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The cover picture shows the general relativistic projection of a highly magnetized accreting
X-ray pulsar, which in this case is emitting from its two antipodal and identical accretion
columns. The effect of light bending causes the visible surface of the neutron star to be
enlarged and results in an apparent deformation and even double projection of the columns.





Zusammenfassung

Ich untersuche stark magnetisierte, akkretierende Röntgenpulsare in massereichen Dop-
pelsternsystemen. In diesen Systemen umkreisen sich ein Neutronenstern und ein optischer
Begleitstern in einer engen Umlaufbahn. Mit Massen von ∼1.4 M� und Radien von ∼10 km
gehören Neutronensterne zu den kompaktesten Objekten, die uns bekannt sind. Die Raumzeit
wird von Neutronensternen aufgrund ihrer Kompaktheit gekrümmt und kann nur unter der
Einbeziehung der allgemeinen Relativitätstheorie beschrieben werden. Zusätzlich weisen diese
Neutronensterne die stärksten beobachteten Magnetfelder (∼1012 G) auf, nur überboten von
Magnetaren. Der starke Wind des Begleiters wird von der Gravitation des Neutronensterns
eingefangen und mit einer Massenrate von ∼1017 g s−1 auf den Neutronenstern akkretiert. Das
starke Magnetfeld zwingt das einfallende Plasma, den Feldlinien bis zu den magnetischen
Polen zu folgen, wo sich Akkretionssäulen bilden. An den Polen wird die Materie gestoppt und
dessen kinetische Energie im Röntgenbereich abgestrahlt. Die beobachteten Spektren lassen
sich mit einem Potenzgesetz beschreiben und zeigen oft breite Absorptionlinien. Diese Linien
sind auf zyklotronresonante Streuung an Elektronen zurückzuführen, die durch das starke
Magnetfeld in Landau-Niveaus quantisiert sind. Dadurch, dass die Achsen des Magnetfeldes
und der Rotation nicht immer übereinstimmen, sind Pulsationen von den lokal begrenzten
Emissionsregionen an den Polen mit der Rotationsperiode im Bereich von 1 - 1000 s zu sehen.

Die physikalischen Eigenschaften dieser akkretierenden Pulsaren zu messen ist ein seit
langer Zeit bestehendes Anliegen der Astrophysik. Dabei sind die Masse und der Radius des
Neutronensterns von besonderem Interesse, sowie die physikalischen Bedingungen innerhalb
der Akkretionssäule, wie z.B. die Magnetfeldstärke. Allerdings fehlen bis dato umfangreiche
Modelle zur Beschreibung der Akkretionssäulenstruktur und der komplexen Strahlungspro-
zesse innerhalb dieser, was den Vergleich physikalischer Vorhersagen mit Beobachtungen
erschwert. Ich kombiniere zum ersten Mal die physikalische Beschreibung der Akkretionssäule
mit der vollständigen relativistischen Behandlung des Strahlungstransports im Gravitationsfeld
des Neutronensterns. Dabei verwende ich ein Kontinuumsmodell, das von Postnov et al. (2015)
in der Diffusionsnäherung für die dichten Regionen innerhalb der Säule berechnet wurde.
Mit Hilfe des Codes von Schwarm et al. (2017a,b) wird in einer dünnen äußeren Schicht die
zyklotronresonante Streuung berechnet, welche die beobachteten Absorptionslinien erzeugt.
Schließlich wird der beobachtete pulsphasen- und energieabhängige Fluss unter Berücksichti-
gung allgemein relativistischer Effekte wie Lichtkrümmung und gravitative Rotverschiebung
berechnet. Basierend auf diesem Modell diskutiere ich Schlußfolgerungen für messbare Grö-
ßen. Ich zeige, dass die geometrische Konfiguration, d.h. die Inklination des Beobachters und
die Position der Akkretionssäulen relativ zur Rotationsachse, einen signifikanten Einfluss auf
diese Observablen hat und allgemein-relativistische Lichtkrümmung dabei eine wichtige Rolle
spielt.

Die in dieser Arbeit vorgestellten Methode des Raytracings verwende ich außerdem in
Verbindung mit einem einfachen phänomenologischen Emissionsprofil, um das Pulsprofil
des Röntgenpulsars 4U 1626−67 und dessen energieabhängige Entwicklung zu erklären.
Zusätzlich erkläre ich den Ursprung und die Pulsphasenabhängigkeit der beiden beobachteten
Zyklotronlinien in GX 301−2 mit Hilfe eines einfachen Modells. Dieses Modell beschreibt
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eine einzelne Säule mit zwei Emissionsregionen in verschiedenen Höhen. Aufgrund der
Bewegung des einfallenden Materials unterliegt die Emission relativistischem Beaming. Mit
der Abhängigkeit des Beamings vom Sichtwinkel, und damit der Pulsphase, wird die Variation
der Zyklotronlinie erklärt.
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Abstract

I investigate highly magnetized accreting X-ray pulsars in high mass X-ray binaries
(HMXBs). These systems consist of a neutron star and an optical companion star in a
close binary orbit. Neutron stars are among the most compact objects we know, with masses
of ∼1.4 M� and radii of ∼10 km. Due to their high compactness, space-time in the neutron
star’s close vicinity is not flat and general relativity is needed to describe it. Additionally,
these pulsars exhibit one of the strongest magnetic fields (∼1012 G) we have observed (only
exceeded by Magnetars). The strong wind of the companion is captured by the gravitational
well of the neutron star and is governed by its strong magnetic field. The captured matter is
accreted with rates in the order of ∼1017 g s−1 onto the neutron star itself. The infalling plasma
is forced to follow the field lines onto the poles where accretion columns are formed. There
the matter is stopped and its kinetic energy is radiated away in X-rays. The observed spectra
exhibit a power-law like continuum and also often show broad absorption features caused by
cyclotron resonant scattering off electrons, which are forced into quantized Landau levels by
the strong magnetic field. Due to the localized emission region at the magnetic poles, which
do not have to be aligned with the rotational axis, pulsations with the rotational period in the
range of 1–1000 s are visible.

Measuring physical properties of accreting, strongly magnetized neutron stars has been
a long-standing problem in astrophysics. These properties include the parameters of the
neutron star such as its mass and radius, as well as the physical conditions within the accretion
column, such as the magnetic field strength. The lack of detailed models for the structure of
the accretion column and the complex radiative mechanisms inside the column have made it
difficult to compare theoretical predictions with observations. I combine for the first time a
physical treatment of the accretion column with a fully relativistic treatment of the radiative
transfer in the neutron star’s gravitational field. In particular, I use the seed photon continuum
calculated by Postnov et al. (2015) in the diffusion approximation from the dense inner regions
of the accretion column. This continuum is imprinted with cyclotron resonant scattering
features (CRSFs) in a thin outer layer using the code by Schwarm et al. (2017a,b). Finally,
general relativistic effects such as light bending and gravitational redshift are taken into account
to calculate the observed phase and energy dependent flux from this column. Based on this
model I discuss implications for the observable quantities and the shape of pulse profiles and
cyclotron lines. I show that the geometrical setup, the observer inclination and the location
of the accretion columns with respect to the rotational axis, has a significant effect on those
observables and that general relativistic light bending plays an important role.

Further, I combine the ray tracing code presented in this work with a simple phenomeno-
logical emission profile to model the pulse profiles of the HMXB 4U 1626−67 and their
energy evolution. In another source,the HMXB GX 301−2, I explain the origin and the phase
dependence of the two observed cyclotron lines with a simple model. This model features
a single column with two emission regions of different height. The observed variation with
phase is caused by the dependency of the relativistic boosting due to the bulk motion of the
downfalling plasma on the viewing angle and therefore pulse phase.
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1 Introduction to X-ray pulsars

In astrophysics we deal with phenomena and objects which exceed the physical boundaries
we perceive on Earth and we are not able to replicate in laboratories. Observing the sky and
its celestial objects and phenomena allows us to overcome these limitations and study the
principles of nature at the boundaries of their validity. In this way we are able to expand our
knowledge about the universe and its laws.

1.1 Neutron stars
The theoretical concept of neutron stars was introduced by Baade & Zwicky (1934), just shortly
after the discovery of the neutron by Chadwick (1932). However, there is some debate whether
Landau (1932) came up even before that1 with the idea of neutron stars in his description of
weird stars forming one gigantic nucleus. Nevertheless, Baade & Zwicky (1934) correctly
suggested a neutron star to be the remnant of a supernova explosion, the dramatic death of a
massive star which has utilized its fusion fuel. With nothing left to counter its own gravity the
progenitor starts to collapse. As gravity overcomes even the Fermi pressure of degenerated
electrons, these electrons are captured by their atom core transforming protons into neutrons
and eventually leaving a star build up of neutrons. The binding energy released during this
process of simultaneous bulk annihilation of mass via inverse β-decay powers the supernova
explosion and exceeds the energy our sun produces during its whole lifetime (Zwicky, 1939).

Since they were first proposed, neutron stars have been of great theoretical interest not only
because of their exotic interior, but also their place in stellar evolution. Despite the enormous
energy release during their birth, neutron stars themselves were believed to be too faint to
be directly detectable. Very little was actually known about possible emission properties of
neutron stars at that time. In 1938 Baade (1938) already proposed the Crab Nebula to be a
supernova remnant containing a neutron star, instead of being a common nova or planetary
nebula. Nevertheless, it took until 1967 for the first compelling evidence for the existence of
that neutron star. This evidence was provided by Hewish et al. (1968) with the discovery of

1See Yakovlev et al. (2013) for a detailed discussion of this debate.
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CHAPTER 1. INTRODUCTION TO X-RAY PULSARS

precisely repeating radio pulsations observed in the direction of the Crab Nebula, a source they
already described as unusual before (Hewish & Okoye, 1965). It was then quickly established
that these radio pulsations are powered by a highly magnetized and rapidly spinning neutron
star loosing its rotational kinetic energy (Pacini, 1967, Gold, 1968). Due to the conservation
of angular momentum and magnetic flux of the progenitor star during the supernova collapse,
neutron stars can reach spin periods in the sub-second regime and magnetic field strengths 1010

times greater than that of their progenitor (Woltjer, 1964). The pulsed nature of the emission
was ascribed to the fact that the magnetic field axis is inclined with respect to the rotational
axis of the neutron star.

Today we know that neutron stars are among the most compact objects, with typical masses
of ∼1.4 M� and radii of ∼10 km (see, e.g., Lattimer, 2012, Steiner et al., 2013, and references
therein). The equation of state (EOS) of neutron stars still puzzles physicists. The EOS
determines the internal structure of neutron stars and allows to calculate possible mass-ratio
relations. As shown in the left panel of Fig. 1.1, there are many different possibilities for the
structure of neutron stars, which include hadronic as well as strange quark matter models.
There are some general constraints on this relation. General relativity, for instance, requires
a radius that exceeds the Schwarzschild radius in order for the surface to be visible. The
Schwarzschild radius is given by

Rs = 2GMNS/c2 ≈ (4.2 km)
(

MNS

1.4 M�

)
, (1.1)

where G is the gravitational constant, c is the speed of light, and MNS is the gravitating
mass, i.e., the mass of the neutron star, and M� the mass of the sun. The escape velocity for
objects smaller than their Schwarzschild radius exceeds the speed of light. These objects
are black holes, whose surface is defined by their event horizon at Rs. Finite pressure and
causality set an even lower upper limit to the compactness Rs/R of neutron stars, where
the radius must be &1.4Rs (Lattimer, 2012). On the other hand, a lower boundary for the
compactness of a neutron star is given by their rotational period. Below a certain limit they are
believed to be shredded apart. Figure 1.1 shows this threshold for the fastest rotating pulsar
PSR J1748−2446J (Hessels et al., 2006), which is spinning with a frequency of 716 Hz.

Besides their extreme compactness neutron stars can have strong, approximately dipole-like
magnetic fields. Observed B-field strengths show a wide range, from relatively moderate
(107 G) to extremely strong magnetic fields reaching up to 1015 G (Haensel et al., 2007). There
are no other objects known which would even come close to reaching such strong B-fields,
e.g., the Earth’s B-field is on the order of 10−1 G (see, e.g., Karttunen et al., 2003) and the
strongest persistent artificial field created in a laboratory2 is on the order of 104 G.

Since the discovery of the Crab pulsar, hundreds of radio pulsars were discovered in our
galaxy, as well as a variety of other kinds of pulsating neutron stars in different wave bands
(Manchester et al., 2005). Pulsars are classified according to their primary source of power,
which is either connected to their high compactness, their strong magnetic fields, or their
rotational energy (Harding, 2013). As shown in the right panel of Fig. 1.1 the different types
of neutron stars generally occupy different areas in the pulse period and B-field strength space.
Magnetars exhibit the strongest magnetic fields observed in the universe, from which they

2As found at https://nationalmaglab.org/about/facts-figures/world-records on January 4th, 2018.
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1.2. HIGHLY MAGNETIZED ACCRETING X-RAY PULSARS
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Figure 1.1.: Properties and types of neutron stars. Left: Theoretical mass-radius relation of
a neutron star predicted for hadronic equations of state (black lines) and strange
quark matter (green lines). The blue shaded regions are excluded by general
relativity (GR), finite pressure (P < ∞), and causality. The green region is the limit
derived by the highest-known rotation frequency of PSR J1748−2446J. Figure
taken from Lattimer (2012). Right: Sketch of neutron star types categorized by
there B-field strength and rotational period after Harding (2013).

gain their energy. Millisecond pulsars (MSPs), on the other hand, belong to the group of
rotation-powered pulsars and, while having moderate B-field strengths, typically rotate very
rapidly. Accreting X-ray pulsars are found in binary systems, in which the neutron star accretes
matter from an optical companion star. Depending on the mass of the companion this class of
accreting neutron stars can be divided into further subclasses. In so-called low mass X-ray
binaries (LMXBs) the companion has a mass of . 2 M�, while in high mass X-ray binaries
(HMXBs) the companion’s mass is & 8 M� (Mészáros, 1992), like for example, O- or B-type
stars. In the latter case the neutron stars exhibit strong B-fields and show rather long pulse
periods, roughly between 1 and 1000 seconds. HMXBs are typically quite young systems in
contrast to LMXBs, whose B-fields have already decayed (Bhattacharya & van den Heuvel,
1991, Zhang & Kojima, 2006) and the angular momentum transfer from the matter they have
accreted spun them up to sub-second pulse periods. There are different mechanisms for the
accretion in these X-ray binaries (see, e.g., Wilms, 2014, and references therein). In LMXBs,
for example, disk accretion driven by Roche-Lobe overflow of the optical companion takes
place. In many cases of HMXBs, on the other side, the strong stellar wind of the donor star
feeds the accretion.

1.2 Highly magnetized accreting X-ray pulsars
Highly magnetized accreting X-ray pulsars are generally found in HMXB systems (Caballero
& Wilms, 2012). Due to their strong magnetic field the accretion process is governed by the
magnetosphere of the neutron star closer than a certain distance, independent of the primary
accretion mechanism. Once the accreted matter passes the radius of equilibrium between its

3



CHAPTER 1. INTRODUCTION TO X-RAY PULSARS

own ram pressure pushing inwards and the outwards directed magnetic pressure, it is forced to
follow the magnetic field lines onto the poles of the neutron star. The radius of equilibrium is
called the Alfvén radius and is given by (Davidson, 1973, Elsner & Lamb, 1977)

rmag =

(
1

16G
R12

NSB4
0

MNSṀ2

)1/7

≈
(
2.3 × 108 cm

) ( MNS

1.4 M�

)−1/7 ( RNS

10 km

)12/7 ( B0

1012 G

)4/7 (
Ṁ

1017 g s−1

)−2/7

,

(1.2)

where RNS is the radius of the neutron star, B0 is the surface B-field strength at the pole of the
neutron star, MNS the mass of the neutron star, and Ṁ the mass accretion rate. In HMXBs with
typical B-field strengths of B0 ∼ 1012 G and mass accretion rates of Ṁ ∼ 1017 g s−1, the Alfvén
radius is roughly 2400 km. At the Alfvén radius the magnetic torque couples the rotation of
the material to that of the neutron star. In the case the rotational velocity at rmag exceeds the
orbital velocity, accretion is prevented by the so-called propeller effect, where the accreted
matter cannot overcome the centrifugal force imposed by the co-rotating magnetosphere. This
co-rotation radius is given by (Davidson, 1973)

rco =

(
GMNSP2

4π2

)1/3

≈
(
1.7 × 108 cm

) ( MNS

1.4 M�

)1/3 ( P
1 s

)2/3

, (1.3)

where P is the rotation period of the neutron star. The co-rotation radius is on the same order
as the Alfvén radius, especially for short rotation periods.

Following the B-field lines, the infalling material is channeled onto the magnetic poles,
where localized emission regions are formed as the accreted material is stopped at or close
to the neutron star’s surface. Assuming a dipolar B-field and following the critical field lines
from the Alfvén radius to the poles, the polar radius of each funnel can be approximated with
(Davidson, 1973)

rpole =

(
R3

NS

rmag

)1/2

≈ (0.78 km)
( RNS

10 km

)3/2 (
MNS

1.4 M�

)−1/6 ( P
1 s

)−1/3

, (1.4)

where in the second equality rmag = rco is assumed.

1.2.1 X-ray emission

Within the accretion columns the kinetic energy released during the deceleration of the infalling
plasma is transformed into radiation. Close to the neutron star the free fall velocity of the
matter can reach up to 60% of the speed of light. An estimation for the luminosity of the
accretion columns corresponding to the released kinetic energy assuming 100% efficiency is
given by (Caballero & Wilms, 2012)

L? =
GṀMNS

RNS
≈

(
1.86 × 1037 erg s−1

) ( Ṁ
1017 g s−1

) (
MNS

1.4 M�

) ( RNS

10 km

)−1

, (1.5)

where ? denotes the reference frame of the accretion column (see Sect. 2.1.4). The spectral
shape of the escaping continuum radiation is characterized by reprocessing of seed photons

4



1.2. HIGHLY MAGNETIZED ACCRETING X-RAY PULSARS

Figure 1.2.: Sketch of the formation of X-ray emission in accretion columns (Becker & Wolff,
2007). At the bottom of the column soft photons (red) are produced via black-body
radiation, Bremsstrahlung and cyclotron emission. The infalling supersonic flow
Compton upscatters these photons to higher energies. The plasma is decelerated
to subsonic velocities at the radiative shock.

(e.g., black-body emission from the thermal mound or Bremsstrahlung) in the optically
thick plasma, mainly through inverse Compton scattering ("Comptonization"). The detailed
calculation of the spectral shape of the emerging continuum requires the solution of the
radiative transfer equation (RTE). Different methods and techniques for solving the RTE under
various assumptions have been presented, e.g., by Becker & Wolff (2005a,b, 2007), Postnov
et al. (2015), Farinelli et al. (2016), and Wolff et al. (2016). The common prediction of these
various calculations is that the broad-band spectrum is roughly powerlaw-like and often shows
a high-energy cutoff. These models are in agreement with observations and therefore allow us
to connect the continuum shape with physical properties of the column, like, e.g., the electron
temperature or velocity structure.

In Fig. 1.2 the generally accepted picture of the X-ray formation process after Becker &
Wolff (2007) is shown. The kinetic energy of the infalling plasma is transformed into radiation
mainly through three different mechanisms. 1) At the bottom of the accretion column on
the polar caps the material hitting the neutron star’s surface creates a thermal mound, which
produces black-body emission. 2) Throughout the column also Bremsstrahlung photons are
generated by the deflection of electrons in the infalling thermal plasma. Both of these processes
produce emission with a certain energy distribution, while 3) cyclotron emission additionally
occurring inside the whole column is monochromatic for a certain B-field strength. This

5



CHAPTER 1. INTRODUCTION TO X-RAY PULSARS

emission is caused by the radiative de-excitation of electrons after collisional excitation with
protons (see also Sect. 1.2.2).

The presence of a strong magnetic field causes photons to propagate through the medium
in the form of two polarization modes due to collective plasma effects and electron-positron
vacuum polarization (Mészáros & Ventura, 1978, Pavlov et al., 1980). These modes are
usually called ordinary and extraordinary modes and behave differently in the scattering
process. During the diffusion of these seed photons through the column they undergo bulk
Comptonization, which is the inverse Compton scattering off relativistic electrons. While these
photons gain energy, they decelerate the infalling plasma to subsonic velocities and cause
the formation of a radiation-dominated shock (Davidson, 1973). The shock builds up once
the X-ray luminosity in the column is larger than the so-called critical luminosity (Basko &
Sunyaev, 1976, Becker, 1998, Mushtukov et al., 2015),

L?crit =
(
3.8 × 1038 erg s−1

) σT
√
σ‖σ⊥

(
MNS

1.4 M�

)
rAC

RNS
, (1.6)

with rAC the radius of the accretion column, σT the Thomson scattering cross section, and the
scattering cross sections σ‖ and σ⊥, parallel and perpendicular to the magnetic field, respec-
tively. In the case of pure Thomson scattering both components would equal the Thomson
scattering cross section, i.e., σ‖ = σ⊥ = σT. The process of bulk Comptonization results in
the emitted spectrum having a power-law like shape. Additionally, thermal Comptonization
causes an energy transfer from high to low energy photons and is, thus, the reason for the
high-energy roll-over observed in the spectra.

1.2.2 Cyclotron resonant scattering features

Accreting X-ray pulsars also show spectral features in the hard X-rays, between about 1 and
100 keV, which are associated with their extreme B-fields. While the electron momentum
parallel to the B-field is continuous and can be interpreted as the temperature of the plasma, the
electron momentum perpendicular to the field is quantized into Landau levels in the presence
of a strong B-field roughly on the order of the quantum-electrodynamical critical field strength
(e.g., Canuto et al., 1971, Schwarm et al., 2017b),

Bcrit ≈
m2

ec3

e~
= 44.14 × 1012 G , (1.7)

where me is the mass of the electron, e its charge, and ~ is the Planck constant divided by 2π.
The energy of these Landau levels in the rest frame of the electron is given by

E′CRSFn =
mec2

sin2 ηin

√1 + 2n
B

Bcrit
sin2 ηin − 1

 , (1.8)

where n ∈ N is the quantum number of the Landau level with n = 1 corresponding to the
fundamental line and η′in is the incident angle of the scattering photon with respect to the
magnetic field (see, e.g., Mészáros, 1992). The prime (′) denotes the co-moving reference
frame of infalling and emitting Plasma (see Sect. 2.1.4). For B � Bcrit the Landau levels in
Eq. 1.8 are approximately equidistant with energies

E′CRSFn = n ×
mec2B

Bcrit
≈ n × 11.6 keV

( B
1012 G

)
, (1.9)
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−k′

Figure 1.3.: Left: Sketch of a Landau level transition (F.-W. Schwarm, priv. comm.). A photon
k incoming with an angle ηin to the B-field excites an electron with the momentum
p‖ parallel to the B-field from the Landau level n to n′. During the decay of the
electron back to the level n a photon k′ is emitted. Right: Discovery of the first
CRSF observed in the spectrum of Her X-1 by Trümper et al. (1978).

which is the so called 12-B-12 rule. As a result of this quantization, the cross section for
photons scattering off these electrons is increased by several orders of magnitude at the
resonant energies corresponding to the energy differences between the Landau levels. An
incoming photon of sufficient energy can excite an electron into a higher Landau level (Fig. 1.3,
left panel). It is in principle possible to excite any Landau level as long as the photon meets
the required energy, although the scattering cross section decreases rapidly with increasing n
(see, e.g., Schwarm et al., 2017b). The excited electron state has only a lifetime on the oder of
10−15 s, which is shorter than the typical time for collisional de-excitation in the plasma of the
accretion column. Therefore the de-excitation predominantly takes place via photon spawning
to the next lower Landau level.

For the tenuous magnetized plasma in the accretion column, Compton scattering off these
quantized electrons dominates over absorption (Bonazzola et al., 1979) and cyclotron resonant
scattering features (CRSFs), or cyclotron lines, are formed. These CRSFs typically appear
as broad absorption features in the observed spectra and allow us to directly measure the
strength of the B-field at the location they are formed. The first observational evidence for
such a CRSF was reported by Trümper et al. (1978) in the spectrum of Her X-1 (Fig. 1.3, right
panel). Today we know about 35 objects with reasonable secured CRSFs and some additional
candidates (Staubert et al., 2018).

