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Abstract

In my Master’s Thesis I present two topics related to Active Galactic Nuclei (AGN). These objects
are very luminous and emit across the whole electromagnetic spectrum. Radio-loud AGN feature
jets, very long and collimated streams of matter, which are observable in all wavelengths as
well. The visibility in the radio band is due to synchrotron radiation emitted by electrons.
This emission process is the first main topic of this thesis and addressed in detail, covering the
complete derivation from the Maxwell equations to the final, self-absorbed spectrum produced by
electrons, which follow an energy dependent power-law distribution. As synchrotron radiation
is discussed in many publications, but the equations do not always look the same at first sight,
an elaborated comparison is conducted.
Numerical methods are necessary for the calculation of a spectrum if the electron distribution
does not allow an analytical approximation for the radiation. For power-law distributed electrons
one can either determine a numerical or an analytical solution, which is why I use a numeric
integrator for the calculation of the spectra first and then compare the results with the analytic
approximation of the integrals. Additionally I show problems, which arise from using numeric
methods.
The second main topic of this work presents a systematic cross-correlation study of two X-ray
satellites, XMM-Newton and NuSTAR. A good cross-calibration between different instruments is
essential for multiwavelength observations, which help understanding astrophysical sources
due to analyses in the complete spectral range. For the study, simultaneous observations of AGN
are analysed using two different methods. The comparison of the photon indices, which describe
the slope of the power-law, allows to detect differences in the calibration of both instruments.
By simultaneously fitting both spectra in the overlapping energy band, one can determine the
difference in the flux normalisation.
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Zusammenfassung

In meiner Masterarbeit stelle ich zwei Themen vor, die beide im Zusammenhang mit Aktiven
Galaxienkernen (AGN) stehen. AGNs sind sehr leuchtkräftige Objekte und emittieren Strahlung
im gesamten elektromagnetischen Spektrum. Radio-laute AGNs besitzen sehr lange, kollimierte
Materie-Ausströmungen, sogenannte Jets, die in allen Wellenlängen beobachtbar sind. Für die
Emission im Radiobereich ist die, von Elektronen abgestrahlte, Synchrotronstrahlung verant-
wortlich. Dieser Strahlung gehe ich im ersten Teil der Arbeit auf den Grund und zeige, wie
man von den Maxwell-Gleichungen zu einem selbstabsorbierten Synchrotronspektrum kommt,
welches von Elektronen erzeugt wird, deren Energieverteilung einem Potenzgesetz entspricht.
Da Synchrotronstrahlung zu den Grundlagen der Astrophysik gehört, wird sie in vielen Büchern
diskutiert, jedoch sehen die Gleichungen auf den ersten Blick nicht immer gleich aus. Daher
vergleiche ich die Formeln von vier unterschiedlichen Autoren.
Numerische Methoden sind nötig, wenn die Strahlung einer bestimmten Elektronenverteilung
nicht analytisch bestimmt werden kann. Die Synchrotronstrahlung einer Verteilung der Elek-
tronenenergie nach einem Potenzgesetz kann man sowohl numerisch als auch analytisch berech-
nen. Daher verwende ich für die Berechnung der Spektren erst einen numerischen Integrator
und vergleiche dann das Ergebnis mit der analytischen Näherung der Formel. Zusätzlich zeige
ich Probleme auf, die bei der Benutzung von numerischen Methoden auftreten.
Das zweite Thema dieser Arbeit behandelt die systematische Untersuchung der Kreuzkorrelation
der beiden Röntgensatelliten XMM-Newton und NuSTAR. Eine möglichst gute Kreuzkorrelation
zwischen den Beobachtungsinstrumenten ist unumgänglich für Multiwellenlängen-Kampagnen,
mit deren Hilfe man astrophysikalische Objekte in allen Spektralbereichen analysieren und
dadurch besser verstehen kann. Für die Analyse werden zwei unterschiedliche Methoden ver-
wendet. Dabei werden die Photon Indizes, die die Steigung des unterliegenden Potenzgesetzes im
Spektrum beschreiben, verglichen, damit man Unterschiede in der Kalibration beider Satelliten
bestimmen kann. Desweiteren kann der Unterschied in der Fluss-Normalisierung bestimmt
werden, indem man Spektren beider Satelliten im überlappenden Energieband fittet.
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1 Active Galactic Nuclei

Not long ago, in 1920, astronomers were having a dispute about the size of our universe. Harlow
Shapley was of the opinion that nebulae, e.g. the Andromeda nebula, are located close to our
own galaxy, the Milky Way, while Heber Curtis believed they are galaxies of their own. This
Great Debate (also called Shapley-Curtis Debate) was a milestone for Astronomy. Due to the
period-luminosity relationship for Cepheids found by Leavitt & Pickering (1912), it was possible
to use variable Cepheid stars as standard candles to measure distances in the universe. Curtis
was proven right after Hubble (1926) used Cepheids to measure distances to several nebulae
and found them being too distant to belong to our galaxy.
Since then, many extragalactic sources have been discovered, one of them being active galaxies.
Their cores, so called Active Galactic Nuclei (AGN), harbour a supermassive black hole which
accretes matter and causes the central galactic region to be very luminous.
In this Chapter I will give a historical overview of the detection of AGN, discuss the different
types of AGN and introduce the physics of AGN by following Beckmann & Shrader (2012) and
Wilms & Kreykenbohm (2015).

1.1 Historical overview

Edward A. Fath (1909) was the first to find emission lines in a spectrum from the galaxy
NGC 1068, which during that time was believed to be just a nebula inside the Milky Way. The
emission lines were somewhat confusing, because if assuming the radiation comes only from
stars, one would expect just absorption lines. The presence of emission lines implies hot gas, as
for example in planetary nebulae. Years later, Carl Seyfert (1943) performed the first systematic
study of emission lines in spiral galaxies. Those with a point-like and bright core showed a
spectrum of strong emission lines in the normal galaxy spectrum. Some galaxies even showed
very broad lines.
Surveys in the 1950s and 1960s discovered objects with strong, point-like radio emission, which
were named quasars for being quasi-stellar radio sources. The biggest surveys were the "Third
Cambridge Catalogue" (Edge et al., 1959), the "Revised Third Cambridge Catalogue" (Bennett,
1962) and the Parkes surveys (Bolton et al. (1964); Price & Milne (1965); Day et al. (1966)).
However, AGN are not only bright in the radio spectral range. Zamorani et al. (1981) found
AGN to be generally bright in the X-rays, while not all of them show strong radio emission.
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Baade & Minkowski (1954) identified the optical counterparts to three radio sources, linking
them to galaxies. The high luminosity of all these unexplained sources urged scientists to find an
explanation for emission processes powerful enough to cause the observed brightness. The first
step in the development of AGN physics was done by Lodewijk Woltjer (1959), who concluded
that, due to the small size of the central regions of active galaxies, the cores must have huge
masses of 108 solar masses (M�) according to the normal mass-to-light ratios. Following this,
Hoyle & Fowler (1963) suggested matter accretion on a stellar-type massive object via accretion
to be the reason for the large energy output. The basic idea for our current understanding of
AGN physics emerged when Salpeter (1964) and Zel’dovich & Novikov (1964) stated that the
supermassive object is not a hypermassive star, but a supermassive black hole. Maarten Schmidt
(1963) was the first to discover an extremely large distance to AGN objects when he found
a redshift of z = 0.158 for the object 3C 273. Since then, many more AGN with higher red-
shifts have been detected. The currently most distant object of that type is the quasar ULAS
J112001.48+064124.3 for which Mortlock et al. (2011) determined a redshift of z = 7.1.
Some AGN show jets. Before the Great debate in 1920, Curtis (1918) observed a long, aligned
stream of matter which originates in the core of the nebula M87. For some years, the nature of
the jet remained unclear, until radio observations showed a bright emission region distant to the
core of M87 (in the radio referred to as 3C 274). Hogg et al. (1969) linked the radio emission
with the optically bright spot in the jet. Over time, jets were found in more AGNs and can also
be detected in other wavebands.

1.2 The AGN zoo

Since the first detection of AGN, they have been studied and observed in all frequencies and
many different classes of AGN were found. In this section I will briefly introduce the variety of
the AGN zoo.
The main distinction for AGN was introduced by Kellermann et al. (1989) when they discovered
that, although all AGN emit radio signals, only a small percentage (≈ 10%) of them shows strong
radio emission. In a newer study, Kellermann et al. (2016) state a distribution of 20% radio-loud
versus 80% radio-quiet AGN for low redshift objects (0.2 < z < 0.3). Using the ratio

Rr−o =
F(6GHz)

F(4400) Å
(1.1)

of the radio to the optical flux, AGN with Rr−o = 10−1000 are categorised as radio-loud and AGN
with 0.1 < Rr−o < 1 as radio-quiet. The strong radio emission from radio-loud AGN originates
from the large scale jet structures, which are not present in radio-quiet AGN.

1.2.1 Radio-quiet AGN

First, let us have a look at the variety of radio-quiet AGNs, which can be divided in the classes of
Seyfert galaxies, LINERs and QSOs.

1.2.1.1 Seyfert galaxies

The first AGN were studied by Carl Seyfert (1943). He investigated spiral galaxies with unusual
bright cores and found strong emission lines in their spectra. Seyfert galaxies can be further
distinguished in two classes based on the presence of broad optical lines (Khachikian & Weedman,
1974). In the spectra of Seyfert I galaxies exist broad lines as well as narrow forbidden lines (see
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1.2 The AGN zoo

Figure 1.1: Comparison of different AGN spectra in the optical. The scaling is done such that
the spectra fit together in one plot. (Credit: W. Keel, priv. comm.)

also Sect.1.3). Seyfert II galaxies lack those broad emission lines. In Fig. 1.1 a part of an optical
spectrum is shown for both types in the upper right panel. However, intermediate classes were
found as well (Osterbrock & Koski 1976; Osterbrock & Martel 1993), and are classified as, e.g.,
Sy 1.5, or Sy 1.9.

1.2.1.2 LINERs

Timothy Heckman (1980) identified Low-Ionisation Nuclear Emission Region (LINER) galaxies,
which, apart from having a weaker continuum, resemble optical Seyfert II spectra. An example
for a LINER spectrum is shown in Fig. 1.1 in the lower left panel, in comparison to a spectrum
from a normal galaxy. Ho et al. (1997) found that nearly one-third of nearby galaxies feature
LINER characteristics in their spectra. While some scientists (Heckman 1980; Ho et al. 1993)
integrated LINERs into the AGN zoo, others presumed the emission lines to result from star
formation (Terlevich & Melnick 1985; Shields 1992). Until today this open question is not solved
yet. However, most LINERs close to us have old stellar populations and show very low star
formation activity (Bendo & Joseph, 2004).

1.2.1.3 QSOs

Quasi-stellar objects (QSOs) are the radio-quiet counterparts to the radio-loud quasars. Studying
over 2200 QSO spectra from the Sloan Digital Sky Survey (SDSS), Vanden Berk et al. (2001)
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discovered that the average optical QSO spectrum is similar to Seyfert spectra. A QSO shows
weaker narrow lines and weaker absorption from its host galaxy. The main difference to Seyfert
galaxies is the higher luminosity of the central region, which outshines the host galaxy of the
QSO.

1.2.2 Radio-loud AGN

AGN with a high radio to optical flux ratio (defined in Eq. 1.1) fall into the category of radio-loud
AGN. Those AGN are further split into the categories of radio galaxies, quasars, whose spectra
include optical lines, and blazars, which lack these lines.

1.2.2.1 Radio galaxies

After analysing a sample from the 3CR catalogue (Bennett, 1962), Fanaroff & Riley (1974) found
a connection between the luminosity of a source and the apparent origin of its radio emission
and introduced a classification based on the morphology of these sources. Radio galaxies labeled
as Fanaroff-Riley type I (FR I) show compact radio emission close to the nucleus and are less
luminous than Fanaroff-Riley type II (FR II) AGN, whose radio emission is mostly present in
lobes far from the core. Figure 1.2 displays the difference between both types. While for FR
I objects one can see two jets originating from the nucleus, FR II objects seem to only have a
one-sided jet. The reason for this is relativistic beaming (see also Sect. 1.3).
In some radio galaxies, optical lines can be detected in the spectrum if the continuum is weak.
These line features resemble very much the emission lines, which are observed in Seyfert galaxies.
Therefore, radio galaxies can be also distinguished into broad-line radio galaxies (BLRG), if
broad and narrow line types are present, or into narrow-line radio galaxies (NLRG), if only
narrow lines are detectable. Two example spectra for these subclasses are shown in Fig. 1.1 in
the lower right panel.

1.2.2.2 Quasars

Quasi-stellar radio sources (quasars) are the radio-loud counterparts of QSOs and the most
luminous AGN, allowing them to be detectable at very high redshifts. A jet is their main source
for the strong radio emission. Their optical spectra are populated by broad and narrow lines,
similar to Seyfert galaxies (Smith 1975; Weedman 1977; Davidson & Netzer 1979). The spectrum
of a mean quasar can be found in Fig. 1.1 in the upper left panel.

