing the classical angular momentum L = r×p with the quantum

mechanical momentum operator p = −i~(r× ∂2

∂r2 ) one obtains the Cartesian
angular momentum operators expressed in spherical coordinates as

Lx = i~
(

sinϕ
∂

∂ϑ
+ cotanϑ cosϕ

∂

∂ϕ

)
Ly = i~

(
− cos

∂

∂ϑ
+ cotanϑ sinϕ

∂

∂ϕ

)
Lz = −i~

∂

∂ϕ
.

(2.26)

The square of the total angular momentum is given by L2 = L2
x+L2

y+L2
z

which, when applied to the wave function of the spherically symmetric
potential, gives

L2ψ = l(l + 1)~2ψ (2.27)

following directly from the Schrödinger equation. One can also see that the
z-component of the angular momentum is given by

Lzψ = m~ψ (2.28)

because ψ ∼ eimϕ. This also shows that the quantities L2 and Lz have the
same eigenfunctions and, according to quantum mechanics, can be measured
simultaneously (unlike Lx and Ly).

The radial part for the hydrogen wave function solves the differential
equation introduced by the Coulomb potential. The solution is known and
can be expressed in terms of Laguerre potentials

R(r) =

√(
2

na∗0

)3
(n− l − 1)!

2n(n+ l)!
e−ρ/2ρlL2l+1

n−l−1(ρ). (2.29)

Here, ρ = 2r
na∗0

with the reduced Bohr radius a∗0 = 4πε0~2

µ2 (µ the reduced

mass of the electron proton system, p. 147 ff., Demtröder 2018). Lαk are the
generalized Laguerre polynomials
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Chapter II – The Physics of Atoms

Table 2.1: Possible combinations of the quantum
numbers of the electron wave equation

n l m total states

1 0 (s) 0 1

2 0 (s) 0 4

1 (p) -1,0,1

3 0 (s) 0 9

1 (p) -1,0,1

2 (d) -2,-1,0,1,2

4 0 (s) 0 16

1 (p) -1,0,1

2 (d) -2,-1,0,1,2

3 (f) -3,-2,-1,0,1,2,3

3

2

1

0

−1

−2

−3

3

2

1

0

−1

−2

2

1

0

−1

1

m = 1l = 0

432n = 1

Figure 2.4: This figure shows the probability dis-
tribution for the first solutions of the Schrödinger
equation for the hydrogen atom. The plots are
cuts through the y-z-plane and scaled in size by
1/n.

The radial solution also gives constraints on the values for l in the same
way as the spherical solution restrict m. It is such that l < n (l ∈ N0, n ∈ N).
The constraint also comes from the requirement that the wave function can
be normalized.

The probability of finding the electron of the hydrogen atom is given by
|ψ|2. The results for some probability distributions are shown in Figure 2.4.
The combinations for the quantum numbers n,l and m are given in Table
2.1. Usually one labels the numbers for l with the characters s = 0, p = 1,
d = 2, f = 3 and all higher from h onwards. This labeling dates back before
quantum mechanics could explain the distribution and the different energy
levels that observed in the hydrogen atom where called sharp (s), principal
(p), diffuse (d) and fundamental (f)

3.2 Physical properties of (nlm) states

The previous section summarized the possible states a electron around a
proton can have. The wave function that alone does not have direct physical
meaning, only the absolute square give the probability of finding the electron
at same point in space.

From the radial dependent part (2.29) one can see that the quantum
number n determines the mean distance of the electron from the nucleus.
One can calculate the probability of finding the electron in a spherical shell
from radius r to r + dr via

P (r) dr =

∫ 2π

0

dϕ

∫ π

0

dϑ|ψ(r, ϕ, ϑ)|2r2 sinϑ dr. (2.30)

Which, for the l = 0 states is maximum for na∗0 identical to the results from
Bohrs atomic model.

However, there are key differences between Bohrs atomic model and the
quantum mechanical description. First, the expectation value of the radius
given by

〈r〉 =

∫ ∞
0

dr

∫ 2π

0

dϕ

∫ π

0

dϑr|ψ(r, ϕ, ϑ)|2r2 sinϑ (2.31)

is 3
2a
∗
0 for the (n, l) = (1, 0) state and therefore differs from Bohrs results.

Further, the value of l in Bohrs model is always positive while the wave
function gives as expectation value for the angular moment 0.

Besides n determining the mean distance and therefore also the mean
potential energy of the electron, the quantum number l influences the shape
of the wave function. As depicted in Figure 2.4 higher values of l give more
and more complex shapes of the particle distribution (p. 152 ff., Demtröder
2018).

Finally, the quantum number m determines the orientation of the wave
function usually defined to the z-axis(6).

4 Atomic energy levels

The last part of this chapter will summarize the effects that are responsible
for the exact location of the energy levels in the hydrogen atom. The theory
that was described by Schrödinger, although very precise, was missing an
important part that is responsible for the exact level energies. This missing
part was the inability of Schrödingers theory to explain why electrons have
a discrete magnetic moment Stern (1921); Gerlach & Stern (1922).

6) This axis is called the quantization axis
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Figure 2.5: Level splitting in the hydrogen atom due to different effects on the electron.
Rydberg levels: Due to mean distance between the nucleus and the electron in the Coulomb
potential. Fine structure splitting (factor 10 increased w.r.t. Rydberg scale): Relativistic
mass increase of the electron mass, line splitting because of spin-orbit coupling due to
magnetic moment. Lamb shift (factor 20 increased w.r.t. Fine structure): Quantum-
electrodynamical effect, due to the photon field interaction with the electron the energy is
decreased. Hyperfine structure (factor 40 increased w.r.t. Lamb shift): Energy splitting
due to spin of the nucleus and the magnetic moment of the electron (F total angular
momentum).

The solution to explain this phenomenon was to introduce another quan-
tum number for the electron which can be interpreted as a rotational moment
of the electron(7). This moment together with the charge of the electron gen-
erates a magnetic moment interacting with a magnetic field. The quantum
number that was found describing the observed behavior is now referred to
as the spin of the electron and can only take the values s = 1/2 or s = −1/2
(Demtröder 2018, p. 161 ff.,).

Schrödingers theory can be expanded to describe electrons correctly by
adding a spin phase factor to the wave function. This spin function represents
the spin of the described electron and allows to apply Pauli’s principle (Pauli
1926, 1940).

For a complete description of the spin property it was necessary to develop
a different equation of motion properly treating special relativity. Dirac &
Fowler (1928) in 1928 discovered a new description which correctly predicts
the effects due to the electron spin and special relativity.

7) Although this quantity mathematically behaves like the angular moment of the electron
“body” one quickly runs into problems when thinking of a rotating charged sphere as model
for the electron.
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4.1 The Rydberg levels

As mentioned before was the driving force behind the development of quan-
tum mechanics due to the observed discrete emission from atomic systems. It
was quickly realized that the atomic system must undergo a transition where
it turns from a energetic higher state to a lower state (photon emission)
or vice versa (absorption). The Rydberg formula was found to empirically
describe the observed line position.

After the development of quantum mechanics and the discrete energy
levels which can be realized in a atomic system, the Rydberg levels follow
naturally from the Coulomb potential. Here, the potential energy depends
on the distance between the charges. From the wave function of the electron
one can see that the distance of the electron from the nucleus is determined
by the quantum number n. Because additional effects only slightly affect the
energy predicted by n (Figure 2.5) it is called the principal quantum number.

4.2 Fine structure splitting

The spin property of the electron generates a magnetic moment according
to the theory of electromagnetism. In the same way is the angular motion
of the electron generating a magnetic moment depending on the angular
momentum of the electron. These two moments interact and cause the
energy of the electron to be increased or decreased depending on the relative
orientation of the moments.

Figure 2.5 shows that the Rydberg levels split for electron states with
l > 0. In the case of l = 0 the electron orbit does not generate a magnetic
moment and therefore no splitting for those states occurs.

Besides the splitting of the Rydberg levels due to the spin-orbit coupling
the resulting levels are also shifted in energy due to relativistic effects. One
the one hand is the momentum of the particle only correctly described by
relativistic theory. This gives an effective mass increase of the electron the
faster it is moving reducing the total potential energy. Additionally, the
interaction of the nuclear and electron charge is affected by Heißenbergs
uncertainty relation. This gives an additional correction to the potential
levels (Darwin 1931).

The fine structure splitting was discovered already in 1887 by Michelson
& Morley but only understood much later.

4.3 Lamb-shift

In the modern interpretation of quantum mechanics is every interaction
described by the exchange of particles between the interacting fields. In the
case of the electromagnetic interaction the exchange particle is the photon. In
this picture do the fields generated by the nucleus and the electron constantly
exchange photons. This exchange is possible due to the uncertainty relation
and does not violate energy conservation.

The emission and absorption of photons leads to a statistical path of
the electron shifting the potential energy, called Lamb-shift (p. 176 ff.,
Demtröder 2018). As the electrical field is stronger in the direct vicinity of
the nucleus, electrons coming closer to the core are stronger affected by the
Lamb-shift compared to electrons farther away.

From the wave function on can see that the only the states with l = 0
have non-vanishing probability distributions at the nucleus (see Figure 2.4).
Therefore those states are much stronger affected by the Lamb-shift compared
to states with l 6= 0.

The Lamb-shift is a purely quantum electrodynamical effect and as
such not contained in Diracs theory. The effect of the field interaction was
experimentally discovered in 1947 by Lamb & Reutherfurd.
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5. Multi-electron systems

4.4 Hyperfine structure

The final contribution that affects the energy levels of the hydrogen atom is
due to the magnetic moment of the nucleus. Just in the same way as the
electron has a magnetic moment due to its spin does also the proton have a
magnetic moment as consequence of the proton spin.

The couplings of the moments depends on the total angular moment of
the atomic system. The splitting due to this interaction is so small that it
can only be observed in Doppler-free spectroscopy (p. 170, Demtröder 2018),
otherwise the levels are smeared to one peak due to the motion of the atoms.

The aforementioned effects are responsible for the exact location of the
energy levels in the hydrogen atom. However, the splitting as described is
only true in field free environments. As soon as the atom is located inside a
magnetic field the interaction between the magnetic moment of the electron
and the external field cause different splittings of the levels. The splitting
that is observed depends on the relative strength of the coupling between
the internal moments and the external field (Paschen & Back 1912).

As most experimental setups involve magnetic fields the observed lines
undergo those effects showing a different splitting than the level scheme
depicted in Figure 2.5.

The energy levels of the hydrogen atom can be populated due to collisions
of the electron with other charged particles or by the absorption of light. As
nature tends to minimize energy are energy levels above the ground level
not stable and will transition to lower energetic states by emitting photons
with the energy of the level difference. Although energetically the transition
between any level is possible nature also adheres to momentum conservation
such that only some processes are allowed. Many other processes can be
realized by emitting more photons but happens consequently less often.