Figure 1.4 shows example spectra for two accreting X-ray pulsars, namely Her X-1 and
Cen X-3. The observed X-ray spectra of both sources show the typical power-law like shape
with a roll-over towards high energies. After the model by Becker & Wolff (2007) the
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Figure 1.4.: Observed example X-ray spectra for Her X-1 and Cen X-3 (black points) de-
scribed with the physical model by Becker & Wolff (2007) (red lines) and its
individual components, i.e., Bremsstrahlung (green), cyclotron emission (blue)
and black-body (black), and an additional iron line (magenta).

continuum is mainly shaped by the Comptonization of Bremsstrahlung, while cyclotron and
black-body emission only contribute marginally to the seed photons processed within the
column. A cyclotron line noticeable as broad absorption feature is also present in both sources.
The additional iron emission line does not originate from the accretion column itself, but is
due to fluorescence in the accretion disk surrounding the neutron star.

CRSFs are typically observed to vary with rotational period of the neutron star in energy,
depth, and width due the varying viewing angle with respect to the B-field. The observed
variations are a consequence of the strong angular dependency of the cyclotron cross section,
combined with special relativistic effects such as strong beaming, as typical speeds in the
accretion column can reach 60% of the speed of light. In several sources the observed CRSF
energy also varies with source luminosity (e.g., Staubert et al., 2007, Tsygankov et al., 2010,
Becker et al., 2012, Poutanen et al., 2013, Fürst et al., 2014b, 2015, Lutovinov et al., 2015, and
references therein). These variations are typically attributed to changes in the internal structure
of the accretion column or to the interaction of the column’s emission with the surface of the
neutron star or the accretion disk. For example, Becker et al. (2012) showed that depending
on the mass accretion rate, different processes dominate the braking of matter in the accretion
column. Depending on the process that dominates, the emission height and therefore also the
CRSF energy reacts differently to changes in mass accretion rate and, thus, luminosity. At low
luminosities, magnetohydrodynamic effects stop the material (Fig. 1.5a). An increase in the
mass accretion and therefore in luminosity causes a gas shock to evolve, whose height increases
with luminosity, moving the emission height further up where the smaller B-field results in
lower CRSF energies (b). The gas shock rises until Coulomb interactions form a radiative
shock, which now is responsible for stopping the material and bulk Comptonization takes
place (Becker & Wolff, 2007). In this regime (c), increasing mass accretion rate compresses
the column, so an increase in luminosity will be accompanied by an increase in CRSF energy
(Staubert et al., 2007, Becker et al., 2012, Rothschild et al., 2017). Above a critical luminosity
(Eq. 1.6), however, the radiation pressure dominates the dynamics of the plasma. In this regime,
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Figure 1.5.: Different theoretical accretion regimes within the accretion column determining
the emission height as function of luminosity (Becker et al., 2012). a: At very low
luminosities the infalling plasma is stopped at the surface of the neutron star. b:
For increasing luminosity the emission height rises due to a evolving gas shock.
c: Close to a critical luminosity a radiation dominated shock forms causing the
emission height to decrease again. d: Above the critical luminosity the emission
height rises again.

as the mass accretion rate and, thus, the luminosity increases, the shock moves upwards into
regions of smaller B-field strengths such that we expect the CRSF energy to decrease again
(d).

Poutanen et al. (2013) oppose this picture of the growth of the accretion column with
luminosity being the origin of the observed emission and CRSFs. They argue that the related
gradient of the B-field in this scenario is too large to allow us to observe CRSFs as line-
like absorption features. As the energy of the cyclotron line is dominated by the B-field
(Eq. 1.8) a large range of B-fields in the line forming region would lead to a superposition of
many lines, which would completely smear them out in the observed spectra. Moreover, the
observed variations of the CRSF energies is much smaller than would be expected from the
corresponding changes in luminosity. Based on these concerns Poutanen et al. (2013) suggest
that it is physically more realistic that CRSFs are formed when the radiation of the column
is reflected off the neutron star’s surface as there the gradient in the B-field is much smaller
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Figure 1.6.: Reflection model suggested by Poutanen et al. (2013), where CRSFs are formed
on the neutron star’s surface. For illustration purposes only one accretion column
is shown. a: The low emission height of the column only illuminates a small
radius around the column on the neutron star’s surface, where the B-field is still
strong. b: For higher emission heights this illumination radius also increases
causing reflection from areas with lower B-fields, which results in a decrease of
the observed CRSF energy.

than in the column. Additionally, due to general relativistic light bending and the relativistic
downwards boosting caused by the bulk velocity of the infalling plasma a large fraction of
the accretion column emission is focused towards the neutron star and hitting its surface (see
Chapters 2 and 3). In their model low luminosities correspond to small accretion columns,
which illuminate only a small area around the pole of the neutron star (Fig. 1.6a). Close to
the column, the B-field is still strong and the resulting CRSFs are observed at high energies
correspondingly. As the luminosity increases so does the height of the accretion column,
whose emission now can illuminate a larger fraction of the surface, where lower B-fields result
in a decrease of the observed CRSF energies (b).

Both of these scenarios might explain the observed variation of the observed CRSF energy
with luminosity, but both act on assumptions and leave open questions. The accretion column
model by Becker et al. (2012), for instance, is one-dimensional, neglecting the radial extension
of the column in order to be able to solve their complex radiative transfer equation. In the
reflection model, Poutanen et al. (2013) assume that the cyclotron lines formed by reflection
have the same spectral shape as via transmission. Schwarm et al. (2017a,b), however, show
that the geometry of emission regions and the origin of the seed photons influences the CRSFs.
Furthermore, a large and extended emission region is problematic in terms of the observed
high variations of the flux with rotational period.
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Figure 1.7.: Example pulse profiles of several accreting X-ray pulsars (taken from Bildsten
et al., 1997). Note that the pulse profiles are shown for two pulse phase cycles.

1.3 Pulse profiles
In the previous section I focused on the spectral formation of the X-ray emission originating
from the accretion columns. These considerations, however, do not include the geometrical
effects introduced by the rotation of the neutron star. The magnetic axis and the spin axis
of the neutron star are often misaligned (Parmar et al., 1989). As the neutron star rotates
through our line of sight, this results in periodic changes of the observed flux (Lamb et al.,
1973). While X-ray pulsars all share a similar spectral distribution, such pulse profiles exhibit
various shapes as shown in Fig. 1.7. Their shapes include single peaks as well as double peaks,
which range from broad to narrow and can be symmetric or highly asymmetric. But also more
complex shapes have been observed.

Pulse profiles of X-ray pulsars are unique for individual source states, but often show a
strong energy and luminosity dependence. The morphology of the profiles depends on the
system’s intrinsic geometry and the intrinsic emission profiles, which in turn depend on the
mass accretion rate and therefore on the luminosity.

In order to interpret the observational data in the light of physical models, we need to
be able to compare the model predictions, such as the energy and angle dependent model
flux, with observations. General relativistic effects have to be taken into account due to the
compactness of the neutron star and the strong influence of light bending on the relation
between the intrinsic emission angle and the observed viewing angle. These angles would
be identical in flat space-time with straight geodesics. In the close vicinity of the neutron
star, however, the photon trajectories are deflected by up to 180◦ in the most extreme cases
(see Chapter 2). Neglecting the effects of general relativity therefore would lead to a wrong
relation between the intrinsic emission profile and the observed pulse profile. One can either
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Figure 1.8.: Pulse profile decomposition of A 0535+26 (taken from Caballero et al., 2011).
The original pulse profiles described with a Fourier series, normalized to unity in
four different energy ranges and their decomposition in two symmetric functions
are shown in the left and middle panel, respectively. The right panel shows the
reconstructed beam pattern for the lowest (solid line) and highest (dashed line)
energy range, where θ is the angle to the magnetic field.

start from the observed data and try to infer what the accretion column’s emission looks like,
or model the column emission and predict what the observer might see. An example for the
former approach is the work of Kraus et al. (1995), who used a Fourier decomposition method
to disentangle the observed pulse profiles into individual contributions of the intrinsic beam
patterns of the poles. Figure 1.8 shows the application of this method to A 0535+26 (Caballero
et al., 2011). First the pulse profile, in this case the four pulse profiles in different energy
bands, are described with a Fourier series. Then possible decompositions of this Fourier
series into two contributions are determined with the restriction that each is a symmetric
function. This approach is based on the assumption that the observed flux originates mainly
from the two emission regions at the poles of the neutron star and that their emission profile is
axis-symmetric with respect to the B-field. These solutions, however, are not unique.

Although this decomposition was successful in providing possible beam patterns and
geometries for several sources (e.g., Kraus et al., 1996, Blum & Kraus, 2000, Sasaki et al., 2010,
2012), it does not allow us to obtain any information about the underlying physical processes
leading to the obtained beam patterns. In other words it does not allow us to use emission
profiles based on physical models to describe the observed pulse profiles. Alternatively, a
forward methodology was used to calculate the observable flux by applying emission profiles
to a given geometry of the emission region (e.g., Beloborodov, 2002, Poutanen & Beloborodov,
2006, Ferrigno et al., 2011, and references therein). To solve the emerging general relativistic
equations in a (semi-)analytical manner, all of these authors rely on symmetries of the emission
region with respect to the center of mass, such as hot spots on a sphere with fixed radius
(Beloborodov, 2002, Poutanen & Beloborodov, 2006) or conical accretion columns (Ferrigno
et al., 2011).
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1.3.1 Phenomenological models

The physical models describing the continuum and the cyclotron resonant scattering features
seen in accreting X-ray pulsars are relatively new and still under development. In the majority
of publications analyzing observed spectra of these objects phenomenological models are still
used.

The basic shape common to all observed X-ray continua is roughly described by a power-law,

PL(E) ∝ E−Γ , (1.10)

where E is the observed energy and Γ is the photon index (Müller et al., 2013b, and references
therein). This power-law like shape is expected from the bulk Comptonization, i.e., upscatter-
ing of photons via inverse Compton off relativistic electrons, within the accretion column (see
Sect. 1.2.1) with expected photon indices of 0 < Γ ≤ 2 (Becker & Wolff, 2007).

In addition to the overall power-law shape, many continua feature an exponential roll-over
at energies typically between 6 and 30 keV (see Fig. 1.9). There are different models, which
are commonly used to describe this roll-over. The simplest one is the cut-off power-law,

CutoffPL(E) = PL(E) × exp(−E/Efold) , (1.11)

where Efold is the folding energy above which the decreasing influence of the roll-over domi-
nates the continuum. The folding energy is often interpreted as the electron temperature as
Becker & Wolff (2007) included thermal Comptonization to explain the observed exponential
roll-over. The Fermi-Dirac cutoff (Tanaka, 1986),

FDcut(E) = PL(E) ×
1

1 + exp((E − Ecut)/Efold)
, (1.12)

introduces an additional degree of freedom with the cut-off energy Ecut to model the exponential
roll-over. Note that in some cases the folding energy in the CutoffPL is misleadingly named
cut-off energy due to the name of the model.

A similar model is the multiplicative high energy cut-off model in combination with the PL
model,

HighEcut(E) = PL(E) ×

 1 for E < Ecut

exp(−(E − Ecut)/Efold) for E ≥ Ecut
. (1.13)

Note that the CutoffPL is a special case of this model for Ecut = 0 keV. In contrast to the
CutoffPL and FDcut, which both are continuously differentiable, the HighECut has a break
in its derivative at the cut-off energy. Burderi et al. (2000) therefore modified this model to
smooth this break, i.e.,

SHighEcut(E) =


PL(E) for E ≤ Ecut − ∆ES

c3E3 + c2E2 + c1E + c0 for Ecut − ∆ES < E < Ecut + ∆ES

PL(E) × exp(−(E − Ecut)/Efold) for E ≥ Ecut + ∆ES

,

(1.14)
where ∆ES is the width of the smoothness and the constants c0, c1, c2, and c3 are calculated
such that the function and its derivatives in Ecut ± ∆ES are continuous.
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An alternative continuous model is the negative and positive power law with an exponential
cut-off (Mihara, 1995),

NPEX(E) = (N1E−Γ1 + N2E+Γ2) exp(−E/kT ) , (1.15)

where N1 and N2 are the normalizations of the negative and positive power law with photon
indices Γ1 and Γ2, respectively. Note that both photon indices are defined to be positive, and
that Γ2 = 2 is assumed in many cases (Mihara, 1995). The NPEX model basically consists of
two CutoffPL with the same folding energy, which is replaced by the temperature kT .

The cyclotron resonant scattering features (see Sect. 1.2.2), which are typically noticeable
as broad absorption lines in the X-ray spectrum, are often modeled by a Gaussian,

gabs(E) = exp
(
−

dCRSF
√

2πσCRSF

exp
[
−

(E − ECRSF)2

2σ2
CRSF

])
, (1.16)

where ECRSF is the line energy of the CRSF, σCRSF its width, and dCRSF its strength or also
called depth. From the strength and width of the gabs-line its corresponding optical depth can
be calculated by

τCRSF =
dCRSF
√

2πσCRSF

. (1.17)

Alternatively, a pseudo-Lorentzian absorption profile given by (Mihara et al., 1990, Mak-
ishima et al., 1990)

cyclabs(E) = exp
(
−τCRSF

(σCRSF E/ECRSF)2

(E − ECRSF)2 − σ2
CRSF

)
(1.18)

is also commonly used to model the CRSFs. The minimum of Eq. 1.18 is located at

Emin = ECRSF

(
1 +

σ2
CRSF

E2
CRSF

)
(1.19)

in contrast to the gabs model, where it is found at ECRSF. Consequently the cyclotron energy
obtain with cyclabs is roughly 2–20% or respectively 1–4 keV lower than that obtain with
gabs (Fig. 1.9).

In many accreting X-ray pulsars a soft excess around ∼5 keV (e.g., Mihara, 1995) is
observed, which requires an additional model component to fit the spectrum. Commonly
this feature is modeled with a broad Gaussian in emission, an additional power-law as in
the NPEX model, or with a black-body. The observed spectra also show features, which are
not associated with the formation of the intrinsic emission from the accretion column itself.
Between their formation and their detection, the X-ray spectra are modified by photoelectric
absorption when passing through ionized or neutral material, which can be located in the close
vicinity around the source, in the system of the binary, or within our Milky Way as part of
the interstellar medium. This absorption is noticeable as a lack of photons in the soft X-ray
regime below ∼10 keV. A secondary effect of this absorption are fluorescent emission lines.

Figures 1.9 and 1.10 show an example overview of continuum and cyclotron line parameters
for 23 galactic accreting X-ray pulsars based on the phenomenological models described
above. The list of sources and the corresponding references are not complete as the purpose of
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Figure 1.9.: Example overview of observed continuum and CRSF parameters in X-ray pulsars for illustration
purposes. Shown are the flux derived X-ray luminosities, L4π, the photon index, Γ, the folding
energy Efold, the cut-off energy, Ecut, and the CRSF energy, ECRSFn, width, σCRSFn and optical
depth, τCRSFn in the phase-averaged spectra as indicated by the overline. For each object, colors
relate to the corresponding reference given as numbers below the object name on the y-axis
(reference list see Fig. 1.10). For each object and reference the parameter range markers distinguish
different empirical continuum models, that is CutoffPL (�), HighEcut (N), SHighEcut (I),
FDcut (H) and NPEX (∗), and empirical line models gabs (•), gabs+gabs (•), cyclabs (�) and
modified gauss (×). Values obtained by physical models are marked with aF. For details on
the models see the corresponding reference. Gray boxes indicate the overall range. For multiple
occurrences of a parameter, e.g., multiple CRSFs, each one is marked with an individual box
with increasingly lighter gray shading for higher cyclotron line harmonics. Values were partially
taken from figures, obtained from different instruments and different models and may be biased by
systematic errors. Statistical errors are not included. Luminosities are only a rough representation
as uncertainties in distance were not taken into account and are calculated for different energy
ranges within 1 and 100 keV.
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this figure is to convey a feeling for the parameter ranges and for comparison with the physical
model presented in Chapter 3. These figures focus on parameters associated with the broad
band continuum and the cyclotron line. Thus, they do not show additional components as
required for a full description of the total observed spectrum, such as photoelectric absorption
or a soft excess.

Figure 1.9 shows parameter ranges obtained from phase-averaged spectra. In particular,
phase-averaged means that the spectra are averaged over the pulse period of the pulsar or
are exceeded by their time resolution. These parameters do not only vary from source to
source, but can also change within an individual source observed in different states. The main
indicator for the source state is its luminosity as also shown in the figure. To distinguish
between variations linked to changes of the source state and differences caused by the use
of different models, the figure also indicates those models and the corresponding references.
Note that the sources are sorted by their highest observed luminosity3, nevertheless there is no
obvious correlation recognizable. However, the degree of the parameter variation seems to be
roughly correlated to the range of the luminosity the corresponding source was observed in.

Figure 1.10 shows results from phase-resolved spectral analyses. In particular, the ampli-
tudes of the parameters during the pulse phase are shown. Phase-resolved analyses require a
certain time-resolution of the data to resolve the pulse phase of the pulsar, while simultaneously
maintaining a sufficient signal to noise ratio. Therefore, the amount of available data obtained
from phase-resolved analyses is significantly less than for phase-averaged analyses. The ob-
served spectral variabilities with respect to the pulse phase shown in Fig. 1.10 are in the order
of the variations with luminosity (Fig. 1.9) or even stronger. This strong phase dependence
shows the necessity of phase-resolved analyses as it allows us to interpret observations in a
physically meaningful manner, while drawing conclusions from phase-averaged spectra should
be taken with caution. This is especially important with regard to CRSFs because of their
strong dependency on the viewing angle to the B-field. For instance, a CRSF could only be
detectable in the phase-resolved spectrum or it could appear asymmetric in the phase-averaged
spectrum due to phase-dependence of a symmetric line.

1.4 The aim of this thesis
In this thesis I investigate highly magnetized accreting X-ray pulsars. Of particular interest
is the place of origin of their X-ray emission, i.e., the accretion columns on the polar caps
of the neutron star. Although there are several physical models describing different aspects
of the radiative transfer within the accretion column, a comprehensive model, however, is
still needed. Especially, the detailed transformation from the intrinsic reference frame of the
neutron star to that of the observer is generally neglected, which introduces geometrical effects
and has to be treated general relativistically. In this thesis I present a new and flexible general
relativistic ray tracing code easily combinable with physical models providing the emission
profile.

In Chapter 2 I present the ray tracing method developed to account for general relativistic
effects in the Schwarzschild metric like light bending and gravitational redshift. In contrast to

3There is a significant systematic error in the determination of the (flux derived) luminosity, which is part of the
discussion in Chapter 3.
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CHAPTER 1. INTRODUCTION TO X-RAY PULSARS

previous works this ray tracing method does not require a special geometry of the emission
region and is able to apply any emission profile to emission regions of any shape. In Chapter 3
I combine two physical models to obtain a physical description of the emission emanating
from accretion columns. One determines the continuum emission of the column dependent on
the emission height, angle, and energy, while the other imprints this continuum with cyclotron
resonant scattering features. The combination of this physical emission profile and the ray
tracing method provides a self-consistent description, for the first time, from the origin of
the emission to the observer. Looking at the dependency of the geometrical parameters, it
becomes clear, that the geometry of the system as well as general relativity has a significant
impact on observational quantities.

In Chapter 4 I show the application of the ray tracing method to observational data for
two different cases. In Sect. 4.1 I use a simple phenomenological emission profile to fit the
pulse profiles of 4U 1626−67 and their evolution with energy. The profile is a mixture of
emission directed along and perpendicular to the B-field, called “pencil beam” and “fan beam”,
respectively. In Section 4.2 I present a simple model including a single accretion column
to describe the observed phase dependence of the two distinct CRSFs in GX 301−2. While
the CRSF of constant energy is formed at the bottom of the column, the variation of the
CRSF at lower energy and formed higher in the column is explained by the dependency of the
relativistic boosting on the viewing angle.

Finally, I give the conclusion and an outlook for further studies in Chapter 5.
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2 Ray tracing in curved
space-time

The discussion of this relativistic ray tracing method are based on a submitted manuscript
(Falkner et al., 2018a) and therefore the subsequent sections are following it closely and in
larger parts in verbatim. The development of a limited prototype of this code also was the
topic of my Master’s thesis (Falkner, 2013), which discusses some of the aspects presented in
this Chapter in more detail.

In order to understand the observations of emission which emerges from the close vicinity
of a compact object in a physical meaningful manner, general relativistic effects have to be
taken into account. Such effects are light bending, which also causes a lensing effect (solid
angle amplification), and gravitational redshift. These effects are especially important for
neutron stars where we observe emission from the neutron star’s surface and from its accretion
columns. Note that in the following we consider the neutron star to rotate slowly with periods
of P & 1 s as we focus on HMXBs. This assumption allows us to neglect time delays of
observed photons and Doppler boosting. The non-trivial treatment of relativistic rotation (see
Sect. 2.4.2) would add a significant degree of complexity to the ray tracing method described
in this Chapter and would decrease its efficiency in terms of computational runtime.

For that purpose I developed a relativistic ray tracing code solving the photon trajectories in
the Schwarzschild metric to calculate the observed energy and phase dependent flux based on
arbitrary geometries and emission patterns of the emission regions.

2.1 General relativistic ray tracing
The following section summarizes the mathematical equations utilized by the relativistic ray
tracing code. The trajectories of photons in the Schwarzschild metric are solved to obtain the
projection of the geometry on the observer sky. Applying an emission profile to the given
geometry then allows us to calculate the observed energy and phase dependent flux. We choose
a numerical approach similar to the work by Beloborodov (2002), Poutanen & Beloborodov
(2006), and De Falco et al. (2016), who derived the observed flux for infinitesimal spots on a
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CHAPTER 2. RAY TRACING IN CURVED SPACE-TIME

sphere. We expand this approach by radially extended emission regions in a way similar to
Ferrigno et al. (2011) did for conical accretion columns, which allows photon trajectories with
a turning point. The method described in the following, however, allows us for the first time to
model arbitrary geometrical emission regions, without any required symmetry or any other
restriction to the geometrical shape.

2.1.1 Equations of motion

Solving the geodesic equation based on the Schwarzschild metric in spherical coordinates
(t, r, θ, ψ) one obtains the equations of motion for photons. In particular, exploiting spherical
symmetry and the conservation of angular momentum (θ ≡ π/2), the components of the
photon’s four-velocity can be written as (see, e.g., Misner et al., 1973)

ut ≡
dt
dλ

= (1 − Rs/r)−1 (2.1)

ur ≡
dr
dλ

=
[
1 − b2 (1 − Rs/r) /r2

]1/2
(2.2)

uθ ≡
dθ
dλ

= 0 (2.3)

uψ ≡
dψ
dλ

= br−2 , (2.4)

where Rs is the Schwarzschild radius (Eq. 1.1) and b the impact parameter, i.e., the distance
between the trajectory and the line of sight, which connects the center of the neutron star and
the observer (Fig. 2.1). The impact parameter can be expressed in terms of the radial emission
angle α, i.e., the angle between the radial position vector, n, and the initial emission direction
of the photon, k?. With Eqs. (2.2–2.4),

tan(α) =
|uψ|
|ur|

∣∣∣∣∣∣
θ= π

2

(2.5)

such that
b =

R sinα
√

1 − Rs/R
. (2.6)

The trajectory of the photon can then be described by the elliptical integral

ψb(R) =

∫ ∞

R

dψ
dλ

dλ
dr

dr

=

∫ ∞

R

dr
r2

[
1
b2 −

1
r2

(
1 −

Rs

r

)]−1/2

,

(2.7)

where ψ is the polar angle between the direction to the observer at infinity and the current
location R of the photon (see Fig. 2.1). Note that R is not necessarily equal to the radius of the
neutron star which is denoted with RNS, i.e., R ≥ RNS.
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Figure 2.1.: Visualization of the ray tracing parametrization. The orange solid line represents
the trajectory of photons emitted at (R, ϕ, ϑ) in the direction k? with the emission
angle α with respect to the radial vector n. R represents the radius of emission.
The photon reaches the observer plane (at infinity) at the impact point (X =

b cos ρ,Y = b sin ρ) at a distance b. The direction k towards the observer is
defined to lie in the x, z-plane, inclined by the inclination i with respect to the z-
axis, which is also the axis of rotation. The angle between n and k is the apparent
emission angle Ψ . The blue dashed line represents the second possible trajectory,
Ψ ∗, to the observer of a photon emitted at (R, ϕ, ϑ). In this case the photon is
emitted towards the neutron star, that is, α > 90◦ and exhibits a periastron at
(Rp, Ψp).