1.2.2.3 Blazars

While most AGN exhibit some continuum variability, blazars show large amplitude variations
on time scales of minutes to years in their spectra (Ulrich et al., 1997). The first type of this
AGN was found in 1929, when Hoffmeister (1929) discovered a highly variable object in the
constellation Lacerta, which was then thought to be a star. Similar sources detected afterwards
were classified as BL Lac type objects. Their spectrum shows nearly no emission lines, as can be
seen in Fig. 1.1 in the upper left panel. A subclass of BL Lac objects are the highly polarised
quasars (HPQ; Brinkmann et al. 1996; Scarpa & Falomo 1997), whose polarisation originates
from synchrotron radiation in optically thin emitting regions(Smith et al., 1994). Other types
of very variable AGN and therefore subclasses of blazars are optically violent variable (OVV)
quasars, whose luminosity is especially variable in the optical and flat spectrum radio quasars
(FSRQs).
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(a) M84, FR I (Laing & Bridle, 1987) (b) 3C 47, FRII (Bridle et al., 1994)

Figure 1.2: Fanaroff-Riley type I (a) and type II (b). The darker the area is coloured, the stronger
the emission coming from there.

The name blazar originates from the combination of the term BL Lac and quasar and characterises
the "blazing" nature of these objects very well (see Sect. 1.3).

1.3 The physics of AGN

Studying large samples of AGN, e.g., by the SDSS (York et al. 2000; Richards et al. 2006), one
find that, apart from the jet, most differences between AGNs can be traced back to the presence,
absence or properties of specific optical emission lines. This lead to the assumption that all kinds
of AGN arise from the same phenomenon. A unified scheme for AGN was first introduced by
Antonucci (1993), stating that most differences are due to observational bias and AGN basically
underlie the same physics.

1.3.1 Unification paradigm for AGN

The first step for a unification paradigm for AGN was made by Scheuer & Readhead (1979), who
tried to combine similarities and differences of QSOs and quasars into one model. A suggestion
for the unification of quasars and radio galaxies was made by Barthel (1989a,b). In addition,
polarisation studies on radio galaxies revealed broad optical lines in polarised spectra which are
not present in the total intensity spectra. This lead to the assumption that a toroidal obscuration
exists, that reflects the polarised light and masks the region where broad lines are produced
(Antonucci, 1984). From this assumption Antonucci & Miller (1985) concluded that AGN are
the same objects, which we see from different angles.
Urry & Padovani (1995) finalised the unification scheme, shown in Fig. 1.3. The central engine,
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Figure 1.3: Unified scheme for AGN. The upper part includes a jet and shows how radio-loud
AGN are classified differently depending on the inclination angle. Note that in the
case of radio-loud AGN, a counterjet exists, but is not always seen due to the beaming
effect. The lower part shows the same but for radio-quiet AGN, therefore not jet is
present. Note that Beckmann & Shrader (2012) did not distinguish between radio-
quiet and radio-loud quasars and combined these objects. Illustration by Beckmann
& Shrader (2012).

a supermassive black hole with a mass of up to 1010M� (Ghisellini et al., 2010) is closely
surrounded by an accretion disc. In the Broad Line Region (BLR) originate broad emission lines
originate from allowed transitions, indicating a dense medium (n > 109cm−3; Osterbrock 1989;
Baldwin et al. 2003). Their line widths are broadened due to the Doppler shift and are therefore
a sign of high velocities of the emitting medium (up to 104 km s−1; Corbin 1995). Further out,
a torus resides and blocks the view into the inner region of the system, including the BLR. If
one looks at it from a large inclination angle, e.g., in the case of Seyfert II galaxies, one observes
only narrow lines. These lines are emitted in the Narrow Line Region (NLR) and result from
forbidden transitions, which are only possible in a medium with low density (n ∼ 103−106cm−3)
The classification into radio-quiet and radio-loud AGN depends on their quantity of radio
emission compared to optical flux (see Eq. 1.1) and the existence of a jet. In the case of radio
galaxies, it is possible to study the jet’s morphology. If the jet is pointed at us or we observe the
source from a small inclination angle, it is called a blazar.
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1.3.2 Accretion

It is generally accepted that the high luminosity of AGN is created by the accretion of matter
onto a supermassive black hole. Gas, which come too close to the black hole and can not escape
its gravitational potential, does not fall onto the black hole immediately, but forms an accretion
disc due to the conservation of energy and momentum (Shakura & Sunyaev, 1973) and produces
radiation. Viscosity inside the disc induces outward transport of angular momentum, allowing
the accretion of matter. If matter trespasses the innermost stable orbit, it falls onto the black
hole. Viscosity is very difficult to calculate theoretically (Pringle, 1981). One natural example
being able to explain it are magneto-rotational instabilities (MRI), which are responsible for an
increasing inhomogeneity of magnetic fields (Balbus & Hawley, 1991).
The Eddington luminosity defines the theoretical maximum luminosity of an accreting object
based on the assumption of the gravitational force being equal to the radiation pressure. It is
given as

LEdd =
4πGMmpc

σT
= 1.3 · 1038ergs−1 M

M�
(1.2)

with the mass M of the black hole, the proton mass mp and the Thomson cross-section σT. The
efficiency η of accretion joins the luminosity and the mass accretion rate Ṁ of an object as

L = η · Ṁc2 . (1.3)

We can use Eq. 1.3 to find the maximum mass accretion rate needed to power an AGN emitting
at Eddington limit:

Ṁmax =
LEdd

ηc2 . (1.4)

For a typical efficiency of η = 0.1 (accretion is about 14 times more efficient than nuclear fusion),
an accretion rate of 1− 2M� yr−1 suffices to produce the observed luminosities of AGN (Lasota
et al., 1996).

1.3.3 Jets

The theory of jet formation was largely influenced by Blandford & Znajek (1977) and Blandford
& Payne (1982). The non-relativistic solution by Blandford & Payne (1982) involves a magnetic
field, whose field lines are frozen in the accretion disc. Due to the rotation of the disc, magnetic
tower form (see Fig. 1.4) and gas pressure in the magnetically dominating corona powers the
outflow, allowing to extract momentum from the thin accretion disc. The jets stays collimated
over long distances because of the toroidal component of the magnetic field.
In the theory of Blandford & Znajek (1977), energy extraction of a rapidly rotating black hole
(Kerr black hole; Kerr 1963) is proposed. As the area close to a supermassive black hole is
subject to strong gravitational pull, an effect called "frame-dragging" occurs, which distorts the
spacetime metric and is able to helically twist the magnetic field lines. The interaction of two
particles inside the ergosphere allows energy extraction from the black hole (Penrose, 1969) by
the escaping particle. In the presence of a magnetic field, the escaped particles can be accelerated
into the jet. Simulations in 2D and 3D are used to prove this theory and to determine the physical
parameters, which are crucial for the launch of a jet (Kigure & Shibata 2005; McKinney 2006;
McKinney et al. 2014).
If we look at radio-loud AGN from a low inclination angle, it is possible to measure apparent
superluminal motion of the jet, as was discovered first by Cohen et al. (1971) and Whitney et al.
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Figure 1.4: Schematic jet launch in an AGN. The light lines represent the magnetic
field lines. ©NASA/ESA and Ann Feild (Space Telescope Science Institute)
(www.spacetelescope.org)

(1971). This proved to be just a projection effect, which is intensified by the particles moving
with v ' c. These relativistic velocities also create the special characteristic of blazars. The
radiation coming from the particles in the jet is strongly confined into their direction of motion
due to their high relativistic velocities (see Eq. 2.18 and Fig. 2.1 in Sect. 2.1). Therefore, the
radiation seems to be boosted towards the observer. The same effect also causes the apparent
absence of the counterjet, as we can see in FR II galaxies. The radiation from particles in the
counterjet get boosted away in the opposite direction and the remaining flux into our direction
is too low to be detected.

1.3.4 Radiative processes

AGN emit radiation over the whole electromagnetic spectrum. The radiation originating from
thin accretion discs is thermal radiation peaking in the optical to UV range. The radiation from
the jet is caused by synchrotron radiation and the inverse Compton effect or hadronic processes.
The spectral energy distribution of blazars (see Fig. 1.5) typically shows two broad peaks in
νF(ν) space. The first peak at lower energies is well known to result from synchrotron radiation
by electrons. The peak in the γ-rays can be explained by either leptonic or hadronic processes
and their relative involvements is yet to be determined (Abdo et al. 2011; Böttcher et al. 2013;
Mannheim & Biermann 1992).
The leptonic model involves electrons and explains the high energy peak with the inverse Comp-
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1.3 The physics of AGN

Figure 1.5: Broadband spectral energy distribution of PKS 0447-439. The model includes both
peaks and an additional blackbody for present thermal excess. (Krauß et al., 2016)

ton effect, which describes an electron up-scattering a photon to higher energies. In the case of
AGN jets, the seed photons for this process can originate from synchrotron radiation and get
up-scattered by the same electrons, which emitted them before. This is called Synchrotron-Self-
Compton (SSC; Ghisellini et al. 1985; Maraschi et al. 1992; Ghisellini & Madau 1996; Celotti
et al. 1997). The seed photons can also come from an external source, e.g., the accretion disc or
the cosmic microwave background (Dermer et al. 1992; Sikora et al. 1994; Tavecchio et al. 2000).
The inverse Compton effect is then called External Compton (EC).
The hadronic model involves photon-hadron or hadron-hadron processes, as well as pair pro-
duction (Mannheim, 1993a,b). The interaction of protons with low-energy photon produces
pions, which decay and create γ-rays and neutrinos in this process (Mannheim & Biermann,
1989). The presence of hadronic elements in the jet can therefore be proven by the detection
of very energetic neutrinos, which are produced in the collisions (Mannheim 1995; Krauß et al.
2015). Krauß et al. (2014) showed that the detection of two PeV neutrino events by the IceCube
experiment (Aartsen et al., 2013) is in agreement with the expected neutrino flux for six blazars
in the positional uncertainty region of the events.
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2 Theory of synchrotron
radiation

Whenever charged particles move in or through a magnetic field, they get accelerated to another
direction of motion. This change causes them to lose energy in terms of radiation. In the case
of non-relativistic velocities, this emission is called cyclotron radiation. Particles moving with
a relativistic speed emit so called synchrotron emission. Both emissions are special cases of
bremsstrahlung. In nature we observe synchrotron radiation whenever there is hot plasma
moving within a magnetic field as it is the case for AGN jets. Understanding the physics of
synchrotron radiation is necessary to understand the processes happening in such astrophysical
sources.
This chapter will be a detailed discussion of the theory of synchrotron radiation processes
following Radio Astrophysics by Pacholczyk (1970) unless stated otherwise. In Sect. 2.1 we will
derive a general expression for the radiation and show that the emission is strongly confined
to a cone with an opening angle of 1/γ . We will calculate the motion of a charged particle in a
magnetic field in Sect. 2.2 and use this for the derivation of a mono-energetic spectrum for a
single electron in Sect. 2.3. We will then compute the synchrotron radiation for an ensemble of
electrons in Sect. 2.4 including the emission coefficient (Sect. 2.4.1), the absorption coefficient
(Sect. 2.4.2) and the general solution of the radiative transfer equation (Sect. 2.4.3). Finally, in
Sect. 2.4.4 we will find concrete equations for a power-law distribution of electrons.

2.1 Electromagnetic field of an accelerated charge

The Maxwell equations describe the properties and connection of electric and magnetic fields
using charge and current densities Q and j. They can be solved by retarded vector and scalar
potentials A and ϕ

A(R, t) =
1
c

∫
R−1

0 j(r′ , t′)δ
(
t′ − t +

R0(t′)
c

)
dτ ′ dt′ (2.1)

ϕ(R, t) =
∫
R−1

0 Q(r′ , t′)δ
(
t′ − t +

R0(t′)
c

)
dτ ′ dt′ (2.2)
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with c being the speed of light, R0 being the distance from the volume element of a charge or
a current to the observer and r′ being the radius vector of the volume element dτ . From the
δ-function we get the expression of the retarded time

t′ = t − R0(t′)
c

. (2.3)

Since we are looking at single particles moving very fast, we can write the charge and current
densities using the δ-function as

j(r′ , t′) = ecβ(t)δ(R− r(t)) and (2.4)

Q(r′ , t′) = eδ(R− r(t)) , (2.5)

with the electric charge e, and insert them into Eq. (2.1) and Eq. (2.2). For the integration over
the δ-function we can use ∫

f (x)δ(g(x)− y) dx =

 f (x)
dg(x)

dx


g(x)=y

(2.6)

where g(x) equates to t = t′ +R0(t′)/c and x = t′. For R0(t′) = (R− r ′)R′∗0 , with R′∗0 as a unit vector
for R0, we find ∂R0(t′) = −cβ′ ·R′∗0 . Using this, we get

∂t
∂t′

= 1−β′ ·R′∗0 (2.7)

and we can solve the integrals in Eq. (2.1) and Eq. (2.2):

A(R, t) =
eβ′

R′0(1−β′ ·R′∗0 )
, (2.8)

ϕ(R, t) =
e

R′0(1−β′ ·R′∗0 )
. (2.9)

Those potentials are the Liénard-Wiechert potentials, which we can be used to calculate the field
intensities E and B:

E = −1
c
∂A
∂t
−∇ϕ, (2.10)

B = ∇×A. (2.11)

It is necessary to differentiate the potentials with respect to the observer’s coordinates and time.
If we assume a large distance between observer and radiating particle, because we deal with
astrophysical sources, we yield

E =
e

R′0

R′∗0 × [(R′∗0 −β′)× β̇′]
c(1−β′ ·R′∗0 )3 , (2.12)

B = R′∗0 ×E . (2.13)