5 Multi-electron systems

So far only the hydrogen atom was discussed. For systems with more than
one electron, the Schrödinger equation does not have analytical solutions.
Therefore, to describe heavier elements one has to rely on approximations
or numerical calculations. Although approximations usually give a better
insight in the behavior of the system itself, the obtained results are valid only
in a arrow range defined by the approximation used. Numerical methods on
the other hand, can be, theoretically, correct to arbitrary precision. But in
reality it turns out that for very complex systems the observed results do
not agree with calculated ones. This is (almost always) not due to missing
physics but because also those calculations rely on certain assumptions to
be practical.

For the calculation of transition energies, line strengths and other quanti-
ties that are of interest, different programs were developed to simulate either
collisional ionized or photo-ionized plasma. This work made use reference
values calculated with Flexible Atomic Code (FAC) (Gu 2008). FAC cal-
culates ionization processes in a fully relativistic framework of the Dirac
theory.

A more theoretical treatment of multi-electron systems is given in text-
books about the atomic theory and spectroscopy: Demtröder (2018); Griffiths
& Schroeter (2018); Bransden, Joachain, & Plivier (2003).
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Chapter III – Spectroscopy of X-ray sources

The phenomenon of vision, light and color was always a fascinating and
widely discussed topic. Already the ancient Greeks discussed several ideas
about the nature and properties of light. The discovery of the interaction of
light and matter under modern scientific aspects happened much later and
it was René Descartes around 1600 (?) who first described how the colors of
the rainbow are produced by light passing through glass or water. A more
comprehensive description was later given by Newton & Innys (1730) in his
book ‘Opticks’.

In later work Wollaston (1802), who made improvements based on the
work of Newton, recognized the existence of lines in observed spectra. Al-
though Wollaston did not identify the source of the lines, his work laid out
the foundation for Joseph Fraunenhofer and his foundation of astronomic
spectroscopy (Frauenhofer 1817). Frauenhofer was also the first who used a
grating to systematically study transitions in gases.

The improvements of the grating experiments by Herschel (1788) and
Talbot (1826) later allowed Balmer (1885) to discover the 1/n2 dependence
of the lines in the hydrogen atom and ultimately lead to the formulation of
the famous Rydberg formula.

Many of the discoveries that finally forced the development of a new
theory of matter and light are due to better understanding of the sources of
light and systematic measurements of the emission of gas clouds. One of the
most important insights was, that the generation processes of light have a
characteristic spectrum and it is therefore possible to deduce many properties
of a light source just from the observed spectrum. It is this relation between
objects and their emitted light that make modern astronomy possible. And
this is also the reason why, although many can be learned from an image, a
spectrum gives much more insight in astronomical sources.

In this chapter experimental setups shall be discussed that allow to
observe spectra of X-ray sources as well as methods to measure emission
lines of atoms.

1 Detecting X-rays

The X-ray regime belongs to short wavelength photons and therefore cor-
responding high energy: 100 eV . EX-ray . 100 keV(1). Due to those high
energies, X-ray photons can easily penetrate materials and is therefore
challenging to build X-ray detecting devices.

In general, X-ray photons are detected by measuring side effects of the
photons in materials. This can be the photoelectric effect (Hertz 1887) as
used in digital cameras or the measure of produced ions in a gas cloud due
to photon atom collisions.

An excerpt of different detector types and there working concepts is given
in the following.

1.1 Semiconductor detectors

Einstein explained in 1905 the photoelectric effect by considering photons as
particles rather than waves. Photons with enough energy are able to remove
electrons from a metal plate by momentum transfer. Using this interaction
process one can design devices which, when exposed to light, respond with
the formation of free electrons or an electron cloud within the the solid. The
total charge of such a cloud can be measured and is directly proportional to
the energy of the incident photon.

1) This corresponds to wavelengths of 0.01 to 10 nm. But historically X-ray photons are
generally given in energy instead of wavelength or frequency
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Figure 3.1: Schematic drawing of a CCD cell.
Incoming photons interact with electrons in the
semiconductor material and excite them to the
conduction band, creating electron-hole pairs.
The positive voltage applied by the electrode traps
the electrons in the junction potential of the dif-
ferently doped semiconductors. The number of
trapped electrons depends on the energy of the
impacting photon and the energy gap of the semi-
conductor.
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Figure 3.2: Schematic drawing of an SDD detec-
tor. Electron-hole pairs get produced on photon
impact and the electrons are guided to the anode
where they get detected. Compared to a CCD
do these detectors not naturally provide spatial
resolution.

Charged coupled devices

In 1970 Boyle & Smith discovered that one can use p-doped Metal Oxid
Semiconductor (MOS) to store and collect charges, today called Charged
Coupled Devices (CCDs). They already mentioned that the charges can be
produced by incident light. Later improvements on the design lead to high
performance and sensitivity for light. CCDs quickly became a standard tool
for quantitative photon counting.

The working principle is schematically drawn in Figure 3.1. When a
photon interacts with the semiconductor material of the MOS electrons get
lifted from the valence to the conducting band producing a electron-hole
pair where the electron gets attracted by a positively charged electrode. The
process described by Boyle & Smith (1970) allows to move the captured
charges such that they can be read out.

The number of electron-hole pairs that get created by this process depends
on the energy of the incident photon and the energy gap. This can be
understood quantitatively such that when a photon is interacting with the
material all its energy is transferred to the semiconductor electrons. The
number of electron-hole pairs that get produced is then simply given by the
energy each pair requires for creation

Ne ≈ Eγ/Epair. (3.1)

For silicon this energy is 3.65 eV (Strüder 2000, at room temperature).
From Eq. (3.1) it follows that the energy resolution of a CCD is restricted

by this creation mechanism in the semiconductor. The energy that is required
to create electron-hole pairs in semiconductors is of the order of some eV.
With this one can estimate the energy resolution of a CCD from counting
statistics by ∆E ≈

√
NeEgap. This estimate gives a resolution of the order

of 100 eV for photon energies at the Iron Kα line (E = 6.4 keV).
CCDs are commonly used in X-ray astronomy and many of the modern

space observatories feature optics with a CCD chip, e.g., X-ray Multi-Mirror
mission (XMM) (Strüder et al. 2001) or Chandra (Garmire et al. 2003) The
use of CCDs is not only due to the resolution they provide, but also because
they have relatively modest operation requirements which is an advantage
in the harsh environments of space.

Silicon drift detectors

Compared to CCDs where the generated charges are trapped in small po-
tentials in each pixel and iteratively moved from pixel to pixel for readout,
Silicon Drift Detectors (SDDs), as their name indicates, have a steady drift
of electrons to the readout electronics. This drift is due to a field that is
applied to the silicon block such that electrons created in the same way as
in the CCD move through the silicon to the anode (Figure 3.2).

From this it should be obvious that the intrinsic mechanics between SDDs
and CCDs is the same. This also means that the energy resolution which
is achieved by SDDs compares equally to CCDs. A closer inspection of the
processes involved reveals, according to Strüder (2000),

∆EFWHM = 2.355w

√
R2

enc. +
FE

w
(3.2)

where F is the Fano factor (Strüder 2000) of the semiconductor, E the
photon energy, w the required energy for pair creation and the prefactor
2.355 relates the standard deviation of a Gaussian to the FWHM. The term
Renc. contains the noise of the readout process (Strüder 2000).

Although, SDDs and CCDs have similar properties there is one crucial
difference which renders SDDs in some situation the better choice. Compared
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Figure 3.3: Exemplaric realization of a ion detec-
tion chamber. Impacting photons ionize the gas
and a applied voltage at and anode attracts and
accelerates these ions. On impact at the anode
surface electrons will get liberated and successive
cathodes repeat this process with the electrons,
i.e., multiplying the number of electrons.

Absorber

Thermistor

Heat sink

Thermal link

γ

I

Figure 3.4: Schematic drawing of the measure-
ment of changing temperature due to photon ab-
sorption. The signal is obtained from the ther-
mistor where a different voltage is measured for
constant current and changing temperature. For
successive measurements it is necessary that the
temperature dissipates as quickly as possible with-
out affecting readout.

to CCDs which are build up by layers of different material, SDDs are made
of a block purified silicon (Strüder 2000) and already have a low noise signal.
Therefore it is sufficient to cool the detector with Peltier elements (Strüder
2000) instead of cryogenic setups to reduce the intrinsic noise to a minimum.

1.2 Ionization detectors

In contrast to solid state detectors where the impacting photons create
electron-hole pairs it is also possible to utilize the ionization power of X-rays
to charge atoms or molecules in gas, liquids or solids and detect them. Two
concepts for the detection of ions shall be outlined in the following.

A simple detector for X-rays can be provided with a ionization chamber
(Knoll 2000). Here, the incident photons ionize gas inside the detector
producing electron-ion pairs. A wire with applied voltage attracts the ions
produced and a current can be measured across the wire as ions interact with
it. The number of electron-ion pairs is proportional to the photon energy
such that from the measured current the photon energy can be reconstructed.

Compared to simple charge detection in gas chambers one can increase the
voltage that attract the ions. In this way the ions are accelerated and while
moving through the gas their energy is high enough to produce additional
electron-ion pairs (Knoll 2000). Therefore, the sensitivity of the detector is
greatly increased. These proportional counters where also used in astronomy
instrumentation, e.g., XRT-PCA TODO: Insert citation.

Instead of wire it is also possible to extract electrons which get released
when ions impinge on a metal plate. The electrons are as well accelerated
in an electrical field causing more electrons to be released on impact on the
metal surface. The working principle of such a electron multiplier is depicted
in Figure 3.3.

The resolution of ionization is in general an order of magnitude worse in
comparison with solid state detectors. The reason is higher energy which is
required to ionize the atoms in the gas compared with the energy required
to generate electron-hole pairs in a semiconductor.

1.3 Calorimeters

Instead of measuring the energy via an excitation channel it is also possible
(with allot of technological effort) to measure the energy of incident photons
via the temperature change of a solid absorbing a photon.

The first time a thermometer was used to detect light was in 1800a; 1800b
by Herschel for the red light diffracted by a prism. It was found that the
photons transfer energy to the atoms and molecules of a solid through the
excitation of one electron. This excited electron elastically collides with other
electrons in the body distributing the energy over a volume and therefore
heating up the solid (Figure 3.4, Hell 2017).

For the detection of this temperature change two conditions are crucial
which render the operation of calorimeters as photon spectrometers very
challenging. On the one hand is the temperature change very small such that
thermometers are required allowing to detect this tiny change. The currently
used devices either utilize thermistors (McGee et al. 1988), resistors with a
strong dependence on the temperature, or Transition Edge Sensors (TES)
(Ullom & Bennett 2015) which are superconductors operated just at the
critical temperature where the state changes between super conducting and
normal resistor.