The travel time, i.e., the time the photon following the trajectory in Eq. (2.7) needs to reach
the observer, is given by

ctb(R) =

∫ ∞

R

dt
dλ

dλ
dr

dr

=

∫ ∞

R
dr

(
1 −

Rs

r

)−1 [
1 −

b2

r2

(
1 −

Rs

r

)]−1/2

.

(2.8)
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For an observer placed at infinity the travel time also is infinity. To avoid this problem we
define a more suitable parameter, the time delay

c∆tb(R) = c [tb(R) − t0(Rref)]

=

∫ ∞

R
dr

(
1 −

Rs

r

)−1

[
1 −

b2

r2

(
1 −

Rs

r

)]−1/2

− 1

 − Rs ln
(

R − Rs

Rref − Rs

)
− R + Rref ,

(2.9)
which is the difference of the travel time tb(R) of a photon emitted at radius R with and impact
parameter b and the reference travel time t0(Rref) with a freely chosen reference radius Rref

and impact parameter b = 0. For simultaneous emitted photons the time delay in Eq. (2.9)
describes the difference in arrival times at the observer. This time delay is in the order of
10−4 s and depends only slightly on the compactness of the neutron star and the dimension of
the emission region. Therefore the time delay is negligible for pulsars with a spin period &1 s
and is only important for rapidly spinning pulsars such as millisecond pulsars.

Those trajectories in Eq. (2.7) with α ≥ 90◦, i.e., photons emitted towards the neutron star,
can exhibit a periastron at

Rp(b) = −2

√
b2

3
cos

1
3

arccos
3
√

3
2

Rs

b

 +
2π
3

 , (2.10)

where α = 90◦ corresponds to the periastron itself. Equation (2.10) is only valid for b > bc,
with the critical impact parameter

bc =
3
√

3
2

Rs , (2.11)

and the critical radius
Rc = Rp(bc) =

bc
√

3
=

3
2

Rs , (2.12)

below which photon trajectories do not exhibit a periastron and spiral inwards to the center of
mass. From Eq. (2.6) we derive the maximum radial emission angle,

αmax = π − arcsin

bc

R

√
1 −

Rs

R

 . (2.13)

To account for periastra, the photon trajectory in Eq. (2.7) and the corresponding time delay in
Eq. (2.9) have to be considered, such that

Ψb(R) =

 ψb(R) for α ≤ 90◦

2ψb(Rp) − ψb(R) for α > 90◦
(2.14)

and

∆Tb(R) =

 ∆tb(R) for α ≤ 90◦

2∆tb(Rp) − ∆tb(R) for α > 90◦
. (2.15)
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Figure 2.2.: Accuracy of the analytical photon trajectory approximation (Eq. 2.16). This figure
is similar to Beloborodov (2002, Fig. 2) and shows contour lines (solid, dotted)
of constant deviation δξ/ξ of the bending angle ξ = Ψ − α of the analytical
approximation (Eq. 2.16) to the exact solution (Eq. 2.14). The black and orange
shaded regions relate to the maximum radial emission angles, αmax and αapprox

max ,
for the exact and approximated case, respectively. The blue shaded area confines
the region that can be occupied by a neutron star with MNS = 1.4 M� (see, e.g.,
Steiner et al., 2013). Note that the y-axis of Beloborodov (2002, Fig. 2) actually
begins at Rs/R = 0.01 and not at 0 as implied in their figure.

2.1.2 Analytic approximation

Beloborodov (2002) presents a very accurate analytical approximation for the photon trajectory
in Eq. (2.7) given by

1 − cosα = (1 − cosψ)(1 − Rs/R) , (2.16)

which De Falco et al. (2016) derive in a more general approach. This approximation requires
that R > 2Rs = Rapprox

c . Note that the critical radius in this approximation is larger than that of
the exact solution (Eq. 2.12). In other words, in the approximation of Beloborodov (2002) a
neutron star with a radius of 2Rs would look like a neutron star of a radius 3

2Rs based on the
exact calculation. Objects therefore appear to be more compact when using the approximate
solution rather than the exact calculation.

Considering the bending angle, ξ = Ψ − α, which is the most crucial parameter for ray
tracing, its deviation, δξ/ξ, from the exact solution is small (Fig. 2.2), reaching 10% only in
the extreme case of α→ αmax (Eq. 2.13).

For α ≤ 90◦ the accuracy map in Fig. 2.2 matches that of Beloborodov (2002, Fig. 2), which
shows the correctness of our numerical calculation of the photon trajectory given by Eq. (2.14).
Note that as expected we obtain δξ = 0 for Rs/R → 0 and arbitrary α, as the apparent and
radial emission angle are equal, i.e., α = Ψ .
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2.1.3 Sky projection

By setting θ ≡ π/2 in the geodesic Equations (2.1–2.4) we can reduce the three dimensional
problem into a plane, where a trajectory can be identified only by its impact parameter b. In
order to obtain the projected image of a three-dimensional object in the observer plane we
need to distinguish between trajectories lying in different planes. The transformation between
these planes is basically a rotation around the line of sight, which can be described with the
azimuthal angle ρ in the observer plane (see Fig. 2.1). This azimuthal angle allows us to define
the impact point (X,Y) of a photon trajectory in the observer plane as

X = b cos ρ and Y = b sin ρ , (2.17)

where ρ is defined by

cos ρ =
[k × (n× k)] · ey
|k × (n× k)|

=
sinϑ sinϕ√

sin2 ϑ sin2 ϕ + (sin i cosϑ − cos i sinϑ cosϕ)2

(2.18)

and

sin ρ =

∣∣∣[k × (n× k)] × ey
∣∣∣

|k × (n× k)|

=
sin i cosϑ − cos i sinϑ cosϕ√

sin2 ϑ sin2 ϕ + (sin i cosϑ − cos i sinϑ cosϕ)2

,
(2.19)

where

k =


sin i

0
cos i

 (2.20)

is the direction vector to the observer, which is inclined to the z-axis by the inclination angle i,
and

n =


sinϑ cosϕ
sinϑ sinϕ

cosϑ

 (2.21)

is the radial normal vector. The angle ψ is geometrically described by

cosψ = k · n = cos i cosϑ + sin i sinϑ cosϕ . (2.22)

The initial emission direction k? can be expressed as

k? =
sinα
sinΨ

k +
sin(Ψ − α)

sinΨ
n . (2.23)

Note that in case of geometrical projection in flat space-time k? = k as Ψ = α. Finally, we
can express the solid angle occupied by an infinitesimal spot dS for an observer at distance D
in terms of the impact parameters,

dΩ = dX dY/D2 . (2.24)
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2.1.4 Observed flux and frames of reference

Using the definitions of the previous sections we are now able to determine the energy- and
phase-resolved flux observed from the neutron star. In order to do so, we need to integrate
the specific intensity IE as measured in the observer’s rest frame over the solid angle in the
observer’s sky, Ω, occupied by the surface of the emitting area, S , at rotational phase φ, that is

FE(φ) =

"
S

IE dΩ . (2.25)

Note that while the geometry of the emitting surface, S , may be static, the corresponding solid
angle, which represents the projection on the observer’s sky, depends on the rotational phase
as well as the line of sight, i.e., Ω = Ω(φ, S , k) (Eq. 2.24).

Regarding the specific intensity it is important to distinguish between the different reference
frames. In Eq. (2.25) IE is given in the rest frame of the observer. However, the emission
pattern has to be applied to the emitting surface in the rest frame of the neutron star. The
transformation of the specific intensity between the rest frame of the neutron star and the rest
frame of the observer is given by

IE(k) =

( E
E?

)3

I?E?(k?) , (2.26)

where

E = E?

√
1 −

Rs

R
= E?/ (1 + z) (2.27)

refers to the gravitational redshift z a photon suffers, which is emitted at the radius R away
from the center of mass with the Schwarzschild Rs. Equation (2.23) gives the transformation
between the observed (k) and the intrinsic emission direction (k?) of the photon. Quantities
referring to the rest frame of the neutron star or to that of the accretion column are marked
with a superscript star (?). This notation is applied to quantities which are not clearly defined
in a certain reference frame. For example the radial emission angle α is defined in the rest
frame of the neutron star, while its equivalent in the rest frame of the observer is defined as the
apparent emission angle Ψ .

In case the bulk motion of the infalling plasma which emits the photons is considered an
additional reference frame is introduced. The corresponding transformation of the specific
intensity is analog to Eq. (2.26)

I?E?(k?) =

(
E?

E′

)3

I′E′(k′) , (2.28)

where

E′ = E? 1 + βµ?√
1 − β2

and k′ =

√
1 − β2

1 + βµ?

k? − µ?eβ +
µ? + β√

1 − β2
eβ

 (2.29)

is obtained through the Lorentz transformation (see Einstein, 1905) accounting for the bulk ve-
locity βeβ measured downwards the accretion column in units of the speed of light. µ? = k? · eβ
denotes the projected emission direction in the rest frame of the neutron star, while

µ′ = k′ · eβ =
µ? + β

1 + βµ?
(2.30)
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is that in the rest frame of the emitter. Quantities given in the rest frame of the emitter are
marked with a prime (′).

2.2 Procedure of the numerical implementation
The following section describes the numerical procedure of the relativistic ray tracing code
based on the mathematical equations discussed in the previous section. In contrast to previous
works (Beloborodov, 2002, Poutanen & Beloborodov, 2006, Ferrigno et al., 2011) my method
calculates the observed flux numerically without the requirement of a special symmetry or any
other restrictions to the geometry.

Figure 2.3 gives an overview of the numerical procedure that implements the steps outlined
in the previous sections. We first define the geometrical setup, i.e., mass (MNS) and radius
(RNS) of the neutron star, and the spatial extent of the emission region and its location. Using
an approach common in Computer graphics, we achieve the independence of symmetrical
requirements by sampling the emitting region with a mesh of small triangular1 surface elements
as shown in the left panel of Fig. 2.4. In particular, we sample the surface S of the emitting
region with a set of vertices Rl(R, ϕ(φ), ϑ), with the index set l ∈ L ⊂ N numbering the
individual vertices and where |L| depends on the chosen resolution. These vertices form a
mesh of triangular surface elements

∆Sn =
1
2

(Rn1 − Rn0) × (Rn2 − Rn0) , (2.31)

such that each normal vector points outwards and their sum adds up to the emission region, i.e,∑
n |∆Sn| = S , where n numbers the surface elements and nm ∈ L with m ∈ {0, 1, 2} relates to

the corresponding vertices. In other words, each vector Rl may be a vertex in several (up to
six) surface elements. The vertex coordinate

ϕ(φ) = ϕ0 + φ (2.32)

then depends on the initial azimuthal position ϕ0 = ϕ(0) and on the rotational phase φ (see
Fig. 2.1). There are no restrictions or requirements to the geometrical shape of the emitting
surface, except for R > Rc.

A pre-calculated interpolation table (Fig. 2.3) is used to perform the relativistic projection.
This projection is represented by the solid angle Ω corresponding to the emitting surface S .
Based on the geometrical position, which is determined by the radius R and the angle Ψ , we
want to calculate the light bending parameters (b, α) required for the projection. The tabulation
step is necessary as the calculation of photon trajectories exhibiting a periastron requires the
periastron to be known beforehand (see Eq. 2.14). The periastron, however, is determined by
the impact parameter, b, of the trajectory (see Eq. 2.10), while the calculation of b requires
the emission angle α and the emission radius R (Eq. 2.6). Using Eq. (2.6) and Eq. (2.14) we
therefore calculate b and Ψ for given sets of R and α, which together provide the interpolation
table. To improve the efficiency the radial range of the table can be limited to the geometrical
extent in the given setup.

1A triangle formed by three points is the simplest way to define a plane surface (Euclid, ca. 300 BC).

26



2.2. PROCEDURE OF THE NUMERICAL IMPLEMENTATION

setup
geometry

interpolation
table

projection

∀φ ∧ ∀n

1.
Trajectory
valid?

2.
Trajectory
valid?

store
solution

no no

yes yes

overlap
specific

intensity

flux

Figure 2.3.: Flow chart sketching the steps of the numerical procedure of the relativistic ray
tracing method (see Sect. 2.2). As a first step the geometrical setup, the emitting
surface, is defined by a mesh of triangular surface elements. Additionally an
interpolation table has to be provided, which contains information of possible
photon trajectories. Based on these inputs the main step, the projection onto the
observer sky, can be performed. In this step at each phase φ for each surface
element n the two solutions for photon trajectories (Eq. 2.14) are determined and
saved if valid. In an optional step (dashed arrows) overlapping projections are
filtered. In the end the given specific intensity is applied to the valid projections
of each individual surface element and the resulting overall observed flux is
determined.

The main step is the projection (Fig. 2.3) of the 3-dimensional geometrical structure onto
the observer sky depending on the rotational phase. This projection is given by the solid angles,
∆Ωn, occupied by the corresponding surface elements, ∆Sn. The numerical approximation of
the solid angle in Eq. (2.24) is

∆Ωn =
1

2D2

[
(Xn2 − Xn0)(Yn1 − Yn0) − (Xn1 − Xn0)(Yn2 − Yn0)

]
. (2.33)
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Equation (2.33) represents the triangular area enclosed by the impact points (Xnm ,Ynm) at the
observer plane corresponding to its vertex set Rnm forming the surface element ∆Sn.

The calculation of the solid angles is performed on a given grid of rotational phases φ j in a
series of steps. At each phase only a subset of the surface elements has a valid projection. The
individual steps and different criteria for a valid projection at given phase are described in the
following.

First, using Eq. (2.22) we determine Ψnm for all according vertex sets nm geometrically
based on the line of sight, k, and the current location, Rnm . From the interpolation table we
can then obtain the corresponding ray tracing parameters, bnm and αnm , for the two possible
trajectory sets, Ψnm and 2π − Ψnm (see Fig. 2.1). Both solutions are checked for validity. A
trajectory set is dismissed, if for any nm

αnm > 90◦ ∧ bnm < RNS/
√

1 − Rs/RNS (2.34)

or equivalently
Rp(bnm) < RNS (2.35)

as these intersect with the neutron star surface. In other words the corresponding surface
element, ∆Sn, would be at least partially invisible, i.e., in the shadow of the neutron star (see
Fig. 3.13). To obtain the initial photon emission direction k?n for each valid solution, single
ray tracing parameters are determined by averaging according to

αn =
1
3

∑
m

αnm and bn =
1
3

∑
m

bnm . (2.36)

From Eq. (2.23) we then obtain the corresponding initial emission direction k?n and the
emission angle, ηn, relative to the surface normal vector, where

cos ηn = k?n · ∆Sn/ |∆Sn| . (2.37)

Surface elements with relative emission angles ηn > 90◦, i.e., trajectories pointing inwards
into the emitting surface, are dismissed. As a result there are either zero, one, or even two
projections, ∆Ωn, for each surface element, ∆Sn, at a given phase. The latter case is very
improbable and requires a special kind of geometry, which exhibits surface elements with
normal vectors pointing towards the neutron star surface, for example an emission region
detached from the neutron star surface.

An optional step is to check for overlapping projections (Fig. 2.3), i.e, solid angles ∆Ωn

that (partially) occupy the same area in the observer sky. This check is very time consuming
and also unnecessary in most cases. An example are solid columns which are located roughly
on opposite sides of the neutron star. Their projections do not occupy the same area at any
phase (see, e.g., Fig. 3.12). For hollow columns or columns located very close to each other,
however, it is likely that there are photon trajectories which are intercepted by another part
of the emission region. In such cases adjacent solid angles in the observer’s sky have to be
checked for overlaps and those shadowed by another are tagged as invalid.

Finally, at each phase we apply the specific intensity, IE, to each surface element with at
least one valid solution and determine the overall observed flux with

FE(φ) =
∑

n

IE∆Ωn , (2.38)
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which represents the numerical approximation of Eq. (2.25). In particular that means, that
each surface element is allowed to exhibit an individual specific intensity. Note that IE is given
in the observer rest frame accounting for gravitational redshift (Eqs. 2.26 and 2.27) and for
relativistic boosting due the bulk motion of the infalling emitting plasma (Eqs. 2.28 and 2.29).

2.3 Code comparison
As application and verification of the ray tracing code presented in Sect. 2.2 we compare its
result to that of Ferrigno et al. (2011). In their work they present semi-analytical calculations
of pulse profiles accounting for light bending. They exploit the special symmetry conical
accretion columns exhibit to solve the differential solid angle analytically. In particular the
apparent emission angle Ψ is constant along the vertical extent of the conical column (see
Ferrigno et al., 2011, for details).

First, we adopt the geometrical setup used by Ferrigno et al. (2011). The two conical
accretions columns have the same dimensions, i.e., a half opening angle ωAC1,2 = 4◦ and a
height hAC1,2 = 2 km. As shown in the left panel of Fig. 2.4 the two columns are positioned
asymmetrically on the neutron star. The position of a column is defined by its polar angle
ΘAC with respect to the rotational axis z, which corresponds to the inclination of the magnetic
field, and its azimuthal angle ΦAC with respect to the x-axis, while the x,z-plane encloses the
line of sight (k) to the observer. The first column is located at (ΘAC1 = 74◦, ΦAC1 = 178◦)
and the second column at (ΘAC2 = 148◦, ΦAC2 = 293◦). The asymmetry is determined by the
displacement

∆ΦAC = ΦAC1 − ΦAC2 − π

∆ΘAC = π − ΘAC1 − ΘAC2
(2.39)

from the symmetric antipodal case (∆ΦAC = ∆ΘAC = 0). In the present case the displacement is
∆ΦAC = −65◦ and ∆ΘAC = −43◦. The geometrical parameters are summarized in Table 2.1. Note
that despite the asymmetrical configuration the axes of the accretion columns are perpendicular
to the neutron star surface, which is achieve by assuming the B-field axes to be aligned with
the neutron star center. Without this assumption an asymmetric setup would be the result of a
misalignment of the Dipole-axis causing tilted accretion columns.

Ferrigno et al. (2011) use a mixture of two Gaussian as emission patterns,

I?(α) =

2∑
j=1

N j exp
−1

2

(
α − α j

σ j

)2 , (2.40)

which is a function of the radial emission angle α (see Fig. 2.1) with peak emissivities
α1 = 0◦ and α2 = 150◦, and beam widths σ1 = σ2 = 28◦.2 In other words their emission
pattern resembles a mixture of pencil and fan beam emission, while the fan beam is directed
downwards to the neutron star surface as shown in the left panel of Fig. 2.5. Note that this
phenomenological emission pattern is independent of the energy.

The right panel of Fig. 2.4 shows the relativistic projection of the object shown in the left
of Fig. 2.4 and the observed specific intensity I (Eq. 2.40) applied to the two asymmetrically

2Ferrigno et al. (2011) actually stated that σ1 = σ2 = 45◦, which however does not match the corresponding
emission pattern in their Fig. 9.
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Figure 2.4.: Left: Geometrical setup used by Ferrigno et al. (2011) featuring a neutron star
with two asymmetrical positioned conical accretion columns. The inclination i
of the observer is defined to lie in the x,z-plane and is measured with respect to
the rotational axis z (see also Fig. 2.1). The position of the accretion columns is
determined by their polar angles, ΘAC1 and ΘAC2, and their according azimuthal
angles, ΦAC1 and ΦAC2 (see Table 2.1). The geometry is displayed at phase
φ = 0.33. The size of the surface elements is enhanced for visualization purposes.
Right: Relativistic sky projection of the object shown left roughly to scale. Color
coded is the observable specific intensity I (Eq. 2.40).

position columns. It is noticeable that the relativistic projection enlarges the visible fraction
of the neutron star’s surface, for example both poles are visible which is not the case for the

Table 2.1.: Parameters for the asymmetrical two-column setup in Ferrigno et al. (2011).

global accretion columns emission pattern

MNS 1.4M�
RNS 10 km
i 60◦

AC1 AC2

hAC 2 km 2 km
ωAC 4◦ 4◦

ΦAC 178◦ 293◦

ΘAC 74◦ 148◦

displacement

∆ΦAC −65◦

∆ΘAC −42◦

pencil ( j = 1) fan ( j = 2)

N j 100 100
α j 0◦ 150◦

σ j 28◦ 28◦
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Figure 2.5.: Left: Overall normalized intrinsic emission pattern I? (black). Purple and green
shaded regions indicate the individual contributions of the first ( j = 1) and
second component ( j = 2), respectively (Eq. 2.40). Right: Normalized pulse
profiles in comparison. Dashed gray lines relate to calculations by Ferrigno et al.
(2011, bottom right panel in Fig. 9) and solid lines to the numerical ray tracing
method presented here. Red and blue corresponds to the contribution of the two
conical accretion columns, AC1 and AC2, respectively. Purple and green shaded
regions again indicate the individual contributions of the first ( j = 1) and second
component ( j = 2) of both columns combines to the pulse profile, respectively.
The overall pulse profile is shown in black. Bottom panel shows the relative
difference of the results of the ray tracing code presented here and that by Ferrigno
et al. (2011). Parameter values are listed in Table 2.1.

geometrical projection. Also the projection of the columns is deformed. Looking at the second
column, its radius seems to be enlarged and its height shortened. Additionally, the viewing
angle to the column appears different, i.e., more from above than in the geometrical case. This
increase of visibility is a well known effect of general relativistic light bending: Ftaclas et al.
(1986) already pointed out that light bending significantly decreases the probability of seeing
only one (of two) hot spots compared to the non-relativistic case, while Riffert & Meszaros
(1988) stated that this effect to be even stronger for extended accretion columns.

The right panel of Fig. 2.5 shows the overall pulse profile resulting from this asymmetrical
configuration (Table 2.1) and the individual contribution of each accretion column. Addition-
ally, the contributions of the pencil- and fan-beam component of the emission pattern to the
overall pulse profile are indicated. The pulse profile of each accretion column is symmetric
with respect to phase, while their combination is not. This asymmetry of the overall pulse
profile is the result of the asymmetric positioning of the columns in phase, i.e., ∆ΦAC , 0.
From the first column (AC1) we mainly observe its pencil beam, while it is the fan beam for
the second column (AC2). In comparison the ray tracing method described in the previous
sections recreates the results by Ferrigno et al. (2011, bottom right panel in Fig. 9) very well,
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with deviations overall less than 2%. Note that the calculations by Ferrigno et al. (2011) are
based on the analytical approximation by Beloborodov (2002) described in Sect. 2.1.2.

2.4 Possible future features
In the following possible future features and extension for the previously discussed ray tracing
code are presented, which are not implemented yet. The statements and results regarding the
following methods are based on proof of concept studies, which also ensure the feasibility of
these features.

2.4.1 Adaptive mesh refinement

The ray tracing code described in Sect. 2.2 requires a geometry predefined with a mesh of
surface elements. This mesh is static in terms of the number of its vertices. In other words
the size of each of these surface elements is fixed once the geometry is defined. On the other
side, the projection onto the observer plane at different phases is achieved by rotating the mesh
around its rotational axis (z-axis). The relativistic projection, however, causes a non-linear
deformation of the triangular surface elements. The degree of this deformation increases with
the apparent emission angle Ψ (Eq. 2.22) which changes with phase. The projection of a
surface element is defined by the projections of its three vertices and therefore is also triangular.
Due to the deformation the triangular shape of the projection is only an approximation, which
introduces a certain deviation to the exact solution.

To decrease these deviations the size of according surface elements has to be decreased.
As the deformation depends on the rotational phase the only option in the case of a static
mesh is to decrease the size of all surface elements, which results in a much longer runtime. It
would be advantageous to address only those surface elements, which exceed a certain limit of
deformation at a given phase.