We can calculate the radiation of the moving charge by using the Poynting vector S = E ×B,
which describes the directional energy flux density of electromagnetic fields, and get

p̃Ω =
c

4π
E2R2

0 . (2.14)

12



2.2 Motion of a charged particle in a magnetic field

By inserting Eq. (2.12) and calculating the terms, we can condense the result to

p̃Ω =
e2

4πc

(
(β̇′)2

(1−β′ ·R′∗0 )4 +
2(R′∗0 · β̇′)(β′ · β̇′)

(1−β′ ·R′∗0 )5 +
(R′∗0 · β̇′)2

γ2(1−β′ ·R′∗0 )6

)
(2.15)

with the Lorentz factor γ . We can already see in this equation that the amount of radiation is
not isotropically distributed but strongly dependent on the direction of the particle’s velocity.
The intensity becomes largest for a small value of 1−β′ ·R′∗0 . For a relativistic particle we can
assume β = v/c ≈ 1 and therefore approximate

β =

√
1

1− 1
γ2

' 1−
(

1
2γ2

)
(2.16)

after Padmanabhan (2000) by using the Taylor expansion. As ψ is the angle between the particle
velocity β′ and the direction R′∗0 towards the observer and radiation is only observable if the
particle is moving into the direction of the observer, we can use the Taylor expansion for ψ� 1
and derive

(1−β′ ·R′∗0 )−1 = (1− β cosψ)−1 '
[
1−

(
1− 1

2γ2

)(
1− 1

2
ψ2

)]−1

=
2γ2

1 +γ2ψ2 . (2.17)

This term reaches its maximum value of 2γ2 for ψ = 0. However, if we want to know the angle
in which most of the radiation is confined, we can calculate the full width half maximum:

2γ2

1 +γ2ψ2 = γ2 ⇒ ψ =
1
γ

(2.18)

Therefore the majority of the radiation is emitted in the direction of motion in a cone with an
opening angle that is proportional to 1/γ . From Eq. (2.15) one can also derive an expression
for the angular distribution of the radiation depending on the particle’s velocity β. Two special
cases are shown in Fig. 2.1. The first case is for a charged particle which velocity v is parallel to
its acceleration a (see Fig. 2.1a). The radiation distribution over the angle ψ can be determined
with

p̃Ω ∝
sin2(ψ)

(1− β cos(ψ))6 (2.19)

after Rybicki & Lightman (1979). The second case is a charged particle getting accelerated
perpendicular to its direction of velocity. This is given by

p̃Ω ∝
1

(1− β cos(ψ))4

[
1−

sin2 cos2(φ)
γ2(1− β cos(ψ))2

]
(2.20)

after Rybicki & Lightman (1979) with γ = 1/
√

1− β2. φ is set to zero for convenience in Fig. 2.1b,
because the radiation is maximum if the particle moves inside the same plane as the observer.

2.2 Motion of a charged particle in a magnetic field

In order to use the derived Eq. (2.12), Eq. (2.13), and Eq. (2.15), we need to derive an expression
for the location and the velocity for each radiating particle. Since we are looking at a charged
particle moving along a magnetic field, we can use the Lorentz equation

dp
dt

= eE +
e
c

v×B (2.21)

13
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Figure 2.1: Angular distribution of radiation for different velocities β of a moving electron. Note
that the size of the cones does not allow to compare the different radiation strengths
as they are not normalised.

with the particle’s momentum p, its velocity v and its charge e. While the electrostatic force eE
works along the electric field lines, the magnetic force does not perform any work because it is
always perpendicular to the particle’s velocity. We can assume that there is no external electric
field present and the magnetic field is uniform. Additionally we can express the momentum p
via its relativistic relation with energy E as

p =
Ev
c2 (2.22)

in order to get rid of p and derive Eq. (2.21) with a dependence on v. Eq. (2.21) then reduces to

E
ec
dv
dt

= v×B (2.23)

and because no work is done through the Lorentz force, we can assume that the particle’s energy
E does not change over time. Although there are energy losses due to radiation, the loss term can
be neglected in comparison with the Lorentz force. Since we have the freedom of orientation for
our coordinate system, we can define the magnetic field to be directed along the z axis. Further,
we can multiply i =

√
−1 to the second component of each vector on both sides and adding it to

the first component. On the left side of Eq. (2.23) we then have

E
ec

dv
dt

=
E
ec

d
dt


vx + ivy
vy
vz

 . (2.24)

On the right side we execute the cross product and apply the same procedure as on the left side,
resulting in

v×B =


(vy − ivx)B
−vxB

0

 . (2.25)

14



2.3 Spectral distribution of synchrotron radiation of a single electron

Taking only the first components of both vectors, we can now derive

d
dt
vx + ivy = −i ecB

E
(vx + ivy) = −iωB(vx + ivy) (2.26)

with the gyrofrequency

ωB =
ecB
E

=
eB
γmc

=
ωG
γ

. (2.27)

Performing the integration, we get for the velocity of a particle

vx + ivy = v0⊥ exp[−i(ωBt +α)] = v0⊥[cos(ωBt +α)− i sin(ωBt +α)] (2.28)

with constants v0⊥ and α, which are defined by the initial conditions. We can also write

vx = v0⊥ cos(ωBt +α) , (2.29)

vy = −v0⊥ sin(ωBt +α) . (2.30)

When we integrate over Eq. (2.29) and Eq. (2.30), respectively, we gain the formulas to describe
the location of a particle by

x = rB sin(ωBt +α) + x0 and (2.31)

y = rB cos(ωBt +α) + y0 , (2.32)

with rB = v0⊥/ωB being the radius of gyration. Since we know dvz/dt = 0 from Eq. (2.24) and
Eq. (2.25), we know for the location in z direction which is parallel to the magnetic field that

z = v0‖t + z0 . (2.33)

From these results we are able to state that the motion of a charged particle in a magnetic
field is a superposition of two simple movements. The first on is the circular motion in a
plane perpendicular to the field defined by a circular frequency ωB and the radius rB. The
second motion is unaffected by the magnetic field since it is parallel to the field. Therefore the
superposition creates a helical trajectory, which in vector notation is

r(t) =
cβ sinθ
ωB

(−lcos(ωBt) + l2 sin(ωBt)) + l3tcβ cosθ. (2.34)

l, l2, l3 form a Cartesian coordinate system in which the magnetic field B is parallel to l3. θ is
the angle between the magnetic field and the direction of the particle’s velocity. β is the particle’s
velocity in units of the speed of light c.

2.3 Spectral distribution of synchrotron radiation of a single elec-
tron

Since we want to calculate the spectrum of synchrotron radiation by electrons, we have to look
at the spectral distribution by using the Fourier analysis on the electric vector of the emitted
radiation. First we start again with the trajectory of the electron, which we derived in the
previous subsection. However, since we are investigating electrons which have the charge −e,

15



2 Theory of synchrotron radiation

Eq. (2.34) changes slightly, because negatively charged particles move counter-clockwise in a
magnetic field due to the Lorentz force. Therefore we can describe the electron’s trajectory with

r(t′) =
cβ sinθ
ωB

(lcos(ωBt
′) + l2 sin(ωBt

′)) + l3tcβ cosθ (2.35)

and the electron’s velocity β′ and its acceleration β̇′ with

β′ = βn = β sinθ[−lsin(ωBt
′) + l2 cos(ωBt

′)] + l3 cosθ , (2.36)

β̇′ = βωBl3 ×n . (2.37)

If we assume that the observer of the radiation is located in the l2l3 plane, we can write for the
direction toward the observer

k = l2 sin(θ −ψ) + l3 cos(θ −ψ) . (2.38)

ψ is the angle between k, the direction of the observer, and n, the direction of the electron’s
velocity, but only when n is also within the l2l3 plane. Otherwise the angle between both vectors
is called η. Because of the electron’s circular movement and the characteristic of synchrotron
radiation being emitted by the particle only in the direction of motion, the observer detects
pulses of radiation. The period of these pulses is

T =
2π
ωB

(1− β‖ cosϑ) =
2π
ωB

(1− β cosθ cosϑ) (2.39)

with ϑ being the angle between k and B. As we are talking about synchrotron radiation from
astrophysical sources here, we can assume a very relativistic electron, meaning β = 1. Because of
the relation between angle ψ and the Lorentz factor γ in Eq. (2.18), we know that the radiation
cone of a highly relativistic electron is very narrow. Since we can only detect radiation if the
electron’s direction of motion shows in the same direction of the observer, we can say ϑ ≈ θ.
With those further simplifications we can write

T ≈ 2π
ωB

(1− β cos2θ) ≈ 2π
ωB

sin2θ . (2.40)

The whole radiation geometry is shown in Fig. 2.2. As the radiation E(t) is periodic, we can
express E(t) as a Fourier series of monochromatic waves of frequencies n ·ωB/ sin2θ and write

E(t) =
∞∑
−∞

En exp
(
− ωB

sin2θ
nt

)
, (2.41)

with the corresponding wave amplitudes

En(R) =
ωB

2π sin2θ

∫ 2π sin2 θ
ωB

0
E(t)exp

(
i
ωB

sin2θ
nt

)
dt (2.42)

for which E†n = −E−n. The emission of one particle into a solid angle dΩ = 1 received in a unit of
time dt = 1 by an observer at distance R can be calculated by

p̃nΩ =
c

4π
〈|E(t)|2〉R2 . (2.43)
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Figure 2.2: Synchrotron radiation geometry for a single electron. n shows the momentarily
velocity direction of the electron, while k points toward the observer.

We can also write this as

4π
cR2 p̃nΩ = E2

0 + 2
∞∑
n=1

|En|2 . (2.44)

Taking the electric far field of the electron (Eq. 2.12) for E(t) of Eq. (2.42) and substituting the
time t by the retarded time t′ = t −R0(t′)/c (Eq. 2.3), we can write for the wave amplitude

En(R) =
ωB

2π sin2θ

∫ 2π sin2 θ
ωB

0
E(t′)exp

[
in

ωB
sin2θ

(
t′ +

R0(t′)
c

)]
∂t
∂t′

dt′ . (2.45)

We can make further assumptions by setting the origin of the reference system close to the
electron. The distance to the observer R is very large compared to the electron radius r in the
case for astrophysical objects. We can use that knowledge for the expression of R0(t′) = R− r(t)
which we can form into R0(t′) = R− r(t′) ·R′∗0 = R− r ·k, because R∗ ≈ R′∗0 = k since both R′∗0 and k
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2 Theory of synchrotron radiation

point towards the observer. These assumptions help writing Eq. (2.45) more explicit as

En(R) =
ωB

2π sin2θ

e
cR

exp
(
in

ωB
sin2θ

R
c

)
·

·
∫ 2π sin2 θ

ωB

0

k× [(k−β′)× β̇′]
c(1−β′ ·k)2 · exp

(
in

ωB
sin2θ

(t′ − k · r
c

)
)

dt′ .

(2.46)

In order to solve this equation we need to simplify the integral, which is done by again only
considering the case of a highly relativistic electron. This means γ � 1 and therefore 1/γ ≈ 0
which allows to perform a Taylor expansion for β =

√
1− 1/γ2. If we neglect higher order terms

of 1/γ from the fourth term on, we have

β = 1− 1
2γ2 . (2.47)

We can now this expression for β on other parts of the equation where it is involved, i.e., in

1−β′ ·k =
1

2γ2

(
1 +γ2η2 −

η2

2

)
≈ 1

2γ2 (1 +γ2η2) . (2.48)

The term η2/2 can be neglected against γ since η� γ . For other simplifications we just assume
β = 1 and try to simplify the expressions for β′, k − n, and η2. We can use the fact that the
gyrofrequency ωB is very small since it is dependent on 1/γ (Eq. 2.27) and therefore for sinχ
and cosχ with χ = ωBt′ � 1 we can use the small angle approximation. We also assume that
the angle ψ between k and n (when both directions are in the same plane) is very small, so the
small angle approximation can be applied for sinψ and cosψ as well. If we write the vector
components in the explicit notation, we can derive the following expressions

β′ = βωBl3 ×n = −ωB sinθ l−ωBχ sinθ l2 , (2.49)

k−n = χ sinθ l−ψ(l2 cosθ − l3 sinθ) = χ sinθl−ψm , and (2.50)

η2 = χ2 sin2θ +ψ2 . (2.51)

Now we can use all of the simplified expressions to calculate the complex components of
Eq. (2.46). We can derive

k× [(k−β′)× β̇′] =
1
2
ωB sinθ

[
l
(

1
γ2 +ψ2 −χ2 sin2θ

)
+ m2χψ sinθ

]
, (2.52)

1−β′ ·k =
1
2

(
1
γ2 +ψ2 +χ2 sin2θ

)
, (2.53)

and for the argument in the e-function

ωB
sin2θ

(
t′ − k · r

c

)
=

1

sin2θ

[
χ

2γ2 (1 +γ2ψ2) +
χ3

6
sin2θ

]
. (2.54)
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2.3 Spectral distribution of synchrotron radiation of a single electron

When we insert Eq. (2.52), Eq. (2.53), and Eq. (2.54) in Eq. (2.46), we get

En(R) =
ωB

π sin2θ

e
cR

exp
(
in

ωB
sin2θ

R
c

)
·

·
∫ +∞

−∞
exp

[
in

1

sin2θ

[
χ

2γ2 (1 +γ2ψ2) +
χ3

6
sin2θ

]]
·

·
l
(

1
γ2 +ψ2 −χ2 sin2θ

)
+ m2χψ sinθ(

1
γ2 +ψ2 +χ2 sin2θ

)2 sinθ dχ

(2.55)

in which we already used the substitution of t′ = χ/ωB. We can abbreviate the function by
introducing the expressions

w =
1
γ

√
1 +γ2ψ2 , s =

n

2sin3θ
, and u = χ sinθ . (2.56)

The integration over chi changes to an integration over u and we can write the wave amplitude
as

En(R) =
e
πcR

ωB
sin2θ

exp
(
in

ωB
sin2θ

R
c

)
·

·
∫ +∞

−∞
exp

[
is

(
w2u +

1
3
u3

)] l(w2 −u2) + m2uψ
(w2 +u2)2 du .

