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Abstract

Binaries consisting of a hot subdwarf and a F/G/K-type main-sequence companion are
important to understand the outcome of interacting binary evolution. They show composite
spectra and significant excess in the infrared. The spectral analysis is rendered difficult,
because the contribution of both stars to the composite spectrum needs to be disentangled.
To this end, a numerical code was developed which allows quantitative spectral analysis.
Grids of standard stellar spectra for the F/G/K stars as well as a non-LTE subdwarf grid
allow to decompose the spectrum of a binary system to be decomposed and hence find
the contribution of each star to the combined flux. In order to obtain the best fitting
combination of parameters of both stars a standard Chi-square fitting routine is used.
The analysis reveals Teff , log g, the helium abundance of the subdwarf and Teff , log g,
the metal abundance of the cool companion. Reddening due to interstellar extinction is
also taken into account. In order to test the code, it is applied to sets of mock spectra.
Quantitative analyses of 5 stars using SDSS and BOSS spectra are carried out. Finally, the
high-resolution spectrum of PG1104+243 was analyzed. The long-term goal is to study
technical possibilities in the quantitative spectroscopy of multiple-star systems and the
development of fast method for their decomposition.





1 Introduction

1.1 Stellar spectra

This work deals with the analysis of binary spectra. Therefore, it is worth to have a close
look at the characteristics of stellar spectra in general first. This section describes the
fundamental properties as well as the influence of physical parameters on the spectra of
stars.

1.1.1 The black body approximation

The shape of the spectrum of a single star can crudely be approximated by the energy
distribution of a black body. In the wavelength representation, its well known shape is
given by Planck’s law, which can be written in the wavelength representation

uλ(λ, T ) =
2hc2

λ5

1

ehc/λkT − 1
(1.1)

Figure 1.1: uλ plotted for different temperatures to illus-
trate the shift of the emission maximum in wavelength space
according to Wien’s law. From en.wikipedia.org.

where uλ is the spectral radiance i.e.
the power emitted per emitting area
per solid angle and per unit wave-
length. Derivating Eq. 1.1 with
respect to λ and evaluating the re-
sulting expression to be equal zero
yields the wavelength of the emission
maximum λmax. The result is called
Wien’s displacement law.

λmax =
2897.8µm ·K

T
(1.2)

For higher temperatures, the emis-
sion maximum in wavelength space
shifts towards shorter wavelengths
and therefore higher energies. In or-
der to get a feeling for the shape and
the shift of the maximum Fig. 1.1 il-
lustrates black body radiation curves
for different temperatures. For hot
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stars, the optical spectrum lies in the descending part at higher wavelengths than the
maximum. In this region the Rayleigh-Jeans approximation of Eq. 1.1

uλ(λ, T ) =
2ckT

λ4
(1.3)

describes the shape of the black body spectrum. However, in stars the slope of the continuum
is dominated by the Paschen continuum, which changes the shape to be ∝ 1

λ3
. Radiation

transport in the star modifies it even further.
In the context of stars, we gain the knowledge that the rough shape of the stellar spectrum
itself, including the position of the emission maximum, is a good indicator for temperature
estimation, which is one of the most fundamental parameters to be derived in spectral
analysis.
Furthermore, the continuum of a stellar spectrum can be modified by interstellar matter
(ISM) in the line of sight to the star. Since absorption in the ISM increases from the IR to
the UV, the star appears to have an increasingly strong IR excess, as the columns density
of ISM in the line of sight increases. This effect, simply called interstellar reddening, is
described in more detail in Sec. 2.7.

1.1.2 Spectral lines

Figure 1.2: Low resolution spectrum of Vega, illustrating the drop in intensity at specific wavelengths.
The most prominent lines are the Balmer lines of the hydrogen atom. From http://www.kcvs.ca/.

Another feature visible in the spectrum of stars are spectral lines, typically in absorption.
That means that at specific wavelengths the intensity drops as illustrated in Fig. 1.2. This
is due to atoms being able to absorb photons at specific wavelengths - or energies. In these
cases, transitions can be triggered in the atom resulting in a higher energy state. The new
energy state is instable. If the electron jumps again to a lower energy level, a photon of the
same wavelength can be emitted again. The time scales of this process are on the order
of ∼ 10−8 s. However, there may also be intermediate energy states allowing the atom to
emit more than one photon with different energies at different times. These processes yield
the atmosphere of a star to become non-transparent for wavelengths where absorption is
possible and therefore, absorption lines are not ’refilled’ again - they become observable.
The energy of each transition and therefore the line wavelength is different for each element.
Thus, analyzing spectral lines yields information about the composition of the star. Since
the mean free path for photons in the stellar plasma of the kind of star under study is
on the order of 200000 km or less, only the composition of the stellar atmosphere can be
observed in the spectrum.
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1.1.3 Modification of the stratification of spectral lines

Spectral lines appear to be not as sharp as the natural line width due to the finite lifetime
of the excited state suggests. Three effects mainly increase the width of a spectral line.

The most significant broadening of spectral lines is due to thermal motion of the atoms in
the stellar atmosphere. Hence, atoms have different velocities with respect to the observer
and a particular emission wavelength appears to be smeared. This effect is called Doppler
broadening and yields a broadening with a Gaussian profile which depends on temperature
and atomic weight. In units of velocity, this effect typically yields a broadening on the
order of

vd =

√
2kT

m
≈ 13

(
T

104K

) 1
2

km s−1 (1.4)

Gravity and therefore the density of a star has also a direct influence on the shape of
spectral lines. The more dense and compact the star, the higher the gravity log g on the
surface. Due to the higher density, electric fields gain more strength. In the rapidly varying
electric fields created by neighbouring electrons and ions, the emission lines of atoms are
shifted and split up into different energies. This effect, called Stark broadening, is most
visible in strong lines, for instance the Balmer series and strong helium lines. However, the
splitting of lines due to the Stark effect is never observed because of the rapid and locally
different changes of the electric field in orientation and strength. The emitted photons of
one transition can be emitted at slightly different wavelength (they are red or blue shifted)
and the line appears broadened. This effect is superimposed to the Doppler broadening
and, hence, the lines visible in the spectrum of stars with higher surface gravity are further
broadened. The Stark effect can be interpreted as the electromagnetic analogue to the
Zeeman effect, which describes the splitting of spectral lines in magnetic fields. It can
be used to determine the surface gravity and therefore the compactness of a star. The
atmospheric broadening of a spectral line can be described by a Voigt profile, which is the
convolution of a Gaussian and a Lorentzian profile where the latter one describes Stark
broadening.

As a side note, gravity also affects the intensity of the Balmer jump. This is in general also
dependent on the temperature and serves as a good cross-check.

Intrinsic rotation of the star also has an impact on the shape of spectral lines and yields
rotational broadening. Observing a rotating star means, we see one half of the star
approaching us while the other half of the star is receding. This range of regions with
different radial velocities on the surface accumulates to broad spectral lines, which can -
depending on the rotation velocity of the star - even dominate the Doppler broadening
of its spectral lines. The functions which describe rotational broadening have a parabolic
shape. They can be rather complex and also depend on other effects like limb darkening.

Of course, all three effects, atmospheric, rotational and Doppler broadening can occur in
addition. However, since the shape of the broadening is different in each mechanism they
can be distinguished from each other and decomposed using line fitting techniques.
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1.2 The nature of hot subdwarf stars

Hot subdwarfs are a unique and somehow peculiar class of stellar objects. From a photo-
metric point of view, hot subdwarfs are similar to typical O- or B-type dwarf stars, which
are burning hydrogen on the main sequence. However, hot subdwarf (sdB, sdO) stars are
fainter than typical dwarf stars and therefore named subluminous. The first detection of
these subluminous objects was reported by Humason & Zwicky (1947) in a survey of the
north Galactic pole region while looking for new white dwarf candidates. Many stars in
their sample did not show the typical white dwarf features in their spectra, for instance
wide but shallow absorption lines, but rather looked similar to normal O or B-type dwarfs -
spectroscopically as well as in photometry. The estimated distances under the assumption
that these objects are ordinary dwarf stars, exceeded 27 kpc. The puzzling mystery at
observing these stars at high galactic latitudes was, that massive stars need dense gas
clouds to form in. Star forming regions are mostly found in the Galactic disk and especially
along the spiral arms. Ejecting stars from there up to high galactic latitudes and huge
distances within their relatively short lifetime requires them to travel extremely fast. Since
this extreme motion was not observed Humason & Zwicky (1947) concluded that these
objects must be closer than expected and therefore fainter than dwarfs. When Greenstein
& Sargent (1974) determined surface gravity and temperatures of 189 blue halo objects in
the Galactic pole region, their place in the Hertzsprung Russel diagram (HRD) became
clear (see Fig 1.3).
Note that hot subdwarfs must not be confused with the cool subdwarfs, another species of
stars located directly below the main sequence. Cool subdwarfs are low metalicity main
sequence stars, shifted to the blue part of the HRD. The lack of metals causes a lower
opacity in the outer layers, decreasing the radiative pressure and therefore resulting in a
somewhat bluer and more compact star than its normal metalicity sibling.
The cool subdwarf stars are hence core hydrogen burning stars, whereas hot subdwarfs burn
helium, are located on the extreme end of the horizontal branch and are not associated
to a somehow special main-sequence population. The extreme horizontal branch (EHB)
furthermore divides into 2 different populations, sdB and sdO stars. Note, that most of
the sdO stars have already evolved beyond the EHB and are on the white dwarf cooling
sequence. The following section deals with their importance for astronomy in general and
their special properties is discussed in Sec. 1.2.2.

1.2.1 The importance of hot subdwarfs

The hot subdwarf stars received public interest as Green et al. (1986) showed that this
species of faint blue stars does not seem to be a rare occurrence. They found, that especially
sdB stars are the most prominent class of objects in their sample of 1715 objects (∼ 40 %).
sdO stars (∼ 13 %), compared to DA white dwarfs (∼ 21 %), also seem to be common.
Note, that DA white dwarfs are white dwarfs with hydrogen dominated atmospheres, which
make up the majority of all white dwarfs (Zhang et al., 2013).
The hot subdwarf population also seems to be a solution for the UV flux excess first observed
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Figure 1.3: Hetzsprung Russel diagram (HRD), illustrating the position of the sdB and the sdO population.
Note, that the nature of cool subdwarfs is completely different compared to the hot subdwarfs. Taken from
Heber (2016).

in elliptical galaxies in 1969. Han et al. (2007) carried out evolutionary population synthesis
and were able to explain the excess with an old population of helium burning stars, similar
to the subdwarf population in our Galaxy. Podsiadlowski et al. (2008) have also shown
that assuming a similar number density of these stars in elliptical galaxies is enough to
explain the mysterious excess in the UV without other assumptions. This fact shows, that
hot subdwarfs don’t seem to be rare, but rather common.

However, the origin of hot subdwarfs is still wrapped in mystery, but during the last decades
several scenarios have been investigated in detail and a consistent picture emerges. The
fundamental question is the connection to stellar evolution: Which role do hot subdwarfs
play? A major hint came from the identification of hot subdwarfs with helium burning
stellar models. Heber & Hunger (1984) demonstrated the connection to the extended
horizontal branch (HB) in the Teff − log g-plane. This type of diagram is also known as
the famous Kiel diagram (see Sec. 1.2.2.2).
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1.2.2 Classification and observations

1.2.2.1 Spectra

A few attempts have been made to classify subdwarf stars in a way similar to the spectro-
scopic Morgan–Keenan (MK) classification of normal stars. The most detailed classification
has been published by Drilling et al. (2013), but is not generally established in literature
yet. They suggested to introduce a helium class, in addition to the spectral and luminosity
classes known from the MK system. Details of the spectral classification are given in Tab.
1.1.

Type Fine type Luminosity class Delimiter Strength of He lines comp. to H
sdO/sdB 0-9.5 I-VIII : 0-40

sdOC 1 VII : He40

Table 1.1: Spectral classification of hot subdwarfs, proposed by Drilling et al. (2013), the second row
shows the ranges of the classification itself and the row line gives an example.

Figure 1.4: Comparison of the standard HRD
(top) and the Kiel diagram (bottom), both showing
the H and He main sequences and the horizontal
branch, from Hunger & Heber (1987).

The spectral type is subdivided into sdO and
sdB stars. An additional ’C’ is appended, if the
star is rich in carbon and a subtype is indicated
by a number 0 < subtype < 10, followed by
a luminosity class and a delimiter ’:’. Up to
this point, everything is somewhat familiar,
because the definition is very close to the MK
system. Additional information about the He
abundance is encoded in the last part. The
number given there must be between 0 and 40
and is a measure for the line strength ratio of
He lines compared to Balmer lines.

1.2.2.2 Kiel diagram

Classifying stars with the use of the HRD suf-
fers one ambiguity: In order to derive the ab-
solute luminosity of a star either the distance
or the radius1 of a star needs to be known.
Especially when dealing with exotic objects,
like hot subdwarfs, both parameters could in
most cases not be measured directly.
Only showing parameters which could be di-
rectly inferred from spectroscopy is a natural solution to this problem. Therefore, a new

1Since L = 4πR2 · T 4
eff , if the temperature is known for instance via spectroscopy, the absolute luminosity

of a star could be determined, if its radius R is known e.g. if eclipses are observed.
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diagram was introduced by Albrecht Unsöld2, professor at the university of Kiel from 1932
to 1973, as spectroscopy evolved to quantitatively reliable results. The diagram was called
Kiel diagram afterwards and shows the effective temperature Teff versus the surface gravity
log g. It can be interpreted as an advanced or specialized version of the HRD, containing
almost the same information. A graphical comparison between both diagrams is given in
Fig. 1.4, which is taken von Hunger & Heber (1987). In this publication, a good discussion
about the Kiel diagram in comparison to the HRD is given. An example of a sample of hot
subdwarfs, plotted into a Kiel diagram is shown in Fig. 1.6.

1.2.3 The evolution of hot subdwarf stars

Figure 1.5: Stellar evolution according to the canonical picture for a 1 M� star. Graphic taken from
www.atnf.csiro.au/outreach//education/senior/astrophysics/images/stellarevolution/hrsunplannebwd.jpg.