Secondly, the temperature change that is introduced even by high ener-
getic X-rays is still very small. Therefore, the signal is dominated by the
intrinsic temperature of the detector if not cooled to a temperature just
above absolute zero.
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2. The EBIT Calorimeter Spectrometer

Figure 3.5: Idealized voltage function on photon
impact. The two curves correspond to thin (red)
and thick (blue) pixels. The gray area in the
image covers the length of the mid res template
for event reconstruction. The high res template
covers the full range. Adopted from Hell (2017)

Despite the difficulties that are involved with cryogenic systems are
calorimeters extremely valuable tools for X-ray spectroscopy. The energy
resolution that can be reached with calorimeters is of eV order (Hell 2017).

The high resolution paired with high sensitivity make calorimeters the
future instruments for X-ray astronomy. Despite multiple try’s to run
calorimeter based space instruments (Hitomi, Suzaku) it was so far not
possible to keep the instruments in operation. Future missions are planed,
for example XRISM (NASA) and Athena (ESA) Bering in different stages
of development.

2 The EBIT Calorimeter Spectrometer

Part of this work was to test and apply a different calibration method for the
EBIT Calorimeter Spectrometer (ECS)(2). The ECS is a microcalorimeter
located at LLNL and is used as a high resolution device for calibration
measurements of crystals (Hell 2017, and reference therein) and transmission
filtersTODO: Insert citation as well as for testing the readout electronics
and the cryogenic system for space missions and also the capabilities of
microcalorimeters in general. This section shall provide a basic overview of
the involved components and how the data is obtained.

2.1 Data acquisition

As already discussed previously are the most commonly used X-ray calorime-
ters build with a resistor with strong temperature dependence. The signal
that is is read out from the calorimeter is a voltage level which raises due
to photon impact. The heat which causes the resistance change must be
quickly absorbed, otherwise the detector would suffer from unnecessary long
dead times. The voltage function on photon impact is therefore a sharp peak
with a damping out after peak level is reached where the exact damping
form depends on the characteristics of the involved solids.

In Figure 3.5 idealized signal pulses are shown for the ECS. The ECS
features two different pixel types where the main difference is the thickness
of the absorber and therefore different sensitivity in different photon energy
ranges. The two curves in Figure 3.5 correspond to the differ end pixels
where the shorter peak necessarily corresponds to the thin pixels.

The critical parameters which determine the sensitivity of the calorimeter
are the heat capacity, C, of the absorber and the heat conductance, G, of
thermal link to the heat sink. The temperature change of the absorber is
linked to the photon energy via ∆T ∼ Eγ/C while the damping of the signal,
that is, the time required to return to the reference temperature given by
the heat sink is

T (t) = Eγ/C exp(t/τ0) (3.3)

where τ0 = C/G (McCammon 2005).
The best energy resolution that can be achieved with calorimeters requires

to reconstruct the event of an impacting photon by determining the pulse
height of the voltage signal as can be seen from Eq. (3.3). It is straight
forward to see that one wants to have a hight time resolution of the voltage
signal for the best resolution. But this leads to a high data throughput such
that storing pulse shape of every event is at best impractical but mostly just
not possible. To still obtain reliable results it is necessary to analyze the
pulse signal as they occur.

2) This microcalorimeter is stationary placed at one of the open ports of the Lawrence
Livermore National Laboratory (LLNL) Electron Beam Ion Trap (EBIT). EBITs will be
discussed in the next chapter
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The simplest method to obtain a measure for the peak height is by taking
the highest value in the pulse shape. Although this already provides a first
value the uncertainty introduced from this is very high and should be avoided
if possible.

A much better estimate of the peak value is obtained by reproducing the
measured event shape with a function. This is done via averaged templates
of events. The detailed process is described in Hell (2017) and references
therein.

The basic idea is that these templates are constructed from actual mea-
sured events and are fit with just one parameter, the peak height, to the
signal. The overall process can be summarized in this way

1. Monitor voltage signal from thermistor

2. If voltage exceeds defined threshold, trigger event reconstruction

3. Fit template event to data

4. Subtract fitted event, if still above threshold, repeat

The total analyzing process is done in software after digitizing the raw signal
(Thorn 2008). The best signal quality is achieved if the fit function, i.e.,
the template covers as many bins as possible. The reason for this will be
discussed in the next section.

It is quite obvious that the quality of the measured data depends on the
quality of the templates. As there is only a single parameter for fitting the
shape of the templates must be as close as possible to the true event shape.
To provide reasonable good templates for the data acquisition is the duty of
the experimentalist. When we will discuss the calibration of the ECS data
in Chapter V, we will treat the whole experimental setup as black box with
no assumptions on the data quality.

2.2 Optimal filtering

A closer inspection of the signal from the thermistor reveals that the power
spectrum of the noise and of an event compare equally just with a different
scaling factor (McCammon 2005). In oder words, the signal is not correlated
between different frequency bands such that the signal to noise ratio (SNR)
for the event reconstruction gets better the larger the frequency domain is
in which the signal is reconstructed. By averaging the noise signal N and
compare it with the event data D in frequency space one can therefore obtain
the highest possible resolution.

In practice is the transformation of data from time domain to frequency
domain computationally too expensive. Therefore a technique called optimal
filtering is used (Szymkowiak et al. 1993). For optimal filtering one assumes
that the pulse shape solely depends on the signal strength such that it can be
represented by a function f with a scaling factor h. Due to the uncorrelated
noise between frequencies, the fitting is done in frequency domain. After
determining the best fit dχ2/ dh = 0 with χ2 =

∑
(D(ν) − f(ν))2/N(ν)2

and Fourier transforming the result back to time domain. One obtains for
the scaling parameter

h = k′
∑

D(t)F (t) (3.4)

where k′ a normalization constant and F (t) the template function which
only depends on the Fourier transform of the pulse shape f and the noise N .
The process for optimal filter for the ECS is more thoroughly described in
Hell (2017).

The ECS consists of an array of 36 microcalorimeters (pixels)(3) where

3) Due to the hardware setup only 32 of the pixels can be in use at the same time
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d
Figure 3.6: Constructive and destructive inter-
ference of light incident on a grating. The distance
between adjacent lines is given in d.

each pixel has its very own noise figure. Therefore, one needs to provide
event functions for each pixel individually. The functions are generated by
taking sample data with the ECS and average over multiple events.

From the pulse height analysis process described above one can see that
the template has to fit over one event and one event only. To still obtain
the pulse height for successive events a shorter template is provided for
reconstruction (gray area in Figure 3.5), reducing the resolution for those
events. If events with still shorter spacing in time occur one can only use
the peak height itself, further degrading the resolution. This resolution
degradation limits the brightness of sources for which the ECS gives the best
possible results.

3 Dispersion spectroscopy

Calorimeters already provide a very high energy resolution and once a
working calorimeter made it safely to space new insights into astronomical
sources are almost granted. Still, the highest possible resolution is only
reached with diffraction instruments. The theoretical limit for gratings is
given by the Rayleigh criterion involving the size of the diffraction grating.

The diffraction pattern of gratings is given by the constructive and
destructive interference of reflected waves from a grating or slit grid. The
wave fronts have constructive interference when the path length of normally
incident light between adjacent slits is an integer multiple of the wavelength
λ. The situation is shown in Figure 3.6 from which it is easy to see that the
angles under which maxima occur are given by

cosβ = mNλ (3.5)

with N the line density, i.e., the number of slits per length, m the diffraction
order and θm the angle of the diffracted light w.r.t. to the grating plane.

Further, it follows for plane waves that for arbitrary incident and reflection
angles the maxima occur at

cosα− cosβ = mNλ (3.6)

where α is the angle between the grating plane and the reflected direction.
The use of gratings does not directly give access to the energy spectrum

since the photons still need to get detected. But instead of the resolution
dependence of the detection process it is shifted to a spatial detection of
photons. Suitable detectors are CCDs as they are used on board of Chandra
and XMM to collect the photons from a dispersion grating (den Herder et al.
2001; Brinkman et al. 2000).

The tradeoff one has to take when using diffraction elements for X-ray
measurements is that weak sources are extremely difficult to detect. This
follows directly from the fact that the incident photons get distributed over
a larger area leaving diffraction measurements only usable for bright sources
or long observation times.

In the laboratory, however, where electron accelerators (e.g., BESSY,
PETRAIII) provide luminous X-ray sources one can reverse the process and
instead illuminate probes with nearly monochromatic X-rays. This allows
very accurate measurements of transition levels in elements.

Part of this work was the analysis and calibration of data obtained from
an experiment to precisely measure the oxygen Rydberg edge. X-rays from
the BESSY beamline U-49/2 excited molecular oxygen in a gas cell where
a electron multiplier detected the ion yield depending on the X-ray energy.
For proper calibration He-like ions were produced in an EBIT providing
reference lines with known energy.

The experimental setup and analysis is presented in Chapter V.
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Figure 4.1: Schematic drawing of the trapping
potential inside the Livermore EBIT. The care-
ful selection of the electron beam energy gives
access to the desired ion species. Adopted from
https://www-ebit.lbl.gov/.

Every element has its very own characteristic energy spectrum. But not
only do the energy levels differ between different elements but also between
distinct ionization states of the same element.

Especially gas under conditions where X-ray radiation is produced due
to hight temperatures is ionized to some fraction (depending on the tem-
perature). For the proper identification of lines in astronomical sources and
the derived quantities of them, it is important that precise and accurate
reference values are available.

To measure these lines one needs a reliable way to produce plasma with
desired ion distributions. For this task EBITs turned out to be an excellent
and versatile tool.

1 The Livermore EBIT

The development of an easy accessible cold plasma source was driven by
the need to investigate especially highly charged plasma clouds. Available
devices either allowed only low charged states or generated hot plasma for
hot plasma studies (Hell 2017).

The development of EBIT was driven at LLNL (Marrs 2008) providing
an advancement of Electron Beam Ion Source (EBIS) which was developed
as ion source for accelerator experiments (Briand et al. 1984).

As the name indicates features the EBIT an electron beam produced by
a heated cathode which ionizes injected atoms. The beam is compressed by
a strong magnetic field providing high current densities which are necessary
for highly ionizing heavy elements. The magnetic field of the Livermore
EBIT is therefore generated by superconducting Helmholtz coils.

The ions produced by collisions of the beam electrons with atoms and ions
get trapped inside an electrostatic potential along the beam axis. Figure 4.1
depicts the general setup. Radial trapping is achieved due to the potential
generated by the electron beam.