(2.57)

Since there is one part of the integral which is parallel to l and the other one parallel to m,
we can solve the integral separately in respect to each vector. Their derivation is described in
Westfold (1959) and yields∫ +∞

−∞
exp

[
is

(
w2u +

1
3
u3

)]
· w

2 −u2

(w2 +u2)2 du =
2
√

3
sw2K2/3

(2
3
sw3

)
, and (2.58)

∫ +∞

−∞
exp

[
is

(
w2u +

1
3
u3

)]
· 2u

(w2 +u2)2 du = i
2
√

3
swK1/3

(2
3
sw3

)
, (2.59)

with the Bessel functions K1/3 and K2/3. We can shorten the argument in the the Bessel functions
by defining

y =
2
3
sw3 =

n

3γ3 sin3θ
(1 +γ2ψ2)3/2 . (2.60)

Inserting Eq. (2.58), Eq. (2.59) and Eq. (2.60) into Eq. (2.57), by writing the factor s, w, u and
y out, only leaving the factor y in the argument of the Bessel functions, we get for the wave
amplitude

En(R) = n
e

√
3πcR

ωB
sin5θ

exp
(
in

ωB
sin2θ

R
c

)
·

·
[
l

1
γ2 (1 +γ2ψ2)K2/3(y) + im

ψ

γ

√
1 +γ2ψ2K1/3(y)

]
.

(2.61)

We can see from this equation that the radiation from a single electron is elliptically polarised
since the nth harmonic of the electric vector has a linear part in direction l and a circular part in
direction m, because m = l2 cosθ − l3 sinθ. The average power p̃nΩ dΩ (given in Eq. 2.43) can
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2 Theory of synchrotron radiation

now be parted in the two polarisation states (p̃nΩ = p̃(1)
nΩ + p̃(2)

nΩ), because E(1)
n ‖ l and E(2)

n ‖m. The
direction dependent power equations are

p̃
(1)
nΩ =

c
2π
|E(1)
n |2R2 = n2 e2ω2

B

6π3c sin10θ

1
γ4 (1 +γ2ψ2)2K2

2/3(y) , (2.62)

p̃
(2)
nΩ =

c
2π
|E(2)
n |2R2 = n2 e2ω2

B

6π3c sin10θ

1
γ2 ψ

2(1 +γ2ψ2)2K2
1/3(y) . (2.63)

We are still dependent on the discrete harmonic number n for the spectrum. However, the main
assumption for our calculations was the ultra-relativistic nature of the electrons, meaning a large
value for the Lorentz factor γ . Then the relevant region where most of the energy is emitted, lies
in the higher-order harmonics and we are allowed to consider this spectrum to be practically
continuous and can use the frequency ν which is defined as

ν = n
ωB

2π sin2θ
. (2.64)

We can express the critical frequency νc at which most radiation is emitted, as

νc =
3

4π
ωB sinθγ3 (2.65)

and rephrase Eq. (2.62) and Eq. (2.63) by using

x =
ν
νc

, y =
x
2

(1 +γ2ψ2)3/2 . (2.66)

In order to write it as a continuous spectrum, we need to attend to p̃(i)
νΩ = p̃

(i)
nΩdn/dν, which

yields

p̃
(1)
νΩ =

3e2

4π2c

ωB
sin2θ

γ2(1 +γ2ψ2)2x2K2
2/3(y) ,and (2.67)

p̃
(2)
νΩ =

3e2

4π2c

ωB
sin2θ

γ4ψ2(1 +γ2ψ2)2x2K2
1/3(y) . (2.68)

When an electron stirs the radial distance dR to the observer in the time dt′ = c/βr dR, it moves
with velocity β, and βr = β cosθ cosϑ ≈ β cos2θ is the projection of the mean translational
velocity of the particle onto the distance R. While the observer lies within the emission cone,
the particle moves toward the observer and therefore the time difference between the beginning
and the end of the pulse is shorter than in the electron’s frame of reference. This effect is called
relativistic beaming or also Doppler boosting. Using Eq. (2.3) for the retarded time, we can
determine the time in which the observer receives the emitted radiation by the particle which is
given by

dt = (1− βr ) dt′ ≈ (1− cos2θ) dt′ = sin2θ dt′ . (2.69)

Following that we can write for the emitted energy per particle in dt′ and the received energy by
the observer at a unit surface in dt

1
R2 p̃νΩ dt =

1
R2 p̃νΩ sin2θ dt′ =

1
R2 pνΩ dt′ (2.70)

with pνΩ = p̃νΩ sin2θ being the power emitted per frequency ν by the electron within a unit
solid angle. The total power emitted by the electron can then be computed by integrating over
all frequencies and the full solid angle. As the radiation is the same as the electron energy loss
rate, we can write the connection

p =
∫ ∫

pνΩ dν dΩ = −dE
dt

. (2.71)
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Figure 2.3: Mono-energetic synchrotron emission spectra of electrons with different Lorentz
factors γ . Because γ = E/mc2, the Lorentz factor is a measure for the energy and the
spectra above differ in energy.

2.4 Radiation from an Ensemble of Electrons

In the previous section we could describe a spectrum for a single electron, which depends on
its energy. In nature however, we find many electrons emitting synchrotron together in plasma.
This section deals with the emission from an electron distribution, synchrotron self-absorption
and how to get a final self-absorbed synchrotron spectrum for a power-law distribution.

2.4.1 Emission coefficient

As we normally have many electrons emitting synchrotron radiation in a certain volume dτ =
R2dRdΩ, we need to consider an electron distribution N (E,m,R,t) dEdΩ̃dτ . It is defined by
an energy range from E to E + dE while the particles are moving in directions m within dΩ̃.
As we already know from the previous chapter, the observer will only detect radiation from
the electrons which move periodically in his direction since the angle in which most of the
emission is confined, is proportional to 1/γ . In order to simplify the expression for N (E,m,R,t)
we can assume the synchrotron radiation coming from a stationary cloud of electrons. Then, the
emission coefficient of a uniform distribution of electrons within a stationary region is

ε
(i)
ν =

∫
4π

∫ ∞
0
N (E,k)p(i)

νΩ dΩdE , (2.72)

provided that the particles are in vacuum. p(i)
νΩ is the emitted radiation per electron depending

on the direction and the frequency of the electron for a given polarisation (i) (Eq. 2.67 and 2.68).
If we assume an isotropic velocity distribution within the electron population, we have

ε
(i)
ν =

1
4π

∫ ∞
0
N (E)

(∫
4π
p

(i)
νΩ dΩ

)
dE =

1
4π

∫ ∞
0
N (E)p(i)

ν dE . (2.73)

Since the radiation of each electron is strongly confined within a narrow angle and therefore
the total emission of an ensemble of electrons is anisotropic, we can limit the integration to the
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2 Theory of synchrotron radiation

region of the shaded ring (see Fig. 2.2). The limit allows to substitute dΩ by dΩ � 2π sinϑ dψ
and to change the integration limits for the integration over ψ from (−1/γ,1/γ) to (−∞,+∞)
because we know that nearly all of the radiation is confined in the cone and consequently an
integration over the total space has no effect on the result. Applying those assumptions, we can
write

p
(i)
ν =

∫
4π
p

(i)
νΩ dΩ � 2π sinϑ

∫ ∞
−∞
p

(i)
νΩ dψ . (2.74)

For p(1)
ν and p(2)

ν we get respectively

p
(1)
ν =

3e2

2πc
ωB sinϑγ2x2

∫ ∞
−∞

(1 +γ2ψ2)2
[
K2/3

(x
2

√
(1 +γ2ψ2)3

)]2
dψ , (2.75)

p
(2)
ν =

3e2

2πc
ωB sinϑγ2x2

∫ ∞
−∞
γ2ψ2(1 +γ2ψ2)

[
K1/3

(x
2

√
(1 +γ2ψ2)3

)]2
dψ . (2.76)

The integrals over K1/3 and K2/3 have been solved by Westfold (1959) and yield∫ ∞
−∞

(1 +γ2ψ2)2
[
K2/3

(x
2

√
(1 +γ2ψ2)3

)]2
dψ =

π√
3γx

[∫ ∞
x
K5/3(z) dz+K2/3(x)

]
,and (2.77)

∫ ∞
−∞
γ2ψ2(1 +γ2ψ2)

[
K1/3

(x
2

√
(1 +γ2ψ2)3

)]2
dψ =

π√
3γx

[∫ ∞
x
K5/3(z) dz −K2/3(x)

]
(2.78)

with the Bessel functions K5/3 and K2/3. For a shorter writing, we can define

F(x) = x
∫ ∞
x
K5/3(z) dz , and G(x) = xK2/3 (2.79)

with x = ν/νc (see Fig. 2.4 and Fig. 2.5). Using Eq. (2.79) and the connection between ωB, γ , B
(Eq. 2.27) we can write in a general way

p
(i)
ν =

∫
4π
p

(i)
νΩ dΩ �

√
3e3

2mc2 Bsinϑ [F(x)±G(x)] . (2.80)

Inserting Eq. (2.80) into Eq. (2.73), we can now determine the emission coefficients ε(i)
ν for a

distribution of electrons and can write

ε
(i)
ν =

1
2

√
3e3

4πmc2 Bsinϑ
∫ ∞

0
N (E) [F(x)±G(x)] dE . (2.81)

Since x is connected to the energy E, the integration needs to be performed over F(x) and G(x) as

well. For the total emission coefficient εν = ε(1)
ν + ε(2)

ν we get

εν =

√
3e3

4πmc2 Bsinϑ
∫ ∞

0
N (E)F(x) dE . (2.82)
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Figure 2.4: F(x) plotted linearly (left) and logarithmically (right). The maximum at x = 0.29 is
marked with the dashed line.
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Figure 2.5: G(x) plotted linearly (left) and logarithmically (right). The maximum at x = 0.42 is
marked with the dashed line.

2.4.2 Absorption coefficient

Not all of the synchrotron emission reaches the observer due to absorption. We can describe the
absorption and the stimulated emission by transitions between two energy states E and E + hν,
initiated by photons with energy hν = ~kc. Because photons get created and destroyed during
the transitions, we have a constant change in photon numbers and can express the net change of
the number density in the momentum space during a unit of time as

[B(i)
21N (p + ~k)−B(i)

12N (p)] I (i)
ν (2.83)

with B(i)
21 and B(i)

21 the Einstein coefficients and radiation intensity I (i)
ν of polarisation (i) and the

electron distribution function N (p) in momentum space. From the definition of the intensity we
can derive an expression for the absorption coefficient such as

dI = κI ds ⇔ κ
(i)
ν ≡

1

I
(i)
ν

dI (i)
ν

ds
(2.84)

with s being the path length along the line of sight. Knowing the number of photons can be
expressed as Nph = Iν/hν and the definition of the net change (Eq. 2.83), we can write κ as

κ
(i)
ν =

∫
[B(i)

12N (p)−B(i)
21N (p + ~k)] hν dp . (2.85)

The probability for photon absorption per unit time is (Lang, 1999)

Pnm = BnmUν (2.86)
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2 Theory of synchrotron radiation

with Bnm being an Einstein coefficient and Uν being the energy density which is connected to
the brightness Bν via Uν = 4π/cBν . Assuming equilibrium we can use the relation (Lang, 1999)

Amn =
8πhν3

c3 Bmn (2.87)

from the Einstein correlations originating from the probability definition in Eq. (2.86). As
Pacholczyk (1970) uses another definition for the absorption probability, which is Pnm = BnmBν ,
the relation of the Einstein correlations becomes

B
(i)
12 = B(i)

21 = A(i) c
2

hν3 , (2.88)

which differs from Eq. (2.87) by a factor of c/8π. The difference comes from the relation between
Uν and Bν and the photon spin factor, which equals 2. Now we can replace B(i)

12 and B(i)
21 and

write

κν =
∫

[N (p)−N (p + ~k)]
c2

hν3 A
(i)hν dp . (2.89)

We can express the electron distribution function N (p) in spherical coordinates as N (p,θ,ϕ)
with θ being the azimuthal and ϕ being the polar angle leading to express dp as p2 dp dΩ. As
we can assume an isotropic distribution for the electrons, we know

∫
N (p,θ,ϕ) dΩ =N (p) and

can write the absorption coefficient as

κ
(i)
ν =

1
4π

∫ [
N (p)−N

(
p+

hν
c

)]
c2

ν2

[∫
A(i) dΩ

]
p2 dp . (2.90)

As the momenta of the electrons are very high due to β ≈ 1, we can assume (for the significant
transitions) hν/c� p and therefore write

N

(
p+

hν
c

)
−N (p) �

hν
c

dN
dp

. (2.91)

Using this assumption, Eq. (2.90) changes to

κ
(i)
ν = − hc

4πν

∫
p2 dN

dp

[∫
A(i) dΩ

]
dp . (2.92)