2Albrecht Unsöld was one of the pioneers in quantitative spectroscopy of stars, considering quantum
mechanical processes in their atmospheres; https://de.wikipedia.org/wiki/Albrecht Unsöld, effective
19.01.2016
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Canonical stellar evolution, as depicted in Fig. 1.5, suggests that intermediate mass stars,
after their hydrogen burning phase on the main sequence, evolve to the top right corner of
the HRD. Since the hydrogen burning shell moves outward and in the center of the star a
helium core forms, the star expands with decreasing effective temperature, thus emitting
more in the red part of the spectrum. This evolutionary status is called red giant phase
and the corresponding position in the HRD is called red giant branch (RGB). Igniting the
helium core under degenerate conditions results in a run-away process, called the helium
flash. Afterwards the star settles again on a sequence which is called the Horizontal branch
(HB) due to its orientation in the HRD (see Fig. 1.3). HB stars are powered by a helium
burning core surrounded by a hydrogen burning shell. The core mass amongst HB stars is
almost identical, since the helium flash occurs at the same core mass, irrespective of the
total mass of the star for masses less than 2.3 M�. However, the masses of their hydrogen
envelopes may differ, which explains the position of a particular helium burning star on the
HB. Stars with less massive envelopes are found at the blue end of the EHB. As stated
before, in the canonical picture, the star has now a helium burning core, surrounded by
a hydrogen burning shell, causing a raise in luminosity and a shift to the red end of the
HRD as the C/O core grows. This is called the asymptotic giant branch (AGB). At the
extreme blue end of the HB, the EHB, the hydrogen envelope is far too thin to sustain H
shell burning, which means that the star cannot undergo a standard AGB shell burning
phase. The temperature of the star increases over time and it is entering the white dwarf
cooling track, as HE burning terminates. According to Heber (2009) only very few complete
calculations of evolutionary tracks are available. Especially the helium flash is not covered
in most cases. Tracks covering the phase from the zero-age main sequence to the zero-age
horizontal branch can be found in Serenelli & Weiss (2005). Post-EHB evolution tracks are
depicted in Fig. 1.6.

Figure 1.6: Sample of hot subdwarf sample from the Supernova Ia Progenitor Survey (SPY, Lisker et al.
(2005), Stroeer et al. (2007)). Evolution tracks for different masses of hot subdwarfs computed by Dorman
et al. (1993). Plot taken from Heber (2009).
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1.2.4 How to form hot subdwarfs

Several scenarios have been proposed to explain the high mass loss of almost the complete
hydrogen envelope. This process must have taken place prior or at the beginning of the core
helium burning phase. Due to the high fraction of binaries amongst hot subdwarf stars,
interactions with a companion are thought to be important for their formation. However,
also single star scenarios have been proposed. These scenarios are discussed in Heber (2016)
and will be summarized in the following.

1.2.4.1 Interacting binary evolution

As one star of a binary system comes close to the RGB, it expands significantly. In this
evolutionary phase, it can fill its Roche lobe3 and therefore loose matter to its surrounding.

a) Common envelope phase If the mass loss rate is sufficiently high, a common envelope
(CE) forms. Due to friction of both components with the gas in the CE, a spiral in takes
place, causing the separation between both components to shrink. At the same time, orbital
energy is transferred to the CE, yielding an ejection of the CE. The core of the former
RGB star forms the subdwarf. The resulting periods are expected to be between 0.1 and 10
days. This scenario nicely explains the fraction of close binaries amongst subdwarfs (see Sec.
1.3.1). If the companion subsequently also reaches the RGB, a second CE phase can yield
the formation of a sd + WD binary. Therefore, the existence of high mass companions is
indeed expected. However, the physical processes occuring during the CE phase are poorly
understood.

b) Roche lobe overflow If the mass loss rate is not high enough to form a CE, Roche lobe
overflow (RLOF) is triggered. This means material is slowly transfered to the companion
and then accreted. This scenario was first proposed by Webbink (1984). Binary population
synthesis conducted by Chen et al. (2013) showed, that - if considering not only standard
RLOF, but also atmospheric RLOF - long period binaries with periods up to 1100 days can
evolve this way. However, there is a discrepancy, since periods ranging from 700 to 1300
days have been observed by Vos et al. (2012). If subsequent to the RLOF evolution, a CE
phase takes place, sd + WD binaries can also form in this formation channel. A graphical
overview concerning the outcomes of the CE and the RLOF channel is given in Fig. 1.7.

c) WD merger The orbits of two helium white dwarfs shrink in close binaries over time
due to gravitational wave radiation. As it comes to a merger, they are thought to form
a hot subdwarf star under special circumstances. Indeed, several progenitor systems are
known up to now, which will merge in less than the Hubble time. This scenario could
help to explain the existence of single subdwarfs. However, the drawback is that only a
few of these systems are known up to now. They can not account for all single subdwarfs

3The Roche lobe describes the region around one component of a binary system, where material is still
gravitationally bound to the star.
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Figure 1.7: Schematic overview over different binary formation channels. a and b produce short period
binaries, while c produces long period binaries.

observed. Furthermore, the mass range of the merger product is not restricted to the
canonical mass of the subdwarfs, which is 0.48 M�. Unlike predicted by the merger scenario,
masses derived from astroseismic analyses of pulsating hot subdwarfs are distributed in an
extremely narrow range around this value.

1.2.4.2 Single star evolution

a) Helium mixing During the red giant phase the outer envelope is convective while the
convection zone varies in depth during this phase. Convection of the outer envelope can
reach as deep as the hydrogen burning shell, yielding helium to be mixed into the outer
layers of the star. Hydrogen is transported down from the stellar envelope into deeper
regions and is burnt there while the surface gets He enriched. However, usually there is
no such deep penetration, because convection is inhibited by a barrier due to the different
composition of the stellar layers. Special conditions are necessary to overcome this barrier.
This scenario was investigated by Tailo et al. (2015). There are also some contradictions
with theory, especially concerning the coupling of the different stellar layers (Heber, 2016).
However, rapid rotation can help to solve them and different rotation rates of the hot
subdwarf can explain different positions on the EHB.
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b) The hot-flasher scenario Typically, the He core flash occurs at the tip of the RGB
(see 1.2.3). However, Castellani & Castellani (1993) found that if enough mass is lost before
reaching the tip of the RGB the He flash might occur later while the star is already on the
way to the WD cooling sequence. Brown et al. (2001) found that the remnants of these
so called hot flashers are located close to the extreme end of the HB. During the flash a
convection zone evolves due to the high luminosity. This, again, leads to mixing. The exact
evolution depends sensitively on when the He flash occurs. One typically distinguishes
between the early and the late flashers. The general rule is that the later the flash occurs,
the more He, N, and C can be observed in the atmosphere due to deeper mixing. N becomes
visible in late flashers while C is only observable in the very late ones. See Miller Bertolami
et al. (2008) for details and stellar evolution tracks.

1.3 Hot subdwarfs in binaries

A large fraction (∼ 50%) of subdwarfs is found in binary systems, which is not surprising
since the most plausible formation scenarios involve binary evolution. Observationally,
there seem to be two different binary populations amongst subdwarfs. The binaries can
either be very close (P < 30 d) or wide (P ∼ 1000 d) with a gap between 30 and ∼ 500 d.
Both types of binaries will be discussed in the following.

1.3.1 Close binaries

As Maxted et al. (2001) found that almost 70 % of the sdB stars in their sample show radial
velocity (RV) variability with periods less than 10 days, further RV surveys were triggered.
For instance, Morales-Rueda et al. (2003) increased the sample of close sdB binaries with
solved orbital parameters to 38 and Copperwheat et al. (2011) solved 18 new systems and
provide radial velocity measurements of 108 further subdwarf stars. The most famous survey,
the MUCHFUSS (Massive Unseen Companions to Hot Faint Underluminous Stars from
SDSS) survey, revealed 1100 subdwarf candidates from the SDSS (Sloan Digital Sky Survey)
of which 127 are RV variable4 In such close binaries, showing variability on scales down to
hours, massive companions (white dwarf, neutron stars and black holes) can be expected
(see Section 1.2.4.1). However, in the course of the MUCHFUSS project, Geier et al. (2015)
did not find any neutron star or black hole companions, which constrained the fraction of H
rich hot subdwarfs with massive companions to be less than 1.3 %. This is consistent with
theoretical binary synthesis. (Yungelson et al. 2005; Geier et al. 2010; Nelemans 2010).
Furthermore, most formation channels described in 1.2.4 are only possible in close binaries,
making these close subdwarf systems plausible outcomes of stellar evolution.

4The MUCHFUSS project also revealed about 20 He-sdOs which show significant RV variability (Geier
et al., 2011). The reason for this variability remains unknown, they may not be binaries.
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1.3.2 Wide binaries with composite spectra

Another binary population of hot subdwarfs has been investigated in more detail. Long
period binaries with orbital periods on the order of 1000 days were explored during the
last years. 20 - 30 % of the subdwarf population show composite spectra, meaning, that
not only the subdwarf (sd) but also its companion star is visible in the spectrum. The
companion is identified to a be a F/G/K star. The sample may, of course, be contaminated
by a selection bias. In order to see a composite spectrum in the optical, the flux ratio of the
stars have to match, which is the case in sd + F/G/K systems. Otherwise one component
dominates the optical spectrum by far and the second component my not be visible.

The problem in analyzing these long period systems is, that because of low radial velocity
shifts a significant coverage of the orbit with high resolution is needed to determine orbital
parameters with good accuracy. This requires much observation time. In 2013, 3 sdB +
MS systems were solved by Vos et al. (2013) and periods were found between 700 and 1300
days. The subdwarfs in these wide systems seem to form a totally different population,
since they challenge the binary evolution channels (see Sec. 1.2.4). Interactions between
both components via stable RLOF are possible up to periods of 1100 days only, of course
depending on the model. Also some details in the simulations don’t match the observations.
Which mechanism is responsible for the red giant to loose almost its entire envelope?

If stable RLOF takes place, the orbits are expected to be circular after this phase of stellar
evolution. Surprisingly, Vos et al. (2012) and Barlow et al. (2012) both found evidence
that there also seem to be systems which have unexpectedly large eccentricities e > 0.1.
Phase dependent RLOF is considered to be capable to produce such high eccentricities
(Vos et al., 2015). However, for shorter periods and therefore smaller orbital separations,
the eccentricities are observed to be low while phase dependent RLOF models tend to also
produce high eccentricities at lower orbital separations. More theoretical effort is needed to
solve this discrepancy.

As previously pointed out, progress in the examination of the population of wide subdwarf
binaries is only made very slowly, since a decent coverage of the orbit is necessary to derive
orbital parameters. However, in order to address questions like to which stellar population
these binaries belong to (e.g. the halo or the disk population) the knowledge of the orbits
is not required. Since diffusion processes have altered the chemical composition of the
atmosphere subdwarf stars do not show any characteristics in their spectrum which may
allow to draw conclusions about the stellar population they are associated to. However,
in F/G/K + sd binaries the cool companion still maintained its initial composition in its
atmosphere. In some cases, if the fluxes of both the subdwarf and the companion are almost
equal, a composite spectrum may allow to directly see spectral lines which originate from
its cool companion. Measuring its metalicity, for instance, helps then to have a clue on the
formation of those systems. The main goal of this work is to find atmospheric parameters
and therefore disentangle sd + F/G/K systems.

Most published investigations are restricted to photometric methods. Girven et al. (2011)
modelled, starting from the spectral energy distribution (SED) of synthetic spectra, the
outcome of photometric measurements of the corresponding stars. They used this, to fit
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SDSS photometry with their models in order to find DA white dwarfs with companion.
One advantage of this method compared to disentangling the whole spectrum is the good
availability of data from photometric surveys. Furthermore, the calculation times are fast
because there are only few photometric data points. Therefore, the SED-fitting method
is suitable for huge samples. The downside is that photometry can only very poorly
constrain parameters like surface gravity or element abundances. However, combining the
two approaches allows to hunt for interesting objects in huge samples using SED-fitting,
and then analyzing the interesting objects in more detail using spectral fitting. Currently,
Johannes Schaffenroth and Andreas Irrgang work on the SED fitting routine, which will
work in close collaboration with the spectral disentangling code developed in the course of
this thesis.
A similar spectroscopic approach like in this work was published by Németh et al. (2012).
They disentangled spectra of 29 binary systems by quantitative spectral analysis of their
optical spectra for both stars simultaneously. They computed their own non-LTE models for
hot subdwarfs and found A,F and G type companions. In the meantime, more sophisticated
models for subdwarf atmospheres became available, which was the main driver for this thesis
to follow a similar approach. In contrast to this project, Németh et al. (2012) calculated
their synthetic subdwarf spectra on the fly. Here, pre-calculated libraries will be used
to speed up the calculation time. Another difference is that in the former project the
spectra have been normalized to arbitrary flux units. In this work, physical units are used
throughout the whole data analysis allowing to put physical constraints or constraints from
other measurements on the parameters. Furthermore, this project is targeting spectra from
SDSS. These spectra cover a broad wavelength range from the UV to the IR, depending on
the spectrograph (see Sec. 1.4). They also provide a reliable flux calibration, making it
possible to deal with absolute physical values. Using the flux calibration and linking the
surface gravities and masses of both components allows to put stronger constraints on the
parameters (see Sec. 2.5.2). Furthermore, SDSS removes telluric lines, which are originating
in earth’s atmosphere and especially present in the IR. The science-ready properties of
SDSS spectra and the nature of the method chosen for the disentangling in this work is as
simple as possible but as sophisticated as needed. Therefore, this approach is expected to
produce reliable values within a relatively short amount of calculation time.