Due to the recombination of ions and atoms in the trap center, EBITs are
a natural source of UV and X-ray radiation. For this work, the Livermore
EBIT was the calibration source for the ECS providing narrow line emission
at known energy.

The emitted X-rays from the EBIT were used in many publications, e.g.,
for transmission measurements of filters, calibrating crystal spectrometer
and various other related tasks (Brown et al. 2010). But obviously is the
EBIT not just a source for X-rays but also provides a tool to systematically
study fundamental atomic physics of the elements. Almost all naturally
abundant elements were trapped in the Livermore EBIT providing standard
reference values for transition lines in highly charged plasma.

2 The PolarX-EBIT

Compared to the huge size of the Livermore EBIT does the PolarX-EBIT
rightly belong to a series of so called mini EBITs (Micke et al. 2018) manu-
factured in Heidelberg. Where the Livermore EBIT fills a room completely
is the PolarX-EBIT a desk sized device. This small design of all the mini
EBITs is achieved by replacing of the superconducting coils with strong
permanent magnets. This removes the cryogenic tank which takes up a large
portion of the required space.

The permanent magnets of the mini EBITs are not able to produce a
magnetic field with the same field densities as achieved by superconductors.
This limits the electron beam energy but also allow to use only modest
size power supplies. The graphic in Figure 4.2 shows the design of the
PolarX-EBIT.
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3. EBITs in this work

Figure 4.2: Structure of the Polar-X EBIT. The off-axis electron gun can be found in
the right part below the trap axis. Courtesy of Steffen Kühn.

Compared to the other mini EBITs from the Heidelberg group is the
PolarX-EBIT of special design. In the original EBIT design is the electron
gun located on the trap axis and the electrons are accelerated parallel to
the magnetic field lines. The PolarX-EBIT, however, has its electron gun
located in a position off the trap axis. This has two implications: First, the
electron beam must be accelerated in a direction that is different from the
magnetic field lines applying a Lorentz force on the beam. Second, and more
importantly, is the beam accessible from both sides. This design is key for
the experiment and described in Chapter IV.

The Lorentz force that acts on the electron beam has the consequence
that the setup of the beam is more complicated and requires additional
magnetic fields for fine tuning (Micke et al. 2018).

3 EBITs in this work

The work presented in this thesis involved the Livermore EBIT as well as the
PolarX-EBIT. The latter was used as a source for He-like ions interacting
with an X-ray beam. The absorption and subsequent emission of the X-ray
photons provide a known signal for reference. Due to the off-axis design of the
PolarX-EBIT is it possible that only a fraction of the beam photons interact
with the ions. The remaining photons leave the EBIT on the opposite site
and can be used for the actual experiment.

Part of this work was to reconstruct the energy grid from the data
obtained with the PolarX-EBIT. The detailed experimental setup and data
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analysis is described in Chapter VI.
The main part of this thesis was to test an alternative calibration approach

for the ECS. The calibration source for the ECS was provided by ionizing
the elements Helium, Silicon, Sulfur and Argon in the Livermore EBIT. The
recombination of the ions with electrons and the subsequent photon emission
provide an X-ray signal of known shape. The exact calibration process and
data extraction is described in Chapter V.
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Figure 5.1: Uncalibrated data summed over all
pixels. The emission lines are from Ne, Si and S.
One can clearly see that the pixels do not agree
and in sum create a badly resolved spectrum

It is very obvious that each measurement device needs a proper calibration
to give reliable results. This calibration is most easily achieved by measuring
a known source which can be sufficiently modeled. By comparing the data
taken with the detector and the model one can find a mapping such that
both agree. The aim of calibration measurements is to find this mapping.
In the following we will first discuss a straight forward approach to find the
mapping and later improve this strategy to calibrate the ECS.

1 Calibrating the ECS

In this section we will discuss how the ECS can be calibrated in a very easy
way. As described in Hell (2017) does the ECS consist of 36 pixels which are
completely independent of one another. That has the consequence that each
of those pixels needs an individual calibration function. This is easily seen
in Figure 5.1. If one looks closely one finds that almost no two pixels have
matching data.

The calibration mapping is expected to be sufficiently described by a
polynomial of 5th order. The observed and known sources are emission lines
where the transition energy is known from theory or experiment to high
precision and accuracy.

The energy resolution of the pixels is not high enough to resolve the line
shape of the transitions. Therefore one can model the lines with Gaussian
profiles and obtain the line positions by fitting profiles to the data. The
count rate is in general not high enough in the individual pixels to obtain a
reasonable fit. To increase the count rate for the fitting process one can find
a mapping between the pixels by calculating the cross correlation of the data
arrays and calculate an effective number of counts per bin for a reference
pixel. The data grids of the other pixels is stretched and shifted according
to the correlation by a first order polynomial.

This new effective data set can be used to obtain reasonable fits to the
emission lines. From the fitted line centroid and the known line energy
one finds the mapping by fitting the polynomial accordingly. To obtain the
calibration mapping for the individual pixels one finally has to correct the
calibration polynomial with the linear polynomial obtained by the cross
correlation.

This method works reliably well and is, in particular, a very fast way to
obtain a qualitative calibration. Nethertheless, the procedure as described
here has some weak spots which might screw any subsequent measurements
based on this calibration. In the following we will first discuss what problems
this method has and later how we can increase accuracy of the calibration.

1.1 New calibration method

One of the more obvious problems with the calibration method as described
previously is that it does not provide an uncertainty estimation. Although,
one can calculate confidence intervals for the calibration polynomial applying
Wilks theorem (Wilks 1938), does this not include the uncertainty from the
cross correlation.

A similar problem arises from the fact that the cross correlation is only
applied asymmetrical between the pixels. This has the consequence that
when the reference pixel is a statistical outlier, the calibration is biased
towards the reference pixel.

Other problems arise when one tries to use the calibration far from the
energy where the reference lines were measured. In this case one can not trust
the polynomial any more and the result will be erroneous. This, however, is
a problem of data itself and not so much dependent on how the detector is
calibrated.
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2. Data extraction and model assignment

Table 5.1: General structure of the calibration
model

Model parameter Description

X1 lines.norm(1) Normalization for
transition line 1 to
ground level for
element X

X1 lines.norm(2) Normalization for line 2
to ground level

...
...

X2 lines.norm(1) Normalization for
transition line 1 to first
excited level

...
...

gauss conv(1).sigma Resolution for pixel 1

...
...

poly(1).c0 Constant parameter of
calibration polynomial
for pixel 1

poly(2).c1 Linear parameter of
polynomial

...
...

1.2 Fitting the pixels simultaneously

To improve the calibration we describe the data in individual by emission line
profiles whose line centroids are tied together by the calibration polynomial.
This will not improve the situation on its one but when fitting the model
to all pixel data at once we obtain the same statistical significance as if we
would add up all the data. This task is performed within the Interactive
Spectral Interpreting System (ISIS) environment.

ISIS allows one to define arbitrary complex models by modifying how
the data is treated. We use this to define only one model for all the data
from all pixels. For now we say that each data set is tagged by the element
that was measured and that the model returns the corresponding line at
the theoretical line position (e.g., in energy). It is import to note that some
parameters of the model are global and other are local to the data or to the
pixel (which will be groups of multiple data sets).

The parameters that are free for the fitting procedure are of course the
coefficients of the calibration polynomial and the normalizations for the
emission lines. As the detector resolution is not high enough to resolve
the line shape we use delta peaks. The detector resolution is modeled by
convolving the model with a Gaussian kernel. The overall structure of the
model is displayed in Table 5.1.

By fitting this model to the data one obtains the calibration polynomial
and by examining the fit statistic one can calculate the confidence intervals
for each parameter (see 5). This might not necessarily improve the calibration
but gives direct access to the uncertainty.

1.3 Adding measurement lines

In the next step we also use the lines we are really interested in to match
the calibration internally between the pixels. For this we add line profiles
to the model such that the line energy is fixed and gets mapped by the
calibration polynomial onto the detector grid. Again, the normalization is
data set specific as not only the pixels are different in response but also the
measurement times differ.

Due to those additional lines we can ensure that the calibration is aligned
between the pixels. This does not improve the calibration itself, it just
makes sure that the pixels match upon unknown lines. Provided that one has
enough calibration lines, e.g., lines where the centroid energy is known around
the lines of interest the calibration should also improve for the measured
lines.

The fit process is than to first find a good agreement between the model
of the reference lines and the measurement and add unknown line model
components gradually to improve the calibration. When the fit succeeds the
result should not only give a decent calibration but also reliable results for
the unknown line positions.

2 Data extraction and model assignment

Now that the overall strategy is clear we will in detail examine how the data
gets extracted from the raw observation. Further we will see how the model
is working in detail such that the fitting process can be understood.

As the working principle of the ECS was already described in Chapter IV
we focus only on the measurement data as they were recorded in event files.
Each measurement campaign measures four (relevant) parameters for one
event: Timestamp, quality, pixel and peak height. The timestamp is used
to group the events such that events from the same experimental settings
are recognized as one data set. An exemplary measurement campaign is
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Figure 5.3: This plot shows how the events occurred during the measurement. Events
closed to each other where grouped for displaying purposes. Gaps in time direction
indicate markers where the experimental conditions have changed.

displayed in Figure 5.3. Here a change in settings is usually marked by a
gap in the events(1,2).

2.1 Constructing data histograms

From the event list regions which contain the events that such be part of
the calibration are selected. The original intention of the experiment was to
measure the absorption of different filters(3). Therefore one can see intervals
with different count rate in Figure 5.3 (especially in the lower energy region)
showing the same emission lines. For the calibration we consider all events
that were taken for one element injected no matter if a filter was inserted
or not. This does not change the calibration outcome it only reduces the
number of events per line.

From the chosen (time) regions in the event list one can construct the
data by sorting the events into a histogram. For each pixel a bin width of
0.02 V was chosen. This choice is somewhat arbitrary. Arguments for this
particular binning are that the resolution is still sufficiently good and the
count rates in the bins not to low.

The exposure time for the different emission lines was in general long
enough such that we can pick only events with the highest quality flags.
After sorting the events into the histogram one obtains a spectrum as already
shown in Figure 5.1. The spectrum for the individual pixels is displayed in
Figure 5.4.

The different data sets consist of the events from one pixel in one specific
selected time interval. This is necessary as each data set is tagged with
the element that was measured together with a flag that tells if the data is
from an element used for calibration or not. This information is later used

1) Due to how the data is displayed not all gaps are visible in this plot
2) The plot not only shows differences when the injected gas was changed, but also when

filters where used. This reduces the number of events in certain regions
3) Essentially one measures the thickness by comparing the transmission with and without

filter
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Figure 5.4: This figure shows the binned his-
tograms for each pixel. Not every of the 32 pixel
was working and gave a constant signal of 0 V
which is why they are ignored here.

in the model to decide what parameters of the line are independent. The
model itself only contributes counts to a data set if the line is present in
the data. In other words, the model is not just one model but different for
each pixel and element just that some parameters like the coefficients for
the polynomials are forced to be the same for each pixel.