In order to achieve expressing the absorption coefficient in terms of the energy, we take the
relation E = cp and rephrase Eq. (2.92) by using

N (E) dE =N (p)p2 dp , (2.93)

which leads to

κ
(i)
ν = − hc

2

4πν

∫
E2 d

dE

(
N (E)
E2

)∫
A(i) dΩdE . (2.94)

Because A(i) is the Einstein coefficient for spontaneous emission, it can be associated with p(i)
νΩ

via ∫
A(i) dΩ =

1
hν

∫
p

(i)
νΩ dΩ =

p
(i)
ν

hν
(2.95)

with p(i)
ν from Eq. (2.80). Finally the whole expression of the absorption coefficient for both

polarisations is

κ
(i)
ν = − c2

8πν2

√
3e3

mc2 Bsinϑ
∫ ∞

0
E2 d

dE

(
N (E)
E2

)
[F(x)±G(x)] dE . (2.96)
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2.4 Radiation from an Ensemble of Electrons

As the total absorption coefficient is defined as κν = 1/2(κ(1)
ν +κ(2)

ν ), we have

κν = − c2

8πν2

√
3e3

mc2 Bsinϑ
∫ ∞

0
E2 d

dE

(
N (E)
E2

)
F(x) dE . (2.97)

2.4.3 Radiative transfer

Now that we have an emission and an absorption coefficient, we can combine both physical quan-
tities in the radiative transfer equation, allowing us to calculate the self-absorbed synchrotron
spectrum. This subsection’s discussion is based on Radiative Processes in Astrophysics by Rybicki
& Lightman (1979).
The radiative transfer equation is

dIν
ds

= −κνIν + εν , (2.98)

which describes the change in intensity alongside the travel path of the ray and allows to derive
the intensity of a certain radiation in an emitting and absorbing medium. We define the source
function Sν as the ratio of the emission coefficient to the absorption coefficient at frequency ν,

Sν =
εν
κν

. (2.99)

Additionally we substitute the optical depth τν for s by stating

dτν = κνds . (2.100)

Equation 2.98 then becomes
dIν
dτν

= −Iν + Sν . (2.101)

The formal solution of the radiative transfer equation is

Iν(τν) = Iν(0) exp(−τν) +
∫ τν

0
Sν exp(−(τν − τ ′ν)) dτ ′ν . (2.102)

Assuming no incident radiation (Iν(0) = 0) and a constant source function Sν , the analytic
solution is

Iν(τν) = Sν(1− exp(−τν)) . (2.103)

We can now retrieve the intensity spectrum for any electron distribution, if the emission and the
absorption coefficients are known.

2.4.4 Concrete equations for a specific distribution

In the case of AGN we deal with a power-law distribution of electrons, N (E) = N0 · E−p with
N0 being the constant number density of electrons. In order to derive the whole synchrotron
spectrum we need to calculate the concrete emission and absorption coefficients.
The emission for a power-law distribution is given by

εν =

√
3

4π
e3

mc2 BsinϑN0

∫ ∞
0
E−p F(x) dE . (2.104)
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2 Theory of synchrotron radiation

In order to solve the integral, it is necessary to express energy E via x. As x is defined as ν/νc
and νc is connected to E, it follows

x =
4πm3c5ν

BsinθE2 ⇐⇒ E =

√
4πm3c5ν
Bsinϑ

x−1/2 . (2.105)

dE has to be adapted as well and via calculating dE/dx we get

dE = −1
2

√(
4πm3c5ν
Bsinϑ

)
x−3/2 dx . (2.106)

The minus sign is logically correct since the integral limits swap places when integrating over x
instead of E. Replacing E and dE, the equation becomes

εν =

√
3

4π
e3

mc2 Bsinϑ
N0

2

∫ ∞
0

(4πm3c5ν
Bsinϑ

)1/2

x−1/2

−p F(x)
(

4πm3c5ν
Bsinϑ

)1/2

x−3/2 dx . (2.107)

After combining the terms appropriately and inserting the true content of F(x), we have

εν =

√
3

4π
e3

mc2 Bsinϑ
N0

2

(
4πm3c5ν
Bsinϑ

)−(p−1)/2 ∫ ∞
0
x(p−1)/2

∫ ∞
x
K5/3(z) dz dx . (2.108)

Calculating the analytic solution for the integral only, we get, after Westfold (1959),∫ ∞
0
x(p−1)/2

∫ ∞
x
K5/3(z) dz dx = 2(p−3)/2 Γ

(3p − 1
12

)
Γ

(3p+ 7
12

) p+ 7/3
p+ 1

. (2.109)

The integral goes over all single monochromatic spectra, which are power-law distributed as
well (see Fig. 2.6), because of Eq. (2.105). The final equation giving the complete emission of our
initial electron distribution is

εν =

√
3e3N0(Bsinϑ)(p+1)/2

16πmc2

(
2πm3c5

3e
ν

)−(p−1)/2
p+ 7/3
p+ 1

Γ

(3p − 1
12

)
Γ

(3p+ 7
12

)
. (2.110)

The absorption for the power-law distribution is given by

κν = − c
2

2ν2

√
3e3

4πm3c5 Bsinϑ
∫ ∞

0
E2 d

dE

(
N0E

−p

E2

)
F(x) dE . (2.111)

First we need to perform the derivative, which is

d
dE

(
N0E

−p

E2

)
= −(p+ 2)N0E

−p−3 , (2.112)

then we translate E to x (Eq. 2.105), and finally we can insert the actual meaning of F(x). This
results in

κν =
c2

4ν2

√
3e3N0

4πm3c5 (Bsinϑ)(p+2)/2(p+ 2)
(

4πm3c5

3e
ν

)−p/2 ∫ ∞
0
xp/2

∫ ∞
x
K5/3(z) dz dx . (2.113)

The integral can be solved in the same way as in Eq. (2.109) with the only difference of having p
instead of p − 1, which gives us∫ ∞

0
xp/2

∫ ∞
x
K5/3(z) dz dx = 2(p−2)/2 Γ

(3p+ 2
12

)
Γ

(3p+ 10
12

) p+ 10/3
p+ 2

. (2.114)
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Figure 2.6: Mono-energetic emission spectra for single electrons of a power-law distribution,
shown for different different Lorentz factors γ .
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Figure 2.7: Mono-energetic absorption spectra for single electrons of a power-law distribution,
shown for different Lorentz factors γ .

The integral again goes over all individual absorption spectra from the electrons of the power-law
distribution. Single spectra are shown in Fig. 2.7. In comparison to the emission spectra, one
can see that the absorption spectra are steeper, since the range of the y-axis is much larger. The
final equation for the complete absorption is

κν =

√
3e3

32πm
N0 (Bsinϑ)(p+2)/2

(
p+

10
3

)
Γ

(3p+ 2
12

)
Γ

(3p+ 10
12

)( 3e
2πm3c5

)p/2
ν−(p+4)/2 . (2.115)

The source function (Eq. 2.99) needed for deriving the complete spectrum of the electron
population, is given by

Sν =
εν
κν

=
(Bsinϑ)−1/2

c2

(
2πm3c5

3e

)1/2

Γ

(3p − 1
12

)
Γ

(3p+ 7
12

)(
Γ

(3p+ 2
12

)
Γ

(3p+ 10
12

))−1
ν5/2.

(2.116)
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N0 = 4.03 · 1018 cm−3s−1

s = 1.045 · 1016 cm

B = 100 G

p = 2.5
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Figure 2.8: Intensity I(ν) of synchrotron radiation originating at the jet base over Frequency ν.

We can now insert the concrete source function into the formal solution of the radiative transfer
equation (Eq. 2.102) and obtain the self-absorbed synchrotron spectrum (see Fig. 2.8). This
spectrum shows the intensity of the jet base, which is close to the supermassive black hole. For
the calculation, estimations are needed for the parameters N0, s and B. For a magnetic field
B in a jet base, I assumed 100 Gauss after Martí-Vidal et al. (2015), who analysed the Faraday
rotation for the AGN PKS 1830−211. The size of the jet base of M87 was measured by Doeleman
et al. (2012), who derived a size of 5.5± 0.4 Schwarzschild radii for the diameter of the jet base.
Knowing the approximate mass of the supermassive black hole in M87, Doeleman et al. (2012)
computed a Schwarzschild radius of RS = (1.9± 0.12) · 1015 cm, which yields the diameter of the
jet base to be s = 1.045 ·1016 cm. I used this value for the slab size of the emitting region. In order
to estimate the electron density, I assume that 10% of the accreted material gets transfered into
the jets, meaning 5% of the material per jet. Using the Bondi accretion rate of Ṁ = 0.1M� yr−1,
we can calculate the number of electrons per volume as

N0 =
0.05Ṁ

me ·AJ · cm
=

0.05 · 0.1 ·M�
me ·π(2.75RS )2 · cm

= 4.03 · 1018 cm−3s−1 . (2.117)

Note that the radius of the jet base is needed to calculate the area of the slice through the jet at
this position, which is why we insert 2.75RS . We see in the spectrum (Fig. 2.8) that the peak is in
the X-ray regime and no radio emission. This is due to the large magnetic field strength which
deflects the moving electrons strongly.
If we go much further out, the magnet field decreases alongside the jet as well as the electron
density. However, some regions, so called knots, are especially bright in the radio regime. The
calculated intensity spectrum for such a knot is shown in Fig. 2.9. The frame conditions used in
this calculation are proposed by Lucchini et al. (2017) for a radio knot in the source B3 0727+490.
We see that both spectra cover a broad spectral range. The shape of both spectra is the same,
because we took the same value for the slope parameter p for the jet base and the radio knot
scenario.
The big difference between both spectra is the position of the peak. While the peak is in the X-ray
regime for the spectrum originating at the jet base, the radio knot peaks in the radio regime (see
Fig. 2.10 for an overview of the electromagnetic spectrum). We expect this behaviour, because
the peak moves to lower frequencies for weaker magnetic fields. The intensity is much lower for
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Figure 2.9: Intensity I(ν) of synchrotron radiation originating in a radio knot over Frequency ν.
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Figure 2.10: Overview over the complete electromagnetic spectrum in wavelength λ and fre-
quency ν. (Plot adapted from F. Krauß & C. Müller.)

the knot spectrum, due to the very small electron density compared to the electron density at
the jet base.
For a power-law distribution, we could solve the equations for the emission coefficient εν
(Eq. 2.110) and the absorption coefficient κν (Eq. 2.115) analytically. However, other electron
distributions might be possible, for which an analytical solution can not be found. Then, a
numerical approach is necessary. In Chapt. 3 I will display the difficulties of the numerical
calculation and compare the analytically computed emission spectrum with the numerical
solution.

2.5 Comparison with other formulae

Many books and articles about the theory of synchrotron radiation are available. It is necessary
to compare my results to those and also worth having a look whether they are all in agreement
among themselves. Next to Pacholczyk (1970), which I followed in the previous sections, I
chose the derivations from Blumenthal & Gould (1970), Padmanabhan (2000), and Rybicki &
Lightman (1979), because they are definitive books and keep explicit equations at hand.

2.5.1 Emission coefficient formulae

First I want to compare my derived equation (Eq. 2.110) for the emission coefficient of power-law
distributed electrons.
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2 Theory of synchrotron radiation

2.5.1.1 Comparison with Pacholczyk

The emission coefficient in Pacholczyk (1970), Eq. 3.50, is given as

εν = c5(γ)N0 (H sinϑ)(γ+1)/2
(
ν

2c1

)(1−γ)/2

(2.118)

with the constants c1, introduced in Eq. 3.28, c3, introduced in Eq. 3.39 and c5, introduced in Eq.
3.49. The constants are

c1 =
3e

4πm3c5 , (2.119)

c3 =

√
3

4π
e3

mc2 and (2.120)

c5(γ) =
1
4
c3 Γ

(3γ − 1
12

)
Γ

(3γ + 7
12

)
·
(
γ + 7/3
γ + 1

)
. (2.121)

If we insert these constants in Eq. (2.118), we obtain

εν =

√
3e3N0(H sinϑ)(γ+1)/2

16πmc2

γ + 7/3
γ + 1

Γ

(3γ − 1
12

)
Γ

(3γ + 7
12

) (2πm3c5

3e
ν

)−(γ−1)/2

. (2.122)

The equation is the same as my derived Eq. (2.110) apart from two differences. As notation for
the magnetic field, Pacholczyk (1970) uses H . I chose to label the magnetic field in all equations
as B, because the Lorentz equation is defined with the magnetic field B. Labeling it H could
lead to confusion with the magnetising field H . Pacholczyk (1970) also uses a different variable
for the exponent in the electron energy spectrum. He introduces the power-law distribution
of electrons as N (E) = N0E

−γ . I chose to use p instead of γ in order to avoid mistaking the
exponent with the Lorentz factor γ .