1.3.3 Composite spectra

Since dealing with binary spectra is a central aspect of this work, we shall have a closer look
at them. Dealing with spectra of binary systems where each star is totally different from its
companion has some special characteristics. In the case of sd + F/G/K binaries the most
obvious property is the huge difference in temperature. According to Wien’s dispacement
law (Eq. 1.2) the temperature shifts the emission peak in the spectrum. Fig. 1.8 shows a
large part of the spectral energy distribution of a sdO + G5III binary. The temperature of
the sdO is around 58500 K, which implies that its emission maximum is located in the UV.
Its MS companion has a temperature of 5270 K, hence, its maximum is in the optical. In
the region between 3000 and 5000 Å the fluxes are on the same order of magnitude. This
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Figure 1.8: Spectral energy distribution of a sdO + G5III star (model spectra). The emission maxima
are in the UV (sdO) and optical (G5III), respectively. The existence of a region in the optical where fluxes
are almost equal allows to see lines of both stars simultaneously. The transmission function of B,V J and
R filter are depicted in grey. The region, where the contribution to the total flux of the binary is almost
equal from both components and the decomposition of the binary obtained by model fitting is depicted
seperately in the box in the top right corner. Lines from the sdO as well es from the MS star are visible in
this region. From Németh et al. (2012).

allows to observe lines from the sdO as well as from the cool companion.
Fig. 1.9 shows the observed spectrum of a sd + G binary. In addition to the strong helium
features, lines that must originate from a cool companion are visible. Since the subdwarf
is typically poor in hydrogen its companion contributes significantly to the H lines even
though it may be much fainter. In addition, a magnesium triplet around 5170 Å and a
calcium triplet in the IR are visible, which are not observed in single subdwarfs. The
G-band around 4300 Å, a CH absorption band in K and a blend of iron group lines in G
and F type stars, is an additional persuasive hint on the presence of a cool companion.
The Ca II H+K lines at 3968 Å and 3933 Å are likely to be contaminated by interstellar
matter. In order to be able to analyze both stars simultaneously, a good measure for each
of the companions should be visible in the spectrum. This means, it is by far easier if the
spectrum shows lines which originate from one of the stars only. All these important lines
are summarized in Tab. 1.2.
The question might arise, whether it is easier to look at both stars separately via taking a
UV and an IR spectrum of the object of interest, because in these regimes one of the stars
dominates by far. This might allow a separate analysis. However, spectra in the near-UV
and near-IR might still show contamination from the second component. Furthermore,
it is impossible in UV and very difficult in the IR to take spectra from ground, since

5http://physics.nist.gov/
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F/G/K star sdB/O both

λ [Å] Transition

3933.7 Ca II K-line*

3968.5 Ca II H-line*

4226.7 Ca I

4290-4310 G-Band

5167.3 Mg I triplet

5172.7 Mg I triplet

5183.6 Mg I triplet

5890.0 Na I*

8498.0 Ca II triplet

8542.1 Ca II triplet

8662.1 Ca II triplet

λ [Å] Transition

4026.2 He I (sdB)

4101 H+He II

4200 He II (sdO)

4340 H+He II

4471.5 He I (sdB)**

4541 He II (sdO)

4685.7 He II (sdO)

4713.1 He I (sdB)

4861 H+He II

4922 He I (sdB)

5015.7 He I (sdB)

5875.6 He I (sdB)**

6678.2 He I (sdB)

λ [Å] Transition

3835.4 Balmer series

3889.0 Balmer series

3970.1 Balmer series

4101.7 Balmer series

4340.5 Balmer series

4861.2 Balmer series

6562.7 Balmer series

8662 Paschen series

8748 Paschen series

8860 Paschen series

9012 Paschen series

9226 Paschen series

9543 Paschen series

10046 Paschen series

10935 Paschen series

12814 Paschen series

18745 Paschen series

*Interstellar component may be present
**Also in sdO stars if not extremely hot (. 80000 K)

Table 1.2: Important lines in the spectra of sd + F/G/K binaries. Helium lines occur mostly due to the
subdwarf’s atmosphere, whereas the MgI and CaII tripletts originate from the MS star. Wavelengths are
from NIST database5 and Drilling et al. (2013).
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Figure 1.9: Observed spectrum of candidate SDSS J1351-0801 taken from SDSS. Lines that are a hint on
the presence of a cool companion are marked.

Earth’s atmosphere is absorbing radiation in these spectral regimes, leaving space telescopes
or difficult and sophisticated corrections as the only options. Of course, ground based
spectroscopy is much more cost efficient and it is much easier to obtain high resolution
spectra in the optical from ground. This justifies the technical effort which must be put in
the disentangling of these spectra. The disentangling-problem is addressed in this work.

1.4 The Sloan Digital Sky survey

The Sloan Digital Sky Survey opens a treasure chest full of data to astronomers. This
survey uses a 2.5m telescope at the Apache Point Observatory, New Mexico. It contains
photometric data for objects on one fourth of the sky down to 20 mag and fainter, originally
aiming for high-redshift galaxies. SDSS publishes the data in form of data releases, the
current data release is DR12. Objects for spectroscopy are chosen based on the photometric
data and spectra with multifibre spectrographs are taken. For each selected object, 3 x
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15 min exposures ensure a good signal to noise ratio for the spectrum. Blue stars may be
similar to galaxies from a photometric point of view meaning that they are often selected
for spectroscopy because measuring galaxy redshifts was the main goal of SDSS. Therefore,
the survey database contains many spectra of blue stars.
The former SDSS spectrograph was replaced by a similar but more advanced instrument,
the BOSS spectrograph, from DR9 on. Spectra from the SDSS spectrograph are, of course,
still available. The characteristics of both instruments are summarized in Tab. 1.3. The
given resolution should be taken with care, because it is only a rough number. There is
a complex wavelength and fibre dependence which is discussed later in detail (see Sec.
4.2). As discussed before, SDSS provides flux calibrated spectra, also corrected for telluric
absorption lines.

Feature SDSS BOSS

Fibers per plate 640 1,000

Fiber diameter 3 arcsec (180 µm) 2 arcsec (120 µm)

Wavelength coverage 3800-9200 Å 3650-10400 Å

Resolution both: 1500 at 3800 Å, 2500 at 9000 Å

Wavelength calibration < 5 km s−1

Table 1.3: Technical specifications of BOSS and SDSS spectrograph. BOSS is used since data release 9.
The resolution is given in λ

∆λ . It is a rough number only, because it depends on the fibre. From SDSS
Website6.

6http://www.sdss3.org/dr9/spectro/spectro basics.php
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• Hot subdwarf stars are core helium burning stars on the horizontal branch.
They subdivide into sdB and sdO stars, which look similar to B and O type
main sequence stars from a photometric point of view, but are much fainter.

• Hot subdwarfs stars challenge current stellar evolution models. Binaries
consisting of sd + G/F/K and sd + WD are easy to explain with binary
evolution. However, the number of single subdwarfs observed is too high to
match binary population synthesis predictions.

• The challege in forming hot subdwarfs is to get rid of almost the complete
hydrogen envelope of the star. Binary evolution including mass transfer
mechanisms like Roche lobe overflow and common envelope phases are
promising formation scenarios. Also mixing inside the star itself can explain
the highly He dominated atmosphere, but require special physical conditions
for efficient mixing.

• Wide binaries sd + G/F/K with composite spectra have been investigated
in the last few years. Their orbits were solved and revealed unexpected
high eccentricities and orbital periods of 700-1300 days, which is right at
the boarder to be compatible with the RLOF channel of binary population
synthesis.

• The spectrum of sd + G/F/K binaries shows in the optical lines from both
stars. Thus, this part of the spectrum can therefore be used to derive atmo-
spheric parameters. The knowledge of the metalicity of the cool companion
for instance allows the association of the binary to a specific population.

• SDSS contains many spectra of blue stars. The data is science-ready (flux
calibrated, corrected for telluric absorption lines). The disentanglement of
SDSS spectra is the aim of this project.

Summary



2 The procedure

This section describes the way from the first idea, the development of the procedure itself
to the final code.

2.1 Project Outline

As previously discussed, this work’s targets are sd + F/G/K binary systems - in particular
the determination of atmospheric parameters for both components from optical spectra.
The motivation of starting this project was the availability of spectra from the SDSS for
a list of stars likely to be subdwarfs. Kreuzer (2013) studied a sample of faint blue stars
which did neither correspond to the position of the main sequence nor to the horizontal
branch (see Fig. 4.3). They showed a strong redshift in a color-color plot. As interstellar
reddening could be excluded (for detailed discussion see Sec. 4.2), the only reasonable
remaining option was the presence of a cool companion which may provide additional flux
in the IR. Visual inspection of their spectra showed indeed the presence of low ionisation
lines which cannot originate from the subdwarf but are found in F/G/K stars. But how to
disentangle the composite spectra and find the contribution of each star to the combined
flux?
Let us have a look on how the observed spectra are produced by nature: A binary system
has two sources of radiation which are not resolvable from earth and therefore look like a
single source in the spectrum. Each star produces its own emission flux, F1 and F2. Since
fluxes are normalized energies (and do for instance not scale in a logarithmic form, like the
magnitude scale), they get simply added for large distances:

Fcomposite = F1 + F2 (2.1)

Fig. 2.1 illustrates this in terms of their spectra. Of course, reddening due to the interstellar
medium is ignored here. The code which is developed in the course of this thesis should have
the capability to disentangle the composite spectrum again in order to find the contribution
of each single star to the combined flux. It searches for the combination of atmospheric
parameters for the hot subdwarf and its companion which reproduces the observed spectrum
best. This is done by using basic fit techniques, which are described in Sec. 2.5. In order
to be able to go the same steps as nature in producing a composite spectrum, a library of
pre-calculated spectra is needed for each, the subdwarf and the cool companion. These are
discussed in Sec. 2.2.
Since the aim of this project is comparably specific, the code is developed from scratch in
C++ following object oriented principles. However, the code should also have some flexibility.
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SD-spectrum + companion-Spectrum = observed spectrum

Figure 2.1: Nature produces the observed spectrum by just adding up the flux contributions of each star
in a binary. The code developed in this work tries to disentangle the composite spectrum again in order to
find the atmospheric parameters of both stars.

Even though it will not be tested in the course of this project, the code should have the
capability to disentangle all kinds of binaries based on their spectra in all spectral ranges -
as long as suitable libraries are provided. Technical details concerning the implementation
and the memory management are discussed in Sec. 2.8.

2.2 Spectral libraries

Spectral libraries (also called grids) are needed in order to be able to calculate a spectrum
for a given combination of parameters. They consist of pre-calculated synthetic spectra
which cover a large part of the physically possible parameter space. In the ideal case, the
grid looks like an n-dimensional array of spectra, where n is the number of parameters
which are varied and can therefore be fitted using this grid. A suitable grid should fulfil
the following properties as good as possible:

• A grid should have at least the resolution of the observation which is to be fitted.
Otherwise, information contained in the observed spectrum is wasted.

• The wavelength coverage of each single spectrum in the grid should be at least the
same of the observed spectrum. Otherwise, also information is wasted.

• The grid points should be as close as possible to each other in order to have a template
available close to any combination of parameters.

Of course, the available memory for storing the grid and the CPU power for calculating the
grid are the limiting factors. This makes it necessary to find a good trade-off between the
above mentioned points and hardware availability.
In order to be able to fit a binary system, two different grids - one for each component -
are needed. Both grids already include the effect of atmospheric broadening described in
Sec. 1.1.3 which is necessary to distinguish between different temperatures and surface
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gravities. The model grids which came into question for this work are briefly discussed in
the following.

2.2.1 non-LTE TLUSTY/SYNSPEC subdwarf grid

This subdwarf grid was calculated by Nemeth et al. (2014). It covers the whole parameter
space observed for (He-)sdBs and (He-)sdOs. Nemeth et al. (2014) used the code TLUSTY,
developed by Hubeny & Lanz (1995) for calculating their model atmospheres and SYNSPEC
(Hubeny & Lanz, 2011) for the determination of the synthetic spectra.
The grid assumes pure H/He composition of the subdwarf and is calculated in opacity
sampling mode. This means that the equation of radiative transfer is only solved for
particular wavelengths of interest, in contrast to the treatment via opacity distribution
functions. The models also account for non-LTE effects and consider Stark broadening of
hydrogen lines. The wavelength range spans from 3120-7520 Å and thus does not allow
for using the CaII IR triplet mentioned in Tab. 1.2 in the fits. The parameters and
corresponding step sizes of the grid are summarized in Tab. 2.1. The overall library has a
size of 8.5 GB.

parameter lower limit stepsize upper limit

λ [Å] 3120 0.01-0.25 7530

Teff [K] 20000 1000 56000

log g [cgs] 5.0 0.1 6.3

nHe/nH 0.0005 ×2 100

Table 2.1: Parameters and the corresponding ranges covered by the TLUSTY /SYNSPEC grid calculated
by Nemeth et al. (2014).

2.2.2 PHOENIX library

An extensive grid of PHOENIX stellar atmospheres and spectra was calculated by Husser
et al. (2013). These high resolution spectra span the whole parameter range observed
for F/G/K stars and more. One of the advantages of this library is the huge spectral
coverage from 500 Å to 5.5 µm, which makes it suitable for a huge variety of applications,
including SED fitting. All spectra are available in an outstanding resolution (R =500000 in
the optical, R =100000 in the IR). In order to shift the wavelength scale from vacuum to
air wavelengths, the formula from Ciddor (1996) was used. The grid covers all physically
possible combinations of the parameters given in Tab. 2.2. Up to now, it consists of 50000
synthetic spectra, making it a state-of-the-art spectral library. The overall size of the grid
(in ASCII-files) is 134 GB.
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parameter lower limit stepsize upper limit

Teff [K] 2300 100 700

Teff [K] 7000 200 12000

log g 0 0.5 6.0

log [Fe/H] -4 1.0 -2

log [Fe/H] -2 0.5 +1

log [α/Fe] -0.2 0.2 +1.2

Table 2.2: Parameters and the corresponding ranges covered by the PHOENIX grid (Husser et al., 2013).

2.3 Interpolation in spectral grids

The grids consist of stellar spectra, arranged in a regular pattern in parameter space. In
order to be able to fit the parameters to a higher precision than the step size of the grid,
two options remain: Either calculate the required synthetic spectra on the fly (like Németh
et al. (2012)) or use an interpolation method to determine the spectrum from surrounding
grid nodes. The first option requires much more calculation time because not only one
synthetic spectrum has to be calculated in each step, but two of them are required for a
binary fit. Therefore the second method is preferred in this work. The interpolation will be
done in a linear way. For each star, three parameters can be determined, which means that
the interpolation needs to be implemented at least in three dimensions.
Recall the standard linear interpolation in one dimension as illustrated in Fig. 2.2. Suppose,
the values of a function f(x) are known at points x0 and x1. In order to estimate the value
of f(x2), if x0 ≤ x2 ≤ x1 holds, the linear interpolation is feasible using the equation

f(x2) = f(x0) +m · (x2 − x0) (2.2)

where the slope m can be written as

m =
f(x1)− f(x0)

x1 − x0

(2.3)

Replacing m in Eq. 2.2 by the expression 2.3 and simplifying it yields an equation which
can be evaluated numerically.

f(x2) =
f(x0)(x1 − x2) + f(x1)(x2 − x0)

x1 − x0

(2.4)

In terms of interpolation in spectral grids, the xi are the steps in the parameter space, while
f(xi) is the flux of the synthetic spectrum for the corresponding parameter xi. Expression
2.4 needs to be evaluated for each data point in the spectrum. This approach is valid, if
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Figure 2.2: Linear interpolation in one dimension. The value of f(x) at point x2 is estimated from the
surrounding points x0 and x1. From Wagner.

the known function values f(x0) and f(x1) are not too far apart from each other, i.e. the
step size in the grid is small enough.