Such an adaptive mesh refinement could be realized similar to what is described in the
following. Analog to the steps described in Sect. 2.2 an initial mesh of vertices Rl is defined,
which sufficiently samples the geometrical structure of the neutron star and its emission
regions with the according surface elements ∆Sn(Rnm). Instead of directly proceeding with
the projection the adaptive mesh refinement sets in. At each rotational phase the vector set
Rnm defining the surface element ∆Sn is temporarily extended by the the median vectors of the
three connectors, i.e,

Rnm →



Rn0 , Rn1 , Rn2 ,

Rn3 =
1
2

(Rn0 + Rn1),

Rn4 =
1
2

(Rn1 + Rn2),

Rn4 =
1
2

(Rn2 + Rn0)


. (2.41)
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Figure 2.6.: Visualization of the adaptive mesh refinement. The geometry is defined with a
static mesh of large surface elements. For demonstration purposes the adaptive
mesh refinement is applied randomly with a limit of three iterations.

As shown in Fig. 2.6 these new vertices subdivide the original surface element ∆Sn into four
new surface elements, i.e.,

∆Sn(Rnm)→


˜∆Sn0(

{
Rn0 , Rn3 , Rn5

}
)

˜∆Sn1(
{
Rn1 , Rn4 , Rn3

}
)

˜∆Sn2(
{
Rn2 , Rn5 , Rn4

}
)

˜∆Sn3(
{
Rn3 , Rn4 , Rn5

}
)

. (2.42)

After this subdivision of the mesh the projection of the old and new vertices is performed to
obtain the solid angles ∆Ωn(∆Sn) of the original surface elements and their corresponding four
subdividers ∆Ω̃ni( ˜∆Sni). If the deviation

∆Ωn(∆Sn) −
3∑

i=0

∆Ω̃ni( ˜∆Sni) < εlim (2.43)

for the n-th element is smaller than a given limit εlim the refinement for this surface element is
rejected and excluded from the further refinement process. Otherwise, the new median vertices
and the according surface elements are accepted and incorporated in the original sets. This
process continues until either the condition in Eq. (2.43) is fulfilled for all surface elements or
an iteration limit is reached.

This adaptive mesh refinement allows us to automatically ensure that the resolution of the
mesh is sufficient to determine the general relativistic projection and only adapts it where
necessary. In comparison to a static mesh computational runtime can be saved as it is not
required to set a high resolution from the beginning.

As an example, the right panel of Fig. 2.6 shows an object with a refined mesh limited to
three iterations. Note that the refinement here is randomly applied for illustration purposes
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and not constraint by the condition in Eq. (2.43). The geometry of the neutron star and its two
antipodal accretion columns are well described by a rather rough mesh. The mesh refinement
does not change the smoothness of the geometry as the subdivision only takes place in the
plane defined by the original surface element. Smoothing the geometrical structure is not its
purpose, but to provide additional sampling points such that the general relativistic projection
is ensured to be performed accurately.

2.4.2 Effects of fast rotation

All previous considerations are based on the assumption of slow rotation with spin periods of
P & 1 s, where photons emitted simultaneously can be assumed to be observed simultaneously.
For faster rotations this statement is not true anymore. With increasing spin frequency the
order of the rotation period gets comparable to the order of the time delay and additionally
special relativistic effects have to be taken into account. The topic of this work are highly
magnetized accreting X-ray pulsars, which exhibit rotational periods slow enough to neglect
these effects. Nevertheless, effects of fast rotation might be of interest for future applications.

The derivation of the solid angle in Sect. 2.1.3 is based on the equations described in
Sect. 2.1.1. These formulas, however, are valid only for values given in the stationary frame of
the neutron star. In particular these formulas are based on the assumption that the observed
phase equals the intrinsic phase is globally true, i.e., φ ≡ φ? independent of the location R. To
account for the effects of special relativity a transformation between the stationary and the
co-rotating frame is necessary. In combination with the phase shift introduced by the time
delay this transformation results in a complex non-global relation between the intrinsic and
observed time. In other words, it is not possible to define a simultaneous time-frame for both,
the co-rotating frame of the neutron star and the observer.

2.4.2.1 Photon arrival times

Time cannot be considered global anymore, if the rotation period of the neutron star becomes
of the same order as the delay of the photon arrival times given in Eq. (2.15). Therefore we
have to distinguish between the intrinsic time t? in the stationary frame of the neutron star
(Fig. 2.1) and the observed time t. The transformation between these two frames, however,
depends on the location R.

From Eq. (2.15) we know that photons emitted simultaneously in the stationary frame of
the neutron star at a time t? arrive at the observer at different times

t = t? + ∆T (R(t?)) , (2.44)

with a relative time delay ∆T according to the current location R. The azimuthal position at
the intrinsic time t? is given by

ϕ(t?) = ϕ0 + 2π f t? , (2.45)

where f is the spin frequency of the neutron star and

φ? = 2π f t? (2.46)
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denotes the rotational phase measured in reference frame of the neutron star.
For the relativistic projection, however, simultaneity in the observer frame is desired. As

we cannot simple invert Eq. (2.44) all calculated quantities would have to be interpolated at a
given observer time. Alternatively, the approximation

∆T (R(t?)) ≈ ∆T (R(t)) (2.47)

can be used (Poutanen & Beloborodov, 2006), with which the time in the stationary frame can
be expressed as a function of the observed time,

t? ≈ t − ∆T (R(t)) . (2.48)

The according phase in the stationary frame is then given by

φ? ≈ φ − 2π f ∆T (R(φ)) . (2.49)

With this approximation we can maintain simultaneity in the observer frame, while the
resulting non-simultaneity in the stationary frame of the neutron star can be accounted for by
rotating each vertex R to its local valid phase φ?. In other words, to achieve simultaneity at
the observer we adjust the location of each vertex to account for the local time delay. As a
result, the geometry originally defined in the neutron star’s rest frame gets deformed before
the projection procedure depending on the given phase.

2.4.2.2 Special relativistic rotation

In addition to the significance of the time delay in photon arrival times fast rotation requires to
account for special relativistic effects. In the stationary frame (Fig. 2.1) the rotational velocity
around the z-axis in units of the speed of light is given by

βrot =
2π f

c
ez × R =

2π f R
c

sinϑ eϕ , (2.50)

where eϕ is the azimuthal unit vector. The direction and the amount of the rotational velocity
depends on the current location R. Therefore each vertex R has its own individual frame of
reference at each given phase, which has to be accounted for in the Lorentz transformation
(Eq. 2.29). Following Poutanen & Beloborodov (2006) such an instantaneous frame can be
introduced to determine the transformation of the quantities into the stationary and the observer
frame. By invoking spherical symmetry, i.e., R = const., it is possible to derive a simple
analytical transformation. In the ray tracing method described in this work, however, some
additional adjustments are required to account for the radial extent of the emission region,
especially in the case of the calculation of the solid angle presented in Sect. 2.2.
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3 Self-consistent modeling of
accretion columns

In this Chapter I present a self-consistent and physically motivated forward methodology to
obtain the phase and energy dependent observed flux of an accreting X-ray pulsar. This forward
methodology combines three different models, namely a two-dimensional accretion column
model in a modified radiation-diffusion limit (Postnov et al., 2015), a cyclotron scattering
model (Schwarm et al., 2017a,b), and the new relativistic ray tracing method presented in
Chapter 2. This work will be published in Falkner et al. (2018a,b) and therefore the following
sections are following them closely and in larger parts in verbatim.

Each model describes different aspects and processes within and around the accretion
column based on a common framework. We divide the column itself into two parts (Fig. 3.1),
a dense, optically thick (τ & 1) inner volume, in which the continuum emission is formed, and
a spatially and optically thin layer surrounding this dense region. In the latter region, CRSFs
are imprinted onto the continuum. We then transfer the emitted radiation into the observer
frame by accounting for light bending and gravitational redshift using the flexible general
relativistic code described in Chapter 2.

I emphasize that when performing these calculations we are dealing with three different
reference frames, which were introduced in Sect. 2.1.4. The continuum and CRSFs are
generated in the rest frame of the down-falling plasma producing and processing the radiation.
Note that as the bulk velocity is height dependent each height has its own rest frame. Quantities
given in this reference frame are marked with a prime (′). Photons generated in the plasma
then have to be transformed into the rest frame of the neutron star1, indicated with a star (?),
in order to obtain the emission profile of the column. The transformation into the frame of
reference of the observer is then provided by the general relativistic ray tracing.

Here we investigate the regime of strong magnetic fields of B ∼ 1012 G and accretion rates
of Ṁ ∼ 1017 g s−1. These values are sufficiently high to form a (filled) accretion column,
which is radiation dominated at its base (Postnov et al., 2015). Furthermore, we consider the

1The rest frame of the neutron star is the same as that of the accretion column.
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Figure 3.1.: Sketch of the modular physical accretion column model with its three components.

column to be cylindrical and focus on the radiation emerging from its sidewalls as fan-beam.
It is commonly accepted from theoretical considerations and observations that this type of
column dominates the emission above a critical luminosity (e.g., Wang & Welter, 1981, White
et al., 1983, Parmar et al., 1989, Poutanen & Gierliński, 2003). We concentrate on the directly
observable fan beam emission. The discussion of possible reflected emission from the neutron
star’s surface requires additional models describing the atmosphere, although in principle
our approach is well suited to take them into account. The atmosphere of neutron stars and
its composition, however, is not well understood and therefore is not included in the present
model, but subject to future investigations.

In the following I describe the individual parts of this modular model in greater detail.
In Sect. 3.1 I describe the continuum and CRSF model, which determine the structure of
the accretion column and the formation of its emission self-consistently. Additionally, the
resulting emission profile in the rest frame of the accretion column is discussed, which
accounts for relativistic boosting due to the local bulk velocity. In Sect. 3.2 I then present
observable implications obtained from this combined model and their dependency on the
system’s intrinsic geometry. Section 3.3 discusses the results of the previous section and
relates them to observations.

3.1 Accretion column model

3.1.1 Continuum emission

Based on Wang & Frank (1981) and Lyubarskii (1986), Postnov et al. (2015) performed
two-dimensional simulations of axially symmetric accretion columns to study their continuum
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emission. They solved the radiative transfer equation in the diffusion approximation to obtain
the temperature and velocity distribution within the column volume depending on the vertical
and radial location. Additionally, the calculations utilize the grey approximation (e.g., Mihalas,
1978) with effective electron scattering cross sections along and perpendicular to the magnetic
field.

Lyubarskii (1986) showed that in the case of a hot and optically thick plasma in a strong
B-field the emergent spectrum is formed in the regime of saturated Comptonization. In
strong B-fields, collective plasma effects and electron-positron vacuum polarization result
in strongly polarization-dependent photon propagation (Mészáros & Ventura, 1978, Pavlov
et al., 1980). These polarization modes are called the ordinary and the extraordinary modes.
Lyubarskii obtained the analytical solution of the differential Fokker-Planck equation in
the diffusion limit in the regime of saturated Comptonization. In optically thick plasmas
Comptonization is predominantly effective when acting on extraordinary photons, since here
the continuum scattering cross sections are independent of the scattering angle (they are still
strongly energy dependent). These photons primarily escape through the sidewalls of the
accretion column. Ordinary photons, for which the electron scattering cross sections are
strongly angle dependent, escape in directions almost tangential to the surface of the column
and provide only an insignificant contribution to the total emitted flux.

The angular dependence of the specific intensity is normally assumed to be proportional to
(1 + 2 cos ζ′), where ζ′ is the angle with respect to the normal of the emitting surface in the
co-moving frame of the emitting plasma (e.g., Lyubarskii, 1986, Postnov et al., 2015). Hence
the maximum emission is reached for ζ′ = 0 (Fig. 3.2). Starting with this assumption, we can
combine Equations (34), (35), and (43) from Lyubarskii (1986), with which the local specific
intensity of extraordinary photons in this regime can be written as2

I′E′(µ
′, µS, h) =

3
7π

[
1 + 2µS

√
1 − µ′2

] (
E′

kT (h)

)2 F⊥(h)
E′

exp
(
−

E′

kT (h)

)
. (3.1)

The photon energy E′ and µ′ = cos η′, where η′ is the angle between the B-field and the photon
emission direction k′, are both given in the rest frame of the emitting plasma (see Fig. 3.2).
In the following all primed quantities correspond to the co-moving frame of the plasma, and
µS = cos ηS is the cosine of the angle of the surface normal to the projection of k′ onto the
plane perpendicular to the B-field. As the bulk velocity is anti-parallel to the B-field, the plane
in which ηS is measured is perpendicular to the velocity vector, and therefore µS = µ′S.

The local electron temperature T used in Eq. (3.1) depends on the location in the column
and is given by (Postnov et al., 2015)

T (r, h) =

[
3Ṁv0c

4σSBπr2
AC

(
1 −

√
Q
)]1/4

, (3.2)

where the radius r is measured from the center of the column, which has a radius rAC. The
other relevant quantities are the height h, which is measured from the neutron star’s surface,
the Stefan-Boltzmann constant σSB, the mass accretion rate Ṁ, and

Q(r, h) =

(
v(r, h)
v0

)2

(3.3)

2The constant factor of 3/7π in Eq. (3.1) is chosen such that
∫ ∞

0

∫ 1
−1

∫ π/2
−π/2 I

′
E′ cos ηS

√
1 − µ′2 dηS dµ′ dE′ =

F⊥(h).

39



CHAPTER 3. SELF-CONSISTENT MODELING OF ACCRETION COLUMNS

µ′

µS

ζ′

ηS

η′

k′eB

eS

Figure 3.2.: Local co-moving reference frame of the emitting plasma. The direction of the
local B-field and the local normal to the emitting (column) surface are denoted
by eB and eS, respectively, where eB · eS = 0. The local emission direction of
the photon is denoted by k′. The photon emerges from the plane of the emitting
surface (orange) with an angle ζ′ with respect to the surface normal eS. The angle
η′ is measured with respect to the B-field, with µ′ = cos η′ = k′ · eB. While
ηS = η′S is the angle between the surface normal eS and the projection of k′ into
the plane perpendicular to the B-field, with µS = cos ηS. The emission pattern,
i.e, the angle-dependence of the specific intensity in Eq. (3.1), projected into the
three planes of the reference frame is shown in green. The maximum emission is
reached for ζ′ = 0◦ or equivalently η′ = 90◦ and η′S = 0◦.

where v(r, h) is the velocity inside the column and v0 ∼ 1010 cm s−1 is the initial free-fall
velocity of the infalling plasma near the neutron star’s surface (see Postnov et al., 2015). In
their calculations Postnov et al. (2015) determine the accretion column radius rAC based on
the Alfvén radius as described by Lamb et al. (1973). The radial and vertical component
of the radiative transfer equation in the modified diffusion approximation, that is the flux
perpendicular and parallel to the magnetic field, can be written as

F⊥(r, h) =

[
v0

2c
2κ⊥

∂Q
∂r

]
·

1 +
v0πr2

AC

6Ṁκ⊥
(
1 −
√

Q
) ∣∣∣∣∣∂Q
∂r

∣∣∣∣∣

−1

(3.4)

and

F‖(r, h) =

v0
2c

2κ‖

∂Q
∂z

+
4Ṁv2

0

(
Q −

√
Q
)

πr2
AC

 ·
1 +

v0πr2
AC

6Ṁκ‖
(
1 −
√

Q
) ∣∣∣∣∣∂Q
∂z

∣∣∣∣∣

−1

, (3.5)

(see Postnov et al., 2015, Eqs. 11–12). Here, κ⊥ and κ‖ are the scattering cross sections
per unit mass perpendicular and parallel to the magnetic field, respectively. Assuming the
accreted matter consists purely of hydrogen, the mean opacity for Thomson scattering is
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Figure 3.3.: Column structure provided by Postnov et al. (2015). Green lines show the contours
of the dimensionless velocity Q for an accretion column of radius rAC = 647 m
accreting with a rate Ṁ = 5× 1017 g s−1 and an initial free fall velocity of v0 =

1× 1010 cm s−1. The temperature T throughout the column is shown as colormap.

κT ≈ σT/mp = 0.398 cm2g−1, where σT is the Thomson cross section and mp is the proton
mass. Following Postnov et al. (2015), we assume κ⊥ = κT and κ‖ = κT/10.

Postnov et al. (2015) determine the structure of the accretion column for a variety of different
mass accretion rates from a numerical solution of Eq. (3.4) and Eq. (3.5) (see their Fig. 2).
Figure 3.3 shows the structure of an accretion column according to a mass accretion rate
Ṁ = 5× 1017 g s−1. The initial free fall velocity is v0 = 1× 1010 cm s−1, which is reduced
to a settling velocity at the bottom of the column of ∼ 0.14 v0. The region of the radiation-
dominated shock, where the accreted matter is decelerated, strongly depends on the radius
within the column. With increasing radius r the shock reaches further down to the bottom of
the column and extends vertically. As expected from Eq. (3.2) the temperature closely follows
the velocity distribution.

From the solution of the column structure provided Postnov et al. (2015) we determine
the corresponding energy flux throughout the column. In particular we are interested in the
the radial component of the energy flux F⊥(h) emerging the column sidewalls at a certain
height and the corresponding temperature T (h) at the boundary layer. With these quantities
we can determine the accretion column’s specific intensity I′E′ of the continuum. Note that the
vertical component of the emerging energy flux is negligible compared to the radial component
(Postnov et al., 2015).

At a first glance the radius rAC of the column would be the obvious choice for the boundary.
For small optical depths (τ . 1), however, the transfer equation in Eqs. (3.4–3.5) loses
validity. This is true despite the modification, the denominators, to improve the validity of
these equations in the outer layers of the accretion column (see Postnov et al., 2015, and
references therein). Looking at the evolution of the emerging intrinsic luminosity

L?(r) = 2πr
∫ hAC

0
F⊥(r, h) dh (3.6)

shown in the left panel of Fig. 3.4, we see the luminosity increasing with radius until a certain
point after which it significantly drops. Without the modification the luminosity shows the
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Figure 3.4.: Perpendicular component of the radiative flux depending on height and radius
(left) and height and radial optical depth (right). Green lines represent the
contours of the radial optical depth. Gray lines show the luminosity emerging
at the surface of constant radius (left) and constant radial optical depth (right).
Solid and dashed gray lines relate to Eq. (3.4) with and without the modifying
denominator, respectively.

opposite behavior of a steepening slope close to the boundary. The expectation, however, is a
saturation of the luminosity towards the boundary, where τ . 1.

The right panel of Fig. 3.4 shows the same scenario, but with the radius substituted by the
radial component of the local optical depth perpendicular to the B-field given by

τ⊥(r, h) =

∫ r

rAC

Ṁκ⊥
πr2

ACv0
√

Q
dr̃ , (3.7)

which is measured inwards, with τ⊥(rAC) = 0. From Eq. (3.7) we obtain the luminosity

L?(τ⊥) = 2π
∫ hAC

0
r(τ⊥, h)F⊥(r, h) dh (3.8)

of the column emerging at a given radial optical depth. With this definition we see in Fig. 3.4
that the behavior towards the boundary has improved, but there is still a steepening of the
slopes visible. Instead of using the geometrical radius of the column, rAC, in the evaluation
of Eqs. (3.4–3.5) we therefore use the radius of constant radial optical depth r(τ⊥ = 1, h) to
represent the boundary. In particular we use

F⊥(h) = F⊥(τ⊥ = 1, h) and T (h) = T (τ⊥ = 1, h) (3.9)

in Eq. 3.1 to calculate the specific intensity of the column. On the one hand, we choose τ⊥ = 1
because the relative deviation from the geometrical radius is very small, r(τ⊥ = 1, h)/rAC ≥

98.7%, and therefore the assumption of a cylindrical column is still fulfilled. While, on the
other hand, the evaluation of the radiative transfer equation at this boundary leads to more
reliable results.
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3.1.2 Cyclotron line formation

Based on Monte Carlo (MC) simulations of the scattering processes in optically thin and highly
magnetized plasma Schwarm et al. (2017a) provide a convolution model for the calculation of
CRSFs for arbitrary input continua.

This model uses pre-calculated tables containing the Green’s functions for the radiative
transfer problem. The tables have been calculated by injecting monoenergetic photons into
a given medium, processing them under the assumption that the only type of interaction
is cyclotron scattering between electrons and photons, and collecting the output photons
escaping the medium. The resulting photons are binned in terms of energy to obtain the
Green’s functions, the profiles of which can be interpreted as the response of the medium to
photons of each particular input energy. Schwarm et al. (2017a,b) describe the process in
detail, following the same MC scheme described by Araya & Harding (1999). Non-resonant
photons often escape the medium immediately. Resonant photons, on the other hand, tend to
scatter very often as their mean free path is shorter by orders of magnitude compared to that
of non-resonant photons (Schwarm et al., 2017b). Apart from the B-field strength, the electron
temperature parallel to the B-field, and the emission angle, the geometry of the line forming
region plays another important role. The influence of the geometry on the cyclotron line shape
and emission patterns has been found to be essential for the understanding of CRSFs. Here,
we use a cylinder geometry in which photons are emitted from a line along the B-field axis
into a surrounding cylinder which has an optical depth τCRSF

⊥ perpendicular to the B-field axis
(Fig. 3.1). The optical depth parallel to the B-field has been set to τCRSF

‖
= 1000τCRSF

⊥ , which
approximates a column of infinite height. The pure vacuum modes are used in this model to
describe photon polarization states, which is justified by small optical depths in the primary
escaping direction (Araya & Harding, 1999). In the following we choose a radial optical depth
of τCRSF

⊥ = 3× 10−4, which is the primary escaping direction for a cylinder geometry. Note
that this rather small optical depth is sufficiently large for the formation of the CRSFs as the
cross section in the resonance is several orders of magnitudes larger than in the off-resonance
(Schwarm et al., 2017a,b).

The model is able to produce synthetic spectra for a single emission angle, as required for
the combination with the relativistic ray tracing model presented in Chapter 2. Interpolation
and extrapolation methods ensure that to first order the behavior between pre-calculated grid
points is approximated correctly. The strongly energy and angle dependent CRSF spectra
provide, for the first time, a possibility for a physical model of the emission from accreting
X-ray pulsars.

3.1.3 Emission profile of the accretion column

A crucial point is the combination of the different models, especially in the case of the two
models describing the accretion column. In the scenario presented here we use the model
described in the previous section to imprint CRSFs on the continuum emission calculated with
the model described in Sect. 3.1.1. The continuum photons generated in the dense inner region
of the accretion column act as seed photons injected into the thin outer CRSF volume, which
we assume to have a negligible spatial extent in radial direction with respect to that of the
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continuum volume. This assumption is justified by the fact that the radial optical depth of the
CRSF volume is much smaller than that of the continuum formation region, i.e, τCRSF

⊥ � τ⊥.
The CRSF volume itself is characterized by its temperature, magnetic field strength, and

optical depth perpendicular to the B-field axis. It is divided into infinitesimally small horizontal
slabs to allow us for parameter gradients in the temperature and the magnetic field strength.3

Nevertheless, we assume τCRSF
‖

of each CRSF slab to be large, which prevents the transition of
photons between the individual CRSF slabs. In other words, we assume that photons do not
travel between these horizontal slabs and will escape the column at the same height they were
injected into the CRSF forming layer. This assumption is a compromise between a physical
picture of the accretion column and feasibility of the calculation. A justification for this picture
is the spatially thin extent of CRSF layer in the radial direction, which we can assume due to
the enormous scattering cross section in the resonance. The mean travel distance of photons
in vertical and radial direction is roughly the same. As this distance is limited by the radial
extent of the CRSF layer the vertical redistribution of photons is negligible and in particular is
much smaller than the vertical extent of the accretion column. Furthermore, we are mainly
interested in the angular and energetic redistribution caused by the CRSF medium, whereas
the continuum model provides the height dependence of the specific intensity.

The specific intensity of the column including CRSFs is denoted by

I′E′ = I′E′
(
I′E′(µ

′, µS, h),T, B, µ′, τCRSF
⊥

)
(3.10)

and results from the convolution of the continuum emission I′E′ (Eq. 3.1) with the CRSF
model by Schwarm et al. (2017a,b).