2.5.1.2 Comparison with Padmanabhan

The equation for the synchrotron emission given by Padmanabhan (2000), Eq. 6.279, is

P (ω)tot =

√
3q3CBsinα

2πmc2(p+ 1)
Γ

(3p − 1
12

)
Γ

(3p+ 19
12

)( m3c5ω
3qBsinα

)−(p−1)/2

. (2.123)

Padmanabhan (2000) uses slightly different notations for some parameters, so note that q is the
electron’s charge, C is the constant number density of electrons and α is the inclination angle.
Compared to Eq. (2.110), Padmanabhan (2000) calculated the emission spectrum as a function
of the angular frequency ω. Since the frequency ν is connected to the angular frequency via
ω = 2πν, we can show that (

2πm3c5

3e
ν

)−(p−1)/2

=
(
m3c5

3q
ω

)−(p−1)/2

, (2.124)

if we replace ω with ν. While I pulled B and sinϑ out of the braket with the exponent −(p−1)/2,
Padmanabhan (2000) left it in there. One can easily show that

Bsinϑ
( 1
Bsinϑ

)−(p−1)/2
= (Bsinϑ)(p+1)/2 . (2.125)
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Additionally, Eq. (2.123) does not include the factor p+ 7/3, but the argument in one of the two
Γ -functions is (3p+ 19)/12 instead of (3p+ 7)/12 like in Eq. (2.110). We can show how these are
connected and that both equations yield the same, by using x · Γ (x) = Γ (x+ 1):(

p+
7
3

)
· Γ

(3p+ 7
12

)
=

12
3

(3p+ 7)
12

· Γ
(3p+ 7

12

)
= 4 · Γ

(3p+ 7
12

+ 1
)

= 4 · Γ
(3p+ 19

12

)
. (2.126)

Applying this equation in Eq. (2.110), we should get the same equation. However, I get a factor
of 1/4 in the formula, while Eq. (2.123) shows a factor of 1/2. The reason for this could not be
found.

2.5.1.3 Comparison with Rybicki & Lightman

Rybicki & Lightman (1979) show their equation for the total power for power-law distributed
electrons in Eq. 6.36, which is

P (ω)tot =

√
3q3CBsinα

2πmc2(p+ 1)
Γ

(p
4

+
19
12

)
Γ

(p
4
− 1

12

)( mc
3qBsinα

ω

)−(p−1)/2

. (2.127)

The equation resembles Eq. (2.123) very much in terms of parameter nominations and the
arguments in the Γ -functions, but there is a main difference in the argument of the bracket
with the exponent of −(p − 1)/2. While in Eq. (2.110), Eq. (2.118) and Eq. (2.123) we have a
factor of m3c5, in the equation by Rybicki & Lightman (1979), Eq. (2.127), there is only mc . To
explain this, one has to look further back to where the electron distribution is chosen. One can
either choose a power-law distribution with the basis being the Lorentz factor γ or the energy E.
However, you cannot directly equate N (E) and N (γ), but you have to state

N (E) dE =N (γ) dγ ⇐⇒ N (E) =N (γ)
dγ
dE

. (2.128)

With this equation, we can convert the distributions into one another and we find for a distribu-
tion depending on the energy E that

N (γ) =N0 (γmc2)−p
d

dγ
(γmc2) =

=N0 (mc2)−p γ−pmc2 =

=N0 (mc2)1−p γ−p

=N0 (m2c4)(1−p)/2 γ−p .

(2.129)

Because Rybicki & Lightman (1979) used N (γ) and Padmanabhan (2000), Pacholczyk (1970) and
me used N (E), we need to consider Eq. (2.129) in a direct comparison. This means, Eq. (2.127)
needs to contain an additional factor of (m2c4)(1−p)/2, which for the significant part of the
equation yields

(m2c4)(1−p)/2
(

mc
3qBsinα

ω

)−(p−1)/2

=
(

m3c5

3qBsinα
ω

)−(p−1)/2

. (2.130)

Already being noticed in the previous comparison with Padmanabhan (2000), we find a pre-factor
of 1/2 instead of 1/4 in Eq. (2.110) and Eq. (2.118).

31



2 Theory of synchrotron radiation

2.5.1.4 Comparison with Blumenthal & Gould

Another concrete equation for the synchrotron emission, given by Blumenthal & Gould (1970),
Eq. 4.58, is

dW
dνdt

=

√
3ke3B

4πmc2(p+ 1)
Γ

(3p − 1
12

)
Γ

(3p+ 19
12

)( 2πmc
3eBsinα

ν
)−(p−1)/2 ∫

N (α)(sinα)(p+1)/2 dΩα .

(2.131)
Note that k marks the constant number density of electrons. Since they use an electron distribu-
tion dependent on γ , similar to Rybicki & Lightman (1979), the pre-factor of (m2c4)(1−p)/2 has to
be considered in a comparison with Eq. (2.110). They derive also a factor of 1/2 more, compared
to Rybicki & Lightman (1979) and Padmanabhan (2000).
Equation 2.131 by Blumenthal & Gould (1970) includes an integral over the pitch angle and
differs from the other equations in that way. The reason for this is that they integrate over the
complete solid angle for the pitch angle, while the others make the same assumption described
in Eq. (2.74). The assumption relates to the fact that most of the emission is confined into a small
angled cone and the integration over the pitch angle can be limited to a ring (see shaded ring in
Fig. 2.2).

2.5.2 Absorption coefficient formulae

After we compared the solutions for the synchrotron emission of a power-law distribution of
electrons, we also take a look at the equations for the absorption of such a distribution. We will
compare my result in Eq. (2.115) with equations from the same authors as in the previous section,
namely Pacholczyk (1970),Blumenthal & Gould (1970), Padmanabhan (2000), and Rybicki &
Lightman (1979).

2.5.2.1 Comparison with Pacholczyk

The average absorption coefficient by Pacholczyk (1970), Eq. 3.52, is

κν = c6(γ)N0 (H sinϑ)(γ+2)/2
(
ν

2c1

)−(γ+4)/2

(2.132)

with the constants c1, introduced in Eq. 3.28, c3, introduced in Eq. 3.39 and c5, introduced in Eq.
3.51. The constants are

c1 =
3e

4πm3c5 , (2.133)

c3 =

√
3

4π
e3

mc2 and (2.134)

c6(γ) =
1
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If we insert these constants in Eq. (2.118), we obtain

κν =

√
3e3

32πm
N0 (H sinϑ)(p+2)/2

(
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10
3

)
Γ

(3p+ 2
12

)
Γ

(3p+ 10
12

)( 3e
2πm3c5

)p/2
ν−(p+4)/2 (2.136)

The notation differences for H/B and γ/p have already been discussed in Sect. 2.5.1.1. Equa-
tion 2.136 agrees with Eq. (2.115).
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2.5 Comparison with other formulae

2.5.2.2 Comparison with Padmanabhan

Padmanabhan (2000) does not give a concrete equation for the synchrotron absorption coefficient,
which they call αν . Instead, he derives the proportionality of the frequency ν in Eq. 6.293 as

αν ∝
1
ν2

∫
dE
E
N (E)F(ν/E) ∝ 1

ν2

∫
dx
x

(ν
x

)p/2
F(x) ∝ ν−

1
2 (p+4) . (2.137)

From that, we can only conclude, that Padmanabhan (2000) and Eq. (2.110) concur in the
exponent of the Frequency ν.

2.5.2.3 Comparison with Rybicki & Lightman

The absorption coefficient given by Rybicki & Lightman (1979), Eq. 6.53, is

αν =

√
3q3

8πm

( 3q
2πm3c5

)p/2
C (Bsinα)(p+2)/2 Γ

(3p+ 2
12

)
Γ

(3p+ 22
12

)
ν−(p+4)/2. (2.138)

In order to show that Eq. (2.115) and Eq. (2.138) are the same, we can again use x · Γ (x) = Γ (x+ 1)
and show that(
p+

10
3

)
· Γ

(3p+ 10
12

)
=

12
3

(3p+ 10)
12
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(3p+ 10

12
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= 4 · Γ
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+ 1
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= 4 · Γ
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12

)
. (2.139)

Applying this on Eq. (2.115), the factor becomes 1/8 and we can see, that Eq. (2.138) and
Eq. (2.115) are the same, since the notation differences for C/N0, q/e, and α/ϑ have already been
discussed in Sect. 2.5.1.3.

2.5.2.4 Comparison with Blumenthal & Gould

Blumenthal & Gould (1970) do not derive the synchrotron absorption in their paper.

2.5.3 Conclusions

The direct comparison shows that the equations derived by Blumenthal & Gould (1970), Pad-
manabhan (2000), Pacholczyk (1970), and Rybicki & Lightman (1979) are in accordance with
each other, apart from a factor of 1/2, which is present for the emission equations by Pacholczyk
(1970), Blumenthal & Gould (1970), and the equation I derived in this chapter.
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3 Numerical integration
problems

In the previous chapter, we only calculated synchrotron spectra for powerlaw distributed
electrons (Sect. 2.4.4). If another distribution is assumed, there might not exist an analytic
solution and a numerical approach must be used. Since the analytic solution of synchrotron
radiation is known for a powerlaw distribution, we can use the analytical and the numerical
calculation for a comparison, in order to check whether both are in agreement. In this chapter,
I will show the difficulties in the numerical calculation for synchrotron spectra and compare
the analytically computed emission spectrum with the numerical solution. Calculations are
performed by routines written in C. The GNU Scientific Library1 (GSL) is used for specific
functions, e.g., the Bessel functions, and the numerical methods.

3.1 Integration limits

Numerical integration is needed whenever we have a function or a curve, whose integral we want
to know, but can not determine the antiderivative. The integration tool I used in my work is the
QAG adaptive integration2, which divides the integration region into subintervals and in each
step bisects the subintervals with the largest estimated error. Consequently, the subintervals are
not equidistant, but allocate around local difficulties in the integrand.
Synchrotron radiation is emitted on a very broad spectral range, that is over several magnitudes,
which causes problems in the numerical integration. The integration has to be executed over all
single monoenergetic electron spectra, meaning from spectra of electrons with minimum energy
(γ = 1) to ultrarelativistic electrons (γ � 1). Figure 3.1 shows numerically calculated emission
spectra for different upper integration limits in γ . What we can see there is a sudden drop in
the spectra which shifts to higher frequencies with increasing integration limit. This seems
plausible, because if we only include electrons, e.g., with γ ≤ 103 in the integral, the integration
tool ignores all monoenergetic spectra with greater Lorentz factors and the spectrum drops to
zero.

1https://www.gnu.org/software/gsl/
2https://www.gnu.org/software/gsl/manual/html_node/QAG-adaptive-integration.html#

QAG-adaptive-integration

https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/manual/html_node/QAG-adaptive-integration.html#QAG-adaptive-integration
https://www.gnu.org/software/gsl/manual/html_node/QAG-adaptive-integration.html#QAG-adaptive-integration


3 Numerical integration problems
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Figure 3.1: Emission spectra with different integration limits. These spectra were calculated
using Eq. (2.104) and the parameter values of N0 = 4.03 · 1018 cm−3s−1, B = 100 Gs,
p = 2.5, and ϑ = 0.1π.

Another problem becomes visible for the integration up to very high Lorentz factors. Setting the
upper limit to γ = 109, we can observe a kink at around ν = 103 Hz. This feature occurs due to a
limitation in the number of subintervals. A solution to this problem can be a logarithmic ν-scale
in the equation, which minimises the broad spectral range, but is not easily conducted for all
equations.

3.2 Difference between analytical and numerical solution

Plotting the numerically and analytically calculated emission spectra together reveals some dif-
ferences, see Fig. 3.2. First, we see the analytic approximation continuing as a powerlaw when we
go from high to low frequencies. The numerical result for the chosen set of parameters, however,
has a maximum at around 109 Hz and the spectrum decreases again for lower frequencies. The
reason for the different behaviour is that the analytic approximation does not take into account
that there is a minimum electron energy, respectively a minimum Lorentz factor γ = 1. What
we see as a maximum in the numerical solution coincides with the peak of the monoenergetic
spectrum with γ = 1. For the low frequency range, the analytical approximation is therefore not
correct.
Additionally, for frequencies ν > 109 Hz, the analytic approximation and the numerical result do
not unite, but there an offset of εana/εnum = 0.424 is present. The reason for this is not clear yet.

3.3 Integration over distributed energy spectra

Another numerical problem occurs if we take our integrated emission spectrum and plot it over
all single monoenergetic spectra of the powerlaw distribution. We expect the single spectra to be
covered by the complete spectrum, but we actually observe the spectrum for the lowest energetic
electrons to be above the total spectrum, see Fig. 3.3. The reason for this is not clear yet.
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3.4 Intensity spectrum
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Figure 3.2: Comparison of numeric and analytic solution for the emission coefficent. The spectra
were calculated using Eq. (2.110) for the analytical approximation and Eq. (2.104) for
the numerical result. The parameter values are N0 = 4.03 · 1018 cm−3s−1, B = 100 Gs,
p = 2.5, and ϑ = 0.1π.
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Figure 3.3: Integrated emission spectrum over the distributed monoenergetic spectra. For the
integrated emission spectrum Eq. (2.104) was used. The parameter values are N0 =
4.03 · 1018 cm−3s−1, B = 100 Gs, p = 2.5, and ϑ = 0.1π.

3.4 Intensity spectrum

Calculating the self-absorbed synchrotron spectrum, one can solve the equation for the intensity
(Eq. 2.102) analytically in case of a constant source function Sν . Otherwise a numerical integra-
tion is necessary. When I derived the intensity spectrum both ways, I found that the analytical
approach fails at high frequencies ν > 1019 Hz and the numerical approach at low frequencies
ν < 1013 Hz for the chosen parameters. The spectra are shown in Fig. 3.4 and Fig. 3.5. The reason
for the weird feature at ν = 1019 Hz in the analytically computed spectrum is still unsettled. The
sudden drop to zero at ν = 1013 Hz in the numerically computed spectrum is probably due to
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Figure 3.4: Analytically calculated intensity spectrum using Eq. (2.103).
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Figure 3.5: Numerically calculated intensity spectrum using Eq. (2.102).

the very small integrand exp(−(τν − τ ′ν)).