The procedure described above can easily be generalized to more dimensions. As mentioned
before in this work three atmospheric parameters (Teff , log g, [Fe/H] or [He/H]) for each star
in the binary will be determined, therefore, we shall have a look at the three-dimensional
case.

Fig. 2.3 illustrates the problem: In the parameter space, the surrounding grid nodes
A,B, ..., H are used to determine an estimate for the synthetic spectrum at point I. The
procedure is adapted from Wagner.

Drawing planes parallel to the X − Y , X − Z and Y − Z planes intersecting each other at
point I divides the volume defined by the surrounding nodes into 8 sub-volumes. Firstly,
the normalized Volumes Na, Nb, ..., Nh of the sub-volumes are being calculated. Normalized
hereby means that the absolute value is divided by the full volume V of the cuboid defined
by the surrounding grid nodes A,B, ..., H.

V = (x1 − x0) · (y1 − y0) · (z1 − z0) (2.5)
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Figure 2.3: Linear interpolation in the grid in 3 dimensions. The figure illustrates, how the spectrum at
point I is estimated from the surrounding grid nodes. See text for details. From Wagner.

Na =
(x1 − x2) · (y1 − y2) · (z2 − z0)

V
(2.6)

Nb =
(x1 − x2) · (y2 − y0) · (z2 − z0)

V
(2.7)

...

Nh =
(x2 − x0) · (y2 − y0) · (z1 − z2)

V
(2.8)

The function value at point I f(I) = v8 can then be estimated from the function value at the
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surrounding grid nodes v0, v1, ..., v7 by weighting them with the corresponding normalized
volume Ni.

v8 = v0 ·Na + v1 ·Nb + v2 ·Nc + v3 ·Nd + v4 ·Ne + v5 ·Nf + v6 ·Ng + v7 ·Nh (2.9)

Again, Eq. 2.9 needs to be evaluated for all data points in the spectra. However, from a
numerical point of view interpolating in three dimensions is not much time demanding since
it only involves additions and multiplications, which are executed fast. The calculation
time scales linearly with the number of data points in the spectrum.

2.4 Convolution

Adding and comparing spectra in a numerical way requires the wavelength of their data-
points to match exactly. But not only the wavelength of each data point is important: It
is also necessary for all spectra - the libraries as well as the observed spectra - to have
the same resolution. Since it is not advisable to modify observations, the resolution of
the libraries need to be adapted to that of the observed spectrum. This can be done by
applying a convolution with a Gaussian function which is a good approximation of the
instruments profile.
In mathematics, a convolution is an action which could be applied to two functions and
could be described as the ”integral of the point-wise multiplication of the two functions
as a function of the amount that one of the original functions is translated”1. It can be
written as

(f ∗ g)(x) =

∫ ∞
−∞

f(τ)g(x− τ)dτ (2.10)

Consider a spectrum taken by a spectrograph. Due to instrumental effects and, most
importantly, the finite resolving power, a line is smeared. The same effect must be applied
to a spectrum if one wants to compare a library spectrum to observations. This is done by
applying a convolution to the spectrum, where the broadening function (g(x) in Eq. 2.10)
is chosen to be a Gaussian function where its Full Width at Half Maximum (FWHM) is set
to be the FWHM of the spectrograph’s instrumental profile.

g(x) =
1

σ
√

2π
exp

[
−(x− x0)2

2σ2

]
(2.11)

FWHM = 2
√

2 ln 2 σ ≈ 2.355 σ (2.12)

In astronomy, the FWHM of an instrument could be measured for instance by fitting a
Gaussian profile to the spectral lines of a reference lamp. The lines of reference lamps are
due to an extremely tiny intrinsic broadening clearly dominated by the broadening of the
instrument. The numerical treatment of the convolution is described in Sec. 2.8.2. The
impact on spectra is shown in Sec. 3.2.

1https://en.wikipedia.org/wiki/Convolution
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2.5 Core - Fit algorithm

2.5.1 Function minimization

The problem of finding atmospheric/physical parameters from a stellar spectrum can not
be addressed in a direct way. Reading parameters out of an observed spectrum is simply
impossible. However, this problem can be rewritten as: Finding a synthetic spectrum with a
given set of atmospheric/physical parameters, which is capable of reproducing the observed
one as good as possible. In order to allow an algorithm to decide how good a synthetic
spectrum fits the observation the ”goodness” needs to be quantified. A commonly used
measure is the χ2, defined as

χ2 =
∑
i

(
Fi,model − Fi,observation

σi

)2

(2.13)

The index i runs over all data points and σi denotes the uncertainty of the data point,
given by Fi,model divided by the S/N of the spectrum. From Eq. 2.13 it can be seen that
the value of χ2 is lower the better the model fits the data. To judge the goodness of the fit,
it is also common to define the reduced χ2.

χ2
red =

χ2

n
(2.14)

Here, n denotes the number of degrees of freedom, which is defined by the number of data
points of the observation minus the free parameters of the fit. This yields n usually being a
large value when fitting optical spectra. However, χ2

red should be ∼ 1 to denote a good
fit. If the value is lower, the uncertainties of the measurement seem to be overestimated,
because the data scatters around the model less than the assumed σ. If the value is higher,
either the errors were underestimated or the model is not suitable to reproduce the data.
How well a synthetic spectrum matches the observation is dependent on the set of chosen
parameters ~pi of the synthetic spectrum. Therefore, χ2 can be interpreted as a function of
these parameters.

χ2 = χ2(p1, p2, ..., pn) (2.15)

With this interpretation in mind, the problem boils down to finding the minimum of a
function. Multiple so-called fit algorithms are known to numerically solve this problem.
Standard minimum bracketing methods or methods which follow the gradient of the function
until they reach the minimum can be applied. Also more sophisticated approaches are
available, amongst them the simplex algorithm which is used in this work. A detailed
description of the latter one is given in Sec. 2.5.3.

2.5.2 Free parameters and physical constraints

The parameters ~pi to be fitted in this work are summarized in Tab. 2.3. The ranges in
which these parameters can be varied are constrained by the available model spectra, see
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Tab. 2.1 and Tab. 2.2.

F/G/K star subdwarf star

Teff log g log [Fe/H] M [M�] Teff log g log [He/H] θ

Table 2.3: Free parameters which will be fitted with the code deveolped in this work using the simplex
algorithm.

Some of these parameters are constrained in a physical way or dependent from each other.
It is advisable to make use of this additional information.

c) Surface ratio The flux value in synthetic spectra is usually given in energy emitted
from the stellar surface per area, per second and per wavelength

[F ] =
erg

s · cm2 · cm
(2.16)

The observed flux Fobs of an observed binary can be written as integrals over the visible
surfaces of the primary (p) and the secondary (s) component of the binary. The primary
component is commonly defined as the more massive one.

Ftot,obs =
1

d2

∫
Ap

Fp +

∫
As

Fs (2.17)

F1 and F2 are again given in energy emitted from the stellar surface per area, per second
and per wavelength and d is the distance to the binary, which is assumed to be the same
for both components.
Furthermore, the surface gravity of a star can be expressed in terms of the mass M and
the radius R

gi =
GMi

R2
i

⇒ R2
i =

GMi

gi
(2.18)

The surface ratio of both components now becomes a function of the surface gravities and
the masses of both stars.

Ap
As

=
R2
p

R2
s

=
Mp

Ms

· gs
gp

(2.19)

Inserting this into Eq. 2.17 yields

Ftot,obs =
1

d2

(
R2
p · Fp +Rs · Fs

)
=
R2
p

d2

(
Fp +

R2
s

R2
p︸︷︷︸

surface
ratio

·Fs
)

=
θ2

4

(
Fp +

As
Ap
· Fs
)

(2.20)
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Eq. 2.20 will be used in the code to connect the free parameters log gi with the masses and
the contribution of each star to the combined flux. This makes the fit routine more sensitive
to log g because of the additional constraint due to the flux ratio. The representation of
the pre factor θ in Eq. 2.20 has a physical interpretation. Making use of the small angle
approximation, θ is the angular diameter of a star and allows the distance to a star to be
determined.

θ

2
=
R

d
(2.21)

d) Masses In order for Eq. 2.20 to be used in the code, it is necessary to make some
assumptions for the masses (see Eq. 2.19). For the mass of the subdwarf the canonical
mass of 0.48M� is assumed. This mass is in agreement with observations and theory. The
mass of the cool companion will be fitted. However, it can be constrained to be between
0.7 and 1.5 M� corresponding to F/G/K dwarfs. In a few cases the companion could be a
giant. Such a case will easily be detected from the large surface ratio. If the mass would be
lower, the star would not be visible in the optical spectrum. The existence of subdwarf
companions with higher masses is not observed and would also be in contradiction to the
canonical evolution scenario since higher mass stars evolve much faster.

2.5.3 Downhill Simplex

2.5.3.1 Function minimization using the simplex algorithm

The core of the code is the fit algorithm itself. Several well-known and commonly used fit
algorithms are available in literature. Due to reasons which will be discussed at the end of
this section the simplex method based on Press et al. (2007) is used. This method will be
introduced in the following. It was first proposed by Nelder & Mead (1965).

A simplex in n-dimensional space is a volume defined by n+1 vertices. In the beginning,
these vertices are chosen such that they cover a large fraction of the parameter space.
Hereby, each vertex is specified by a set of parameters ~Si. These sets can be merged into a
Simplex matrix S. Each row corresponds to the set of parameters for one vertex. In order
to ensure that the vertices expand into each direction of the parameter space and thus
making them linear independent of each other, a common way is to initialize the simplex
by taking the first set of parameters and modifying only one parameter in each row of the
matrix by adding δ 6= 0.

~Si = ~S1 + ~∆i ∆i =


0
...
δ
...
0

← i-th row i = 2, . . . , n+ 1 (2.22)
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initialize Simplex S
~Si = ~S1 + ~∆i

calculate: f(~S1) ... f(~Sn+1)

sort: f(~S1) < ... < f(~Sn+1)

Try reflection
of worst vertex

f(~S1) < f( ~Xref ) < f(~Sn)

~Sn+1 = ~Xref

f(~S1) < f( ~Xref )

Try contracting
worst vertex

f( ~Xcontr) < f(~Sn+1)

~Sn+1 = ~Xcontr

Termination
criterium?

Try expansion

f( ~Xexp) < f( ~Xrefl) ~Sn+1 = ~Xrefl

~Sn+1 = ~Xexp

multiple contraction
towards best vertex

Fit converged

yes

no

yes

yes

no

no

yesno

yes

no

Figure 2.4: Flowchart of the downhill simplex algorithm for n free parameters. S is the Simplex matrix,
X are the sets of parameters for test-evaluation.
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The goal is now to let the simplex move through parameter space and let it contract more
and more, until all points of the simplex are located in the minimum. In order to drive the
simplex to lower χ2, the χ2 is evaluated at each vertex in the beginning. Subsequently, in
each iteration the point with the highest χ2, i.e. the worst combination of parameters ~Si,
is rejected and replaced by better ones. The flowchart in Fig. 2.4 illustrates how this is
achieved. The simplex can undergo only specific movements

a) Reflection of one vertex with respect to all other vertices

b) Reflection and expansion

c) Contraction of one vertex

d) Contraction towards one vertex

Fig. 2.5 shows a graphical illustration of these movements for a three-dimensional simplex.
The reflection action (a) allows the simplex to move through parameter space during
multiple iterations. Reflection in combination with expansion (b) can help to move faster
if the χ2 landscape is flat. Both contraction actions (c) and (d) yield a smaller simplex,
allowing a finer sampling of the parameter space if the simplex has reached the vicinity of
a minimum. In addition, both contraction and expansion is also necessary for the simplex
to be able to squeeze through steep, narrow valleys in the χ2 landscape and expand again
if the landscape is flat.

In each iteration, the possible movements are checked in the given order. If one of them
results in a lower χ2 than the highest χ2 present in the simplex the action will be executed.
If no lower χ2 can be found, the simplex seems to be already trapped in a minimum and
finer sampling is necessary. In this case, the simplex contracts around the point with the
lowest χ2.

As a criterion to terminate the procedure, the square root of the sum of the normalized
quadratic deviation from the mean χ2 of each simplex vertex r is compared to a predefined
value f .

r =
∑
i

√√√√(χ2
i − χ2

)2

n+ 1
(2.23)

The sum runs over all n+ 1 simplex vertices. Taking this as a measure for the convergence
of the fit was suggested already by Nelder & Mead (1965). The fit is assumed as converged
to the minimum, if

r < f (2.24)
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Figure 2.5: Graphical illustration of the possible
simplex movements in three dimensions, from Press
et al. (2007).

Of course, the choice of the value of f is crucial.
If f is chosen too high, the fit has probably
not yet reached the global minimum but is
just squeezing the simplex through a local,
narrow region in the χ2 landscape. If f is
too low, too many iterations and therefore
calculation time is wasted, because the fit has
already reached the global minimum, but the
routine still has to push the simplex smaller.
It turned out, that reasonable values are on
the order of f = 1 · 10−5. This value was used
for all fits which were carried out throughout
the work on the project.
At some point, when the algorithm claims to
have found a minimum, the simplex should be
re-expanded and the fit procedure should be
started again, while the vertex with the lowest
χ2 in the minimum is kept as one vertex of
the new simplex. This is to ensure, that the
minimum which was found is not only tiny
local, but a global one. However, restarting
is in some cases not enough to locate the
global minimum. In order to calculate the
uncertainties, several fits with different initial
conditions are made (see Sec. 2.6.2), yielding
a good coverage of the χ2 map. If a better

fit is found throughout determining the uncertainties, the whole fit procedure is initiated
again, where one of the start vertices is chosen to be this better fit. If no better fit will be
found any more, this vertex will survive the fit and the uncertainty determination because
the simplex method always tries to get rid of the worst vertex only or contracts towards
the best one.