3 Calibration line model

This section will describe how the data is modeled and also how the calibration
is constructed from the resulting best fit. In the end we will obtain a
functional description of (parts) of the ECS from which one can construct a
response matrix. This matrix can then be assigned to the data such that
the data can be loaded in a way that is very common in X-ray astronomy:
Instead of manipulating the data by calculating calibrated data from the
raw detector signal, one provides a description of the detector. When fitting
the data with models, the model function is convolved with the response
such that the detector idiosyncrasies are taken into account.

3.1 The model for one pixel

For a better understanding on how the model works we first look at the
data for one pixel. For further simplification let us only view at data for one
calibration element. in this case our model predicts the counts as

C(h; p) = R(h;σ) ∗ F (P (h; c0, c1, c2, c3, c4, c5);X,N1, N2, . . .) (5.1)

for detector bin h depending on parameter set p. Here R denotes the
resolution model by a Gaussian convolution with width σ, F the line model for
element X with normalization Ni for transition line i and P the polynomial
with its 6 coefficients. The model for the emission lines does not depend on
any additional parameter as the line position in energy as well as its shape
is predicted by theory and fixed. Note that F gives the predicted counts for
the energy grid and only the polynomial P translates the detector grid to
the energy grid.

As mentioned previously is the ECS resolution not sensitive enough to
resolve the line shape. Therefore F only consists of a series of delta peaks
whose final width is determined by R.

The events also contain photon impacts from background emission of the
EBIT. This can be described by the exponential function

B(h;λ, c) = exp(−λh) + c. (5.2)

Further, as the exposure of the different measurements might not be the
same, an additional normalization term is introduced. The total model is
then given by

C ′(h; p′) = Nn · (C(h; p) +B(h;λ, c)) (5.3)

where n is a number unique to each data set.
If more calibration elements are involved one gets the general model via

the replacement F (E,X,N1, . . .)→ F (E, X̄, N̄):

F (E, X̄, N̄) = F (E,X1, NX1,1, NX1,2, . . .)

+ F (E,X2, NX2,1, NX2,2, . . .) + . . . .
(5.4)

The model is now almost complete, the only remaining thing to add is
a model component for the unknown lines measured. The only difference
between the calibration lines and the lines yet to measure are the additional
parameters for the central energy and the line shape. In general those lines
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are described by a Voigt profile, but again, the shape cannot be resolved
such that we only use delta peaks. The line function is in the end defined as

F (E, X̄, N̄ , Ēc, N̄u) = F (E, X̄, N̄)

+Nu,1 · δ(Ec,1 − E)

+Nu,2 · δ(Ec,2 − E) + . . . .

(5.5)

Things get much more complicated when we consider this model for
multiple pixel. In that case, not only do we need to keep track of the
parameters that are the same for different pixel, but also ensure that each
model only contributes to the data where components are set. For this task
we use ISIS as it has a very powerful mechanism build in that almost does
what we need.

3.2 Implementing the model

In ISIS one can very simply load data into a histogram as long as one can
provide values, errors and a binned grid that is defined by lower and upper
boundaries. Grids that are not in ascending order or have non matching
boundaries as, e.g., lowi+1 6= highi are invalid and will raise an exception.
This is mentioned explicitly here because when calculating a grid from a
polynomial this might be violated(4).

Defining a function for fitting is very easy using ISIS. Through the
call fit fun("function(1)+function(2)") a fit model consisting of to
(different) instances of the function with name function will be used. Both
instances have individual parameters which can be accessed by the integer
given in the function argument.

In our case, we have one data set for each pixel for each measurement that
was taken. For the data we consider here this gives a total of ? data sets(5)

where ? are for calibration (Si,S,Ne) and the remaining data is considered
as unknown(6).

ISIS allows to define fit functions in a way such that there is an instance
of the function for each data set. With some modifications this can be
used such that there are function instances for each pixel (the calibration
polynomial) and for each measured set (the observed spectrum). This is
useful as it reduces number of available parameters to the required minimum
compared to the straight forward approach where parameters that describe
the same quantity for different data sets are tied together.

The model that is used to describe the data is therefore constructed
in a way such that for each pixel there is one calibration polynomial that
influences the lines. Each line, however, has only one instance for every
measurement set.

The final fit function is expressed as where the poly fold function
returns 0 but sets the polynomial internal for the ecs lines. Both, the
known and unknown lines are hidden inside the ecs lines function and
undergo the broadening of the Gaussian convolution expressed in gauss conv.
The response allows to adjust the signal gain between the pixels and exp bkg

4) There are methods to construct polynomials that are monotonic increasing in an
arbitrary interval (the required setup here) but are difficult to implement in a general
context. One can, however, find a parameterization that is monotonic increasing for the
argument in [0,∞). Because it is not clear if the polynomial can be assumed to have this
form, this was not considered.
5) From the 32 pixels not all are working or give reasonable signals. Those were ignored

thought the whole process.
6) The unknown transition lines originate from Argon. Only the low charge states of

Argon are not known but treating the high charge states also as unknown gives a measure
for the quality of the calibration.
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Figure 5.5: Fit test for different start positions
of a Gaussian line to randomly generated gauss
data centered at 5.5. The figure shows the suc-
cess rate for each fit try where a success is defined
where χ2
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between model and data might be. The tested
optimization methods were MPFIT (Levenberg
1944), POWELL (Powell 1964) and SUBPLEX
(Rowan 1990) for minimizing the χ2 statistic.

adds an additional exponential component to compensate for background
photons.

Although the function looks not very complicated as expressed term it
expands to numerous parameters that are used to match the data. For the
used data set a total number of ? parameters are generated. The full form of
the fit function is in that sense complicated as it is not very easy to perform
the fit and obtain a reasonable description of the data. A problem that
occurs and which is quite easy to understand comes from the line model.
One can imagine that when a narrow peak(7) is modeled with a Gaussian
(or equivalent) profile the used optimization routine will only converge to a
decent solution if the peak model has sufficient overlap with the data peak.

A simple (and not very sophisticated) test was made to find the overlap
that is at least required. For the test a set of random data points were
draw from a Poisson distribution where there mean was given by a Gaussian
profile with width 0.5 and centered at 5.5. The fit was then performed by
setting the normalization and width of the fit function to the true values
and the center in the range from 1 to 10. For each center position 1000 trials
were performed to fit the data. Figure 5.5 displays the result for different
optimization methods based on the χ2 statistic.

Now, in the model used for calibrating the micro calorimeters the position
of the lines are set by the polynomial. This means that when the initial
polynomial coefficients are not close to the true values, the fit will horribly
fail. The next section outlines the procedure in order to find reasonable start
values and how the different components can be fit.

4 Fitting the data

As with every model that is of more complexity than a simple linear regression
the selection of initial parameter sets is crucial. Not only is the time for the
optimization procedure reduced with good starting values it often allows
to find optimal solutions in the first place. For our calibration model the
initial parameters that influence the convergence the most are the polynomial
coefficients.

The reason is on the one hand the overlap of model and data line profiles
as discussed in the previous section but also the inherit behavior of the
polynomial. On imagines that some of the lines are modeled quite well while
others are far off(8). In this situation a optimization routine tries to modify
one of the coefficients with the result that now all the lines are off. So the
algorithm comes to the conclusion that varying the selected coefficient does
not improve the model. But this is of course true for all coefficients and it is
more and more difficult for the higher order ones.

In order to circumvent this problem two general solutions are feasible.
The straight forward way is to use the results obtained from earlier calibration
methods as discussed in Section 1 as starting points. The other solution is
to place a subset of the modeled lines at the observed positions by hand.
This method has two advantages: First it is not affected by any bias that
might be introduced during previous calibrations. And second, although
the polynomial might qualitatively hit the same points in the first method,
the shape can be very different. When setting the initial positions of some
lines the shape of the polynomials between the pixels should be very similar
depending on the chosen lines.

For those reasons and also to avoid to end up with a self fulfilling
calibration we set the coefficients by hand for each pixel in the following

7) Narrow in the sense that the line width only covers a small fraction of all data points
8) The modeled lines are of course present but not at the observed detector units
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way:

1. Set the zeroth order coefficient to zero c0 = 0.

2. Set the first order coefficient to a value such that the range
is roughly correct. In our case c1 = 500 (I.e., the energy is
roughly 500 times the detector unit).

3. Select a predicted line position at low energies/detector units
but not lower as already selected lines and select the true
position of the line.

4. Solve the linear equation(s) for the new coefficient(s) such that
the polynomial hits the selected points.

5. Repeat from Step 3 until the number of selected lines matches
the order of the polynomial.

This process worked quite reliable only at certain points the solution for
the linear equation was a polynomial where higher detector units mapped
to lower energy values. In this case the process was repeated with different
lines selected.

5 Fitting, fit method and fit statistic

As one has starting values for the polynomial coefficients the best strategy
to fit the calibration function is to first find good solutions for the pixels
individually, i.e., apart from the calibration lines no other line components
are added. The best strategy here is to iteratively fit the normalization
for the calibration lines without any other free parameter. And then the
polynomial coefficients without any other free parameter. If one tries to fit
both parameter classes right from the beginning, the optimization algorithm
might find a better solution by minimizing the counts in the lines and shift
them away from the true values.

For the fitting itself several established algorithms are available. The
most widely used algorithm is probably the Levenberg-Marquardt (LM)
least squares method (Levenberg 1944). The algorithm minimizes the least
squares, generally also named χ2, so the sum of the square difference between
model M and data D

χ2 =

N∑
i

wi(Di −Mi)
2.

The weights w differ for different realizations and different assumptions. For
the ordinary least squares wi = 1. The method introduced by Marquardt
solves the minimization problem by iteratively taking steps towards steepest
decent (Marquardt 1963). Levenberg contributed a modification to allow
for faster convergence which is similar to the Gauss-Newton method of root
finding.

Further contributions from various authors made the algorithm a fast
converging, robust and scale invariant method to minimize a function. In
the particular case of curve fitting it minimizes the χ2.

The χ2-statistic in ISIS can be used with different weights to control
where the minimum is located. The usual case for χ2 is to use as weights the
squared inverse of the data uncertainty. This ensures that measured data
points with large error do contribute little to the statistical value when they
are not very well described by the model.