3.5 Other integrators

In the GSL, other numerical integrators are available next to the QAG algorithm. Several
integrators are written for specific cases, e.g., singularities, infinite intervals, or oscillatory
functions. A non-adaptive integrator is included in the GSL as well, but provides inferior results.
The main problem for the numerical integration is probably the large orders of magnitude on
the x range, which could be solved by adapting the equation in such a way that it is dependent
on logν rather than ν.
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4 Systematic study of
simultaneous observations of AGN by
XMM-Newton and NuSTAR

4.1 Introduction

Performing simultaneous observations with different satellites allows us to study energetic
sources like X-ray binaries or active galactic nuclei (AGN) in a broader emission regime. As
radiation is rarely confined to only a small emission range, we can get better insights in the
behaviour of those sources by combining data from all over the spectrum. When studying
accreting objects in the X-rays, emission features in the region of the iron K α line (6.4keV) are
important for the analysis of relativistic line broadening near black hole systems. However,
good results can only be found when the underlying continuum is well known which requires
knowledge about the spectrum in the hard X-rays. Additionally, relativistic reflection effects
which range from the lowest energies (1keV) up to the Compton hump (30keV) cannot be
observed with only one instrument so far. Simultaneous observations in different energy ranges
therefore improve the study of energetic sources, variable sources in particular. In order to gain
good and reliable results from a simultaneous observation it is necessary to have a very good
cross-calibration between the involved satellites. Since a perfect calibration is not possible to
achieve, calibration uncertainties introduce discrepancies in the data analysis and impact the
determination of astrophysical values. The aim of the work presented in this chapter was to
help improving the cross-calibration between XMM-Newton and NuSTAR by analyzing as many
simultaneously performed observations of AGN as there were publicly available at the end of
June 2016. This work was a project performed at the European Space Astronomy Center (ESAC)
under the supervision of Norbert Schartel and Maria Santos-Lleo.

4.2 The satellites XMM-Newton and NuSTAR

The X-ray satellite XMM-Newton (Jansen et al., 2001) was launched by the European Space
Agency (ESA) in 1999. It observes soft X-rays in an energy range from 0.2 to 12keV with
two Reflection Grating Spectrometers (RGSs) and three European Photon Imaging Cameras



4 Systematic study of simultaneous observations of AGN by XMM-Newton and NuSTAR

(a) XMM-Newton ©ESA - D. Ducros
(www.esa.int)

(b) NuSTAR ©NASA/JPL-Caltech
(www.jpl.nasa.gov)

Figure 4.1: The satellites XMM-Newton and NuSTAR

(EPICs), namely MOS-1, MOS-2 and PN, which are each at the end of one Wolter type 1
telescope. Additionally, there is an Optical Monitor (OM), a 30 cm mirror telescope, which
allows simultaneous observations of an X-ray source in the optical and UV range.
NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR; Harrison et al., 2013) launched in 2012,
is the first focusing high-energy instrument in space and observes an energy range from 3 to
79 keV. It has two semiconductor detectors, the Focal Plane Modules A and B (FPMA, FPMB),
on which the hard X-rays are focused by using Wolter type 1 approximation optics. Artist’s
impressions of the satellites in space are shown in Fig. 4.1a and Fig. 4.1b. The main advantage
for combining XMM-Newton and NuSTAR in simultaneous observations is their observational
energy overlap between 3 and 12keV (see Fig. 4.2) which allows for direct comparison of the
spacecrafts’ calibrations. The instruments of the spacecrafts used in this analysis were the
EPIC-pn of XMM-Newton and FPMA and FPMB of NuSTAR. Since it is necessary to have a good
Signal-to-Noise Ratio (S/N) X-ray spectrum, some observations had to be neglected from the
available sample. The final data set includes 16 observations from 10 sources (see Table 4.1).

4.3 Data

4.3.1 Extraction

The data was extracted with the standard pipelines. The observations by XMM-Newton were
extracted using XMM-Newton Science Analysis System (SAS) version 15.0.0 aiming to achieve
a maximum S/N. Data from the NuSTAR spacecraft was extracted using the NuSTAR Data
Analysis Software (NUSTARDAS) package (v.1.4.1), using nupipeline and the calibration database
CALDB20150316 for creating cleaned and calibrated data products. In order to create strictly
simultaneous observational data, we used the FTOOL mgtime to merge the gti-files from the
observations of both spacecrafts into a common one which was then applied to all observations
presented here. All spectra have been binned for a higher S/N ratio. While for the EPIC-pn
spectra we used a constant S/N ratio factor of 10 for binning, for the FPM spectra we constantly
binned 10 channels together. The complete data set used in this work is given in Table 4.1.
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4.3 Data

Figure 4.2: Comparison of the effective areas of XMM-Newton EPIC-pn camera (black) and
NuSTAR FPMA (red)

4.3.2 Data Analysis

All spectra were analysed with xspec 12.8.2 using the wilm abundances (Wilms et al., 2000)
and the vern cross sections (Verner et al., 1996). Two different approaches were used to gather
information about the differences in the XMM-Newton and the NuSTAR calibration.
Method 1 includes fitting an EPIC-pn spectrum with a physical model, then applying the model
without further change of the parameters to the NuSTAR data in order to compare how well the
model for the XMM-Newton data fits to the NuSTAR spectrum.
Method 2 involves simultaneously fitting spectra from EPIC-pn and FPMA/FPMB, respectively,
from 3 to 10keV and retrieving a cross-normalisation constant as well as differences in the
power-law indices of the best fit. All errors are 90% confidence unless stated otherwise.

4.3.2.1 Method 1: Comparison of ratios

In Method 1 the ratio of data points to a model are used. The first step is finding a physical,
well fitting model for the XMM-Newton spectrum. This model is then applied to the NuSTAR
spectrum without fitting the model again. The comparison of the NuSTAR data with the model
is done by the ratios, which are directly obtained from xspec.
Whether the observation of a source was used for this method can be seen in the column Method
of Table 4.1. The applied physical models for each source are given in Table 4.2. Each model
contains a power-law (pegpwrlw or bknpower for a broken power-law). For galactic absorption
we used tbnew_feo1 a simple version of the new version of tbabs (Wilms et al., 2000). For
a source showing relativistic reflection, we applied the relxill model (García et al., 2014).
relxill includes a primary spectrum, which originates in a corona surrounding the accretion
disc and is also a power-law, as well as it takes into account the reflection onto the accretion disc.
In that way, we can see relativistically broadened emission lines, particularly the iron K α line.
In case of the presence of a warm absorber or an extensive soft excess in the spectra, we included
the model warmabs or a simple blackbody (bbody), respectively.

1http://pulsar.sternwarte.uni-erlangen.de/wilms/research/tbabs/
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Source Instrument ObsID Start Time End Time Method

3C 120
EPIC-pn 0693781601 2013-02-06 12:39 2013-02-08 00:51 1, 2

FPM 60001042002 2013-02-06 12:46 2013-02-06 23:51 1, 2

3C 273
EPIC-pn 0414191001 2012-07-16 11:59 2012-07-16 22:48 1, 2

FPM 10002020001 2012-07-14 00:06 2012-07-19 23:36 1, 2

Ark 120
EPIC-pn 0693781501 2013-02-18 11:40 2013-02-19 23:54 1, 2

FPM 60001044002 2013-02-18 10:46 2013-02-20 09:36 1, 2

Centaurus A
EPIC-pn 0724060601 2013-08-07 12:27 2013-08-07 15:47 2

FPM 60001081002 2013-08-06 13:01 2013-08-07 16:06 2

Fairall 9
EPIC-pn 0741330101 2014-05-09 02:20 2014-05-10 17:37 1, 2

FPM
60001130002 2014-05-09 02:16 2014-05-09 23:01 1, 2
60001130003 2014-05-09 23:01 2014-05-11 15:26 1

HE 1136-2304

EPIC-pn 0741260101 2014-07-02 07:44 2014-07-03 14:24 1, 2

FPM
80002031002 2014-07-02 08:16 2014-07-02 22:31 1, 2
80002031003 2014-07-02 22:31 2014-07-04 10:01 1, 2

MCG-6-30-15

EPIC-pn 0693781201 2013-01-29 12:08 2013-01-31 01:25 1, 2
FPM 60001047002 2013-01-29 11:16 2013-01-30 00:11 1, 2

EPIC-pn 0693781301 2013-01-31 12:01 2013-02-02 01:18 1, 2
FPM 60001047003 2013-01-30 00:11 2013-02-02 00:41 1, 2

EPIC-pn 0693781401 2013-02-02 12:02 2013-02-03 01:37 1, 2
FPM 60001047005 2013-02-02 10:51 2013-02-03 02:41 1, 2

Mrk 915

EPIC-pn 0744490401 2014-12-02 13:08 2014-12-04 02:38 1, 2
FPM 60002060002 2014-12-02 13:56 2014-12-03 18:46 1, 2

EPIC-pn 0744490501 2014-12-07 07:46 2014-12-08 03:01 1
FPM 60002060004 2014-12-07 06:51 2014-12-08 12:46 1

NGC 4593

EPIC-pn 0740920401 2015-01-02 04:46 2015-01-02 11:59 1
FPM 60001149006 2015-01-02 03:21 2015-01-02 16:36 1

EPIC-pn 0740920601 2015-01-06 15:01 2015-01-06 23:52 1, 2
FPM 60001149010 2015-01-06 15:26 2015-01-07 02:31 1, 2

Swift

EPIC-pn 0693781701 2012-11-04 17:34 2012-11-06 07:12 1, 2

FPM
60001110002 2012-11-04 17:21 2012-11-05 18:06 1, 2
60001110003 2012-11-05 18:06 2012-11-06 08:01 1, 2

EPIC-pn 0693781801 2012-11-06 17:26 2012-11-08 07:04 1, 2
J2127.4+5654 FPM 60001110005 2012-11-06 17:56 2012-11-08 07:06 1, 2

EPIC-pn 0693781901 2012-11-08 17:18 2012-11-09 13:17 1, 2
FPM 60001110007 2012-11-08 16:51 2012-11-09 13:41 1, 2

Table 4.1: All observations included in the data sample. The spectra were studied using two
different methods; the column Method shows whether a source was included in both
analysation methods or just one.

As an example, simultaneous spectra from EPIC-pn, FPMA and FPMB are shown in Fig. 4.3 (Ark
120) and Fig. 4.4 (Swift J2127.4+5654). For all models the NuSTAR spectra show discrepancies,
since the models were fitted to data from the XMM-Newton satellite. This approach allows
comparing the difference between both spacecrafts indirectly by looking at the ratios. Note that
the comparison between EPIC-pn and the FPM detectors does not allow to make a statement
about the correlation between the MOS and the FPM detectors. In the ratio plots a slope is visible
(e.g. see Fig. 4.3 and Fig. 4.4), causing the FPMA/FPMB values to be higher than the values of
EPIC-pn up to 7keV.
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4.3 Data

Figure 4.3: Fitted EPIC-pn spectrum (black) of Ark 120 with spectra from both detectors of
NuSTAR (FPMA: red, FPMB: green) in the upper window. In the lower window ratio
values for model vs. data are given for each spectrum.

Figure 4.4: Fitted EPIC-pn spectrum (black) of Swift J2127.4+5654 with spectra from both
detectors of NuSTAR (FPMA: red, FPMB: green) in the upper window. In the lower
window ratio values for model vs. data are given for each spectrum.
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Source Model Reference

3C 120 tbnew_feo×(relxill+zgauss+zgauss) Lohfink et al. (2013)
3C 273 tbnew_feo×bknpower Stuhlinger et al. (2004)
Ark 120 tbnew_feo×(bbody+relxill+zgauss+zgauss) Matt et al. (2014)

Centaurus A tbnew_feo×(pegpwrlw+zgauss) Fürst et al. (2016)
Fairall 9 relxill+zgauss Lohfink et al. (2012)

HE 1136-2304 tbnew_feo×(relxill+zgauss) Parker et al. (2016)
MCG-6-30-15 tbnew_feo×warmabs(relxill+zgauss) Wilms et al. (2001)

Mrk 915 warmabs×tbnew_feo×(relxill+zgauss) Severgnini et al. (2015)
NGC 4593 tbnew_feo×(pegpwrlw+zgauss+zgauss) Brenneman et al. (2007)

Swift J2127.4+5654 tbnew_feo×(bbody+relxill+zgauss) Marinucci et al. (2014)

Table 4.2: Models applied on EPIC-pn spectra in Method 1

(a) Mean ratio values

(b) Median ratio values

Figure 4.5: Ratios from FPM spectra compared to best fit to EPIC-pn spectra

In order to get rid of systematics caused by the different models and sources, and to see whether
this slope is present in all spectra, we merged all of the ratio plots together in one plot. Figure
4.5a shows the calculated mean values with the according standard deviation, while Fig. 4.5b
shows the median with the median absolute deviation. In both plots the ratios unveil deviations
between the FPM spectra and the model in the energy range from 3 to 7 keV.
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Figure 4.6: Simultaneously fitted EPIC (black) and FPMA (red) spectra of 3C 273. In the lower
window the ratio values for model vs. data are given for both fits.