2.5.3.2 Advantages and disadvantages of the simplex method

One major disadvantage of choosing the simplex algorithm is the complexity of the procedure.
There are in fact methods that are easier to implement. Simple minimum bracketing methods
for instance can be packed into just a few lines of code and even methods following the
steepest descend are usually less complex. In addition, gaining insight into the fit procedure
and the function itself is more difficult, which makes it tricky to find flaws and bugs in the
code.
Most common function minimization algorithms follow the idea of moving through the χ2

landscape in the direction of the steepest descent, i.e. the lowest gradient. In order to be
able to follow the gradient, at least two points need to be evaluated in each step to be able
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to determine the derivative of the function. The simplex algorithm does not require any
derivatives and therefore only requires one function evaluation at a time. This is good,
because the function evaluation is the most expensive part of the whole code.
However, the probably most favourable argument for choosing the simplex algorithm to
address the problem of this thesis is that the simplex algorithm is less likely to get stuck
in local minima since vertices are distributed across the parameter space. Following only
the gradient of a function would fail immediately if the χ2 landscape is complex and full of
tiny local minima. The fit would get stuck in one of them since gradients are increasing
in each direction. Unfortunately, the simplex algorithm is also not 100% fail safe in this
case, even though it is much more stable against local minima. However, as previously
mentioned, determining the uncertainties requires a good sampling of the parameter space.
If the fit got stuck in a local minimum, it is very likely to recognize the global one during
this sampling.

2.6 Uncertainties

2.6.1 χ2 statistics

Using χ2 for judging the goodness of a fit allows the toolbox of χ2 statistics to be used.
The great advantage is that determining confidence limits for the resulting parameters is
fairly straightforward. Consider a vector of parameters ~p resulting in the best fit (and
therefore in the ideal case χ2

red(~p) = 1). Moving away from ~p increases χ2 again by ∆χ2.
One can now define a confidence region where the true parameters are located inside with
a given probability. If this probability is, for instance, chosen to be 68.3% (also known as
”1σ confidence level”), the confidence region confines the part of the parameter space where
68.3% of the total probability distribution is in. This region depends on the number of
parameters in ~p which are varied.
The cumulative probability distribution function F n

χ2 can be interpreted as a function giving

the accumulated probability that the true value is located at a higher χ2 as a function of
χ2 for n free parameters. It is plotted in Fig. 2.6 for the single parameter and the two
parameter case. In order to find the 1σ confidence interval in terms of χ2, one needs to find
the point, where F n

χ2 has decreased by 68.3%. The resulting values are ∆χ2 = 1 for the

single parameter case and ∆χ2 =2.296 for the two parameter case. Note, that this approach
is only valid, if χ2

red ≈ 1. The same procedure can be applied to find the corresponding χ2

for more parameters and for other confidence levels. The 99% confidence criterion would
correspond to ∆χ2 ≈ 6.63.
In the one dimensional case, the confidence region in the higher dimensional parameter
space needs to be projected onto just one dimension. To summarize, in order to calculate
confidence intervals in practice one needs to explore the χ2 landscape by keeping the
parameters of interest fixed while fitting all other parameters. Then points of the ∆χ2

corresponding to the desired confidence level may be connected. For only one single
parameter ∆χ2 = 1 corresponds to a 1σ confidence interval and ∆χ2 ≈ 6.63 confines the
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Figure 2.6: Cumulative probability distribution functions of the χ2 distribution for n = 1 and n = 2.

99% confidence region.

2.6.2 Determination of the uncertainties

In order to calculate the confidence intervals mentioned above in the code, beginning from
the position of the best fit ~pbest each parameter is stepped through parameter space and
kept fixed throughout the fit at every step. This means, that if a number of m = 20 steps
around the minimum are made for each parameter,

Nfits = m ·#parameter = 20 · 8 = 160 (2.25)

fits are initialized and are to be be executed. 20 steps around the minimum allow a
reasonable good sampling of the χ2 landscape. The ∆χ2 is expected to locally increase in a
quadratic manner around the best fit for each parameter. Therefore, a parabola is fit to
the sampled points in the ∆χ2 landscape:

f(x) = a(x− b)2 (2.26)

where b is set to be the position of the best fit for each parameter. Due to the ∆χ2 being
taken into account here, there is no offset present in the quadratic Eq. 2.26. The only left
free parameter a is found via a simple golden section search algorithm to fulfil f(x) ≈ 6.63
in order to find the 99% confidence limits. There is no need for very efficient minimization
because this step is not time consuming and only executed twice for each free parameter
in the binary fit in order to calculate the asymmetric uncertainties. See appendix A.3 for
details on the golden section search algorithm.
As a side effect, because of the different fits with different start values, the χ2 landscape is
scanned extensively. If, throughout determining the uncertainties, a χ2 which is 0.05 lower
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than the χ2 of the already known best fit is found, the whole procedure is initiated again,
starting with the new best fit. The difference required between both χ2 values is chosen
to allow the fit to improve, but avoid useless restarts of the whole procedure if the better
χ2 is only very slightly below the old one. This could be caused by the finite numerical
precision or if the χ2 map of two parameters is extremely degenerate. The minimum which
survives the uncertainty determination is therefore likely to be the global one. Note, that
the high number of fits to be executed make this part of the code very time consuming.
However, the single fits are independent of each other. Therefore, this procedure could
easily be parallelized in future implementations.

2.7 Interstellar extinction and reddening

Most astronomical objects are not seen directly but interstellar matter is in the line of sight
towards the object. Interstellar matter mostly consists of dust grains which are less than 1
µm, often just a few molecules, in size. As light from an observed object passes through a
cloud of interstellar dust, a part of the radiation is absorbed and re-emitted into a random
direction. Thinking about the electro-dynamical law of the ”half-wavelength dipole” and
interpreting the grains as dipoles, it is not surprising that absorption increases towards the
UV due to typical dust grain sizes. In energy distributions like spectra, the blue part is
therefore stronger damped by interstellar extinction than the red part - it appears to be
reddened. This reddening due to interstellar extinction therefore modifies the slope of the
spectrum significantly. It is important to also take this effect into account when fitting
spectra.
In flux calibrated binary spectra, the slope of the spectrum helps significantly to constrain
the effective temperature of both stars. Therefore, interstellar reddening can have a direct
influence on the inferred atmospheric parameters. In order to not produce degeneracies
between temperatures and reddening and avoid more free parameters for the fit, the
reddening will not be fitted to the observation. The reddening maps published by Schlegel
et al. (1998) together with the new calibration coefficients from Schlafly & Finkbeiner (2011)
provide reliable values which can simply be applied during the fit procedure. Instead of
applying an artificial reddening to all synthetic binary spectra which are used throughout the
fit, it is more time efficient to remove the reddening from the observation. The wavelength
dependence of the interstellar extinction A(λ) has been determined by Fitzpatrick (1999).
An overview of this method will be given in the following.
Interstellar reddening can be described by the scalar quantity

R =
A(V )

E(B − V )
=

A(V )

A(B)− A(V )
(2.27)

which describes the ratio of the total extinction A(V ) and the selective extinction A(B)−
A(V ) in the V-band. V and B denote the corresponding filters in the UBV photometric
system (also called Johnson system (Johnson & Morgan, 1953)). E(B − V ) is called the
reddening parameter. The parameter R is dependent on the medium which causes the
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extinction. It can vary between 2.2 and 5.8, while 3.1 is appropriate in most cases because
it well describes diffuse interstellar matter in the Galaxy. Fitzpatrick (1999) calculated
anchor points for an extinction curve of different values of R from 2700 Å up to infinity in
terms of extinction at different wavelengths A(λ) up to infinity. Their extinction curve for
the R = 3.1 case is shown in Fig. 2.7.

Figure 2.7: Interstellar extinction for different wavelengths. Note that the bottom scale is in inverse
microns. The solid line denotes R = 3.1, corresponding to diffuse interstellar matter, derived from a cubic
spline interpolation, using their anchor points (dots and squares). Commonly used photometric filter
systems are over-plotted with arbitrary normalization. From Fitzpatrick (1999).

The Figure 2.7 shows, that in the IR and optical, the extinction curve of Fitzpatrick (1999)
has no strong curvature in 1/λ-representation. Cubic spline interpolation between the
anchor points in Fig. 2.7 is sufficient to derive data points in between. This is necessary in
order to compute the reddening for each data point in a spectrum and therefore to be able
to redden/deredden a spectrum. For the cubic spline interpolation, a C++ code published
by Tino Kluge2 is used.

In the UV-part of the spectrum (< 2700 Å), interpolation is not necessary, but a set of
equations is available to calculate the value of A(λ)/E(B − V ) directly for all wavelengths.
The parameters for these equations were developed and calibrated by Fitzpatrick & Massa
(1990). According to them, in x ≡1/λ representation, the extinction curve can be written
as a superposition of a linear term (Eq. 2.28), a Lorentzian-like profile (Eq. 2.29) which
describes the UV-bump and a term for far-UV curvature (Eq. 2.30).

2http://kluge.in-chemnitz.de/opensource/spline/
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A(λ)

E(B − V )
= c1 + c2x+ c3D(x) + c4F (x) +R (2.28)

D(x) =
x2

(x2 − x0
2) 2 + x2γ2

(2.29)

F (x) =

{
0.5392(x− 5.9)2 + 0.05644(x− 5.9)3 for x ≥ 5.9µm−1

0 for x < 5.9µm−1
(2.30)

In this work, only the R = 3.1 case is considered. The E(B − V ) value is taken from the
Schlegel et al. (1998) maps.
Fig. 2.8 shows the application of the procedure described above to a solar-like spectrum
(Teff = 5700K, log g = 4.7, solar metalicity). The flux in the UV is strongly damped, which
especially modifies the shape of the spectrum. The reddening of objects in the galactic
disk can be even larger than the ones of the depicted spectra (E(B − V ) ∼ 10). However,
this work does not deal with strong reddening since SDSS mostly contains objects at high
galactic latitudes which show only a slight reddening (E(B−V ) < 0.1). In order to achieve
the most accurate estimates for the atmospheric parameters, reddening is nevertheless taken
into account.

Figure 2.8: The effect of interstellar extinction on a solar-like spectrum (Teff = 5700K, log g = 4.7, solar
metalicity) for different values of E(B − V ) using the reddening procedure according to Fitzpatrick (1999).
The flux in the UV is strongly damped.

Note, that modifying observations should usually be avoided. However, it makes no
difference whether the extinction curve is used to redden the synthetic binary spectra
in every iteration or to deredden the observation. Therefore, in order to optimize the
computation time, the latter option is implemented.
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2.8 Technical implementation

Putting together all building blocks described above is essentially enough for the fit routine
to work as desired. However, some parts, like the convolution for instance, need to be
adapted to be numerically efficient. Furthermore, even though computers are getting faster,
it is necessary to think about the execution time of a piece of code and how to improve it.
Also the management of the finite memory is an important task. These rather technical
issues are discussed in this chapter. Fig. 2.9 gives a complete overview of the process.

2.8.1 Spectral grids and memory management

When the code is started, both grids are scanned for available spectra. In the course of
this, the libraries are initiated in the code. Note, that at this point the spectra themselves
are not read, but only their parameters. Both grids span over more than a few gigabytes,
which cannot be stored in the RAM-memory3 available on a current desktop computer.
Subsequently, the simplex fit routine is started. As the fit routine requests the synthetic
composite spectrum of a given combination of parameters in order to compare it to the
observation, both library instances receive a request to produce a single-star spectrum
with the given parameters as described in Sec. 2.3. All spectra required for this are read
into the RAM and convolved numerically (see Sec. 2.8.2) to match the resolution of the
observed spectrum. Also, the wavelength data points are taken from the observed spectrum.
This is, not to touch and process the observational data but only the synthetic spectra.
Subsequently, a synthetic binary spectrum is composed by combining both single-star
spectra. The fluxes are added according to Eq. 2.20.

The spectra of all surrounding grid nodes are now stored readily convolved in the RAM. If,
in some of the next iterations, one of the spectra is requested again, the library instance
recognises that the grid node is already stored in the RAM. Therefore it is redundant to
read and convolve the spectrum again. The spectrum is immediately available for grid
interpolation.

This means, that over time, a huge fraction of both libraries is available for fast access in
the RAM. However, this does not mean that tenths of gigabytes of RAM is necessary in
order to run the code since only the convolved synthetic spectra but not the high-resolution
templates are stored. Therefore, in order to fit a typical low-resolution observation (FWHM
∼ 1 Å) only approximately 0.5-1 gigabytes of RAM are necessary.

Going one step further considering processing larger samples from the same instrument
in an automated way, the availability of large fractions of the grids in the RAM yields an
extensive time boost.

3The RAM (random access memory) is available for active jobs on the computer to store data for fast
access. Also the writing speed in the RAM is significantly faster than on a standard hard drive or even
a solid state drive. The amount of RAM available on a current computer is a few gigabytes.
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Figure 2.9: Flowchart of the binfit-code, including error calculation and the access to the spectral libraries
(right column).
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2.8.2 Numerical convolution

The convolution is defined as a continuous integral (see Eq. 2.10). This can also be written
in form of a discrete sum, thus making the problem solvable in a numerical way. The indices
i denote the data points in the spectrum.

(f ∗ g)[i] =
∞∑

j=−∞

f [j] · g[i− j] (2.31)

In order to apply this, also the broadening function g(x) has to be discretized. Remember,
that g(x) was chosen to be a Gaussian function, having the width of the instrument’s
intrinsic profile. First, g(x) is sampled in 81 data points (denoted by j). These are evenly
spaced within the 3σ region of g(x). Only 0.26% of the Gaussian are not in this region.
Therefore, this outer part does not contribute significantly to the convolution. The number
of 81 data points was found to be a good trade-off between precision and computing speed
(see Sec. 3.1).
Note, that we do not want to modify observations, therefore, the library spectra are
convolved onto the wavelength scale and the resolution of the observation. Subsequently,
for each wavelength data point λ[i] in the observed spectrum (”target wavelength scale”)
Eq. 2.31 is evaluated at f [i] in the synthetic spectrum.

(f ∗ g)[i] =
40·inc∑

j=−40·inc

f [j] · g[i− j] (2.32)

”inc” denotes here the increment which is necessary to cover the 3σ region of g(x). Typically,
the sampling of g[i−j] is finer than the sampling of the data points in the synthetic spectrum
f [j]. Therefore, linear interpolation is applied between data points of the synthetic spectrum
in order to calculate the corresponding f [j] to match the sampling of g[i−j]. The numerical
convolution code used in this project can be found in App. A.2.

2.8.3 Boundaries of the spectral grid

Since the parameter coverage of the grids is not infinite, the routine needs a mechanism to
prevent the fit algorithm from moving the simplex into regions not covered by the grids.
This should be done in a smooth way. Throwing an error is not an option, since the fit
would then stop immediately and needs to be restarted by hand.
A nice way to prevent the simplex from moving into forbidden regions is to use intrinsic
properties of the fit algorithm. If the χ2 gets worse in this region, the simplex would
automatically omit moving further into this direction but will reject or not accept the vertex
outside the boundaries. Therefore, the spectrum of one of the components is modified if
one of the parameters are out of the grid boundaries: the flux of the spectrum immediately
drops to zero. The spectrum of its companion is still non-zero. This yields a smooth but
steep increase in the χ2 map without any discontinuities at the boundaries of the grid.
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• The aim of this project is to disentangle sd + F/G/K binaries making use
of the techniques of quantitative spectral analysis.