The first introduction of the χ2-statistic goes back to Pearson (1900) who
found that the χ2 is a good measure to test for acceptance or rejection of
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Figure 5.6: Comparison between normal and
Poisson distribution for various expectation values.
The difference at low expectation values proves
that the normal distribution underestimates the
true value for low count numbers.

a predictive model. He also concluded that this can be used to find better
solutions for the same model when varying the parameters. However, the χ2

statistic assumes uncorrelated and normal distributed data!
When an experiment is performed where the outcome is the counted

number of event occurrences the data is always Poisson distributed. The
experiment is in our case the counting of photons per time interval (and
energy). For a large number of counts N the Poisson distribution is very
accurately described by a normal distribution with mean

√
N . This can be

justified by treating a Poisson distribution of N variables as N independent
Poisson distributions of 1 variable(9). By the central limit theorem those are
distributed normally.

So it is clear that for counting experiments with a large number of counts
(usually ≥ 20 is considered as the limit) the data is sufficiently described
by a normal distribution and, hence, can be analyzed using the χ2-statistic.
However, for our case the number of counts is rarely larger than 15. And
those are only reached in the peak centers of the emission lines. Most of
the data bins have a value of 0, 1 or 2. So, equally clear as before, the
χ2-statistic is not applicable for our particular data.

5.1 The Cash statistic

The underlying idea behind the minimization of is to maximize the probability
that a set of data points, which can be truly described by the implied model,
result in the observed numbers. This combined probability is called the
maximum likelihood (for given data and model, Wilks 1938). And is, in the
case of uncorrelated data points, simply given by the joint probability of the
individual measurements.

The χ2-statistic is a straight forward realization of the maximum like-
lihood function. Assuming that the observed data is truly following the
model of interest and that the data is uncorrelated(10). Then, when further
assumed, that the distribution of the data is normal with mean given by the
model, the maximum likelihood is simply

L =

N∏
i

1√
2πσ2

e−
(Di−Mi)

2

2σ2 .

For practical reasons one takes the logarithm of the maximum likelihood
so the product turns into a summation. Additionally the sign is inverted such
that minimizations algorithms can be applied. Therefor the log likelihood
function is

−2 lnL =

N∑
i=1

(Di −Mi)
2/σ2 (5.6)

ignoring constant terms and multiplied by two.
But we have already seen that the normal distribution is not suitable for

our case. This is very easy to see when plotting the normal distribution as
approximation for Poisson distribution and the Poisson distribution together.
In Figure 5.6 the difference between both distributions at low expectation
values is fairly large, while for higher values the difference gets small.

The normal approximation for low count numbers has a bias towards
lower count numbers. That means, when used for minimization, the χ2

minimum predicts lower count numbers for the model as observed. This is

9) This can be done as a sum of Poisson distributed variables is again Poisson distributed.
10) To clarify, correlation means here that each measurement made is completely indepen-
dent of any other measurement. No matter if measured for a different quantity (here, e.g.,
energy) or at a different time.
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Table 5.2: Optimization methods (general re-
ferred to as fit-methods) implemented in ISIS
(except for emcee which is provided by the Isiss-
cripts developed at the Dr. Karl Remeis Stern-
warte Bamberg.

Method Description

mpfit, lmdif LM algorithm described in
Marquardt (1963)

marquardt, plm Alternative LM algorithms
provided by ISIS

diffevol Differential evolution algo-
rithm based on stochastic
population.

simplex Nelder-Mead algorithm for
general unconstraint mini-
mization.

powell Non-gradient method de-
scribe by Powell (1964).

simann Probabilistic method based
on simulated annealing.

subplex Derivate of the simplex al-
gorithm requiring less func-
tion evaluations compared
to simplex.

emcee Markov-Chain Monte-Carlo
method for probabilistic ex-
ploration of parameter land-
scape following a Markov-
Chain model.

fairly easy to understand as the normal distribution extends beyond zero
which accumulate while the Poisson distribution has a finite probability only
for non-negative integers.

To circumvent this problem Cash (1979) introduced a better statistical
measure for experiments with low number of counts. He derived the statistical
contribution by essentially replacing the normal distribution in the log
likelihood by a Poisson distribution. The general assumption that the
measurements are independent is again assumed which implies that the new
statistic be expressed as

C = −2

N∑
i=1

Di lnMi −Mi. (5.7)

Here, all terms containing only the data are dropped as for comparison
between two parameter sets of the same model they cancel anyway. It is con-
venient to write the Cash statistic as C = 2

∑N
i=1(Mi−Di)+Di ln(Di/Mi)

(11)

because when dividing by the number of degrees of freedom Cred. = C/ndf
provides a qualitative measure for the goodness of the fit. If Cred. is much
smaller than unity the model primarily describes the noise while if it is much
larger than unity the model does not describe the data at all.

Since in X-ray experiments the measured quantity is in many cases the
counting of events it is in general a good idea to use the Cash statistic instead
of the χ2-statistic. Neither is it computationally more expensive nor does it
break down for large count numbers.

Others have proposed modifications to the χ2 statistic to circumvent
problems that are associated with low count rates. For example is the
modification introduced by Mighell (1999) intended to give a good statistic
for the observation of zero counts. As the usual χ2-statistic is not defined for
this case (division by 0) usually an error of 1 is assumed for measurements
with outcome 0. But this introduces a bias when fitting the data and also
impacts the calculation of confidence intervals.

When the proper statistic for counting experiments is used in the first
place, non of the problems will occur. A minor problem arises, however,
with the Cash statistic (not exclusively) that is related to the minimization
method in use.

5.2 Minimization methods

Besides the LM algorithm that we already discussed shortly in the previous
section there are many different approaches to solve the minimization problem
for a given function with parameters. All practical solutions describe an
iterative process that makes parameter changes based on decision criterions.
In the case of the Marquardt algorithm the decision is made according to
the (numerical derived) steepest decent vector in the parameter space.

Most algorithms are, like the LM, based on gradient calculation methods.
The advantage here is, that the number of function evaluations is rather small
and they can utilize the will tested and optimized libraries for solving linear
problems (e.g., MINPACK or LAPACK). On the other hand, those algorithms
are very often prone to local minima traps, e.g., the algorithm will not be
able to find a possible global minimum when the gradient vector pulls the
parametric solution always back to a local minimum. Other methods try to
avoid this problem either by randomly testing other parameter combinations
or not using a gradient method at all.

11) This modification essentially adds an offset term such that the minimum of the
statistic for each data bin is zero.
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In Table 5.2 a list of the available optimization methods which are
implemented in ISIS is given. A subset of those will be discussed in the
following.

mpfit

The mpfit routine is the already discussed LM algorithm for finding solutions
near the true minimum of a function. The algorithm was first described
by Marquardt (1963) as a solution for the minimization problem using a
strategy that was described by Levenberg (1944) already 1944.

The general idea behind the algorithm is that it follows the gradient of the
χ2 landscape when far from a minimum and approaches analytical solution
by second order approximation when near a minimum. The controlling
parameter is usually called λ and acts as a damping factor for the curvature
matrix such that when λ is large the matrix equation degenerates into
independent equations. At each step λ is adjusted based on the difference
between the current and the newly calculated function value.

The user can control the behavior of the minimization strategy by con-
trolling when and how the damping parameter is updated. Therefore several
strategies are can be used for problems of different complexity.

Despite its very general applicability LM can cause a large number of
function evaluations when the path through the χ2 landscape follows a
narrow canyon (Lampton 1997). A particular problem in our case is that
estimated minimum from the Cash statistic is notably away from the true
solution at least when the standard settings are used.

This can be understood as when the Cash statistic is inserted in the
gradient equation of the LM algorithm it is identical to zero in first order
approximation. That said, when the function is close to the true minimum,
the gradient is evaluated to (or at least nearly) zero. But this means, for
the algorithm, it has converged. To avoid this one has to tweak the control
parameters for LM.

powell

The fit method first described by Powell (1964) has the advantage to not
calculating any derivatives of the functions. Therefore it is not as easily
confused by complicated parameter landscapes compared to usual gradient
descent methods.

The algorithm is, concept wise, explained very briefly. One starts from
the initial set of parameters and search for the minimum in each parameter
direction. In each step one calculates new search directions such that the
final directions are conjugate.

Unfortunately, Powell (1964) made a mistake in the argumentation al-
lowing for directions to emerge which span only a subspace of the parameter
space. In consequence, the algorithm could reach a state at which a dimen-
sion of the parameter could never again change. Therefore, the solution
could be incorrect.

? corrected the procedure accordingly and, with further improvements,
showed that the method converges to the minimum for any strictly convex
function.

subplex

In his dissertation about the analysis of algorithmic stability ? described a
variation of the famous Nelder-Mead Simplex (NMS) algorithm that tries to
avoid the general pitfalls that NMS has. A brief description of NMS follows
(a better explanation is given by ?).
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A simplex is the convex hull enclosing n+ 1 points in an n-dimensional
space. In the 2d case the simplex is a triangle, in 3d a tetrahedron, etc.
At each step, NMS evaluates the function at the points of the simplex and,
depending on the outcome, will either stretch or contract the simplex.

Now, NMS is not very efficient when the number of dimension is large
neither is the convergence fast. To compensate for this, subplex runs the
NMS method only in a subspace of the full parameter space. The subspaces
are selected and modified following essentially the same idea as the powell

algorithm does for its search directions. The obvious difference: Instead of
directions subplex searches within orthogonal subspaces.

emcee

Goodman & Weare (2010) described a Monte-Carlo Markov-Chain (MCMC)
method for exploring and optimizing difficult functions. The interesting
concept makes use of the observation that algorithms like NMS are invariant
under afine transformation and therefore have superior performance when
applied to highly skewed distributions. Consequently, the MCMC method
described is also invariant under afine transformations.

In the usual way of Monte-Carlo methods is a non-probabilistic value
described by a random sample. Each sample variable is drawn from a
(mostly uniform) distribution and accepted if it falls inside the parameter
space outlined by the problem else rejected. The standard example for a
Monte-Carlo method is to approximate π by drawing N times two random
numbers (x, y) from a uniform distribution (0, 1). Each time the pair (x, y)
fulfills sqrt(x2 + y2) ≤ 1 the sample is accepted. The (approximated) value
for π is then given by 4A/N where A is the number of accepted samples.

On the other hand, Markov-Chains are a simple way of modeling a
stochastic process. A sequence of stochastic steps is said to be Markov when
one can deduce the future and past of the current state from this said state.

The algorithm to use MCMC for fitting data is described in . The idea
is to start with an ensemble of walkers placed on the parameter surface. At
each iteration each walker is updated, i.e., moves in a certain direction. The
move is calculated by selecting one of the other walkers and go an amount
Z of the vector between the position of the walkers(12).

The acceptance rule is here imposed by a normal distribution where the
probability of acceptance is calculated from ∆χ2 = χ2

current − χ2
new. If the

new χ2 is better then the old one (that means, smaller) the step is always
accepted.