In our case of a cylindrical column4 the B-field axis and the column axis are aligned. We
assume the B-field strength to decrease with height following the dipole approximation,

B(r, h) = B0
R3

NS

2

[
5(RNS + h)2r2 + 4(RNS + h)4 + r4

[r2 + (RNS + h)2]5

]1/2

, (3.11)

where B0 = B(0, 0) is the surface magnetic field strength at the center of the column’s base and
RNS the radius of the neutron star. In Eq. (3.10) the continuum emission (Eq. 3.1) is imprinted
with CRSFs at energies E′CRSFn (Eq. 1.8).

The specific intensity derived in Eq. (3.10) is given in the local rest frame of the emitting
plasma. In order to obtain the emission profile of the entire accretion column we have to
take into account the height dependency of the relativistic bulk motion to transform the local
specific intensity emitted from different parts of the accretion column into a common frame of
reference. An obvious choice for such a reference frame is the rest frame of the neutron star.
The transformation between the specific intensity in the local rest frame of the plasma (marked
with ′) and the emission profile in the rest frame of the neutron star (marked with ?) is obtained
through the Lorentz transformation given in Eqs. (2.28–2.30). Note that the velocity vector is
antiparallel to the B-field. The CRSF layer is assumed to be coupled to the continuum emitting
volume such that both have the same velocity and the same temperature distribution (Eq. 3.2).

3As shown by Schwarm et al. (2017a) these parameters have a strong impact on the cyclotron line.
4The models by Postnov et al. (2015) and Schwarm et al. (2017a,b), both assume a cylindrically symmetrical

magnetic field.
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Table 3.1.: Input parameters for the accretion column model. Note that Ṁ relates to the mass
accretion rate of the accretion column and not to that of the neutron star in a whole.

parameter short value

initial free fall velocity v0 1× 1010 cm s−1

mass accretion rate Ṁ 5× 1017 g s−1

accretion column radius rAC 647 m
accretion column height hAC 5 km
radial optical depth of boundary τ⊥ 1
surface magnetic field strength B0 2.5× 1012 G
radial optical depth of CRSF layer τCRSF

⊥ 3× 10−4

neutron star radius RNS 10 km
neutron star mass MNS 1.4 M�
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Figure 3.5.: Height dependent emission profile and properties of the accretion column in the
rest frame of the neutron star. Left/middle: Differential intrinsic luminosity
(Eq. 3.12) based on the specific intensity I?E? integrated over two different energy
ranges within different µ? bins shown as colored lines. Gray lines relate to the
pure continuum based on I?E? , that is, without CRSFs. The inset shows the height
and energy integrated beam pattern with respect to the angle η?. The colors
correspond to the angle bins in the main figure. Right: Velocity (solid black),
temperature (dashed green), and magnetic field strength distribution (dash-dotted
orange) at the boundary layer of the accretion column, i.e., r = r(τ⊥ = 1).

Figures 3.5 and 3.6 show the height dependent emission profile and other properties of the
accretion column for the parameters listed in Table 3.1. In Fig. 3.5 the height dependence of the
emissivity is shown in different emission angle bins. All bins show the same behavior, reaching
peak emissivity at the bottom of the column. The relative contribution is clearly dominated
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Figure 3.6.: Energy dependent emission profile of a single accretion column in the rest frame
of the neutron star. Top: Differential intrinsic luminosity (Eq. 3.12) representing
the height integrated emerging spectra in different emission angle ranges also
indicated in the inset (same as in Fig. 3.5). Gray lines refer to the case without
CRSFs. Bottom: Relative difference of the spectra to their pure continuum
contribution.

by large angles, pointing downwards to the neutron star’s surface, due to relativistic boosting
(Fig. 3.5, middle). In the left panel of Fig. 3.5, showing the emissivity profile in a small
energy range around the fundamental CRSF, the height and angle dependent redistribution
due to the cyclotron resonant scattering is noticeable. The bulk velocity at the boundary layer
is almost equal to the initial free fall velocity for most parts of the column and only starts
to decrease drastically at h ∼ 100 m above the neutron star’s surface (Fig. 3.5, right). The
electron temperature shows a similar, but smoother evolution as it is directly derived form
the bulk velocity (Eq. 3.2). Figure 3.6 shows the height integrated spectra emerging from
the column in the same emission angle bins. Here the effect of the relativistic boosting is
responsible for the shift of the CRSF line energy as well as the hardening of the continuum for
higher emission angles.

The variation of the luminosity is presented with respect to the intrinsic luminosity in the
rest frame of the neutron star L?, given by

L? = 2πrAC

∫ E?
max

E?
min

∫ hmax

hmin

∫ 1

−1

∫ π/2

−π/2
I?E? cos ηS

√
1 − µ?2 dηS dµ? dh dE?, (3.12)

where the X-ray band from 1 to 100 keV approximately contains the total luminosity of the
accretion column.

The total intrinsic luminosity of the (single) accretion column is L? = 2.2× 1037 erg s−1, of
which 100% is emitted below a height of 5 km, 67% below 1 km, and 20% below 0.1 km (see
Fig. 3.5, middle). Therefore we can consider the column to have a height of hAC = 5 km.
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In the frame of the moving plasma, the emission is concentrated in the direction normal to
the cylindrical column wall (Fig. 3.2). However, due to the boosting (relativistic aberration)
caused by the bulk velocity the emission in the frame of the star is predominantly directed
downwards, that is, towards the neutron star. In particular 76% of the emission has an emission
angle η? > 90◦ or µ? < 0. The spectra emerging from the column are shown in Fig. 3.6,
they strongly depend on the emission angle. Noticeable is that this is true not only for the
shape of the cyclotron lines but also for their centroid energies, which get smaller for smaller
emission angles. This correlation of the cyclotron resonance criteria results from the bulk
velocity boosting (Eq. 2.29). The beam pattern shown in Figs. 3.5 and 3.6 is integrated over
the whole energy range and is therefore dominated by the continuum, hiding variations around
the CRSFs. Further discussion on the topic of the angular dependency of the specific intensity
due to cyclotron resonant scattering can be found in Schönherr et al. (2007) and Schwarm et al.
(2017a,b).

3.2 Observables
In the following I present results of the physical accretion column model described previously
in Sect. 3.1. I emphasize observable implications and predictions important for interpreting
data. Note that in this section I only present results of the simulation based on the previously
discussed model. The discussion of these results in comparison to observations is given
separately in Sect. 3.3.

In particular, I show and compare results for a single column and an antipodal two-column
setup in this section. In the latter case the columns themselves are identical, i.e., parameters
are the same for both (see Table 3.1). In particular, these columns are cylindrical with a radius
rAC = 647 m (see Postnov et al., 2015), and height hAC = 5 km. The spatial extent of the
columns is determined by the continuum model (see Sect. 3.1.1) and mainly depends on the
initial free fall velocity and the mass accretion rate. As defined in Sect. 2.3 the position of the
columns on the neutron star’s surface is given by their polar angles ΘAC1,2, corresponding to the
inclination of the magnetic field, and their azimuthal angles ΦAC1,2 (Fig. 3.7). The azimuthal
position is only important in the case of two-column setups. The antipodal configuration
requires the columns to fulfill ∆ΦAC = ∆ΘAC = 0 (see Eq. 2.39).

A symmetric configuration is the simplest choice and avoids the introduction of additional
degrees of freedom, such as individual positioning of the columns and differing accretion
parameters. Asymmetric configurations have only a small impact on the results presented in
the following Section, for which an example is given in Sect. 3.2.5.6.

Based on this geometrical setup together with the emission profile provided by the physical
accretion column model discussed in Sect. 3.1 we determine the energy- and phase-resolved
observed flux, FE(φ), using the ray tracing code as described in Chapter 2.

3.2.1 Intrinsic and observed luminosity

There are general geometrical constraints on the observable emission of the accretion column
due to the presence of the neutron star. Only a fraction of the emission from the column is
directly observable. In particular this means that photons exceeding a certain emission angle

47



CHAPTER 3. SELF-CONSISTENT MODELING OF ACCRETION COLUMNS

x

y

z

i

Θ
AC1

ΦAC1

i

ΘAC2

ΦAC2

Figure 3.7.: Geometry of a neutron star with two antipodal accretion columns sampled with
triangular surface elements. The size of the surface elements is enhanced for
visualization purposes. The inclination i of the observer is defined to lie in
the x,z-plane. i is measured with respect to the rotational axis z as well as the
individual polar angles of the accretion columns, ΘAC1 and ΘAC2, respectively.
ΦAC1 and ΦAC2 refer to the azimuthal angles of the corresponding column.

(dependent on the height) will hit the neutron star. For a conical accretion column, using
Eq. (2.13) and Eq. (2.6), the maximum observable emission angle is given by

η?max(h) = π − arcsin

 RNS

RNS + h

√√√
1 − Rs

RNS+h

1 − Rs
RNS

 . (3.13)

We neglect the extent of the atmosphere as its scale height is only a few centimeters (e.g.,
Ho & Lai, 2001). Equation (3.13) is also suitable for cylindrical columns with small radii.
Figure 3.8 visualizes the maximum observable emission angle, η′max, in the rest frame of
the emitting plasma for different bulk velocities5. Generally η′max decreases with decreasing
height, independent of the boosting factor. The boosting, however, clearly decreases the
range of observable emission angles dramatically. As a result in our case 58% of the intrinsic
luminosity L? emitted from the column hits the neutron star, while it would be only 31%
without accounting for relativistic boosting. The fraction of the flux not intercepted by the
neutron star increases from 31% at the bottom of the column to 70% at a height of 5 km, which
is also significantly lower than in the case without relativistic boosting.

5Note that the bulk velocity is constant over most of the column and only decreases at the bottom part (see
Fig. 3.5).
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Figure 3.8.: Left: Maximum observable emission angle η′max. Photons emitted with larger
angles hit the neutron star. Dotted line accounts for light bending, solid and dashed
line also for bulk velocities, v0 and 2v0, respectively. The dash-dot-dotted vertical
line indicates the geometrical case in flat space-time. The color map indicates the
line strength, S ′, of the CRSF in the energy range from 5 keV to 25 keV. Right:
Total flux emitted from the column is shown as solid black line, flux directed to
the neutron star as dashed blue line and escaping flux as dotted-dashed red line.
The ratio of escaping to total flux is shown as gray solid line, where the gray
dotted one shows the ratio assuming isotropic emission in the rest frame of the
neutron star. Bottom: Zoom-in on the bottom part of the column in logarithmic
presentation.

Using Eq. (2.25) the bolometric luminosity L in the band from between 1 keV to 100 keV is
given by

L = D2
∫ 100 keV

1 keV

∫ 2π

0

∫ 1

−1
FE dcos i dφ dE , (3.14)

where D is the distance of the observer to the source. The bolometric luminosity represents
the observed luminosity and accounts for a potential anisotropy of the flux.

If we want to relate the bolometric luminosity L to the intrinsic luminosity L? (Eq. 3.12) we
have to account for gravitational redshifting and time dilatation (Thorne, 1977). Additionally
L in Eq. (3.14) corresponds only to the directly-observed luminosity

L ≈
(
1 −

Rs

RNS

)
L?

∣∣∣η?<η?max
= (1 + zNS)−2 L?

∣∣∣η?<η?max
. (3.15)

For our setup (see Table 3.1), L = 0.8× 1037 erg s−1 for one column, which is only 35% of
the corresponding total intrinsic luminosity, L?. Note that in general L cannot be deduced from
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observations since information is missing on how the emission depends on the inclination, i.
The best approximation is to assume the observed flux FE to be constant in i, in order to get
the flux derived luminosity

L4π = 2D2
∫ 100 keV

1 keV

∫ 2π

0
FE dφ dE . (3.16)

In other words, the flux derived luminosity represents the observed luminosity assuming the
flux to be isotropic.

3.2.2 Phase-averaged spectra

Figure 3.9 shows the phase-averaged spectra of one accretion column in the observer frame
for different inclinations i and ΘAC1,

〈FE〉φ =
1

2π

∫ 2π

0
FE dφ . (3.17)

The continuum strongly depends on i and ΘAC1, i.e., with increasing i the flux increases
and the slope steepens. As expected, the observed cyclotron lines also strongly depend on
these parameters as they directly influence the angles under which the column is seen. In
comparison to the cyclotron line behavior in the rest frame of the column (see Fig. 3.6) the
centroid energies ECRSF are shifted to lower energies. This shift is a result of the gravitational
redshift (Eq. 2.27), while the variation in the line energy seems to have decreased. In particular
the observed CRSF energy is related to the intrinsic CRSF energy (Eq. 1.9) by

ECRSFn = E′CRSFn

√
1 − β2

1 + βµ?

√
1 −

Rs

R
, (3.18)

where n is the order of the Landau level and n = 1 corresponds to the fundamental line and
n = 2 to the first harmonic. The large range of E?

CRSF in the rest frame of the neutron star is
caused by the boosting due to the bulk velocity (Eq. 2.29). The observer, however, only sees
photons emitted up to a maximum emission angle η?max (Eq. 3.13). Photons emitted with larger
angles will hit the neutron star’s surface, which limits the observable emission angle range
and therefore decreases the variation of ECRSF.

In the antipodal two-column case (Fig. 3.10) we see a similar behavior. The fundamental
CRSF, however, is now only seen in emission. The reason for this peculiarity – which
contradicts observations – is that the fundamental CRSF is observed in absorption only if the
viewing angles to the magnetic field are predominantly small over all rotational phases. This
is the case, for example, for geometries with a small observer inclination as well as small polar
angles of the B-field where the observer sees the column mainly from above. In these cases,
the flux derived luminosity of this column is low, and in fact it is surpassed by the emission
from the second column, which is located on the far side of the neutron star. This second
column is seen under larger angles with respect to the B-field, where the fundamental CRSF is
observed in emission. In combination, the greater part of the observed flux comes from the
column showing a fundamental CRSF in emission. A more detailed discussion of the CRSFs
is given in Sect. 3.2.5.5.
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Figure 3.9.: Phase-averaged spectra of a single accretion column in the observer frame. Each
spectrum corresponds to a different setup (i,ΘAC) indicated in the table inset.
Gray solid lines correspond to the case without CRSFs. The bottom panel shows
the relative difference of the spectra to their pure continuum contribution, where
horizontal gray dashed lines mark ±5%. CRSFs energy ranges are indicated with
the vertical gray dotted lines.

i ΘAC1 ΘAC2 L4π/L
0◦ 0◦ 180◦ 11.12

10◦ 10◦ 170◦ 2.69
0◦ 20◦ 160◦ 1.27

10◦ 20◦ 160◦ 1.37
20◦ 20◦ 160◦ 1.90
90◦ 20◦ 160◦ 0.81

10−8

10−10

10−12

10−14

1036

1034

1032

1030

100101

20

0

-20

〈F
E
〉 φ

(@
1

kp
c)

[e
rg

s−
1

cm
−2

ke
V
−1

]
dL

4π /dE
[erg

s −
1keV

−
1]

E [keV]

re
l.

di
ff

.[
%

]

Figure 3.10.: Same as Fig. 3.9, but for two antipodal columns.
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3.2.3 Bolometric pulse profiles

Figure 3.11 shows shapes of observed bolometric pulse profiles for various antipodal setups of
two columns seen under different inclinations. We define the bolometric pulse profile to be

F(φ) =

∫ 100 keV

1 keV
FE(φ) dE (3.19)

and use the normalization given by

F̃E =
FE − 〈FE〉φ

σFE

or F̃ =
F − 〈F〉φ
σF

, (3.20)

subtracting the phase-averaged flux, and dividing by the standard deviation σFE . This normal-
ization emphasizes the shape of the pulse profile and makes the line shapes comparable.

A large range of shapes can be distinguished, from one-peak sinusoidal over broad plateaus
to two-peaked sinusoidal. Common to all profiles is their axis-symmetry with respect to φ = 0
and 0.5, which is a result of the antipodal setup. Note that observed pulse profiles mostly
are asymmetrical (see any reference listed in Fig. 1.10), which most likely is predominantly
caused by an asymmetric configuration of the accretion columns. Figure 3.21 shows examples
of asymmetric pulse profiles, which are the result of asymmetric positioned accretion columns.

Noticeable are the narrow but prominent peaks in the pulse profiles shown in Fig. 3.11.
These peaks are related to the effect of strong light bending visualized in Fig. 3.12. This Figure
shows the relativistic projection of a neutron star with two antipodal accretion columns onto
the observer’s sky (see Fig. 2.1) in comparison with the geometrical projection at different
phases. Phase φ = 0 shows a special configuration, in which the column on the opposite side
of the neutron star is projected as an Einstein ring (Einstein, 1936), allowing the observer to
see the complete circumference of the column at once. The resulting increase of the observable
area yields in the narrow peaks in the pulse profiles seen in Fig. 3.11. Comparing the geometric
projection to the relativistic projection in Fig. 3.12, it is noticeable that the second accretion
column is only visible for φ = 0.4 in the geometrical case, whereas it is the prominent, more
luminous one in all phases in the relativistic case.

3.2.4 Shadowing and strong light bending

In the previous section we already have seen that in curved space-time peculiar features in
the observed pulse profiles can occur. In the following we look at the reason behind this
occurrence in more detail.

Depending on their visibility, we can divide the vicinity of the neutron star into three regions
as shown in Fig. 3.13. First, there is the normal region which covers mostly the area in front
of the neutron star and includes only those photon trajectories with one possibility to reach the
observer. In other words, for each point within this region there is a unique photon trajectory.
Second is the small shadow region on the far side of the neutron star, directly above the
surface hidden from view. This shadow region transitions into the third region, the region
of strong light bending in which each point possesses two possible trajectories reaching the
observer. This region is a result of the strongly curved space-time in the vicinity of the neutron
star. The transition of the emitting region, i.e., the accretion column, between those regions
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The gray band represents the contour, in which the pulse profiles vary at the
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over the neutron star’s rotational phase causes significant changes in the observables. In the
following we quantitatively describe the boundary of these regions. Combining the analytical
approximation Eq. (2.16) with Eq. (2.6) the height of the shadow above the neutron star’s
surface can be written as

hS(Ψ ) =
2
(

bNS
Rs

)2
Rs

C2
Ψ +

√
C4
Ψ − 4CΨ (CΨ − 2)

(
bNS
Rs

)2
− RNS (3.21)

with

CΨ =


1 − cos(Ψp) 0◦ ≤ Ψ < Ψp

1 − cos(2Ψp − Ψ ) for Ψp ≤ Ψ ≤ 180◦

C2π−Ψ 180◦ < Ψ < 360◦
,

where bNS = RNS/
√

1 − Rs/RNS is the impact parameter of the neutron star, and Ψp =

arccos(1 − 1/(1 − Rs/RNS)) is the polar angle at the periastron of the corresponding pho-
ton trajectory (schematic drawing in Fig. 2.1). The maximum shadow height is reached
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tion is parameterized with the impact point (X,Y) (Eq. 2.17) in units of the
Schwarzschild radius Rs at different rotational phases φ. The system is seen
under i = 30◦ and consists of two antipodal accretion columns, with ΘAC1 = 30
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intensity IE (Eq. 2.26) in the rest frame of the observer.

for Ψ = 180◦ directly on the opposite side of the neutron star along the line of sight, i.e.,
hmax

S = hS(180◦). For our setup (Table 3.1) featuring a neutron star with a compactness
Rs/RNS = 0.43 we get hmax

S = 1291 m. Figure 3.13 also shows how the maximum shadow
height increases for decreasing compactness of the neutron star. For example, for a neutron
star with a compactness of 0.3 (i.e., 14 km, 1.4 M�) the maximum shadow height is already
at 8 km above the surface. Increasing the compactness to 0.67 causes the shadow to vanish
completely, i.e., hS(Rs/RNS ≥ 0.67) ≡ 0.

Using Eq. (2.22) we can relate Ψ to the observer inclination i, the polar angle of the
column ΘAC, and the rotational phase φ. For geometries with i + ΘAC1/2 = 180◦ and phase
φ = 180◦ −ΦAC1/2 the line of sight is aligned with one of the B-field axes, i.e., the column is
centered around Ψ = 180◦. In such cases the column is projected as a perfect Einstein ring
(see Fig. 3.12), assuming that the height of the column exceeds approximately the maximum
shadow height. A ring projection is possible as long as the shadow point is within the column,

180◦ − ∆Ψring < i + ΘAC < 180◦ + ∆Ψring , (3.22)

where

∆Ψring ≈ arctan
(

rAC

RNS + hmax
S

)
. (3.23)
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dotted blue line show the path of the accretion column around the neutron star
at height hmax and hS(180◦), respectively. The geometry is chosen such that the
column rotates around the z-axis in the x-y-plane, i.e., i = ΘAC = 90◦. Right:
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of this shadow height for neutron stars of different compactnesses is indicated
by the purple markers.

Further, the column is only passing through or within the shadow region if

Ψp + ∆ΨAC < i + ΘAC < 360◦ − Ψp − ∆ΨAC , (3.24)

where Ψp relates to the periastron and ∆ΨAC = arctan (rAC/RNS) is the the half opening angle
of accretion column at its base. For our setup (Table 3.1) we get ∆Ψring = 3.◦3, Ψp = 135◦ and
∆ΨAC = 4.◦7. The small value of ∆Ψring translates into a very narrow range in phase in which
the Einstein ring is visible. Furthermore, as ∆ΨAC is also small, there are only few geometries
for which this effect can even occur.

3.2.5 Dependency on geometry

In the previous sections we have shown that the observed, phase and energy dependent flux
strongly depends on the geometry, i.e., on i and ΘAC1/2, for selected examples. In the following
we investigate this dependency of our results on the geometry in more detail.
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3.2.5.1 Energy- and phase-resolved flux

The energy- and phase-resolved flux, FE(φ), is dominated by the spectral shape of the contin-
uum. To enhance changes with phase and energy we use the normalization in Eq. (3.20) as
presented in Fig. 3.14 (one column) and investigate how these columns look like in several
different geometric setups. For most geometries the pulse profile is broad and single peaked
and does not vary much with energy. The only visible deviations are in a small band around
the CRSF energies. Spectral changes, that is variations with energy at a given phase, are also
limited to the CRSF energies. The variability is much higher, however, in cases in which
the column passes through the shadow region, i.e., when the column fulfills the condition of
Eq. (3.24). For these parameters the pulse profiles evolve in general from single peaked at
low energies to double peaked at high energies. The details of this evolution strongly depend
on the geometry. In regions where only one peak is seen, the spectra are softer than the
phase-averaged spectrum, while the spectral shape is harder when double peaked pulses are
present. The antipodal two-column geometry in Fig. 3.15 shows the same general behavior, but
with more complexity due to the mixed contribution of the two columns. Note the symmetry
of the energy-phase maps in the antipodal two-column scenario. For example, the maps in the
bottom left and the bottom right panel in Fig. 3.15 are identical, but shifted by half a rotational
phase. This symmetry is explained by the similarity of the corresponding geometries, where
basically only the polar angles of the columns are swapped, i.e., ΘAC1 ↔ ΘAC2, while the
difference in their azimuthal position is 180◦.

The strong dependency of the CRSFs on the angle to magnetic field, η′ (Fig. 3.6), explains
the variations at the CRSF energies as different phases are related to different emission angles.
The large scale variations with respect to energy, however, result from the column moving
through the shadow region and the region of strong light bending (see Fig. 3.13) in combination
with the properties of the columns emission profile. In particular the line of the sight to the
bottommost and therefore hottest part of the column is blocked (see Eq. 3.2 and Fig. 3.5). As
the temperature determines the exponential cutoff (Eq. 3.1) and therefore the spectral hardness,
this effect strongly influences the observed spectrum. The observed spectrum softens the
further the column is in the shadow region, while the observed luminosity increases as a result
of strong light bending magnifying the upper part of the column. That means here the light
bending is able to compensate for the decrease of the emissivity with height.

We note that the relation between the compactness of the neutron star, RNS/Rs, and the
height of the columns plays an important role. A detailed discussion of the impact of the
compactness on the observables, however, is beyond the scope of this thesis. As long as the
emissivity of the column is sufficiently above the maximum shadow height, hmax

S , the effect of
strong light bending is observable as an enhancement in the flux. Otherwise, there will be a
reduction of the observed flux.