• The code makes use of the pre-calculated spectral libraries for both com-
ponents in order to reduce calculation time. Three dimensional linear
interpolation is used to explore the regions in between gridpoints.

• Function minimization is performed by a standard downhill simplex routine,
making use of χ2 as a measure of the goodness of the fit. The uncertainties
are determined by χ2 statistics.

• In order to improve the expected bad convergence of the surface gravities,
the gravities are linked to the surface ratio and the masses of both stars.
The mass of the subdwarf is fixed to the canonical mass 0.48, the mass of
the cool companion is treated as an additional fit parameter, but restricted
to the range between 0.7-1.5 M�.

• For given interstellar extinction E(B − V ), the code is able to correct for
reddening due to interstellar extinction during the fit.

• The parts of the spectral grid which have been used during the fit are stored
in the RAM as long as possible. They are, if needed again later, available in
a readily convolved manner, yielding an extensive boost in computing time.

• If the fit tries to overcome the boundaries of one of the spectral grids,
the χ2 is driven to bad values in order to prevent the fit from leaving the
parameterspace. This is achieved, by setting the corresponding spectrum to
zero flux.

Summary



3 Proof of concept

The development of a code from scratch without the use of any external packages requires
extensive testing, because even though as much care as possible is taken during the process
of writing the code, some bugs and failures only show up at runtime. It is also important
to estimate the calculation times and search for possible optimizations. The convolution
routine, one of the most crucial parts for the calculation time, is tested in Sec. 3.1. Sec.
3.2 illustrates the impact of the convolution function on spectral lines. Furthermore, it is
important to investigate how the code performs. Therefore, a synthetic spectrum of a mock
binary with known parameters was fitted and the impact of the signal to noise level (S/N)
of the spectrum on the results was studied. This is presented in Sec. 3.3.

3.1 Convolving 2 Gaussians

Converting operations which are mathematically defined as continuous integrals to dis-
cretized, numerical functions can lead to inaccuracies. In the case of the convolution,
as described in Sec. 2.8.2, this could be caused by choosing too rough a sampling of
the functions. As stated before, the numerical convolution is expensive with respect to
calculation time and therefore a trade-off between accuracy and efficiency has to be made.
This section shows, that the accuracy achievable with the chosen number of 81 data points
is sufficiently high to be used to convolve spectra.
As an example, the convolution of two Gaussians is calculated with the code. Mathematically,
the convolution of two Gaussians g1(x, µ, σ1) and g2(x, µ, σ2) is again a Gaussian, although
not normalized.

g1(x, µ, σ1) ∗ g2(x, µ, σ2) = G

(
x, µ,

√
σ2

1 + σ2
2

)
(3.1)

In order to estimate the accuracy of the convolution, two Gaussians g1(x, 0, 1) and g2(x, 0, 2)
are convolved with the convolution code. g1 is sampled with 1000 data points from -10 to
10. g2 is sampled with 81 data points within its 3 σ range, as described in Sec. 2.8.2. The
result is then fitted using a standard Gaussian function with gnuplot1. Fig. 3.1 shows the
result. The expected σ of the convolution is 2.236, according to Eq. 3.1. According to
the fit, the resulting σ is 2.234, which is close to the expected value. This shows, that the
sampling rate of g2 is sufficient. In order to achieve a higher accuracy, the sampling needs
to be improved which has a huge impact on the computing time.

1http://www.gnuplot.info/
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Figure 3.1: Convolution of two Gaussian functions (blue σ = 1 and brown, σ = 2). The fit gives σ = 2.234
which is sufficiently close to the expected σexp = 2.236. All Gaussian functions are plotted with arbitrary
normalization.

Thinking about the application of this method to spectra a Gaussian function will be
convolved with the spectrum itself. Therefore, this proof is only valid if a sufficiently large
number of data points of the spectrum are located within the 3σ range or the 81 data
points around the maximum of the Gaussian, respectively. In this code, the high resolution
spectral libraries (Phoenix: R = 500000 in the optical) are convolved to a lower resolution,
which means that the Gaussian function is wide compared to the sampling of the spectrum
and, therefore, the criterion mentioned above is fulfilled.

3.2 Convolving spectral lines

Applying a convolution with a Gaussian of given width σ to a spectrum can from a
physical point of view be interpreted as taking a spectrum with a spectrograph where the
instrument’s broadening profile is a Gaussian with width σ. This simulates therefore the
instrument’s finite resolving power. In order to demonstrate the impact of the convolution
on the spectrum Fig. 3.2 shows a part of a synthetic spectrum from the Phoenix library
(see Sec. 2.2.2) convolved with Gaussians of different width.

The line shape changes strongly between the different resolutions. For lower resolutions,
the lines get smeared. They appear broader and less deep. The ∆λ = 2.5 Å example is
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Figure 3.2: Phoenix model spectrum convolved to different FWHM. The figure shows the Mg triplet of a
Teff = 6100K, log g = 4.0 star. The metalicity is solar. Especially the comparison between the original
spectrum (red) and a spectrum convolved to a Gaussian with FWHM close to SDSS spectra (magenta)
shows that many features are smeared out due to the detector’s finite resolution.

plotted in addition, because it is close to the resolution of SDSS spectra. Many narrow
features cannot be used directly for fitting due to the detector’s finite resolution. They are
in principle still present in the spectrum but smeared out strongly. This example shows
that the convolution is a very crucial part in fitting spectra.
Some types of spectrographs (like Echelle spectrographs) have a wavelength independent
resolution R = λ

∆λ
. Especially spectra from the SDSS ans BOSS spectrographs can have

wavelength dependent R. This needs to be taken into account as precisely as possible. See
Sec. 4.2.2 for details on the SDSS resolution pattern and the treatment of the wavelength
dependent resolution.

3.3 Error estimation based on synthetic spectra with
artificial S/N

In order to test the functionality of the code, the spectrum of a mock binary system was
fitted. The binary system was chosen such that both components contribute significantly to
the flux in the chosen wavelength range. Reddening was neglected. The binary spectrum
was generated with a completely independent code in order to serve as an independent test
case. The template spectra for the mock binary system are taken from the same libraries
which were used to fit the spectrum. The spectral range is chosen as large as possible and
is therefore restricted by the spectral coverage of the subdwarf grid of synthetic spectra
(3120-7530 Å, See Sec. 2.2.1).
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The spectrum was convolved to a constant resolution of ∆λ = 2.5 Å to be close to
the planned application of the code, that is fitting low resolution spectra from SDSS.
Furthermore, random noise was artificially added to the spectrum to mimic different S/N,
using the equation

F noise
i = Fi +

r · Fi
S/N

(3.2)

where r is a random number between 0 and 1. Different S/N values were used to estimate
the achievable accuracy and to estimate the impact of the S/N on the results. This method
was carried out on two examples, one example with many lines (”Example 1”) and one more
sophisticated case with less lines (”Example 2”) and therefore higher degree of degeneracy.

3.3.1 Example 1

The parameters chosen for both components are given in Tab. 3.1. The surface ratio is
set to 20.8, the inferred mass of the cool companion is expected to be 0.96 M� and the
resolution is ∆λ = 2.5 Å. Note, that due to the chosen solar metalicity, many metal lines
are present in the spectrum of the cool companion. Also, a low temperature for the hot
subdwarf in combination with a high helium content allows the fit routine to use more lines
to fit the subdwarf spectrum. The spectrum and the fit is depicted in Fig. 3.3 for the S/N
= 100 case.

MS sdB

Teff log g log [Fe/H] Teff log g log [He/H]

6000 K 4.5 dex 0 dex 25000 K 5.5 dex -1.5918 dex

Table 3.1: Parameters used for the generation of the mock binary spectrum before adding artificial S/N.

The reduced χ2 of all fits should be close to 1, because the added S/N is exactly known
and can be used as an input to the fitting routine. The values are summarized in Tab.
3.2. The reduced χ2 increases slightly, as the S/N of the spectrum increases. This can
be interpreted as the quality of the data and therefore the S/N has been overestimated
for the fit, but since the spectrum was self-generated, we should know the exact value of
the S/N. A possible explanation for this effect is the high sensitivity of the reduced χ2 to
slight deviations for high S/N spectra, because the fit did not reach the exact position of
the minimum (the termination criterion prevented the fit from reaching it). Remember,
that the criterion introduced in Sec. 2.5.3 only depends on the quadratic deviation of the
χ2 values at each simplex vertex from the mean χ2. Furthermore, the accumulation of
errors due to the finite numerical precision and the slightly different methods for creating
and analyzing the spectrum may play a role in this context. Of course, the latter effect is
expected to be most visible in high S/N data.
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Figure 3.3: Spectrum and the corresponding best fit for the S/N = 100 case of Example 1. The fitted
spectrum is shifted up for clarity. χ2

red = 1.1323.

S/N 25 75 50 100

χ2
red 1.0327 1.0465 1.0823 1.1323

Table 3.2: χ2
red of all fits for Example 1. The deviation from χ2

red = 1 for high S/N can be explained by
the high sensitivity of χ2

red to slight deviations for higher S/N due to the application of slightly different
methods for generating and analyzing the spectrum.

Since the parameters of the mock binary system are known well they can be directly
compared to the results in Fig. 3.4. For all parameters, there is good agreement with the
determined values, independent of the S/N.
The most important lesson learned from Fig. 3.4 is, however, the size of the errorbars for
different S/N ratios. Basically, in this test case the size of the errorbars is affected by

• S/N

• Spectral resolution

• Degeneracies between parameters

• Numerical precision



46 3.3 Error estimation based on synthetic spectra with artificial S/N

Figure 3.4: Parameter and uncertainty determination on the mock binary spectrum (Example 1) with
different artificial S/N (S/N = 25, 50, 75, 100) added. The spectrum was convolved to ∆λ = 2.5 Å. The
true parameters of the mock binary system are given in Tab. 3.1. Green lines show the value which was
used to generate the synthetic spectrum, red lines show constraints for the parameters. The graphic shows
uncertainties in terms of 99% confidence limits. See text for discussion.

, where the latter one is almost negligible. The higher the S/N, the more features should be
recognized by the fit routine. The uncertainty should therefore drop with increasing S/N.
This general trend can be observed in all panels of Fig. 3.4. However, the uncertainties
drop significantly faster for some parameters than for others. The temperatures as well as
the angular diameter θ and the helium abundance are well constrained for high S/N, while
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surface gravities remain unconstrained. This effect is due to a strong correlation between
the surface gravities of both components, yielding a flat valley in the χ2 landscape (see
Sec. 3.4). The mass of the cool companion is not consistent with the expected value, even
within the 99% confidence limits. However, this is not unexpected since the mass as a free
parameter and was introduced to put constrains on the surface gravities of both components
by linking them via the surface ratio (see Sec. 2.5.2). The use of the mass restriction was
not necessary in this example, as seen in Fig. 3.4, where the mass range limit is indicated
by a red line in the corresponding panel. A slight change in surface gravity log g has a huge
impact on the inferred mass due to the logarithmic scale. Therefore, the outcome for the
mass is not expected to be very precise.
The distribution of ∆χ2 around the best fit which is determined by keeping one parameter
fixed and fitting all others is shown in Fig 3.5 for the S/N = 100 case. It was used to
determine the uncertainties. However, it is also instructive to look at it in detail in order to
get a feeling for the complexity of the problem. Looking at the temperature, metalicity,
helium abundance panels reveals a nicely behaving χ2 landscape which is well approximated
by the quadratic fit. However, the surface gravity panels show two very steep minima.
In between those minima, χ2 raises to high values (> 1000 for the S/N 100 case). This
effect is observed independent of the S/N. Close investigation of the best-fitting spectra for
fixed gravities in the region in between the minima revealed a problem close to the Balmer
jump region and in some Balmer lines (see App. B.1). Fitting the spectra excluding the
problematic region reduced the height of the wall in between both minima but it was still
present in the data. As the simplex algorithm is also not fail-safe regarding local minima,
one of the reasons for the steep increase in χ2 might be a local minimum, which is reached
from special starting conditions (specific values of log g) only. However, from a physical
point of view the existence of two minima is also explainable. Pressure broadening of
spectral lines can either be modeled in the spectrum of the subdwarf or in the spectrum of
its cool companion. Therefore, a symmetric but mirrored χ2 distribution around the best
fit for both surface gravities as observed is not unlikely, because either a higher log g of
the subwarf and a lower log g of its companion or the vice versa combination may produce
similar results. Another possibility may also be artefacts in one of the spectral libraries
which do not necessarily have to show up while stepping through different surface gravities.
The fit for each of the data points in the χ2 lines may drive the fit far away from the best
fit, because each but the stepped parameter can change freely. The fundamental reason for
this effect remains unclear and has to be investigated in the future. If the effect is due to
the simplex getting stuck in local minima using other fit algorithms or switch to genetic
codes might help (see Sec. 5.1.2).
Nevertheless, the panels show explicitly, that the procedure described in Sec. 2.8 is able
to find the global minimum and that the simplex did not get stuck in the second, local
one. This is ensured by stepping the χ2 landscape around the best fit while determining
the uncertainties as described in Sec. 2.6.2. Remember, that the curves depicted in Fig.
3.5 are used to estimate the uncertainty of the parameters of the fit by evaluating where
∆χ2

red = 6.63 - this is corresponding to the 99% single parameter confidence interval. The
shapes in Fig. 3.5 justify the choice of fitting a parabola to the depicted lines in order
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to derive the value where ∆χ2 = 6.63 and, thus, to find the uncertainty. Just stepping
through the ∆χ2 distribution until ∆χ2 = 6.63 would especially for the surface gravities
yield a wrong estimate for the uncertainty and prevent the routine from recognizing the
second minimum. The stepped region and the number of steps which are plotted in Fig 3.5
and used for the uncertainty calculation are chosen by hand.
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Figure 3.5: ∆χ2 single parameter lines around the best fit for Example 1. Some of the parameters show a
highly complicated pattern in their ∆χ2 line with several local minima. The steep raise in the log g lines
may have physical or numerical reasons. See text for discussion.

The given uncertainty ranges can be interpreted as estimates of the achievable accuracy
using the code developed in the course of this project. However, this may depend on the
physical parameters of fitted binary systems, as seen in Example 2.