It should be clear that this implementation is only working when the
underlying fit statistic is χ2. Otherwise the acceptance rule has to be modified
to be used for, e.g., Cash.

From those optimization methods discussed above the subplex method
was chosen as it does not underestimate the Cash statistic like mpfit does.
emcee was not chosen because the implementation in the Isisscripts was only
handling proper χ2-statistic. And finally, powell was discarded because it
performed notably worse than subplex in convergence as well as number of
function evaluations.

12) The stretch factor Z is drawn randomly from a symmetric distribution g(z). Symmetric
here means that g(1/z) = zg(z) such that the reversed step is equally likely.
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6 Confidence intervals

Besides finding the best description of a data set giving a certain model it is
also important to decide if the model is describing the data in the first place
and how confident the analyst is about the found parameters.

The first criterion was already briefly mentioned, that is, deciding if a
model does indeed describe the data. It should be fairly obvious that one
can derive a measure directly from the log likelihood function. Since the
maximum likelihood is the probability that the observed data was drawn
from the tested model and the data is independent one should expect that
on average the probability should be more than 1

2 . It turns out that for this
measure the arithmetic mean is not a good indicator rather the geometric
mean should be used. So by dividing the χ2 by the number of data points
(that is the number of degrees of freedom) one has a qualitative measure for
the fit. It is relatively easy to show that this is indeed the geometric mean of
the maximum likelihood probability and that when χ2

red. ∼ 1 the geometric

mean is e−
1
2 > 0.5.

In the extreme cases, if χ2
red. is much smaller than unity the mean

probability is close to one. Which is highly unlikely for error prone data.
Conversely, if χ2

red. is much larger the mean probability is zero, indicating
that the data is not drawn from the model distribution(13).

6.1 Computing confidence

As soon as a reasonable fit is found, that means a fit where the reduced
statistic is of order unity, one can calculate the confidence intervals.

There are several approaches to obtain an estimate of the model un-
certainty of which we will discuss three here. However, it is necessary to
understand what a confidence interval is and more importantly how it is to
be understood.

Whenever there is measured data there is also an uncertainty involved.
This uncertainty is tightly bound to the data and how the data was generated.
Under general circumstances those uncertainties can only be estimated and
are given either as absolute or relative errors to the measured value.

In many situations those uncertainties are given as 1σ standard normal
errors. That means, that in 68% (that is the 1σ correspondence) of repetitions
of the measurement the value will be within those uncertainty bounds and
they will be normal distributed around the (true) value.

The confidence interval calculated for model parameters is naively also
interpreted as the trust region of the best fit parameter. However, the
parameter confidence intervals have no information about the model but
about the data. In other words, a given confidence interval for a model
parameter does not tell that with such and such confidence the true parameter
is within the uncertainty bounds(14).

The interpretation of parameter confidence intervals has to be the fol-
lowing: If the true value (that means, a value that is obtained after many
repetitions of the experiment) is not within the confidence interval, the
performed experiment is exceptional, i.e., there is only a (100− 68)% chance
(assuming 1σ confidence) that this has happened.

Now, how can confidence intervals be computed? The first and (almost
always) wrong way is to use the covariance matrix that is calculated during

13) The reduced χ2 is only a qualitative measurement for the quality of a fit given a
certain model. It does not provide a resilient decision criterion between two competing
models. For this one has to do a proper hypothesis testing.
14) The parameter has the definite value as found by the optimization method. Also,
either the parameter is in the confidence interval (good fit) or outside (bad fit).
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the optimization procedure with LM. The estimate here is in most cases not
good as the covariance matrix is calculated from the Hessian matrix which,
in turn, is estimated from the square of the Jacobian matrix. However, if
the residuals are non-linear the result underestimates the true uncertainty.

A much better way to calculate uncertainties is by examining the statisti-
cal landscape. The standard approach in astronomy to obtain the confidence
interval of the i-th parameter Θi is to fit all other parameters while Θi is fixed
to some value. The resulting best fit is inside the confidence interval if the
statistical difference to the global best fit is smaller than the χ2-distribution
for one degree of freedom and the requested confidence level (Wilks 1938).

By carefully stepping the parameter value one may find the confidence
boundary. It should be obvious that this only gives the confidence interval
up to a certain accuracy.

The statistically correct approach to obtain the true confidence interval
is by repeating the measurement several times. From the distribution of
the measured values one obtains the confidence interval. Of course, this
is not practical in reality such that Monte-Carlo methods are used. By
simulating measurements according to the global best fit one obtains the
distribution of the measured values from the simulated data. However, this
implies that the best fit model is the optimal solution and one knows the
statistical distribution of the data.

Since the method is well know and allows to find improved fit models we
used the confidence estimation from the χ2-distribution. This assumes that
the used measure, the fit-statistic, does follow a χ2-distribution. Cash (1976)
has shown that this is indeed true for any underlying statistical distribution
as long it is well behaved and convergent.

7 Calibration results

As of the end of this work the model was not fully converged which is why it
is difficult to give absolut revolts. This already shows one major problem
that comes with the approach as described: It is very impractical. The
iterative process that was performed to slowly improve the model just takes
an incredible amount of time and computation power.

The main reason why the calibration following this method is difficult
is the polynomial function. Due to the dependence of the higher order
terms on the lower orders is difficult for fit routines to handle. Additionally,
many coefficient combinations cause the polynomial to be invalid in the data
range. The invalid combinations are those such that the polynomial has
an extremum in the data range causing a reversing of the bin borders. In
other words, only those coefficients, where the polynomial turns out to be
monotic increasing in the data range, are allowed. This splits the parameter
search into different regions of the parameter space and a transition between
separated but allowed parameter regions is, at least in this model, not
possible.

Methods to statistically discover the parameter space additionally suffer
from the large number of free parameters. Methods like emcee require
computational power proportional to the number of parameters. Also,
the invalid parameter regions must be excluded for such a search without
disturbing the search process.

Despite the difficulties and the additional amount of time that is required
to fully converge the model one can see that the overall method is working.
The current results are presented below.
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Figure 5.8: Total calibration of all pixels summed up. In general does the calibration
method work however it takes a lot of time to fit the data with the presented model.

7.1 Best fit and checks

In Figure 5.8 is the current best overall calibration depicted. From the
comparison with the uncalibrated data one can see that the calibration in
general works. At least no strong deviation between the uncalibrated data
of one pixel and calibrated data occur such that qualitatively the method
gives correct results.

A close inspection of the model and the data in the calibrated space reveals
that the lines are not correctly reproduced the intensity either indicating
that a simple Gaussian as model for the limited resolution does not suffice
or the model has other, intrinsic, problems.

In the current state it does not make lots of sense to compare the different
calibration methods as there is no quantitative measure for “how close” the
model is to the best fit value. However, a simple check was done generating
the calibrated data and fitting some of the known line with Gaussian profiles.
All lines tested in this way are at least close to their reference values. It is
to mention that even if one finds a deviation between the fitted lines of the
calibrated data and the reference values it may only hint at a problem of
the calibration but it can as well just be an artefact that vanishes once the
fit has converged.

The calibration is shown together with its model in detail in Figure 5.7.
Besides the already mentioned problems with the reproduced intensity of the
lines is the overall fit quite good. The reduced Cash statistic gives a value
of ∆Cred. = 1.28 indicating a decent fit. The problems can only be seen by
looking at the fit to the raw data. In Figure 5.9 the sum of data and model
in detector space is shown. Here one can easily find lines in the model that
have no corresponding signal in the data and vice versa.

One can see that the model fits very well in the low energy range and
gets worse towards higher energies. The reason for this is also located in
the polynomial. The low energy part can be quite simply described by the
linear coefficient while the high energy part depends on the higher order
coefficients. Also, although there are known lines in the highest energy range
(argon line region) only some of them are known. From the data set it was
not very clear where the separation between the known and unknown argon
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Figure 5.9: Summation of all pixels in detector space together with the current best fit.
Although the model fits quite well at lower peak heights, there are still many iteration
steps required until the model also gives good results for higher energies.
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Figure 5.10: Current best fit for the calibration polynomial. Most of the pixels are well
described by the model. However, especially pixels 28, 29 and 30 require some more fine
tuning.

line measurement was such that all argon lines were treated as unknown(15).
Due to this it is expected, that the calibration in this region is not very good
as it is lacking any reference point.

7.2 Model improvements

Does the impracticality of using this method of calibration mean it should
not be used at all? The answer to this question is not easy and does depend
on the use case. For example, the ECS is often shut down (warm up) and
needs a calibration after each re-initialization because the noise environment
and therefore also the templates changed. In this case it is just not practical
to do a calibration with a time consumption as required here. On the other
hand, the issues that are involved with the calibration method presented
are also present in the “standard” calibration. Most of the issues are just
hidden in the process when calculating the cross correlation.

The time that is required with the new model highly depends on the
complexity of the calibration function. Although a polynomial is mathemat-
ically quite easy to handle is it challenging to use for finding best fitting
functions. A major step in practically can be made if one replaces the
calibration polynomial by a function with less free parameters. The resulting
polynomials are shown in Figure 5.10. From those one might think of using
a spline function where the parameters determine start and end points and
the turning point of the slope.

A different approach might be to use a physical model of the detector
where the parameters are independent. Such a mode might provide a better
target for known fit algorithms. Even if such a model is more expensive to
compute, if an algorithm is able to find the fest fitting set of parameters
without lots of user interaction it should be preferred over a function where
it is the other way around.

Finally, for a more widely applicable calibration procedure there are addi-
tional components which might necessary to consider. So far the resolution
of the detector was assumed to be constant over the full energy range. In
reality this is certainly not the case instead the resolution depends on the

15) This is also the reason why, although lines are visible in the data, the model does not
have any line components at all positions
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Figure 5.7: Calibrated data in different energy
ranges. Blue curve shows calibration model trans-
lated to energy grid. The model fits best for the
low energy range as this is controlled by the low
order coefficients of the polynomial.

energy.
So to conclude, the calibration by fitting a model of the emission lines

simultaneous with the detector properties does work. The effort which is
required to obtain a reasonable result, however, is in many situations just
not in relation to the outcome. This calibration methods should only be
used if one can provide a simpler calibration function or the calibration is
required to be as accurate as possible, e.g., for space missions.

The true benefit this method provides, that is, calculating the confidence
of calibration function, can not be shown here. For this it is required that
the fit has converged. Once the function truly is capable of representing
each pixel it is possible to do the analysis of the unknown lines in the data.
The function then gives direct access to the uncertainty and the uncertainty
contributions from the calibration and the line fit.
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The observation of spectra reveals insights to the processes involved that are
generating the light. In that way the most basic conclusion that can be drawn
from a spectrum is if the process is statistical (e.g., black body radiation) or
a precise change of the involved system (e.g, line emission/absorption). Once
these processes are understood well enough they provide a powerful tool to
study astronomical objects. And in most cases, the energy distribution of
the light is the only piece of information that is accessible for us.