4.3.2.2 Method 2: Simultaneous fitting

Simultaneous fitting in the common energy band can be used to compare different instruments
directly. An approach can be adding a cross-normalisation constant to the model, which depicts
the difference in flux normalisation. The other way is to compare the photon indices, Γ (the
value of the power-law slope), for fitting the same model simultaneously to both spectra and
allow only this parameter to vary.
All observations used for this method can be found in the column Method of Table 4.1. All fits
were done from 3 to 10keV simultaneously for two detectors each (EPIC-pn & FPMA, EPIC-pn
& FPMB) per source. We also fitted the spectra from both FPM detectors simultaneously to check
whether there are significant discrepancies between them.
The models used for the sources are shown in Table 4.3. They do not differ much from the
models from method 1, but some are kept simpler, because executing the fit in a smaller energy
range did not require a blackbody anymore to describe the soft excess which is present below
2keV. Two example spectra for simultaneous fits are shown in Fig. 4.6 (3C 273) and Fig. 4.7
(MCG−6− 30− 15).

The first task is to compare the flux normalisations by using a cross-normalisation constant. A
source specific model was fitted to the EPIC-pn spectrum while keeping the same parameters
for the FPM spectra (similar to Method 1). In addition to the models shown in Table 4.3 a
constant, c, was added and set to 1 for the EPIC-pn spectra, but kept free for the FPM spectra.
This cross-normalisation constant represents the difference in the flux normalisations of both
instruments. The mean value for this constant is given in Table 4.4). The error was derived
through error propagation of the uncertainties determined in the fit. The mean value is fairly
close to 1, but a look at the distributions for both FPM detectors (see Fig. 4.8a and Fig. 4.8b)
reveals some scattering around the mean value. A difference between the FPM detectors is
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4 Systematic study of simultaneous observations of AGN by XMM-Newton and NuSTAR

Figure 4.7: Simultaneously fitted EPIC (black) and FPMA (red) spectra of MCG−6− 30− 15. In
the lower window the ratio values for model vs. data are given for both fits.

Source Model Reference

3C 120 tbnew_feo×(relxill+zgauss+zgauss) Lohfink et al. (2013)
3C 273 tbnew_feo×pegpwrlw Stuhlinger et al. (2004)
Ark 120 tbnew_feo×(relxill+zgauss+zgauss) Matt et al. (2014)

Centaurus A tbnew_feo×(pegpwrlw+zgauss) Fürst et al. (2016)
Fairall 9 relxill+zgauss Lohfink et al., 2012

HE 1136-2304 tbnew_feo×(relxill+zgauss) Parker et al. (2016)
MCG-6-30-15 tbnew_feo×(relxill+zgauss) Wilms et al. (2001)

Mrk 915 warmabs×tbnew_feo×(relxill+zgauss) Severgnini et al. (2015)
NGC 4593 tbnew_feo×(pegpwrlw+zgauss) Brenneman et al. (2007)

Swift J2127.4+5654 tbnew_feo×(relxill+zgauss) Marinucci et al. (2014)

Table 4.3: Models applied on EPIC-pn and FPM spectra in Method 2

c

EPIC-pn/FPMA 1.004± 0.034

EPIC-pn/FPMB 1.041± 0.034

FPMA/FPMB 1.034± 0.019

Table 4.4: Cross-normalisation constants, c, for FPMA and FPMB.

detectable.
Apart from three observations all derived constants lie within the 90% error region for both

FPM detectors. The three exceptions are observation 11, 13 and 14 which belong to Centaurus A,
Mrk 915 and HE1136-2304 respectively. While obs. 14 is inside the error region accounting its
errors, obs. 11 and 13 are definitely off. In the case of Centaurus A, being a close and bright

46



4.3 Data

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

 2  4  6  8  10  12  14  16

C
ro

ss
-n

or
m

al
is

at
io

n 
co

ns
ta

nt

Observation

(a) Constants for FPMA.
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(b) Constants for FPMB.

Figure 4.8: Cross-normalisation constant distributions of FPMA and FPMB for all observations.
The dashed line marks the mean value and the 90% error region is coloured.

c

EPIC-pn/FPMA 1.020± 0.017

EPIC-pn/FPMB 1.062± 0.018

Table 4.5: Cross-normalisation constants, c, for reduced sample.

source, this offset can be explained with pile up effects being present even though we tried
avoiding those in the extraction by excluding the innermost region of the source. For Mrk 915
we have no explanation for the low cross-normalisation in this source. Additionally, observation
6, 9 and 10 have large errors exceeding the 1σ region which makes those results less trustworthy.
Excluding these observations (6, 9, 10, 11, 13 and 14), we get larger cross-normalisation constants
(see Table 4.5).

Another task was comparing the photon indices for different sources in order to test the
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4 Systematic study of simultaneous observations of AGN by XMM-Newton and NuSTAR

∆Γ

EPIC-pn-FPMA 0.142± 0.025

EPIC-pn-FPMB 0.133± 0.025

FPMA-FPMB 0.027± 0.004

Table 4.6: Mean values for ∆Γ .

x0 σ

EPIC-pn/FPMA 0.128± 0.006 0.046± 0.012

EPIC-pn/FPMB 0.136± 0.060 0.112± 0.196

Table 4.7: Parameters for a Gaussian fit to the distribution of ∆Γ in a histogram. Note that here,
the error σ is just 68% confidence.

calibration of both instruments. For an ideal cross-calibration between both satellites, those
values should be the same. In Fig. 4.9 a direct comparison of the photon indices Γ for XMM-
Newton and NuSTAR is shown. We observe a general offset which shows that the FPMA/FPMB
spectra have steeper power law slopes than spectra from EPIC-pn. This seems to be present in
all observations. In a more direct comparison, Fig. 4.10 presents ∆Γ from 14 observations of
8 sources over flux, showing there is no correlation with flux and therefore no pile-up effects
present. The mean differences for EPIC-pn-FPMA, EPIC-pn-FPMB and FPMA-FPMB are shown
in Table 4.6. The observation from Centaurus A was excluded from this sample, because it shows
a much higher discrepancy between the slopes in XMM-Newton and NuSTAR data which might
be due to pile up. Note that ∆Γ is much smaller for the comparison between both FPM detectors
than between the two satellites.

Another way to look at the results is via a distribution in a histogram. The difference ∆Γ is
shown for all 16 observations in Fig. 4.11a and Fig. 4.12a. For both histograms we used a bin size
of ∆Γ = 0.01 in order to get a clearer overview of the distribution. Since the value at ∆Γ = 0.4
(from spectra of Centaurus A) is clearly aside the other results and was already excluded in the
calculation of the mean ∆Γ (see Table 4.6), we ignored it. Figure 4.11b shows the remaining
columns. In order to look at the normal distribution fitted to that data, we excluded also the two
observations which had ∆Γ > 0.2 (Mrk 915 and NGC 4593). The remaining data was fitted by a
normal distribution of f (x) = A · exp(−((x − x0)/σ )2). The same was done for the FPMB detector
(see Fig. 4.12). Values with ∆Γ > 0.2 were excluded again, which concerned again the observation
of Centaurus A.
The parameters x0 and σ of the Gaussian fit are shown in Table 4.7 for both histograms. Note
that here, σ is only a 68% confidence error. While the fit delivers good results for the comparison
of EPIC-pn and FPMA, it is more problematic in case of the EPIC-pn-FPMB comparison. There
the uncertainties on both parameters are too large to give reasonable constraints, because the
values are more spread than in the comparison with FPMA. Over all we find very similar results
for the histogram approach as in Table 4.6. The difference of the photon index Γ between the
EPIC-pn and FPM spectra indicates a principal, energy dependent mis-calibration in either, or
in both of the two instruments.
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4.3 Data

Figure 4.9: Direct comparison of photon indices Γ for XMM-Newton and NuSTAR. The ideal case
would be that the data points are on the line of equivalence which is not observed.

Figure 4.10: Individual ∆Γ over flux of source.
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4 Systematic study of simultaneous observations of AGN by XMM-Newton and NuSTAR

(a) Whole distribution of ∆Γ

(b) Distribution of ∆Γ without Centaurus A

(c) Fitted gaussian curve over final distribuion (without Cen A, Mrk
915 and NGC 4593)

Figure 4.11: Distribution of ∆Γ for the FPMA detector

4.4 Comparison with other studies

So far only one cross-calibration analysis between XMM-Newton and NuSTAR was published
(Madsen et al., 2017a). They performed a full analysis of the cross-normalisation constants
between the satellites Chandra, NuSTAR, Swift, Suzaku, and XMM-Newton for 3C 273 and
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(a) Whole distribution of ∆Γ
(b) Fitted gaussian curve over final distribution

(without Cen A)

Figure 4.12: Distribution of ∆Γ for the FPMB detector

Parameter Instruments This work Madsen et al. (2017a)2

c
EPIC-pn/FPMA 1.05± 0.01 1.11± 0.03
EPIC-pn/FPMB 1.09± 0.02 1.16± 0.02

∆Γ
EPIC-pn/FPMA 0.13± 0.03 0.10± 0.09
EPIC-pn/FPMB 0.16± 0.03 0.01± 0.09

Table 4.8: Comparison of c and ∆Γ with Madsen et al. for 3C 273.

PKS 2155-304. Since 3C 273 was in the sample that we analysed, we can compare their and our
results directly. They used a simple power-law and tbabs for absorption, very similar to our
model for 3C 273 (see Table 4.3). However, they used a fitting range from 3 to 7keV, while we
used all data between 3 and 10keV. Another difference lies in the data extraction for which
we used SAS version 15.0.0 and Madsen et al. SAS version 14.0.0. The values of c and ∆Γ are
given in Table 4.8. Although they did not include a power-law index comparison in the paper,
they showed the values for Γ , being derived in individual fits, which we used for calculating the
correspondent ∆Γ . While the difference in the power-law slope matches for the FPMA detector,
there is nearly no difference between the FPMB detector and EPIC-pn according to Madsen
et al. (2017a). Additionally the cross-normalisation constants between the EPIC-pn and the FPM
detectors found by Madsen et al. (2017a) are much larger than the values found in this work.

4.5 Outlook

Further studies are necessary for the progress of improving the cross-calibration between XMM-
Newton and NuSTAR, since we could see that there can be quite different results even for the
same source. The difference of ∆Γ ∝ 0.1 in the power-law slopes is found to be consistent over
all the sources and observations, regardless of the model. An explanation can be a principal,
energy dependent mis-calibration in either one or both of the instruments.
The cross-normalisation constant c reveals differences in the flux normalisations of both satellites
and shows some variations for which the origin has yet to be determined.
Recently there was an observation of the Crab nebula by NuSTAR without its mirrors (Madsen
et al., 2017b). They find the true intrinsic flux to be 12% higher than the flux measured in an
observation that includes the NuSTAR optics. Observing the stray light from the Crab allowed

2Since c and ∆Γ were not given directly in the paper, we calculated c from the flux values and ∆Γ from the given
power-law slopes.
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4 Systematic study of simultaneous observations of AGN by XMM-Newton and NuSTAR

Madsen et al. (2017b) to measure new detector absorption parameters, which resulted in an
update of the detector absorption files in CALDB20160606.
The surveys of AGN and other astrophysical sources depend on the cooperation of different
satellites, because radiation processes, e.g., synchrotron radiation, exist in broad spectral ranges,
which can only be studied by many different instruments working together.
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5 Summary

In this Master’s thesis I worked on two different projects both related to AGN.
First, I studied the derivation of equations describing synchrotron radiation. This non-thermal
radiation process explains the emission originating from jets in the radio band. In order to gain
a full self-absorbed spectrum, we needed to derive the emission and absorption coefficient and
insert these in the radiative transfer equation. As integrals over Bessel functions are involved,
one can solve the equation via numeric integrators or by using analytic approximations. The
latter case is only possible for certain electron distributions. For electrons following an energy
dependent power-law distribution, an analytic approximation is possible and was compared
to the numeric result. However, there is an offset present, whose origin is possibly a numeric
problem, but has yet to be determined.
Other numeric problems did occur, which were mostly due to the integration over several
magnitudes in frequency ν. Comparing my results with equations from other papers or books, I
found that, although they do not the same at first sight, they are all in agreement, except for the
emission coefficient, where they differ in a factor of 1/2.
The second part of this thesis is a systematic study of simultaneous observations performed
by the two X-ray satellites XMM-Newton and NuSTAR. The main advantage of simultaneous
observations by these two spacecrafts is their overlap in the energy band from 3 to 12 keV, which
allows to compare the calibration of both on-board instruments directly.
I used two methods to gain insights in the calibration differences, while the data I analysed came
from AGN observations only. First, I compared the data of NuSTAR’s FPM detectors with the
physical model, fitted to data from XMM-Newton’s EPIC-pn detector. The ratio values of this
comparison revealed an energy dependent slope in the FPM spectra.
Then, in a more elaborate approach, I fitted simultaneously obtained spectra using physical
models in the overlapping energy band from 3 to 10 keV and compared the flux normalisations
of both instruments. I found the flux detected by EPIC-pn to be generally higher in comparison
to the FPM detectors. Additionally, I compared the difference in the power-law slope parameter
Γ and found the spectra obtained by NuSTAR to be generally steeper, indicating an energy
dependent mis-calibration in one or both instruments.
Last, I compared my results with another paper, which treats a source also included in my AGN
sample, and could establish a general agreement. Differences in the determined values might be
due to slightly different models, a different energy range for the simultaneous fits, or a newer
version of the data extraction software in my case.
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