3.2.5.2 Flux derived and bolometric luminosity

In Sect. 3.2.1 we defined the flux derived luminosity, L4π, and the bolometric luminosity,
L. Figure 3.16 shows the anisotropy factor of the flux derived luminosity, L4π/L, and its
dependency on the geometry. If only one accretion column is present, the anisotropy factor
varies over several orders of magnitude. Looking directly into the column from above (i = 0◦,
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Figure 3.14.: Normalized observed phase and energy dependent flux, F̃E(φ) (see Eq. 3.20),
for different single column geometries (i, ΘAC1). In each panel the color-scale
is such that white corresponds to F̃E(φ) = 0, blue to F̃E(φ) < 0, and red to
F̃E(φ) > 0. Note that the minimum and maximum values may differ between the
individual panels.

ΘAC1 = 0◦) the luminosity is underestimated by a factor of 103, while it is overestimated by
a factor of 22 when the column is constantly on the opposite side (i = 0◦, ΘAC1 = 180◦).
Figure 3.16 also shows that the enhancement in luminosity occurs for geometries where
i + ΘAC1,2 ≈ 180◦. The enhancement in the flux derived luminosity is due to the high visibility
caused by strong light bending (Fig. 3.13), while the column is projected twice or even as ring
(Fig. 3.12). For two antipodal columns, however, the anisotropy factor ranges only from 0.8 to
11 as the second column compensates the extreme amplitudes present when only one column
is considered. Nevertheless, even in the case of two columns there is a significant systematic
error for the flux derived luminosity. It is impossible to determine this systematic error without
knowing the physical parameters of the system. Finally, note that the flux derived luminosity
increases significantly even though that the bottom, most luminous parts of the column are in
the shadow region (Fig. 3.13).
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Figure 3.15.: Normalized observed phase and energy dependent flux, F̃E(φ) (see Eq. 3.20).
Same as in Fig. 3.14, but for different antipodal column geometries (i, ΘAC1,2).

An additional effect that complicates the behavior of the flux derived luminosity is the
strong Doppler boosting in the column. This boosting shifts the maximum of the emitted flux
to larger angles and therefore most of column’s emission is directed downwards (Fig. 3.5).
In combination with the fact that the observable emission angle, η?, increases with the
polar angle Ψ (Fig. 3.13), very large flux derived luminosities become possible. Using
our example parameters (Table 3.1), Eq. (3.13) gives maximum observable emission angles
η?max(1 km) = 110◦ and η?max(5 km) = 132◦, while the intrinsic luminosity emitted from the
column, dL?/ dµ?, peaks at η? = 131◦. In other words, for the present setup the directions of
the peak emissivity coincide with those viewing angles strongest effected by the boosting of
light bending.
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Figure 3.16.: Anisotropy of the flux derived luminosity. Flux derived luminosity, L4π

(Eq. 3.16), dependent on the geometry i and ΘAC in units of the bolometric
luminosity, L (Eq. 3.14). Left: Case of one accretion column. Right: Case
of two antipodal accretion columns. The colored markers correspond to the
geometrical cases of the observed spectra shown in Fig. 3.9 (left) and Fig. 3.10
(right), respectively.

3.2.5.3 Pulsed fraction

A simple measure for the variability of the observed flux, F, with the rotational phase is the
pulsed fraction,

δF =
max(F) −min(F)
max(F) + min(F)

. (3.25)

This simple parameter encodes information about the underlying geometry as shown in
Fig. 3.17. In the single-column geometry the pulsed fraction peaks for geometries i + ΘAC1 ≈

180◦ and i ≈ ΘAC1 for ΘAC1 > 90◦ and ΘAC1 < 90◦, respectively. In the first case the high
pulsed fraction is the result of the prominent narrow peaks caused by strong light bending
(Fig. 3.11). In the latter case at certain phases the column is seen directly from above. This
line of sight results in a deep dip in the pulse profile, which increases also the pulsed fraction.

In the two-column geometry, however, the column which is mostly in the back is always
brighter than the column that is in front (Fig. 3.16), such that the front column contributes
little to the pulsed fraction. In other words, the pulsed fraction is dominated by peaks caused
by strong light bending when one of the columns is on the opposite side of the neutron star,
that is i + ΘAC1,2 ≈ 180◦.

3.2.5.4 Continuum

We next study how the continuum shape influences the observations. We use a simple empirical
model to describe the general behavior of the continuum. In particular we us a power law with
a high energy exponential cutoff, CutoffPL (Eq. 1.11). Comparing the energy dependency of
the CutoffPL to that in Eq. (3.1), we see that the folding energy corresponds to the (average)
plasma temperature, that is E?

fold ≈ kT . Although Eq. (3.1) implies a photon index of Γ? = 0,
we expect the index to be softer as we look at height and angle integrated spectra which mix
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Figure 3.17.: Pulsed fraction of energy integrated pulse profiles. Left: Case of one accretion
column. Right: Case of two antipodal accretion columns.

different plasma temperatures and boosting factors in the intrinsic frame. Furthermore, the
height dependent gravitational redshift will soften the observed spectra.

We fit Eq. (1.11) to the intrinsic height- and angle-integrated continuum emitted by the
accretion column, dL?/ dE?, as well as to the phase-averaged observed continuum for different
geometries, 〈FE〉φ (i,ΘAC), in the energy range from 1 keV to 100 keV. For the parameters in
Table 3.1 the intrinsic height- and angle-integrated continuum of the single column is well
described by Γ? = 0.23 and E?

fold = 5.2 keV. As expected this folding energy is approximately
the plasma temperature at the height at which the emission is at a maximum (Figs. 3.5 and
3.8). The plasma temperature itself increases from 0.3 keV at a height of 5 km to 9.2 keV at
the bottom of the column.

In the top panel of Fig. 3.18 we show the photon index of the phase-averaged continua
and the dependency of the spectral shape on i and ΘAC1,2 for one and two antipodal columns,
respectively. Quantities derived from the phase-averaged flux are denoted by an overline6.
Γ ranges from 0.09 to 0.34 for one and from 0.09 to 0.27 for two columns. In both cases
Γ decreases the closer the geometry is to i + ΘAC1,2 = 180◦. Additionally, the contour lines
in Fig. 3.18 indicate the variability of the photon index with respect to pulse phase. These
contours represent the phase amplitude at different levels relative to the maximum phase
amplitude, A. Phase amplitude denotes the difference between the maximum and minimum
value as function of pulse phase for a given parameter and geometry. The maximum phase
amplitude then gives the maximum of these phase amplitudes occurring for all geometries 7.
The maximum phase variability is reached for geometries close to i + ΘAC1,2 = 180◦, where
the maximum phase amplitude of the photon index is 0.24 and 0.17 in the case of one and two
columns, respectively.

6For example, Γ corresponds to the photon index obtained from the phase-averaged spectrum, 〈FE〉φ, and
is defined as Γ = Γ(〈FE〉φ). This parameter should not be confused with the phase-averaged photon
index, 〈Γ〉φ, which is obtained by averaging the photon indices of the phase-resolved spectra and using the

bracket-notation in Eq. (3.17) would be written as 〈Γ〉φ =
∫ 2π

0 Γ(FE(φ)) dφ/2π. These two definitions are
fundamentally different, i.e., Γ , 〈Γ〉φ.

7For example, the maximum phase amplitude of the photon index is given by AΓ =

max
i,ΘAC

{
max
φ

[
Γ
(

FE(φ)|i,ΘAC

)]
−min

φ

[
Γ
(

FE(φ)|i,ΘAC

)]}
, where FE(φ)|i,ΘAC

is the energy- and phase-resolved

flux observed for i and ΘAC.
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Figure 3.18.: Dependency of the continuum on the geometry i and ΘAC. The photon index Γ

(top) and folding energy Efold (bottom) are the CutoffPL parameters fitted to
the phase averaged spectra in units of Γ? = 0.23 and E?

fold = 5.2 keV, respectively.
The solid, dashed and dotted green lines represent the contours of the amplitudes
within the phase-resolved spectra at levels 90%, 50% and 10%, respectively,
in units of the maximum phase amplitude A. Left panels correspond to the
case of a single column with AΓ = 0.24 and AEfold = 0.81 keV. Panels on the
right correspond to the case of two antipodal columns with AΓ = 0.17 and
AEfold = 0.81 keV (see Table 3.2).

Figure 3.18 also shows how the folding energy of the phase-averaged continua varies with
the polar angle of magnetic field and inclination. The mean folding energy, Efold, first increases
as i + ΘAC1,2 approaches 180◦. Once the geometry is such that the hotter bottom parts of the
column are within the shadow region a significantly long part of the rotational phase the mean
folding energy decreases again. In both, the single and the antipodal two-column case, Efold

ranges from 2.8 keV to 3.6 keV. The maximum amplitude with respect to the rotational phase
is 0.81 keV in both cases. Note that the values of Efold are significantly lower than E?

fold, which
is due to the gravitational redshift (Eq. 2.27).

3.2.5.5 CRSFs

In Figs. 3.9 and 3.10 we see that the shape, width, depth, and position of the CRSFs also
strongly depend on the geometry. It is surprising and contrary to observations that for many
geometries the fundamental CRSF is in emission, especially in the case of two accretion
columns.

The large variety of shapes of the fundamental CRSF prevents comparing it with a simple
model, such as gabs or cyclabs. To investigate the dependency of fundamental CRSF on the
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Figure 3.19.: Phase-averaged equivalent width of the fundamental CRSF, WCRSF0, in the energy
range from 5 keV to 25 keV. The solid, dashed and dotted green lines represent
the contours of the amplitudes with respect to phase at levels 90%, 50% and
10%, respectively, in units of the maximum phase amplitude, AW . Where AW =

12.8 keV in the case of one accretion column (left) and AW = 0.6 keV in the case
of two antipodal columns (right).

geometry in Fig. 3.19 we therefore use the 5–25 keV equivalent width,

W =

∫ Ehi

Elo

FE − FE

FE
dE and W =

∫ Ehi

Elo

〈FE〉φ − 〈FE〉φ

〈FE〉φ
dE . (3.26)

In Eq. (3.26), FE is the observed flux without CRSFs, that is using IE (Eq. 3.1) instead of
IE (Eq. 3.10). Obviously there is a huge difference between the one and two column setup
showing very strong and no CRSF in absorption, respectively. For one accretion column
we see the CRSF in absorption for geometries along ΘAC1 ≈ i. Along this angle equality
are phases which allow us to observe the accretion column from above, that is with a rather
small angle to the magnetic field (. 45◦; see Fig. 3.6). For the test setup (Table 3.1), the
minimum and maximum equivalent width are −10.4 keV and 2.4 keV, respectively. Adding a
second, roughly antipodal column, however, causes the fundamental line to be in emission
for all geometries. The reason for this change is that the column in the back which shows the
fundamental in emission outshines the front column (see Fig. 3.16). The resulting equivalent
width in the two-column case is in a small range from 1.1 keV to 1.7 keV.

The phase variability is also much smaller in the case of the two antipodal columns than in
the case of one, with a maximum phase amplitude, AW , of 0.6 keV and 12.8 keV, respectively.
That the phase amplitude is smaller than average equivalent width means that for two columns
even in the phase-resolved case the fundamental CRSF is never observed in absorption.

To get a better understanding for this behavior we look again at Fig. 3.8, which shows
the strength of the fundamental CRSF with respect to the continuum in the rest frame of the
emitter. We define this line strength as

S ′ = 2πrAC

∫ E′hi

E′lo

∫ π/2

−π/2

(
I′E′ − I

′
E′
)

dηS dE′ . (3.27)

Besides the decrease of the line strength with height due to the decrease of the overall
emissivity, we see that for 45◦ < η′ < 135◦ the fundamental CRSF is in emission. It is in
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Figure 3.20.: Dependency of the first harmonic CRSF on the geometry i and ΘAC. The line
energy ECRSF2 (top), width σCRSF2 (middle) and optical depth τCRSF2 (bottom)
are the gabs parameters fitted to the phase-averaged spectra in the energy range
from 25 keV to 48 keV. The observed line energy is given in units of the
intrinsic line energy E′CRSF2 = 58 keV. The solid, dashed and dotted green lines
represent the contours of the amplitudes within the phase-resolved spectra at
levels 90%, 50% and 10%, respectively, in units of the maximum phase amplitude
A. Left panels correspond to the case of a single column with AECRSF2 = 15 keV,
AσCRSF2 = 9.1 keV and AτCRSF2 = 0.42. Panels on the right to the case of two
antipodal columns with AECRSF2 = 9 keV, AσCRSF2 = 3.2 keV and AτCRSF2 = 0.39
(see Table 3.2).

absorption only for η′ > 135◦ and η′ < 45◦, that is for small angles with respect to the magnetic
field.

Although the absolute value of the line strength is stronger in absorption than in emission,
there are several conditions causing the observed fundamental line to be most prominent in
emission. Firstly, the specific intensity of the column is a fan beam configuration which is
proportional to sin η′ (Eq. 3.1) with peak emissivity perpendicular to the magnetic field, i.e.,
η′ = 0◦. Secondly, the solid angle in which the line is visible in emission is much larger than
for the absorption. Furthermore the light bending also increases the observed flux for those
angles the line is in emission.
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Contrary to the fundamental CRSF, its harmonics are always observed in absorption
(Figs. 3.9 and 3.10). Their shape is clearly asymmetric and has a shallow extended lower
energy flank. Nevertheless, the harmonic lines are well approximated by a Gaussian absorp-
tion line, which is not the case for the fundamental CRSF. We parameterize the shape of the
harmonic CRSFs using the gabs model (Eq. 1.16).8 Figure 3.20 shows how the first harmonic
depends on the geometry. As expected from Eq. (3.18) the line energy is gravitationally red-
shifted. The energy varies with phase due to the variation of the viewing angle to the magnetic
field and the related change of the boosting factor. In the single column case the line energy
of the first harmonic varies between 25 keV and 40 keV. In addition, with a maximum phase
amplitude of 15 keV the amplitude is quite large, corresponding to a variation of 43% around
the average line energy. Adding the second antipodal column reduces the range in which the
line energy of the first harmonic varies. The minimum line energy is increased to a value of
32 keV in the phase-averaged spectra and the phase amplitude is cut in half. Throughout the
different geometrical configurations the width of the harmonic is anti-correlated to its energy.
This anti-correlation is caused by to independent circumstances which, however, both are
related to the viewing angle. The variation of line energy is due to angle dependent boosting
factor in Eq. (3.18), while the angle dependency of the CRSF cross sections is responsible
for the change of the line width (e.g., Schwarm et al., 2017b). In other words, assuming a
bulk velocity of zero the line energy would not vary for different geometries but the line width
would still the same geometry dependency.9 The appearance of the line varies from narrow
to very broad in a range of 0.9–10.0 keV, while the second column reduces the maximum
width down to 4.9 keV. The same is true for the phase amplitude of the line width, which is
reduced from 9.1 keV to 3.2 keV. This reduction of variability of the line energy and width
by the second column seems to affect the optical depth of the harmonic only marginally. In
both cases considered here the optical depth is in a similar range of 0.06–0.48 and has a phase
amplitude of 0.42. Further there is also a clear anti-correlation between the width and optical
depth of the CRSF, which is predicted by theory (e.g., Schwarm et al., 2017a,b). In particular,
the lines are predicted to be wide and shallow for small viewing angles with respect to the
B-field, while they are narrow and deep for viewing angles approximately perpendicular to the
B-field.

The higher harmonics of the CRSF (n > 2) behave in a similar way as the first harmonic,
however, the line strength reduces with increasing harmonic number n (Figs. 3.9 and 3.10).
Although we are not able to parameterize the fundamental CRSF, its line energy is connected
by the 12-B-12 rule (Eq. 1.9) and Eq. (3.18) to the line energy of the harmonic CRSFs. In
other words, the fundamental CRSF energy also varies approximately with the same factor
as the first harmonic (Fig. 3.20, top). In particular that is ECRSF2/E′CRSF2 = 0.43–0.70 for the
single column and 0.55–0.70 for the antipodal columns.

8The cyclabs model for cyclotron absorption lines described the shape overall slightly worse.
9Note that geometries for which parts of the column are in the shadow region the line energy might still change

even without bulk velocity. In that case, however, the corresponding geometry-dependency would look
different.
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3.2.5.6 Asymmetric accretion columns

Throughout the previous sections we presented results based on antipodal two-column con-
figurations to avoid the additional degrees of freedom introduced by asymmetric column
locations. We next turn to discussing the effects introduced by accretion columns which are
not positioned antipodally for one specific asymmetric setup. For this setup we use the same
displacement values for the accretion columns as Ferrigno et al. (2011), i.e., ∆ΦAC = −65◦ and
∆ΘAC = −43◦ (see Table 2.1). While we fix this relative displacement of the two columns, we
also look at the dependency on i and ΘAC like for the previously discussed one-column and
antipodal two-column setups.

The bolometric pulse profiles resulting from the asymmetric setup are shown in left panel
of Fig. 3.21. The general behavior is similar to the antipodal profiles in Fig. 3.11. It is
noticeable, however, that the pulse profiles in the asymmetric case are also asymmetric, which
is the result of the displacement of the two columns in phase. The contribution of each
individual column to the pulse profile is axis-symmetric, independent of the column’s polar
angle, ΘAC.10 An antipodal combination of these contributions conserves this axis-symmetry,
while a displacement ∆ΦAC , 0◦ results in an asymmetric pulse profile.

The spectral characteristics for the asymmetric configuration are very similar to those of
the antipodal one. In the right panel Fig. 3.21 the phase-averaged spectra are shown for some
example geometries (the same as in Fig. 3.10). The general shape of the continuum and also
that of the CRSFs is not significantly impacted by the asymmetric location of the accretion
columns.

The top right panel in Fig. 3.22 shows the dependency of the pulsed fraction on i and ΘAC. In
comparison to the antipodal case (Fig. 3.17) we see in principle the same distribution governed
by the influence of the light bending, which is strongest for i + ΘAC1,2 ≈ 180◦. The deviations
are therefore a result of the displacement ∆ΘAC . Looking at the geometrical dependency of the
anisotropy of the flux derived luminosity in the top left panel of Fig. 3.22 we see the same shift
of the pattern as for the pulsed fraction. In the case of the fundamental CRSF the asymmetry
of the columns has also no effect on whether it is seen in absorption or emission. As shown in
the bottom panel of Fig. 3.22 the the fundamental line is also predicted to be observed only in
emission as in the antipodal case (Fig. 3.19).

Figure 3.23 shows the energy- and phase-resolved observed flux for the asymmetric columns.
The flux is normalized (Eq. 3.20) such that the shape of the energy dependent pulse profiles is
enhanced. In comparison to the antipodal case in Fig. 3.15 we see that there is more variety in
the shapes. In most of the shown cases the pulse profiles are clearly asymmetric. Furthermore
the evolution with energy appears smoother and in some cases looks similar to that observed
in GS 0834−430 (see Figs. 3 and 4 in Miyasaka et al., 2013).

In conclusion we find that an asymmetric configuration of the accretion columns does
not significantly change the results we presented for the antipodal two-column case. The
only exception is the influence on the shape of the pulse profiles, which is caused by the
displacement of the columns in phase.

10The reason for the symmetry in the observed phase dependent flux is the cylindrical symmetry of the accretion
column and its emission pattern.
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Figure 3.21.: Bolometric pulse profiles (left) and phase-averaged observed spectra (right), but

for the asymmetric two-column setup (see Table 2.1). Compare Fig. 3.10 and
Fig. 3.11, respectively.
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Figure 3.22.: Geometrical dependencies for the asymmetric two-column setup (see Table 2.1).
Top left: Anisotropy of the flux derived luminosity (see Fig. 3.16) Top right:
Pulsed fraction of energy integrated pulse profiles (see Fig. 3.17). Bottom:
Phase averaged equivalent width of the CRSF in the energy range from 5 keV to
25 keV (see Fig. 3.19).
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Figure 3.23.: Normalized observed phase and energy dependent flux, F̃E(φ) (see Eq. 3.20).
Same as in Fig. 3.14, but for the asymmetric two-column setup (see Table 2.1).

3.2.5.7 Summary

Table 3.2 shows an overview of the previously discussed observables, their minimum and
maximum values occurring in the phase-averaged spectra, as well as the maximum phase
amplitude in the phase-resolved spectra.

It is noticeable that the range in which the phase-averaged values vary is equal to the
maximum phase amplitude. This observation is easily explained by the fact that we are
looking at all possible combinations of i and ΘAC. In particular, we see the minimum and
maximum values in the phase-averaged spectra stepping through different polar angles ΘAC

for i = 0◦, for which there are no pulsations (δF = 0). On the other hand, the maximum phase
amplitude is related to the geometry for i = ΘAC = 90◦. Both cases equally allow us to observe
the magnetic field under all possible view angles.

Comparing the single and antipodal two-column case, the variability of the observables
with the geometrical configuration (i, ΘAC) and with phase are impacted in different ways.
As in the antipodal case, the second column significantly reduces the range and amplitude
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Table 3.2.: Ranges and phase amplitudes of the observed quantities.

single column antipodal columns asymmetric columnsa

parameter unit min max A min max A min max A

L4π/L 103 22 . . . 0.8 11 . . . 0.8 11 . . .
δFb 0.00 1.00 1.00 0.00 0.87 0.87 0.00 0.93 0.93

Γ 0.09 0.34 0.24 0.09 0.27 0.17 0.10 0.27 0.20
Efold [keV] 2.8 3.6 0.81 2.8 3.6 0.81 2.8 3.6 0.82

WCRSF1 [keV] −10.4 2.4 12.8 1.1 1.7 0.6 0.7 2.4 4.7

WCRSF2 [keV] −1.5 −0.5 1.0 −1.5 −0.6 0.9 −1.4 −0.7 0.6
ECRSF2 [keV] 25 40 15 32 40 9 32 40 9
σCRSF2 [keV] 0.9 10.0 9.1 0.9 4.9 3.2 0.9 5.3 4.5
dCRSF2 [keV] 0.4 2.6 2.2 0.4 1.6 1.1 0.5 1.5 0.8
τCRSF2 0.06 0.48 0.42 0.06 0.45 0.39 0.06 0.48 0.42

WCRSF3 [keV] −0.33 −0.05 0.27 −0.31 −0.14 0.18 −0.32 −0.14 0.20

WCRSF4 [keV] −0.11 −0.00 0.11 −0.10 −0.00 0.10 −0.10 −0.02 0.09

Notes. Columns show the minimum, min, and maximum, max, values in the phase-averaged spectra
and the maximum phase amplitudes, A, in the phase-resolved spectra for a single, two antipodal, and
two asymmetric columns, respectively. (a) Displacement parameters of the asymmetric setup are given
in Table 2.1. (b) Values are related to energy-averaged spectra.

of the anisotropy factor, the energy and width of the harmonic CRSF, and even results in
the fundamental CRSF to be observed only in emission. In other cases the second column,
whether antipodal or asymmetric, has almost no impact. This is the case, for example, for the
folding energy of the CutoffPL continuum and the gabs optical depth of the harmonics.

As an example, Table 3.2 also shows the results for two columns located asymmetrically
on the neutron star. Although the asymmetry does change the geometrical dependencies
of the observables (see Sect. 3.2.5.6), the ranges and amplitudes are only slightly different
compared to the antipodal case. The only exception is the equivalent width of the fundamental
CRSF, which has a higher range and amplitude for the asymmetric columns. The reason for
this behavior is the high sensitivity and variability of the fundamental CRSF shape with the
viewing angle to the magnetic field, combined with the strong dependency of the flux derived
luminosity of the individual columns on the geometry.

3.3 Discussion & Conclusions
With the modular model presented here we describe the energy and phase dependent ob-
served flux of accreting neutron stars in X-rays in an unprecedented self-consistent way. Our
approach is based on the combination of three individual models, each of which describes
different aspects within and around the accretion column. We obtain the conditions within
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the accretion column, its dimensions, and its continuum emission from Postnov et al. (2015).
Onto this continuum we imprint CRSFs based on the model by Schwarm et al. (2017a,b). This
combination of two models provides the specific intensity of the accretion column(s), which
we transform into the observer frame accounting for general relativistic effects using a new
ray tracing code (see Chapter 2).