One of the most basic information that a spectrum with emission lines
contains is the motion of the emitting object. As the emitted light undergoes
the Doppler shift when the source is moving in the direction of line of sight
the emission lines are shifted towards higher or lower wavelengths depending
on the object moving towards us or away from us, respectively.

To measure this relative motion it is crucial to know where the emission
lines would be observed when the source had a relative velocity of zero.
Commonly those emission lines originate from atoms that are part of the
object, e.g., gas clouds. The characteristic patterns of those atomic transitions
allow a straight forward comparison with measured laboratory data.

For this comparison it is crucial that the reference data, so the data
measured in the laboratory, has sufficient accuracy and precision. In this
chapter the calibration of new and independent measurements for the neutral
oxygen Rydberg series will be presented. The results, resolving a mismatch
between astronomical and laboratory data, are presented elsewhere.

1 Gas on the run

One of the many targets that reveal fundamental insights are the emission
lines from gas clouds drifting through the galactic disc. The observation of
emission lines from those clouds give rise to a better understanding of the
structure and evolution of the milky way.

For this reason, observations in many directions were performed with
high energetic resolution (Chandra grating observations, ?). The observed
line shifts due to the Doppler effect imposed that in general the gas is
gravitationally bound to the galactic disc. However, the observation of
neutral oxygen revealed a shift of ∼500 meV averaged over many lines of
sight (?).

Interpreting this shift as the relative velocity between us and the gas
the conclusion would be: Oxygen is moving away from us with a velocity
of ∼300 km s-1! This highly unlikely result was interpreted, at least from
astrophysical side, as a hint to inaccurate reference data.

In the following a new calibration method will be described that is
completely independent from prior calibrations and gains its accuracy only
from first principals.

2 Energy calibration at the BESSY II beam
line U49/2

The conceptual idea behind the calibration is remarkably simple: One uses
a monochromatic X-ray source that interacts simultaneously with the atoms
of interest (here oxygen) and highly ionized atoms of any element.

For practical reasons the ions must have transition lines close to the
energetic range of interest. Also, to avoid any bias from prior assumptions,
the ionized gas should be hydrogen or helium like.

Now, stepping the energy of the incident X-ray beam provides the infor-
mation of interest as well as points for calibration. The system for one or
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Figure 6.1: Experimental setup at the BESSY II
beam line U49/2. Focusing optics are not shown.

two electrons can be solved analytically which in turn sets the scale of the
measurement.

This setup is made possible thanks to the off-axis design of the Polar-X
EBIT (Micke et al. 2018) assembled in Heidelberg.

2.1 Coincident readout

The experimental setup is show in Figure 6.1. Here, one can see that the
X-ray beam from the beam line is processed by a grating and mirror couple
which is used to select a certain energy range. In principle only the grating
is necessary to split the incoming beam into near-monochromatic light.
However, the mirror allows one to adjust the light path such that the beam
focus stays at the same position. From the geometry one can see that this
is fulfilled if sin(α)/ sin(β) = cff where cff is constant(1). This is generally
referred to as fixed focus condition.

The, now quasi-monochromatic, photons enter the Polar-X EBIT and
eventually interact with the ions produced in the drift tubes. If the energy
of the photons is just right they will transfer the ions from ground state
to an excited state(2). When this excited state decays a surplus of photons
with the energy corresponding to the energetic difference of the two states is
detected. The radiation characteristic depends on the decaying state and the
polarization of the photons. Therefore, we measured the photons parallel
and perpendicular to the polarization. The emission was measured with
SDDs.

Right behind the Polar-X EBIT two gas cells were attached. Separated
from the EBIT and from each other by nanometer thin windows. In each
of those cells the gases of actual interest were injected. Undergoing the
same process of excitation due to the incident X-rays the gas in the cells got
ionized. We detected the amount of ionized atoms with electron multipliers
which are a direct response to the X-ray photons.

Each event in the gas cells as well as in the EBIT detectors was recorded.
However, only events that were coincident with arriving beam line photons
are considered as valid. This greatly reduces the background counts in each
of the detectors as the re-emitted photons highly exceed the background
photons during the arrival of a photon bunch at least at the energy where
the emission line is located. Further enhancement is obtained by a threshold
cut described below.

2.2 Data reduction and model construction

The recorded data consists of a bunch of useful information which was
later used to calibrate the measurements of the gas cells. The first idea for
calibrating the data was to use the nominal grid given by the beam line.
From the observation of the calibration lines it was known that the nominal
energy is shifted by ∼3 eV. By reconstructing an energy grid with a linear
approximation to the calibration lines gives results already with a very good
precision(3). However, the underlying physics for the experimental setup are
well known such that this information gives rise to even better calibration.

It is know that a grating reflects incident light into different angles
depending on the wavelength. This behavior is easily described by the

1) For the whole time of the experiment this value was set to cff = 2.25. By comparing
the form of the sine function it is clear that this condition is not true in general but only
to first order approximation for small α and β.
2) Generally any low-level to high-level excitation could happen. Yet, the life time of the

excited states is extremely short and therefore this is very unlikely to happen.
3) “Very good” here means sufficient to resolve the mismatch between astronomical and

laboratory observations.
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Chapter VI – Line calibration measurements

grating equation from Section 3. By replacing the wavelength with the
corresponding energy and inserting the geometric setup as displayed in 6.1
one obtains

E =
mhc

d

1

cos(α)− cos(β)
. (6.1)

Where α = 2θm − β and β = −θg with the mirror and grating angles θm
and θg respectively, m is the reflection order and d the line separation of the
grating.

Each of the variable values was recorded during the experiment. However,
the dependent angles α and β as well as the energy were calculated from the
measured angles θi(i = m, g). Here it is to note that the recorded angles θi
did not coincide with the true mirror and grating angles but were shifted by
a constant offset.

The calibration function was therefore constructed in the following way:
First, we determined the offset in mirror and grating angle by reproducing
the grating equation as used by the beam line. Next, we added an additional
offset parameter to those angles such that the fixed focus conditions remains
fulfilled in first order approximation. As one can easily verify is this shift
also a shift of the angle selection along the (mirror, grating) direction in
angle angle space. Therefore, the distance in this space stays the same, but
may change the energy range.

With this translation of the energy grid one can now model the data
by adding line profiles at the theoretical energy. The parameter pair that
describes the data does therefore also give the true(4) grating equation which
can be used to translate the data of the gas cells.

Unfortunately was the recorded data of the angles affected by significant
noise. We convinced ourself that this noise is originating from the readout
process and not inherit to the motors that drive mirror or grating. The
values for both angles scatter by the same relative amount although they
differ by one order of magnitude. Also, the mean of both angles was perfectly
fitting the requested positions during one measurement. This made us very
confident that the noise really comes from the readout electronics.

To overcome this issue we made use of the fact that for each measurement
the steps where chosen equidistant in energy and therefore also in angles (to
first order approximation). By this we defined the data to be counts per
step which allowed us to compute a linear relation between the steps and
the measured angles.

The counted events measured with the SDDs cover a large energy range
with low energetic resolution. Therefore, the emission of the resonantly
excited transitions with the X-ray beam are barely visible in the SDD
spectrum. But the high energy resolution comes not from the detector itself
but the grating that illuminates the gas in the EBIT in a narrow energy
range.

As the SDDs measure all photon events from the EBIT also photons which
are produced from the excitation and de-excitation because of the electron
beam are measured. To reduce the number of photons not originating from
the X-ray excitement not only were events rejected which did not coincide
with the beam bunches but also a low energy threshold was applied. This
threshold was determined such that the SNR was maximized. Here, the
noise level was estimated by the median of the data.

4) Under the assumption that the theoretical values are the true, i.e., natural values
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3. Calibration result
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Figure 6.2: The determined shift parameter from various scans during the measurement
campaign. The dashed line indicates the mean mean value of the data points. The data
used in this figure were taken during experimental setup. It can be clearly seen that the
value varies with time most likely due to instabilities of the beam line.

3 Calibration result

The lines were modeled with Voigt profiles with a narrow Lorentz component
and multiplied by the exposure time. In that way the normalization of
the profiles directly gives the count rate of photons within the line. The
fit procedure is essentially the same as laid out in 5 with one important
difference. That is, one measurement point obtained by a specific setup of
the grating is a direct measurement of the counts per energy contrary to a
histogram. This is important as when fitting histogram data the fit function
must give the total counts in the respective bin, that is, the integral of the
model function over the bin width.

The fit function for the beam line measurements are, however, not
integrated. Also, the data has in principle errors in the dependent as well
as the independent variables which influences the fit statistic significantly.
But as we described the data as counts per measurement step (and also
the functions are defined as counts per measurement step) which are per
definition exact, we could treat the data simply by evaluating the Cash
statistic for data and model.

The best fitting model of the grating equation was found by the simplex
method. The nominal value of the grating period is given as 1/d = 602.4 mm-1

leaving the fit function solely dependent on the shift parameter. However,
as can be seen in Figure 6.2, the determined shift parameter varies during
the measurement campaign.

For a better understanding of this shift we calculate confidence intervals
for the fit with the same method as described in 5. This indicates that
the energy uncertainty is of the order of 7 meV(5). However, the variability
in time is significantly larger than that. From this we conclude that the
uncertainty is highly dominated by systematic errors which stem from the
stability of the beam line. A comparison between data sets gathered by the
detectors of the gas cells shows significant shifts within parts of the data.
Therefore, the variability occurs already on short time scales. The source

5) Corresponding to 68% uncertainty
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if this variation could not be determined but one may think of a drifting
photon beam hitting slightly different spots of the grating or encoder errors
of the step motors driving mirror and grating.

From the short time variations we could conclude that the overall un-
certainty does not exceed 30 meV. Hence, the energy calibration that was
reached with the presented setup is enough to resolve the oxygen puzzle.
The results of the analysis of the oxygen data will be presented in a separate
paper.

The conclusion one can draw from this experiment is, that the presented
setup is very generic and allows to measure basically every element with
the calculated precision, provided one can produce H-, or He-like ions in
the EBIT with emission lines in the region of interest. If the X-ray source
provides a better stability one may actually reach a precision down to a few
meV(6).

With this setup we could show that the next generation of X-ray obser-
vatories can be supplemented with accurate and precise data. The original
intention for this experiment, resolving the oxygen puzzle, shows the need
to revisit measurements of transition lines. This will not only correct the
reference list for possible errors but also open the doors to use the full
capability of high resolution instruments.

6) The final precision that was reached at the BESSY beam line is still remarkable for
an accelerator designed and build 20 years ago. The design was never meant to reach a
precision of this level.
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