3.3.2 Example 2

The parameters chosen for both components are given in Tab. 3.3. The surface ratio was
set to 30, the inferred mass of the cool companion is expected to be 1.44 M�. The lower
metalicity of the cool companion compared to Example 1 yields less and weaker lines to be
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present in the spectrum. Furthermore, the temperature of the subdwarf was increased and
its helium content decreased. The subdwarf spectrum, therefore, also has less and weaker
lines than in the previous example. Due to possible degeneracies it is more challenging to
fit this binary spectrum, because it has less features. The spectrum and the corresponding
fit is depicted in Fig. 3.6 for the S/N = 100 case.

MS sdB

Teff log g log [Fe/H] Teff log g log [He/H]

6000 K 4.5 dex -1.5 dex 35000 K 5.5 dex -2.7959 dex

Table 3.3: Parameters used for the generation of the synthetic binary spectrum before adding artificial
S/N.
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Figure 3.6: Spectrum and the corresponding best fit for the S/N = 100 case of Example 2. The fitted
spectrum is shifted up for clarity. χ2

red = 1.03978.

Looking again at the evolution of χ2
red with increasing S/N, no behaviour like in Example

1 can be observed (See Tab. 3.4). However, here the values don’t raise to the high values
in Example 1 for high S/N. The reason for this might be that there are fewer lines in the
spectrum and therefore the differences between the fit of the continuum and the mock
binary spectrum are in average smaller. This yields a lower χ2 and therefore also a lower
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S/N 25 50 75 100

χ2
red 1.02906 1.0465 1.03229 1.03978

Table 3.4: χ2
red of all fits for Example 2.

χ2
red compared to the case with many spectral lines when the stopping criterion is fulfilled.

Furthermore, numerical differences between generating and analyzing the spectrum mostly
show up in spectral lines and, therefore, this example is not expected to be as affected as
Example 1.

Again, the general trend observed in Fig. 3.7 is that the higher the S/N, the smaller
the errorbars. It turns out that due to the less intense and abundant features in the
spectrum the metalicity and the helium abundance have larger uncertainties. However, the
temperature of the cool companion is constrained as well as in Example 1. Interestingly,
the temperature of the subdwarf as well as its surface gravity differ from the expected
values for higher S/N. For some datapoints, even the uncertainties are too low. If this is
due to a degeneracy, the uncertainties are expected to reflect this fact by appearing to be
larger. However, the surface gravities showed also a similar behaviour as in Example 1.
There may be a correlation between surface gravities and temperatures. Therefore, it is
instructive to again have a look on the ∆χ2 distribution around the best fit.

This is shown shown in Fig. 3.8. We again see complicated patterns, but also wider
distributions compared to Example 1. In addition to the depicted S/N = 100 case, App. B.2
also shows the S/N = 75 case for inspection. Especially the helium abundance is completely
unconstrained at these low values in combination with the low resolution. Looking at the
panels for the surface gravities reveals a similar behaviour than in Example 1. However,
the corresponding values for the S/N 75 and S/N 100 case in Fig. 3.7 were clearly off. This
may be due to the existence of the two local minima which are clearly visible in Fig. 3.8.
Furthermore, the determination of the uncertainties might also be affected by the artefacts
where the χ2 increases dramatically. Since values with too high ∆χ2 are not used for the
parabola fit during the uncertainty determination (∆χ2 > 100 is ignored) this parabolafit
is quite uncertain due to a lack of data points. This is most probably the reason for the
uncertainties in Fig. 3.7 being underestimated. Probably a better sampling of the χ2 in
combination with a lower cut-off for the χ2 data points included in the parabola fit might
produce better results.

Comparing both examples shows the expected behaviour. The fit does not improve
significantly for S/N values larger than 75 and even the S/N = 25 case produces reliable
results for most parameters at least in Example 1. The uncertainties of Example 2 are,
of course, much larger. That means, that an observed spectrum with a S/N = 25 is -
depending on the physical parameters of the binary - sufficient to constrain parameters. The
higher the S/N of the spectrum, the lower the uncertainties. Furthermore, these examples
are chosen to be as close to SDSS data as possible, especially regarding the resolution.
Fortunately, SDSS typically provides spectra with 25 < S/N < 50 for 16-18 mag objects.
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Figure 3.7: Parameter and uncertainty determination on the mock binary spectrum (Example 2) with
different artificial S/N (S/N = 25, 50, 75, 100) added. The spectrum was convolved to ∆λ = 2.5 Å. The
true parameters of the mock binary system are given in Tab. 3.3. Green lines show the value which was
used to generate the synthetic spectrum, red lines show constraints for the parameters. The graphic shows
99 % confidence intervals. See text for discussion.

Therefore, SDSS spectra are sufficient to find the atmospheric parameters of a hot subdwarf
binary with the code developed in the course of this thesis. Working with higher resolution
spectra will decrease the errorbars further.
Note, that the given uncertainties are statistical uncertainties. Especially the uncertainty
introduced by calculating the model grids is not considered because it is, due to its nature,
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Figure 3.8: ∆χ2 single parameter lines around the best fit for Example 2 for the S/N = 100 case. Some
of the parameters show a highly complicated pattern in their ∆χ2 line with several local minima.

unknown. In literature, often a constant uncertainty on the order of a few per cent is added
to the statistical uncertainty of the fit. In this work, systematic errors are neglected.

Another interesting quantity is the amount of computing time needed. One single fit with
the given resolution including the uncertainty calculation is below 24 hrs on one single core
of a state-of-the-art desktop computer. This is of course depending on the CPU but also
on how often the uncertainty calculation is restarted, because a lower χ2 and therefore a
better fit was found (See Sec. 2.6.2). The number of restarts is usually between 0 an 10,
yielding a wide range of possible computing times from a few hours up to the 24 hours
already mentioned as upper limit for the fits in the example above.

It should be emphasized that this section presented a test of the complete code (without
accounting for reddening) using an independently generated mock binary spectrum. It
therefore shows the internal consistency of the code and serves as a proof of concept. The
application to real targets is discussed in the next section.
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3.4 Correlations

Some of the parameters are expected to be correlated. This means, that changes in the fit
caused by stepping one parameter during the uncertainty calculation can be compensated
by another parameter to some extent. Increasing one may lead to an increase or decrease
of another parameter while χ2 is still close to the value at the best fit. This effect yields
flat valleys in the χ2 landscape and leads to degeneracies of parameters. Fig. 3.9 shows
the χ2 landscape around the best fit for the S/N 50 case of Example 1 from Sec 3.3 for
all pairs of parameters in terms of ∆χ2

red. Each panel was generated by stepping the 2
parameters of interest and fitting all others.
The maps show that the χ2 landscape is not smooth at all but contains several small
minima and maxima. It, furthermore, reflects the uncertainties determined in Sec. 3.3.
Correlations between two parameters show up in Fig. 3.9 in form of diagonal valleys in the
χ2 landscape. Only horizontal or vertical connections are due to the uncertainty of just
one of the parameters. Some parameters, like the mass of the cool component for instance,
is almost unconstrained. Correlations can be seen between both temperatures and the
angular diameter θ. The cooler the stars, the closer they have to be in order to provide the
observed flux and therefore the larger θ. Another strong correlation is seen between the
surface gravities of both stars. Note, that the resolution of the χ2 maps is probably too
rough to be able to recognize the huge drops in χ2 in the case of the surface gravities as
seen in Sec. 3.3.
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Figure 3.9: ∆χ2
red maps for the S/N = 50 case of Example 1. Some parameters show strong correlations,

note especially the correlation between the surface gravities of both stars.
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• The chosen implementation of the convolution is a good trade-off between
accuracy and computation time.

• Fits of synthetic spectra produce the expected results for the free parameters.
∆χ2

red is sufficiently close to 1 in all cases.

• The uncertainty-S/N dependence shows that S/N ∼ 25 is sufficient to
constrain parameters - depending on the physical properties of the system.
This shows, that it is possible to disentangle spectra provided by SDSS (S/N
> 25) with the code developed in the course of this thesis.

• In the case of the surfcae gravities χ2 shows two minima separated by a
wall in between them. Whether the reason is a physical or a numerical
discrepancy remeined unclear.

• The calculation time for one single fit including the uncertainty calculation
is below 24 hrs on one single core for ∆λ = 2.5 Å using the full available
wavelength coverage.

• The χ2 landscape of the problem turns out to be not smooth but contains
several local minima. Most prominent is a strong correlation between the
surface gravities of both stars and correlations between the temperatures
and the angular diameter θ.

Summary



4 Applications

4.1 Testcase PG1104+243

In order to be able to compare the results achieved with the code to other approaches, the
candidate PG1104+243 which was extensively investigated by Vos et al. (2012) was fitted.

4.1.1 The Object

Vos et al. (2012) found in the course of a long-term monitoring program of composite
subdwarf binaries, that PG1104+243 is a sdB + G0 system. They used 38 spectra taken
over a two years baseline with HERMES at the Mercator telescope (La Palma) to solve the
orbit and provided accurate atmospheric parameters. The latter ones were determined by
fitting the spectral energy distribution (SED). All parameters are summarized in Tab. 4.1.
PG1104+243 is one of the first long period sdB binaries analyzed in detail.

P [d] 753 ± 3
e < 0.002

KsdB[km s−1] 6.9 ± 0.2
KG0[km s−1] 4.42 ± 0.08

q 0.64 ± 0.01

sdB
Teff [K] 33520 32400-34800

log g[dex] 5.81 5.77-5.85
He/H [dex] -1.52 (fixed)

G0
Teff [K] 5931 5769-6095

log g[dex] 4.29 4.26-4.32
Fe/H [dex] -0.58 (-0.47)-(-0.61)

Table 4.1: Left: Orbital solution, obtained in 5000 Monte-Carlos simulations from spectroscopy. K is the
radial velocity amplitude, q is the mass ratio of the binary system. Right: Atmospheric parameters of
the stars, determined by SED fitting. The radius of both components was determined from log g and the
masses. 95% probability intervals are given. From Vos et al. (2012).

The surface gravity log g in Tab. 4.1 could only be constrained when Vos et al. (2012)
computed the radius and therefore the surface ratio of the stars from their masses and
surface gravities, since photometry puts almost no constraints on the surface gravities.
Their approach is also implemented in this project, as described in Sec. 2.5.2. Vos et al.
(2012) also fitted the reddening of the binary using the SED. They determined a low value
(E(B-V)< 0.012).
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4.1.2 Spectral Fitting

This section presents the results of the spectral fitting of PG1104+243 using the code
developed in the course of this project.

The reddening maps by Schlegel et al. (1998) with the correction from Schlafly & Finkbeiner
(2011) give E(B− V ) = 0.0128± 0.0006 for the coordinates of PG1104+243. This is within
the uncertainties of the freely fitted value of Vos et al. (2012) (E(B − V ) = 0.000− 0.100).
The Schlegel-value is applied to deredden the spectrum before fitting.

A high-resolution spectrum based on 82 HERMES spectra (Raskin et al., 2011) was available.
The high resolution of this spectrum confronted the code not only with a higher resource
consumption but also with new physical effects, that were not taken into account up to now.
One of the most obvious differences between the synthetic spectra and the observation was
the presence of rotation (∼ 10 km s−1), which can be recognized easily by over-plotting
the observation (which is in the rest-frame of the cool component) with synthetic spectra
convolved to the corresponding resolution. Since the code is not able to deal with rotational
broadening at this stage of development, two options remain: Either model the influence of
rotational broadening by an additional Gaussian convolution (which is physically incorrect)
or convolve the observation to lower resolution where rotational broadening is less visible.
The latter option simulates that the spectrum was taken with a spectrograph with lower
resolving power and is therefore the preferred approach from a physical point of view.
However, both approaches were carried out and produce similar results. Therefore, only
the lower resolution approach is presented in the following in detail.

Even though the available spectrum covers the wavelength range between 3800 and 8000 Å,
the parts between 5500 and 8000 Å were ignored during the fit. This part of the spectrum
is significantly contaminated by telluric absorption lines (> 6800 Å) which are originating
in Earth’s atmosphere. A reliable correction for this effect is difficult but possible (see for
instance Moehler et al. (2014)). However, difficulties are introduced because the spectrum
is composed out of 82 single exposures which lead to a complex behaviour of the telluric
lines. Therefore, the region in which the telluric lines are strong is excluded from the fit. In
addition, between 5500 and 6800 Å problems regarding the flux calibration became clearly
visible and therefore the corresponding region was also excluded from the fit. The S/N is
expected to be 50.

Unfortunately, the flux units are not known. This means, that the parameter θ has no
physical meaning for this fit but is rather a scale factor to compensate for the flux units.

Fig. 4.1 shows the best fit for PG1104. Not each parameter of the spectral fit is in agreement
with the results published by Vos et al. (2012) obtained by SED fitting (see Tab. 4.2. The
temperature of the cool companion and its surface gravity are overestimated. However, if
one part of the spectrum suffers a reliable flux calibration, other parts may also be affected,
but the effect may not be as obvious. Furthermore, the helium content of the subdwarf is
overestimated compared to the analysis of Vos et al. (2012). Vos et al. (2012) fixed this
value for their SED fit. Even in the spectral fit, the number should be taken with care
because the helium fraction has influence on very few lines only and is therefore often highly
degenerate. The metalicity of the cool companion is much lower in the spectral analysis.
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Figure 4.1: Spectral fit for candidate PG1104+243. The spectrum was convolved to ∆λ = 0.2 Å resolution.
Problems regarding the flux calibration and contamination with telluric lines restricted the fit to the
depicted region.
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Figure 4.2: Spectral fit for candidate PG1104+243. The spectrum was convolved to ∆λ = 0.2 Å resolution.
The region around the Mg triplet is shown in detail. There is good agreement between the fit and the
observed spectrum.
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Cool companion Hot subdwarf

Teff [K] log g [dex] Fe/H [dex] m [M�] Teff [K] log g [dex] He/H [dex] θ [1 · 10−5]

626916
−17 5.08−0.03

−0.04 −0.14+0.04
−0.03 0.8716460.08

−0.06 3396872
−67 5.840.02

−0.02 −1.78+0.03
−0.04 40.19+0.25

−0.25

Table 4.2: Fitresults for PG1104+243. χ2
red = 0.991256 for S/N= 50. The surface ratio is 10.74. Note,

that θ has no physical meaning here but is rather a scale factor. The temperature of the companion as well
as surface gravities are higher if they are determined by spectral fitting compared to the SED fit procedure.
However, due to the different data and analysis methods, the results can not be directly compared to the
values from Vos et al. (2012).