The modularity of our approach also has some limitations. Especially at the interfaces
of the continuum and the CRSF model. Each of these models addresses different specific
problems of the radiative transfer within the column and has its own scope of application
within different boundaries. Nevertheless, this separation is necessary, as a comprehensive
model which includes both, the formation of the continuum and the CRSF, would be too
computational expensive (see e.g., Schwarm et al., 2017b). The drawback of our approach,
however, is that it implies an abrupt transition between the two regions. As discussed in
Sect. 3.1.1, the continuum (Postnov et al., 2015) is formed at the surface of constant optical
depth, τ⊥ = 1. While the CRSF calculation (Schwarm et al., 2017a,b) assumes a very thin
outermost layer which has an optical depth of ∼10−4. Nevertheless, we assume the electron
temperature and the bulk velocity to be the same in both layers as the spatial separation is
negligible. Within the CRSF layer we neglect the redistribution of photons in height due to
its subdivision into spatially infinitesimal slabs in vertical direction to account for parameter
gradients. Furthermore, the model by Postnov et al. (2015) used for the continuum emission
is based on Lyubarskii (1986), which considers the photon energy to be smaller than the
fundamental line energy, which itself is to exceed the electron temperature, i.e., E′ � E′CRSF1
and E′CRSF1 � kT . While the second condition is met, the first one is only partially fulfilled.
As a consequence the contribution of ordinary photons to the continuum especially at higher
energies is underestimated. An estimate of this deviation is only possible based on a more
sophisticated description of the accretion column emission (e.g., based on Becker & Wolff,
2007, Becker et al., 2012).

In this work we present results based on one particular model setup using one continuum
model in a specific configuration (Table 3.1), especially using one fixed mass accretion rate.
Nevertheless it is possible to derive statements not only valid for this specific setup, but which
are also generally true. Some of the discussed observables and their behaviors are not tied to
the exact form of the emission pattern and geometry of the accretion columns as discussed in
the following.

3.3.1 Special geometries

Throughout this work we investigated observables such as the flux derived luminosity, pulse
profiles and the according pulsed fraction, the observed phase-resolved and phase-averaged
continuum and CRSFs. In particular we focused on their dependency on the geometrical
parameters, the inclination i of the observer, and the polar angles ΘAC1,2 of the accretion
columns. We find that geometries where i + ΘAC1,2 ≈ 180◦ are special. These geometries
feature a column which roughly aligns with the line of sight on the opposite side of the
neutron star at a certain rotation phase (see Sect. 3.2.4). For these geometries the visibility
of the emitting region is significantly enhanced due to the effect of strong light bending.
The compactness of the neutron star determines the size of the shadow region, which in
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combination with the vertical distribution of the emissivity of the column influences the
strength of this effect onto the observed flux.

The number of emission regions considered is also important. There are significant differ-
ences between the observables when comparing the single and the two-column cases. The best
example is the effect of strong light bending, which boosts the emission observed from the
column behind the neutron such that the column in the front is out-shined. As a consequence
we are not able to observe flux emanating under small angles to the magnetic field as its
contribution to the overall flux of both columns is insignificant. This effect increases with
increasing compactness of the neutron star.

3.3.2 Pulse profiles

Regarding the simulated pulse profiles there is one peculiar effect resulting in narrow, but
prominent peaks as seen in Fig. 3.11, with widths of only a few percent of the pulse phase.
Such peaks are generally hard to explain as a fan beam emission feature, which normally emits
into a large solid angle. The effect of strong light bending, however, provides a very good
possible explanation. During a short phase interval the projected area is enlarged causing a
short but strong pulse. This behavior is an effect that only occurs for certain geometries and
therefore allows us to infer geometrical properties (see Sect. 3.2.4).

Observational examples, for which this effect is applicable, are the pulse profiles of
KS 1947+300 (see, e.g., Fürst et al., 2014a, Ballhausen et al., 2016, Epili et al., 2016) and
IGR J16393−4643 (see, e.g., Islam et al., 2015, Bodaghee et al., 2016). These sources show
such narrow peaks in the hard X-rays, where it is difficult to argue that these peaks are a
result of absorption. In case of KS 1947+300 the disappearing of the peak for energies below
10 keV could relate to a lowering of the emission region within the column for decreasing
energy. In other words, a transition of the emission region into the shadow region would
cause the fade-out of the corresponding peak. The pulse profiles of these two sources are
observed at flux derived luminosities of ∼1037 erg s−1. Above this luminosity we expect the
column emission pattern to be mainly a fan beam, while at lower luminosities it is mixed
with pencil beam emission (Becker et al., 2012). The prominent peaks in these pulse profiles
result in a very high pulsed fraction in our simulations. They also dominate the correlation
between the pulse fraction and the geometry in i and ΘAC1,2 (see Sect. 3.2.5.3), especially in
the two-column setup. For the single-column setup the high pulse fractions for ΘAC1 < 90◦ are
caused by deep dips which occur when the column is observed from above due to the absence
of a pencil beam.

The pulse profile of the accreting pulsar GS 0834−430 shows a steady shift with energy in
the X-ray band (see Figs. 3 and 4 in Miyasaka et al., 2013) similar to some cases in Fig. 3.23
featuring asymmetric accretion columns (see Sect. 3.2.5.6). This behavior is especially
interesting as GS 0834−430 shows no detectable CRSFs, which are usually associated with
such so called phase lags (e.g., Ferrigno et al., 2011, Schönherr et al., 2014). Here, however,
we show that such changes of the pulse profile with energy are also possible without CRSFs.
When the column passes through the shadow region (Sect. 3.2.4) hard emission from its bottom
is blocked and the observed flux is dominated by the softer continuum which originates form
higher in the column (see Sect. 3.2.5.1).
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3.3.3 Luminosities

We showed that it is important to distinguish between the flux derived luminosity inferred
from observations, the bolometric luminosity seen on the unit sphere in the rest frame of the
observer, and the intrinsic luminosity emitted from the accretion column. There is always
a certain systematic error when relating the flux derived luminosity, L4π, to the bolometric
luminosity, L, as we lack information about the luminosity distribution with the observer
inclination (see Sect. 3.2.5.2). The overestimate of the observed luminosity decreases with the
decrease of the compactness of the neutron star, as the effect of light bending decreases. The
amount of this systematic error, however, depends also on the exact model setup. We obtain
anisotropy factors, L4π/L, which in the case of a two-column setup imply that the real and
inferred luminosity can differ by a factor up to 11.

Another factor of uncertainty is the amount of the gravitational redshift. The exact value
not only depends on the compactness of the neutron star, but also on the spatial distribution of
the emission. Assuming a peak emissivity close to the neutron star’s surface and theoretical
possible mass-radius relations (see e.g., Steiner et al., 2013), we get Rs/RNS ≈ 0.15–0.74 corre-
sponding to a gravitational correction factor of 0.26–0.85 between the bolometric luminosity,
L, and intrinsic luminosity, L?.

Together, the anisotropy factor and the uncertainty in the gravitational redshift can cause an
over- or underestimate of the intrinsic luminosity by roughly a factor of 4–10.

Finally, one has to keep in mind that it is possible that a large fraction of the fan-beam
emission is directed towards the neutron star’s surface and therefore is not directly observable
(see Sect. 3.2.1). In our case 58% of the intrinsic luminosity emitted from the column is
intercepted by the neutron star. Higher bulk velocities increase this fraction due to the increase
of the downward boosting of the emission. Therefore reflection off the neutron star atmosphere
or neutron star’s surface has to be considered when relating the flux derived luminosity to the
intrinsic luminosity.

3.3.4 Continuum

In Sect. 3.2.5.4 we fit the phase-averaged as well as the phase-resolved observed continuum
with a simple CutoffPL. We find that the photon index depends on the folding energy, and
therefore on the plasma temperature. This dependency results from the integrated contribution
of emission from different heights and viewing angles to the observed flux. Furthermore
we consider only the direct observed emission. Emission reflected from the atmosphere of
the neutron star increases the hardness ratio of the observed spectrum (Postnov et al., 2015).
Additionally it is possible that the emission at higher energies (E > ECRSF1) is underestimated
due to the negligence of ordinary photons, which might cause lower values of Efold and Γ.

As shown in Fig. 1.9 observations of accreting X-ray pulsar cover a broad range of phase-
averaged spectral shapes in terms of photon indices and folding energies. In the different
sources Γ ranges from −2.2 to 2.2 and Efold ranges from 2 keV to 49 keV.11 While our
simulated values (Table 3.2) lie within these ranges, they are still lower than those observed in
most sources. The spectral shape also changes within each source depending on its current

11Note that these values where obtained based on different continuum models.

71



CHAPTER 3. SELF-CONSISTENT MODELING OF ACCRETION COLUMNS

luminosity, which ranges from 3× 1034 erg s−1 up to 10× 1037 erg s−1, linked to different mass
accretion rates. Our simulations are based on a fixed mass accretion rate, that is intrinsic
luminosity. The presented variability in the flux derived luminosity, however, is due to its
geometrical dependency.

In the recent years also more and more phase-resolved analyses were performed (see
Fig. 1.10) thanks to the increasing data quality with new missions (like, e.g., NuSTAR). For
the sample of sources shown in Fig. 1.10 the variability of the continuum with pulse phase
covers a large range with maximum amplitudes between AΓ = 0.0–1.8 and AEfold = 0.3–38 keV.
Compared to these observational amplitudes the phase variability of the continuum in our
simulations is small (AΓ ≤ 0.17, AEfold ≤ 0.81 keV; Table 3.2).

3.3.5 CRSF

Regarding the fundamental CRSF the predictions of our simulations are surprising and in
contradiction to observations. Amongst all those accreting X-ray pulsars featuring CRSFs,
there is no evidence of a CRSF in emission or with emission wings yet (Figs. 1.9 and 1.10),
despite the fact that all theoretical models of CRSFs predict these emission features as a result
of photon spawning (see Isenberg et al., 1998, Nishimura, 2008, Schwarm et al., 2017a,b, and
references therein).

With our comprehensive simulation we show that for any two-column geometry the funda-
mental CRSF is in emission with equivalent widths large enough to be detectable (Fig. 3.19).
Asymmetric positioned columns do not significantly change this observable (Fig. 3.22). There
are several interlinked conditions leading to this problem, starting with the fact that the
spawned photons are predominantly emitted perpendicular to the magnetic field. As a result
the emitted intensity is enhanced in a broad angle range between 45◦ < η′ < 135◦ (Fig. 3.8).
Considering any fan beam like emission pattern provides an angle distribution of the emission
which peaks perpendicular to magnetic field (Eq. 3.1; Fig. 3.2). Such fan beam patterns
increase the intensity of the CRSF emission relative to the CRSF absorption at smaller angles
to the magnetic field. Lastly relativistic light bending not only increases the range of visibility
of the column being behind the neutron star (Fig. 3.13), but additionally gives a boost to the
observed flux (Fig. 3.16) in these cases, in which the column is seen also mostly sideways.
Altogether the described model predicts the fundamental CRSF to be observed mostly in
emission for a two column setup with fan beam like emission.

There are some possible approaches to solve the problem, but none of them resolves
this discrepancy between model and observations completely. As the fundamental CRSF
is in absorption for small angles to the magnetic field and in emission for angles roughly
perpendicular, one solution would be that the fan beam is not the predominant kind of
emission, but pencil beam emission is in any case. For example, emission regions, which are
not vertically extended would automatically favor a pencil beam. Fan beam emitting accretion
columns, however, are a commonly accepted concept (e.g., White et al., 1983, Becker et al.,
2012). It might also be the case that the direct observed fan beam emission is out-shined by the
reflection off the neutron star’s surface. Focusing a sufficient fraction of the emission down to
the surface, however, requires a high bulk velocity, especially in cases of a vertically extended
emissivity profile of the column. Even then it is questionable, if there are significant less
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spawned photons filling up the fundamental CRSF in the reflected spectra. Another solution
would be that the timescale for collisional de-excitation of the Landau levels is lower than the
radiative one, which would eliminate the existence of spawned photons in the first place. In
that scenario, however, the plasma density would have to be significantly higher, especially
in the CRSF forming region. Generally the line formation is completed roughly within the
first Thomson optical depth. In the case of the CRSFs the cross sections in the resonance are
several magnitudes higher than in the off-resonance (Schwarm et al., 2017b), and therefore
need only a tiny fraction of a Thomson optical depth to be formed. As a consequence this
scenario would require the accretion stream to be confined in a very small radius with an
extremely sharp transition zone.

Another case partially improving the situation are neutron stars of lower compactness, that is
neutron stars exhibiting a larger shadow region (Fig. 3.13). In combination with an emissivity
distribution, which has a small extent in height, a lower compactness would decrease the
impact of strong light bending. As a result, the emission from the front column seen under
small angles to the magnetic field, which provides deep absorption lines in the fundamental
CRSF, would be observable also in two-column configurations. That, however, is only the
case for some geometries and also only for some part of the pulse phase.

Besides the fundamental CRSF, we additionally find also the first three harmonics (n =

2, 3, 4) in our simulated spectra all behaving similar, but with rapidly decreasing equivalent
widths with respect to n (Table 3.2). A detailed investigation of the first harmonic CRSF, that
is fitting it with the gabs model, shows a strong anti-correlation of the width and optical depth
of the CRSFs. The harmonics further show a clear asymmetry with shallow extended lower
energy flanks. Observations of V 0332−53 (Pottschmidt et al., 2005), Cep X-4 (Fürst et al.,
2015) and 4U 1626−67 (Iwakiri et al., 2018) reveal a very similar asymmetry of the CRSF.

Accounting for the relativistic bulk velocity of the in-falling plasma is important as the
corresponding angle dependent boosting (Eq. 2.29) can lead to strong variations of the CRSF
with phase. This boosting is especially interesting in the case of the CRSF energy. The
intrinsic line energy is almost independent of the viewing angle (Eq. 1.9) as is the gravitational
redshift (Eq. 2.27). The consideration of the bulk velocity (Eq. 3.18), however, introduces
an angle dependency and therefore significant phase variations in the observed flux. Many
explanations for observed phase variations of the CRSF energy are based on the visibility of
different magnetic field strengths. Our simulations, however, show that the phase-resolved
CRSF energy can vary up to 23% (antipodal two-column setup) around its phase-averaged
value just due to the angle dependent boosting factor. The pulse phase dependency of the
CRSF energy in GX 301-2, for example, can be explained solely with this effect as discussed
in Sect. 4.2.
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4 Applications to observational
data

In the last chapter we discussed the flux observed of accreting X-ray pulsars in great detail
from the theoretical point of view. In the following chapter I present an observational approach
on the basis of two examples. In Sect. 4.1 I discuss the pulse profiles of 4U 1626−67 and
their peculiar dependency on energy. I show that a simple emission profile consisting of a
fan- and pencil-beam mixture is able to model these pulse profiles. In Sect. 4.2 I utilize the
angle-dependency of the boosting factor due to the bulk velocity (see Chapter 3) to model the
variations of the CRSF energy with phase observed in GX 301−2.

4.1 The pulse profile of 4U 1626–67
In this section I present my work on modeling pulse profiles of 4U 1626−67. This analysis is
my contribution to the upcoming publication by Iwakiri et al. (2018) and therefore this section
is following it closely and in larger parts in verbatim.

4U 1626−67 is an X-ray source discovered by UHURU (Giacconi et al., 1972). Rappaport
et al. (1977) later found a pulse period of 7.7 s in X-rays. This source is in an ultra compact
binary system with a very low mass companion (Levine et al., 1988). The orbital period of
this binary is only 42 min, while the system is located at a distance between 5 and 13 kpc
(Middleditch et al., 1981, Chakrabarty, 1998). The stellar wind from the companion is not
sufficient to explain the observed X-ray luminosity on the order of ∼1037 erg s−1. The accretion
is most likely driven by Roche lobe overflow (Chakrabarty, 1998). Orlandini et al. (1998)
discovered that the spectrum of 4U 1626−67 features a CRSF at ∼ 37 keV, which was later
found to be of asymmetrical shape with a shallow low energy flank (D’Aì et al., 2017, Iwakiri
et al., 2018).

The pulse profile of 4U 1626−67 shows a very peculiar evolution with energy in X-rays.
The center panels of Figs. 4.1 and 4.2 show the energy-resolved and background subtracted
pulse profiles in eleven different energy bands obtained with NuSTAR in 2015 (see Iwakiri
et al., 2018, and references therein). The pulse profiles strongly depend on energy, with a
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double-peaked structure below 10 keV which become single-peaked and almost sinusoidal
in the higher energy bands. The characteristics of the pulse profiles seen by NuSTAR are
consistent with the RXTE results observed in 2010 (Beri et al., 2014).

To investigate the geometry of the neutron star quantitatively, we performed pulse profile
modeling using the relativistic ray tracing code discussed in Chapter 2. In our model for
4U 1626−67 we consider a canonical neutron star of mass MNS = 1.4M� and radius RNS =

10 km. Further, we assume the observed X-rays to be emitted by two cylindrical accretion
columns AC1 and AC2 of height hAC1,2 and radius rAC1,2. Allowing for an asymmetric magnetic
field, the columns are positioned individually at azimuthal angles ΦAC1,2 and polar angles
ΘAC1,2, respectively. These angles are measured in a coordinate system with respect to the
neutron star’s rotational axis (see Fig. 3.7). The angle between the line of sight and the neutron
star’s angular momentum vector specifies the inclination i of the neutron star. Therefore i = 0◦

would correspond to a face-on system.
We make the simplified assumption that the emission pattern of the columns can be described

as a mixture of Gaussian-like fan and pencil beam emission components in the frame of rest of
the neutron star’s surface. At a given observed energy the emissivity of one accretion column
is given by

I′E(η′) = Np exp

−
η′ − η̄p
√

2σp

2 + Nf exp
− [

η′ − η̄f
√

2σf

]2 , (4.1)

where η′ is the angle of the emitted photons measured with respect to the magnetic field axis
in the frame of rest of the emitter (see Fig. 3.2). The energy dependent quantities η̄, σ, and N
describe the direction of peak emissivity, the width, and the strength of the pencil-beam (p)
and fan-beam ( f ) components, respectively. Note that all these quantities are given in the rest
frame of the emitter, which is indicated with a prime in same cases for clarity following the
notation given in Sect. 2.1.4. As we do not assume any bulk velocity (β = 0) the rest frame of
the emitter is the same as the rest frame of the neutron star. For the fan beam we set η̄f = 90◦,
i.e., the fan beam is fixed to emit perpendicular to the magnetic field from the sides of the
accretion column.

We model the energy-dependence of the pulse profile by allowing the parameters N, σ, and
η̄ of the emission pattern to change with energy. For the model described in the following
we assume that the emissivity of the accretion column is independent of height and thus
constant over the whole column. From Eq. (4.1) we then derive the observed energy- and
phase- dependent total flux,

FE(φ) = FAC1(φ, I′E) + FAC2(φ, I′E) , (4.2)

where φ is the rotational phase and FAC1,2 is the flux of the individual accretion columns
emitting with the given emission pattern I′E. The fluxes in Eq. (4.2) are calculated following
the description in Chapter 2 accounting for general relativistic effects. While we impose the
same model for the emissivity pattern on both poles, the fluxes of the beams are allowed to
vary freely. In particular that means Np2 = Np1 , σp2 = σp1 , η̄p2 = η̄p1 for the pencil beam, and
σf2 = σf1 and η̄f2 = η̄f1 = 90◦ for the fan beam.

The center panels in Figs. 4.1 and 4.2 include the best-fit model described above for the
energy-resolved and background subtracted NuSTAR pulse profiles in the eleven energy bands.
Lines show the overall model and the individual contributions of the fan and pencil beams
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Figure 4.1.: Modeled emission patterns and pulse profiles of 4U 1626−67 in different energy
bands. The center panels show the pulse profiles obtained with NuSTAR (black
points) and the fitted model (orange) with its individual components, i.e., the fan
(solid blue, dashed navy) and pencil emission (solid red, dashed maroon) of both
accretion columns. The left-hand panels show the corresponding normalized emis-
sion patterns of the two accretion columns. The solid magenta line corresponds
to the combined emission pattern of the fan and pencil beam of the first column.
The right-hand panels show the same emission patterns as polar plot, where the
right and left side counting η′ clockwise and counter-clockwise correspond to the
first and second accretion column, respectively. The best-fit parameters are shown
in Table 4.1.
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Figure 4.2.: Figure 4.1 continued.

from each accretion column. The corresponding parameters are listed in Table 4.1. While
the parameters of the emissivity profile are allowed to change with energy, the geometrical
parameters describing the locations and dimensions of the columns are not. Another global
parameter is the observer inclination, which naturally also does not change with energy.

The best-fit solution shows that the magnetic field of the first column passes through close
to the line of sight during each rotation. That is at pulse phase φ = ΦAC1, when the first column
is in the front, we look at the first column from above with an angle to its magnetic field
axis of approximately ΘAC1 − i = 6.◦1. Despite the simplified assumptions entering the beam
pattern, the model describes the observed pulse profiles and their energy evolution remarkably
well and with a smooth variation of all relevant parameters of the emission characteristics.
Figure 4.3 shows the energy dependency of the parameter values. The evolution of the pulse
profile is characterized by a very wide fan beam which strongly decreases in width as the
energy increases. In contrast, the shape of the pencil beam component only slightly changes.
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Table 4.1.: Fit parameters of the accretion column model. Parameters not listed here are fixed
or tied. In particular we impose Np2 = Np1 , σp2 = σp1 , η̄p2 = η̄p1 for the pencil
beam, and σf2 = σf1 and η̄f2 = η̄f1 = 90◦ for the fan beam.

global AC1 AC2
i ΦAC1 ΘAC1 rAC1 hAC1 ΦAC2 ΘAC2 rAC2 hAC2 χ2

red (d.o.f.)
[deg] [deg] [deg] [m] [m] [deg] [deg] [m] [m]

10.8 74.0 16.9 123 150 294.0 159.0 634 221 2.13 (629)

pencil1 fan1 fan2

∆E Np1 σp1 η̄p1 Nf1 σf1 Nf2 χ2
red (d.o.f.)

[keV] [cts/s] [deg] [deg] [cts/s] [deg] [cts/s]

3 – 5 0.848 4.2 8.2 1.322 180.0 0.007 5.15 (58)
5 – 7 1.013 4.4 8.7 1.225 180.0 0.066 3.45 (58)
7 – 9 0.911 4.7 9.3 0.986 180.0 0.124 2.58 (58)

9 – 11 0.671 4.9 9.9 0.787 130.7 0.137 1.28 (58)
11 – 13 0.642 8.1 11.8 0.314 36.6 0.109 1.18 (58)
13 – 15 0.466 8.6 13.1 0.220 32.7 0.089 1.24 (58)
15 – 17 0.431 9.0 15.0 0.100 14.5 0.068 1.18 (58)
17 – 20 0.462 8.6 16.5 0.120 14.5 0.071 1.82 (58)
20 – 25 0.454 8.2 18.2 0.105 13.4 0.063 2.15 (58)
25 – 30 0.149 7.4 18.7 0.053 14.2 0.021 1.85 (58)
30 – 50 0.069 8.8 21.0 0.004 14.6 0.015 1.23 (58)

The widening of the pencil beam width with energy is negligible, while the increase of the
angle of the peak emission from 8 deg to 21 deg is relevant. This shift explains the widening
of the gap between the double peak in the pulse profile. From 3 keV to 10 keV the parameters
corresponding to the first column change only slightly, while the normalization of the second
column’s fan beam increases by an order of magnitude. This increasing contribution of the
second column explains the changes seen in the pulse profile at these lower energies, which
are noticeable as a raising third peak located slightly asymmetric regarding the double peak at
the phases of the plateau.

The decomposition of the pulse profiles in the middle columns of Figs. 4.1 and 4.2 illustrates
how these parameter changes manage to reproduce the pulse profiles so well: The pencil beam
is responsible for the distinct and symmetric double peak that characterizes the softer energy
bands. The peaks are close together since the pencil beam is directed upwards, with only a
small offset, η̄p, to the magnetic field. The strong non-pulsed continuum between the two peaks
is produced by the broad fan beam, which is shifted by half a phase with respect to the dip
between the double peak of the pencil beam. With increasing energy the double peak decreases
in importance and its width broadens while the gap in between increases. This behavior is
reflected in the best-fit parameters by showing that the offset angle η̄p and the beam width σp

increase with energy (see Fig. 4.3). In addition, the flat plateau at low energies evolves into an
asymmetric peak, which is caused by the narrowing of the fan beam. The asymmetry visible
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Figure 4.3.: Energy dependent fit parameters of the accretion column model, with the model’s
pulsed fraction in the bottom panel. See Table 4.1 for the best-fit parameters. Note
that the emission angle for the fan beam is fixed at η̄f = 90◦.

in this pulse is caused by the fan beam of the slightly-misaligned second accretion column.
As a consequence of this best-fit geometry the pencil beam of the second column is directed
away from the observer at all pulse phases, and thus it is not observable. In Fig. 4.3 we see
that the pulsed fraction increases significantly with energy. That evolution is driven by the
changes of the primary pencil beam. While at lower energies the peak contribution of pencil
and fan beam to the pulse profile are shifted by half a phase causing a small pulsed fraction,
the evolution of the pencil beam causes both contributions to coincide in phase which results
in a high pulse fraction (Figs. 4.1 and 4.2).

We note that extrapolating the behavior of the pencil and fan beams to even lower energies
than considered here predicts an evolution of the pulse profile towards a shape dominated by
the single broad hump of the fan beam, consistent with the pulse profiles seen by XMM-Newton
(Krauss et al., 2007) and Chandra (Hemphill et al., 2017).

Modeling the pulse profiles also yields our viewing angle onto the two accretion columns.
This parameter is important for the interpretation of the CRSF, whose shape strongly depends
on the angle under which we see the magnetic field (Schwarm et al., 2017b,a). The viewing
angle, under which the magnetic field is seen, relates directly to the emission angle η′ in the
rest frame of the emitter.1 As shown in Fig. 4.4, η′ is strongly influenced by light bending.

1This relation is analog to the relation of the apparent emission angle (Ψ ) and the radial emission angle (α) of
the photon trajectory as discussed in Chapter 2 (see Fig. 2.1).
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Figure 4.4.: Phase dependent angle, η′, under which the magnetic field is seen at either pole
according to the best-fit values in Table 4.1. Solid and dashed black lines enclose
η′ values corresponding to the first and second accretion column, AC1 and AC2,
respectively, accounting for light bending. Green lines show the case of neglecting
light bending.

The larger the viewing angle, the larger is the deviation from the non-relativistic case. For the
first column η′ varies between 5◦ and 22◦ in a small band with mean width ∼1◦, whereas for
the second column the mean width of the band is ∼11◦ between 91◦ and 110◦. The second
accretion column is only visible due to light bending as it is located on the dark side of the
neutron star. Comparing the contribution of the first and the second accretion column to the
observed pulse profiles in Figs. 4.1 and 4.2, we see that the first column dominates for all
energies. That is also true for the energy band 30–50 keV, which includes the CRSF at ∼37 keV.
Consequently the CRSF is mainly formed by the first column, to which the viewing angle is
very small (Fig. 4.4) in our best-fit model. CRSFs seen under a small angle to the magnetic
field are predicted to be deep and strong (Schwarm et al., 2017b), which is in agreement with
the observations of the 37 keV line in 4U 1626−67 (D’Aì et al., 2017, Iwakiri et al., 2018).

Compared to other models put forward for explaining the energy dependent change of the
pulse profile of 4U 1626−67, our pulse decomposition explains the observed energy dependent
behavior solely by a change in the emission characteristics of the accretion column, without
invoking foreground effects. Specifically, the model does not require a reprocessing of the
primary radiation in the accretion disk as suggested in the qualitative picture by Koliopanos
& Gilfanov (2016). Our model also does not require any absorption by intervening material
such as the accretion stream effects proposed by Beri et al. (2014). The simpler explanation is
possible by virtue of the low inclination of i = 10.◦8, where relativistic effects allow a complex
interplay between the pencil and fan beam to produce the observed profiles. The complexity
of the pulse profile modeling does not allow us to quote uncertainties for the fit parameters.
However, we note that the inclination is in reasonable agreement with the face on inclination
of . 8◦ inferred by studies of the orbit of the system that assume that the donor star is a
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0.08 M� hydrogen-depleted and partially degenerate star (Levine et al., 1988, Verbunt et al.,
1990, Chakrabarty, 1998).

The inclination is in moderate disagreement, however, with the i . 33◦ estimate for a
0.02M� helium or carbon-oxygen white dwarf donor (Verbunt et al., 1990, Chakrabarty,
1998). This higher-inclination case is supported by the presence of a complex of broad and
double-peaked emission lines around 1 keV (Schulz et al., 2001, Krauss et al., 2007), which
are consistent with an inclination in the range of 30–40◦ (Schulz et al., 2013, Hemphill et al.,
2017). The low inclination found by our pulse profile modeling can possibly be reconciled
with the high inclination implied by the disk lines if the angular momenta of the accretion
disk and neutron star are misaligned. This would result in a strong warp in the accretion disk,
which could explain the disk flips that have been invoked to explain the torque reversals of
4U 1626−67 (van Kerkwijk et al., 1998, Wijers & Pringle, 1999).

4.2 The CRSFs in GX 301–2
In the following, my work on modeling the phase dependency of the CRSF line energy in
GX 301−2 is presented. This work will be also part of the publication by Fürst et al. (2018),
therefore this section is following it closely and in larger parts in verbatim.

The X-ray pulsar GX 301−2 was discovered by balloon experiments in 1969 (Lewin et al.,
1971, McClintock et al., 1971) showing pulsations with a moderate pulse period of ∼696 s
(White et al., 1976). This HMXB (Vidal, 1973, Parkes et al., 1980) has an orbital period of
∼41.5 d with an eccentricity of e = 0.47 and is located at a distance of 3 kpc (White & Swank,
1984). Accretion in this system takes place by direct accretion from the strong stellar wind.
During the orbit a regular pre-periastron flare occurs, which is associated with the neutron star
overtaking a dense accretion stream (Leahy, 2002, Leahy & Kostka, 2008).

A CRSF in the hard X-ray spectrum in GX 301−2 was first discovered by Mihara (1995)
using Ginga data. They found a strong and very broad (σCRSF ≈ 16.4 keV) absorption feature
at a centroid energy of 35 keV. Their pulse-phase-resolved analysis shows that the line energy
varies between 23 and 40 keV. The CRSF was confirmed by Coburn et al. (2002, RXTE)
and a similar strong phase-dependence of the line energy was found by Kreykenbohm et al.
(2004, RXTE) and Suchy et al. (2012, Suzaku). Depending on the orbital phase La Barbera
et al. (2005) found the CRSF at significant higher energies in BeppoSAX data, i.e., at around
45–53 keV. An overview of the phase-averaged and phase-resolved CRSF parameters is shown
in Figs. 1.9 and 1.10, respectively.

Fürst et al. (2018) analyze observations of GX 301−2 taken with NuSTAR, which reveals
two distinct, Gaussian shaped CRSFs in the phase-averaged spectra, one at 35 keV and the
other at 50 keV. The large line widths of 5 and 9 keV, respectively, cause the lines to overlap.
Thanks to the unprecedented spectral resolution of NuSTAR it is possible to disentangle the
lines. Phase-resolved analyses of the spectra show that the line energies dependent on the
pulse phase (see Fig. 4.5). In the following the focus is on the energy of the two CRSFs and
their phase dependency. For a full description of the data analysis, spectral model, and spectral
fitting see Fürst et al. (2018).
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Figure 4.5.: Phase-dependence of the CRSF energies obtained by NuSTAR (Fürst et al., 2018),
together with the predicted energies by our simple accretion column model in red.
The energy of the higher energy line has been fixed to 49.6 keV in the model

4.2.1 The nature of the CRSFs

In about half of the CRSF sources more than one CRSF was measured (see Fig. 1.9). Usually
they are interpreted as fundamental and harmonic lines related to the different Landau levels.
In that case the energies of the harmonics should be related by integer multiples of the
fundamental line energy (Eq. 1.9). Taking into account relativistic effects (Eq. 1.8), the factor
between the individual lines can be lower (as seen by Pottschmidt et al., 2005, Müller et al.,
2013b). In the case of GX 301−2 the ratio of the two CRSF line energies, however, is ∼1.4,
which deviates much more from the factor of 2 than expected (Mészáros, 1992).

It is possible that the two observed lines correspond to the first and second harmonic. In
this case we would expect the fundamental line to be at ∼17 keV. Fürst et al. (2018), however,
found no evidence for a CRSF at this energy. Previous observations of GX 301−2 also did not
show any hint of a CRSF at ∼17 keV (Mihara, 1995, Coburn et al., 2002, Kreykenbohm et al.,
2004, La Barbera et al., 2005, Suchy et al., 2012). Spawned photons produced by the radiative
de-excitation of the higher Landau levels can cause the fundamental CRSF to be shallower
than the first harmonic (Schwarm et al., 2017b,a). This effect is seen in several of the sources
shown in Fig. 1.9, e.g., 4U 1907+09 (Hemphill et al., 2013), 4U 1538−522 (Hemphill et al.,
2013, Rodes-Roca et al., 2009), and Vela X-1 (Makishima et al., 1999, Maitra & Paul, 2013b,
Odaka et al., 2013, Fürst et al., 2014b, La Parola et al., 2016). However, it seems unlikely
that photon-spawning would perfectly fill up the fundamental line, without any measurable
deviations from a smooth continuum.

The simulations discussed in Chapter 3 show that the shape of the observed CRSFs can
differ from a simple Gaussian. The asymmetry is noticeable as a shallow extended lower
energy flank. Observations of V 0442+53 (Kreykenbohm et al., 2005, Pottschmidt et al.,
2005), Cep X-4 (Fürst et al., 2015), and 4U 1626−67 (D’Aì et al., 2017, Iwakiri et al., 2018)
show similar asymmetric CRSFs, which are modeled with a superposition of two Gaussian
lines. Therefore it might be possible that there is only a single, but significant distorted line
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in GX 301−2. Compared to the examples above, however, the lower energy feature is much
stronger and much easier to be identified as an individual line.

Another possibility is that both the CRSFs represent a fundamental line corresponding to
two different emission regions. It might be that each line corresponds to an individual accretion
column. A highly asymmetric magnetic field would be required to result in fundamental CRSF
energies so much apart. Two individual fundamental lines also could be produced by a single
accretion column which features two emission regions at different heights. As the magnetic
field strength decreases with height so does the CRSF energy.

4.2.2 Modeling the phase-dependence of the CRSF energy

The phase-dependence of the CRSF energy allows us to obtain further information about the
accretion and emission geometries. In the following we present a simple model based on the
picture of a single accretion column producing the two fundamental CRSF lines at different
heights.

The 35 keV-line (CRSFb) shows a very significant, almost sinusoidal variation as function
of phase (Fig. 4.5). Variations of the CRSF energy are often linked to different heights of
the accretion column with different intrinsic magnetic field strengths. Such a clear sinusoidal
variation with the rotational phase, however, would indicate we observe emission from a small
and confined region of the column moving in altitude with phase. It is unclear how such an
emission profile would be produced physically.

The infalling material within the accretion column can obtain relativistic velocities up to
∼ 0.6 c (Basko & Sunyaev, 1976). Such high velocities will result in the emitted radiation
being strongly boosted towards the neutron star’s surface. Depending on the viewing angle the
emission seen by the observer experiences a significant shift in energy. As the angle of our line
of sight towards the velocity vector changes with phase, we will observe different boosting
factors and therefore different energies. In this picture the amplitude of the phase variation
of the CRSF energy strongly depends on the velocity in the line-forming region. As seen in
Fig. 4.5 the phase-dependence of the 50 keV line (CRSFa) is negligible, i.e., consistent with a
constant within the errors. Therefore a possibility is that the line is formed close to the surface,
where the plasma has already decelerated and the bulk velocity is basically 0. In contrast,
CRSFb is formed much higher in the column where there is a significant bulk velocity. Due
to this bulk velocity CRSFb experiences a strong relativistic boosting and therefore shows
variation with phase.

Here we present a simple model based on this idea. The model features a single accretion
column with a negligible radius extended only in height. Adapting Eq. (3.18) the observed
CRSF energy at a given rotational phase φ is given by

ECRSF(φ) = E′CRSF(h)

√
1 − β2

1 + β cos η?

√
1 −

Rs

RNS + h
, (4.3)

taking into account the gravitational redshift (Eq. 2.27) at height h above the neutron star of
radius RNS and with the Schwarzschild radius RS = 2GMNS/c2 corresponding to its mass MNS.
Also accounted for is the relativistic boosting (Eq. 2.29) due to the local bulk velocity β = v/c,
which depends on the emission angle η? with respect to the magnetic field in the rest frame of
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Table 4.2.: Parameter constraints on GX 301−2.

model parameter symbol unit χ2-minimization emcee

free parameters
observer inclination i [deg] 60+30

−38 > 20
polar angle of B-field ΘAC [deg] 48+113

−26 22 - 162
local bulk velocity of CRSFb βb 0.39+0.16

−0.24 0.16 - 0.60
height of emission of CRSFb hb [km] 0.27+0.96

−0.27 < 1.3
derived intrinsic energy of CRSFb E′CRSFb [keV] 60+5

−15 45 - 65

fixed parameters
neutron star mass MNS [M� ] 1.4
neutron star radius RNS [km] 10
phase offset ΦAC 0.562 ± 0.025
observed CRSF energy of line a ECRSFa [keV] 49.6
intrinsic CRSF energy of line a E′CRSFa [keV] 64.9

the neutron star (Fig. 3.2). The intrinsic energy of the CRSF in the rest frame of the emitter,

E′CRSF(h) = E′CRSF(0)
R3

NS

(RNS + h)3 , (4.4)

follows a dipolar decrease with h (Eq. 3.11), where E′CRSF(0) is the intrinsic CRSF energy at
the neutron star’s surface. If the surface B-field strength is known, E′CRSF(0) can be determined
using the 12-B-12 rule (Eq. 1.9).

In the simple picture of a cylindrical accretion column with negligible radius, η? can
be identified with the radial emission angle α (Fig. 2.1). Using this identification and the
analytical approximation for the light bended photon trajectory (Beloborodov, 2002), η? can
be written as

cos η?(φ) = 1 − (1 − cosΨ )
(
1 −

RS

RNS + h

)
, (4.5)

where Ψ is the apparent emission angle. From Eq. (2.22) we know the relation between the
apparent emission angle and the geometrical setup, which is

cosΨ (φ) = cos i cos ΘAC + sin i sin ΘAC cos(φ − ΦAC) , (4.6)

where i is the observer inclination, φ the rotational phase, and ΦAC and ΘAC are the phase
offset and the polar angle of the accretion column, respectively (Fig. 3.7).

We now apply this model to the data of GX 301−2. The observed energy of CRSFa is
denoted by ECRSFa and is set to its weighted mean of 49.6 keV (Fig. 4.5). As ECRSFa is formed
at the bottom of the accretion column (h = 0) where β = 0, we get an intrinsic energy of
E′CRSFa = 64.9 keV (Eq. 4.3). We use CRSFa to set the intrinsic CRSF energy at the bottom
of the column in Eq. (4.4), i.e., E′CRSF(0) = E′CRSFa. Fitting Eq. (4.3) to the data of CRSFb
(Fig. 4.5) we can determine the height (hb) and velocity (βb) of CRSFb and the parameters of
geometrical setup (i, ΘAC, ΦAC).

A preliminary analysis showed that the phase offset is well constrained and not correlated
to any other parameter and is therefore fixed to ΦAC = 0.562. To obtain values for the other
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Figure 4.6.: Parameter probabilities obtained from Monte Carlo simulations (emcee). Param-
eter correlations are shown as color-maps, where black corresponds to highest
probability. Purple, magenta and orange contours correspond to the 99%, 90% and
68% probability level, respectively. In the i-ΘAC space there are two distinct prob-
ability distributions visible. These two solutions are separated by ΘAC = −i + 180◦

(green dashed line), where i is the observer inclination and ΘAC is the polar
angle of the accretion column (see Fig. 3.7). The bottom panels show the one
dimensional parameter probabilities, where red (ΘAC < −i + 180◦) and blue
(ΘAC > −i + 180◦) histograms correspond to the individual solutions. The red
cross and the green plus indicate the parameter combination corresponding to
the minimal χ2

red-value obtained with independently with the emcee routine and
χ2-minimization, respectively.
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parameters best describing the data we used χ2-minimization as well as Markov-Chain-Monte-
Carlo methods. The latter was performed due to the high degeneracies of the parameters in
this simple model. In particular we used the emcee routine, which is based upon the parallel
“simple stretch” method presented by Foreman-Mackey et al. (2013). The emcee routine was
applied with 50 free walkers for each free parameter and 100000 iterations, which corresponds
to 4 × 50 × 100000 single evaluations. To verify the convergence of the emcee run, Fig. 4.6
shows the distribution of the update fraction, which peaks at ∼ 0.3 and is perfectly in the
preferable range (Foreman-Mackey et al., 2013). Further, the minimal χ2

red of 0.944 and the
corresponding parameter combination are identical for the χ2-minimization and the emcee
method.

Figure 4.6 also shows the probability distribution of the parameters and Table 4.2 gives the
resulting parameter constraints. This simple model provides an excellent description of the
observed phase dependence of the CRSF energy, as shown in Fig. 4.5. It also provides some
limits on the geometry of the system, for example it indicates an observer inclination i > 20◦

and a polar angle of the magnetic field ΘAC > 22◦. We obtain bulk velocities between 0.2–
0.4 c, which are well in agreement with theoretical calculations. We also find a column height
of around 1 km, which is very similar to the height of 1.4 km Fürst et al. (2018) estimated
independently from the shock height in the accretion column model by Becker et al. (2012).

Note that in a further step we could assume a certain velocity profile within the accretion
column, e.g., the shock model as discussed by Becker et al. (2012). In this case, the velocity
below the shock would be much slower, and the emission region would be constrained to
be around 1 km. This will lead to better constraints of the other parameters. However, this
would introduce specific assumptions about the bulk velocity and the structure of the accretion
column. The model as it is presented here is free of any assumption of such kind.

Of course, a possible solution could also include contributions from both accretion columns.
However, we do not consider this case here, as we cannot constrain the relative contribution of
each column to the observed flux with the available data. In such a model, we would need to
make sophisticated assumptions about the altitude-dependent emission profile in each column,
which is not necessary in the present setup.
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5 Conclusion and Outlook

The topic of this work are highly magnetized accreting X-ray pulsars in HMXBs. These
neutron stars are amongst the most compact objects we know, with masses of ∼1.4 M� and
radii of ∼ 10 km. In their vicinity space-time is not flat and general relativity is needed to
describe it. In addition these pulsars exhibit strong magnetic fields of ∼1012 G and accretion
rates in the order of ∼ 1017 g s−1. Such strong B-fields force accreted matter to follow its
field lines onto the magnetic poles of the neutron star where accretion columns are formed.
There the matter is stopped and its kinetic energy is released, producing an X-ray spectrum
roughly following a power-law with high energy roll-over. These spectra often also show
broad absorption features caused by cyclotron resonant scattering off electrons forced into
quantized Landau levels by the strong magnetic field. Due to the localized emission region at
the magnetic poles, which do not have to be aligned with the rotational axis, pulsation with
the rotational period in the range of 1–1000 s are visible.

Chapter 2 laid the theoretical foundation for the general relativistic treatment of the photon
trajectories based on the Schwarzschild metric. This ray tracing method has no requirements
to the geometry of the emission region unlike in other works before, which are restricted to
spheric symmetrical hot spots (Beloborodov, 2002, Poutanen & Beloborodov, 2006) or conical
accretion columns (Ferrigno et al., 2011). This flexibility is achieved by sampling the emission
region with a mesh of triangular surface elements. Each of these elements can feature its own
individual emission profile. The emission profile itself may depend on parameters, such as the
location, the photon energy, and the emission angle and may even evolve with time. Based on
such given emission profiles the ray tracing code calculates the energy- and phase-resolved
observed flux accounting for general relativistic effects, such as gravitational redshift and light
bending.

Chapter 3 presented the combination of two physical models which describe the formation
of the accretion column’s continuum emission (Postnov et al., 2015) and the formation of
cyclotron resonant scattering features (Schwarm et al., 2017a,b), respectively. The combination
of these models yields a physical description of the accretion column’s specific intensity, which
fits the requirements of the relativistic ray tracing code presented in Chapter 2. Together with
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the ray tracing code we self-consistently determine the energy- and phase-resolved flux in the
reference frame of the observer.

We discuss the directly observable emission resulting from this physical and self-consistent
accretion column model. Our focus is on the implications and predictions on observable quan-
tities derived from the energy- and phase-resolved flux, which are important for interpreting
observational data. The main focus is on the general dependency of those observables on the
geometrical setup, i.e., the inclination of the observer and the polar angle of the accretion
columns. We show that this dependency is strong due to the gravitational light bending. In our
investigation we compare single and double column setups and find that including a second
column changes the observables substantially, while the impact of asymmetric positioned
columns is marginally. We also find that the boosting caused by the high bulk velocity has a
significant effect on the observables.

We find that in cases in which one of the columns is on the dark side of the neutron star
and roughly aligned with the line of sight, i.e., i + ΘAC1,2 ≈ π, the effect of light bending is
most prominent resulting in strong changes of the observables. We point out that the apparent
luminosity derived from the observed flux underlies systematic errors caused by the anisotropy
of the neutron star emission, which is enhanced by the effect of light bending. The predicted
shape and behavior of the spectral shape and the harmonic CRSF are in agreement with
observational results. We find, however, that the predicted fundamental CRSF is solely seen
in emission in the phase averaged spectra for any two column configuration. Only in an
one-column setup there are geometries allowing to see the fundamental CRSF in absorption.

An advantage of the modular approach of this model is the possibility to modify or replace
each individual model with another one or even add a model. This modularity not only allows
us to compare different models and their predictions, but also expand our model to include
additional effects, which might be important to physically describe the observed emission
of accretion columns self-consistently. For instance, the model by Becker & Wolff (2007)
could be used to provide the specific intensity of the column. However, it would have to be
modified such that it allows to obtain the height and angle dependence of the emission in
addition to the spectral information. Another possibility is to add a model which calculates the
reprocessed and reflected fraction of the emission intercepted by the atmosphere of the neutron
star (Eq. 2.35), which for instance was suggested by Poutanen et al. (2013) to be important for
explaining the correlation of CRSF energy and X-ray luminosity.

Future work on this topic is necessary to resolve the discrepancies between models and
observations, especially with respect to the fundamental CRSF. The inclusion and comparison
of more continuum models that derive height dependent continua and emissivity profiles
might give further insights. Especially these models should be applied for a broader range of
luminosities and accretion rates to get a more general picture. A more immediate step might
be to investigate the indirect emission component given by the reflected fraction of the fan
beam emission.

Chapter 4 presented two different applications of the ray tracing code to fit observational data.
The pulse profile of 4U 1626−67 shows a particular evolution with energy. At low energies
the pulse profile is double peaked with a broad plateau in between, while for increasing
energy the double peak diminishes and a broad single peak rises at the location of the plateau.
This evolution is well described with a phenomenological emission pattern consisting of a
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mixture of a upwards directed pencil and sideways directed fan beam, whose contribution to
the emission changes with energy.

GX 301−2 was discovered to exhibit two CRSFs, where the CRSF with a lower energy
shows strong variations of its energy with pulse phase while the energy of the other cyclotron
line is consistent with being constant. A model featuring a single accretion column with two
cyclotron line forming regions at different heights can explain these observations. While the
constant CRSF is formed at the bottom of the column, where the accreted matter is settling,
the varying CRSF with a lower energy is formed higher in the column where the bulk velocity
is still relativistic. The boosting caused by the bulk velocity is dependent on the viewing angle
to the column, which causes the apparent variation of this second line.

There is still a huge gap between observational data of highly magnetized accreting X-ray
pulsars and their self-consistent and physical interpretation. Although there are many physical
models explaining the different aspects in these systems, a combined description of the overall
picture is still needed. Pushing forward into this direction of physical models, which take into
account the various relevant effects in a common framework, can help to reveal shortcomings
in our theoretical understanding. The inconsistency between the predicted and observed
behavior of the fundamental CRSF are a good example for this need.
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