However, it is much more difficult to determine the metalicity from the SED since single
lines do not participate in the χ2. It is instructive to have a closer look at a part of the fit
in order to see how single lines behave and how the code can treat high resolution data. Fig.
4.2 shows the region around the Mg triplet at 5170 Å in detail. This example demonstrates
that the code is able to reproduce quite small features and therefore the metalicity should
be nicely constrained. It suggests that the deviations from the values from Vos et al. (2012)
are most probable due to the data itself and not due do numerical artefacts. All in all, the
spectral class of the cool companion is of type F, according to the spectral analysis and not
G, as published by Vos et al. (2012). However, the high surface gravity is suspicious and
may be a hint on an incorrect flux calibration. It should be emphasized again, that the
spectrum is different from the observation Vos et al. (2012) used for their analysis and they
also used other techniques to determine their parameters. Therefore, direct comparison is
difficult.
This testcase shows that the routine is able to also reproduce high resolution spectra. The
calculation time for the fit was below 4 days. However, it also emphasizes that reliable
flux calibration is an important issue for the decomposition method to work. In addition,
more effort needs to be put into solving the problem of degeneracies (See also Sec. 3.4). A
possible solution for this is presented in Sec. 5.1.1). Furthermore, effects only visible in
high resolutions spectra, stellar rotation for instance, need to be implemented in the code.

4.2 Stars from the HVS sample

As mentioned in Sec. 2.1, the main driver of this project was the occurrence of reddened
stars in a color-color plot. These objects became suspicious to be binary systems already
throughout the work on my Bachelor’s thesis (Kreuzer, 2013). In the following, their
properties are briefly revisited.

4.2.1 The Objects

The aim of my Bachelor’s thesis (Kreuzer, 2013), was to find new candidates for hypervelocity
stars (HVS), which are stars travelling with a velocity exceeding the Galactic escape velocity.
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They are perfect probes to constrain the shape and mass of the Galactic dark matter halo.
Blue stars in the halo are good candidates, because they have only short lifetimes. Therefore,
they might have to travel fast in order to reach their present day position in the halo,
because star formation is only possible in the Galactic disk. In order to predict their true
space velocity, it is necessary to estimate their distance. This was done using photometric
measurements from the SDSS survey and dividing the sample into different temperature
regimes. This is shown in a color-color plot in Fig. 4.3.
Some of the stars do not fit the models for constant surface gravity and temperature
depicted. They are red shifted, which means they have an excess in the IR. This might be
due to interstellar extinction. However, the complete sample consists of halo stars which
are not expected to be significantly affected by interstellar extinction. Probably, a cool
component might add some flux in the IR. Visual inspection of their spectra revealed indeed
the presence of a cool companion for most of them. Because cool stars are typically much
fainter than hot stars, they should not be visible in the spectrum if the primary is a massive
O/B-type star. This is different if the hot component is a subdwarf star, which is much
fainter and therefore closer. In this case, they might have almost equal fluxes in the optical
and both components become visible in the spectrum. This sample of reddened stars was
the main driver for initiating this work on disentangling subdwarf binaries as a Master’s
project.

4.2.2 Spectral Fitting

The spectra for the candidates presented in the following are taken from SDSS DR10. SDSS
provides spectra in which wavelengths are given as vacuum values, not corrected for any
radial velocity value but the barycentric correction. In order to prepare the spectra for the
fitting procedure, first the spectrum will be shifted by the radial velocity value determined
by the automated analysis of SDSS and subsequently the vacuum wavelengths will be
converted to air wavelengths. Even though the result of changing the order of the two
wavelength conversions is negligible, this chronological order is adapted from nature. First,
the spectrum gets shifted by the relative movement of the star. Then, the light travels
through vacuum and hits Earth’s atmosphere before the detector measures the spectrum.
In order to shift the wavelength scale from vacuum to air wavelengths, the formula from
Ciddor (1996) was used, which was already used to convert the PHOENIX grid to air
wavelength. Wavelength shifts due to radial velocity are implemented by applying the well
known relation

δλ

λ
=
vrad
c

(4.1)

Due to the design of the SDSS and BOSS spectrographs as multi-fibre instruments (see Sec.
1.4) the resolution may be a rather complex function of the wavelength. In addition, this
function is different for every fibre and also depends on the observing conditions. SDSS
provides spectra in FITS1 format which contain in addition to the wavelength and flux

1FITS = Flexible Image Transport System, a file format developed by NASA to contain multidimensional
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Figure 4.3: Color-color-diagram of a hot star sample, over-plotted with lines of constant log g, and
log g for constant temperature, according to Castelli & Kurucz (2004). The sample is divided ’by eye’
into temperature intervals of 1000 K. The reddening vector corresponds to a reddening of 1 mag due to
interstellar extinction, according to Kim & Lee (2007). Objects marked as red asterisks seemingly show
strong reddening, but interstellar extinction is unlikely to be the cause of the IR excess. Visual inspection
of their spectra revealed that most of them have a cool companion. Plot taken from Kreuzer (2013), with
additional marking (squares) for the objects which were fitted in the course of this project (red boxes).

information also the wavelength dispersion at each pixel σdisp. This is given in terms of the
pixel size and must therefore be converted to units of wavelength. Following the principle
discussed in Lee et al. (2015), the resolution R at each pixel can be calculated using the
following equation.

R =
√

8 · ln · ln 10 · 1× 10−4 · σdisp (4.2)

Now, the FWHM ∆λ can be calculated.

∆λ =
λ

R
(4.3)

This needs to be done for each pixel separately. Fig. 4.4 shows the wavelength dependence
of ∆λ for all SDSS spectra of which the result of the fit is presented in this thesis. It shows,
that the resolution is strongly depending on the fibre. The steep rise at 6000 Å occurs due
to the overlapping of the blue and the red arm of the spectrograph. Since these curves

arrays.
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Figure 4.4: Wavelength dependence of the resolution of the SDSS spectra which were fitted. The steep
rise at 6000 Å is the overlap region of the red and the blue arm. All spectra are taken by the SDSS
spectrograph. The resolution also depends on the fibre.

cannot be modelled easily, the convolution code was modified slightly in order to use a
different broadening profile for each pixel (See App. A.2).
Five candidates were fitted with the code. Fig. 4.3 shows that these candidates are evenly
dispersed throughout the region of reddened stars (red boxes). The fit routine was running
in complete automatic mode, meaning that the input consists only of the following quantities
and the start values were chosen automatically close to the middle of the parameter ranges
of the corresponding grids. Towards the IR, the wavelength range is constrained by the
subdwarf grid.

• Observation (from SDSS DR 10)

• Wavelength range (3820-7500 Å)

• Radial velocity (from SDSS DR 10)

• S/N (from SDSS DR 10)

• Resolution (from SDSS DR 10)

• Reddening (from (Schlegel et al., 1998), (Schlafly & Finkbeiner, 2011))
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Figure 4.5: Fully automatized spectral fit for candidate SDSS J161943+240716.

• Maximum number of iterations allowed (2000)

• Subdwarf grid (see Sec. 2.2.1)

• Phoenix library (see Sec. 2.2.2)

The input data of the five candidates are summarized in Tab. 4.3. Uncertainties on radial
velocity as well as on the reddening parameter E(B − V ) and the S/N are not considered
here. They are on the order of ±0.001 for E(B − V ) and ±5 km s−1 for vrad and therefore
negligible.

The summary of the fit results for all five stars is given in Tab. 4.4, the corresponding
spectral fits can be found in Fig. 4.5 for candidate SDSS J161943+240716 and in App.
B.4 for all other candidates. All cool companions show temperatures consistent with
those of the expected variety of F/G/K stars (3500-7300 K). Except of one star, the
metalicities are subsolar in each case. For two candidates, SDSS J100046+0254408 and
SDSS J135057+080110, the surface gravities of the cool companion are unexpectedly large
(> 5.4), which is physically unrealistic as we will see in the following section where they are
compared with stellar evolution tracks. The hot subdwarf stars reside all in the regime of
sdB stars (< 35000 K). Their gravities and helium content is plausible.
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E(B − V ) vrad [km s−1] S/N

SDSS J083350+110104 0.0271 +247.42 37.64

SDSS J100046+025408 0.0163 +121.11 39.57

SDSS J135057+080110 0.0208 +112.28 48.86

SDSS J161943+240716 0.0580 -222.22 46.57

SDSS J215054+131651 0.1209 -95.28 35.49

Table 4.3: Input values for the fit routine for five SDSS candidates. E(B − V ) values are taken from
Schlegel et al. (1998) and Schlafly & Finkbeiner (2011), vrad and S/N values are determiend by the atomated
data analysis of SDSS.

4.2.3 Comparison with stellar evolution predictions

The fitted data is now confronted with theoretical predictions on the evolution of hot
subdwarfs. Three different evolutionary model predictions are available up to now and
frequently used in literature. The tracks were calculated by Dorman et al. (1993), Han et al.
(2002) and Bloemen et al. (2014). The latter one is the most sophisticated approach where
atomic diffusion due to radiative levitation, gravitational settling, concentration diffusion
as well as thermal diffusion is taken into account.
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Figure 4.6: Comparison of different evolution tracks for hot sdB stars. a: Tracks from Han et al. (2002),
plotted for different H mass fractions, for 0.45 (bottom) and 0.49 M� (top). All models shown have solar
metalicity. b: Tracks from Bloemen et al. (2014), plotted for different H mass fractions, for 0.45 (bottom)
and 0.50 M� (top). Solar metalicity. There is agreement between these tracks and the Han et al. (2002)
tracks. c: Tracks from Dorman et al. (1993) for 0.47 (bottom) and 0.48 M� (top). These models differ
from both, the Bloemen et al. (2014) and the Han et al. (2002) predictions. See text for discussion.

First, the models should be compared against each other in order to find systematic
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cool companion

Teff [K] log g [dex] Fe/H [dex] M [M�]

SDSS J083350+110104 5810+164
−122 4.35+0.13

−0.08 −2.01+0.44
−0.17 0.70+0.29

−∞

SDSS J100046+025408 7169+33
−43 5.42+0.03

−0.14 0.50+0.04
−0.08 1.57+∞

−0.08

SDSS J135057+080110 6565+43
−27 5.50+0.03

−0.03 −0.49+0.12
−0.03 1.17+0.05

−0.06

SDSS J161943+240716 5930+58
−39 4.47+0.05

−0.05 −1.43+0.11
−0.09 0.74+0.07

−0.02

SDSS J215054+131651 4375+77
−67 4.77+0.09

−0.06 −1.50+0.30
−0.23 1.31+0.21

−0.24

hot subdwarf

Teff [K] log g [dex] He/H [dex] θ [1× 10−17.5]

SDSS J083350+110104 24753+542
−477 5.22+0.08

−0.10 −3.81+0.86
−0.99 59.09+0.96

−0.24

SDSS J100046+025408 34516+201
−612 6.05+0.07

−0.03 −1.77+0.08
−0.23 27.80+0.11

−0.08

SDSS J135057+080110 29636+330
−119 6.18+0.02

−0.04 −2.13+0.02
−0.04 49.99+0.12

−0.14

SDSS J161943+240716 23802+278
−198 5.15+0.04

−0.05 −2.59+0.16
−0.20 57.80+0.12

−0.22

SDSS J215054+131651 29415+351
−400 5.42+0.08

−0.08 −2.33+0.13
−0.14 47.31+0.98

−0.67

Surface Ratio χ2
red calculation time [hr:min] memory [MB]

SDSS J083350+110104 4.005 0.83105 01:56 140

SDSS J100046+025408 14.00 1.10953 05:36 235

SDSS J135057+080110 11.84 1.22222 09:07 162

SDSS J161943+240716 7.746 0.95060 08:23 235

SDSS J215054+131651 12.51 1.02882 03:08 165

Table 4.4: Fitresults for five SDSS-candidates. Memory gives the peak of the amount of virtual memory
used during the fit. For uncertainties denoted by ”∞” the uncertainty calculation was not possible because
the parameter value was too close to the grid edge / the allowed parameter space.
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differences. A direct comparison of the part of the grids which is of interest is shown in Fig.
4.6, where evolutionary tracks are plotted into a Kiel diagram. It shows, that there are
some minor differences between the Han et al. (2002) and the Bloemen et al. (2014) models.
They differ especially for small hydrogen envelopes where the rise in the Han et al. (2002)
evolutionary tracks is much steeper. However, the tracks from Dorman et al. (1993) show a
strong dependence on the stellar mass. Their tracks are not explicitly stepped in envelope
mass, but this quantity can be derived from their published tracks roughly. The given
envelope mass for their track corresponds to the envelope mass at the zero age horizontal
branch (ZAHB) but, of course, decreases over time due to the hydrogen shell burning. For
all other tracks, the envelope mass is explicitly given and does not decrease throughout
evolution. Therefore, they cannot be compared directly.
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Figure 4.7: Fitted parameter of the hot subdwarf of five candidates from the SDSS sample, overplotted
with the evolutionary tracks from Bloemen et al. (2014). All stars are within the theoretically predicted
parameter ranges.

The Bloemen et al. (2014) models are consistent with all hot subdwarf observations and
their calculation follows the most complex and modern approach. Therefore, they are taken
into account for comparison with the fitted values. Fig. 4.7 shows the evolutionary tracks



4.2.3 Comparison with stellar evolution predictions 67

overplotted with the fitted parameters of the five SDSS candidates. All data points are
located within the region covered by the models and are therefore consistent with theory.
However, two of the objects show relatively high surface gravity and are located at the top
end of the possible parameter range. The cool companions of the two outliers also show
high surface gravity (see below) which might be an indicator for either a strong degeneracy
in the fit or a physical problem. Furthermore, the fits of the most extreme candidates also
show the highest χ2

red and the worst residuals in the fits (see App. B.4).
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Figure 4.8: Fitted parameters of the cool companion of five candidates from the SDSS sample, overplotted
with the evolutionary tracks from Chabrier & Baraffe (1997) (sub-solar metalicity) and Ekström et al.
(2012) (solar metalicity). Even though the ZAMS shifts towards higher gravities and temperatures for lower
metalicity, two of the candidates show too high gravity and reside outside of the allowed region.

Also, the values for the cool companions can be compared with evolutionary tracks. Fig
4.8 shows the data points overplotted with evolution tracks derived by Chabrier & Baraffe
(1997) (≤ 0.8M�) and Ekström et al. (2012) (≥ 0.8M�). Again, the gravity for at least
two of them turns out to be overestimated by the fit. Note, that the two stars with the
highest surface gravities correspond to the outliers in the Fig. 4.7. They also show high
surface gravities for the subdwarf companion. If these systems are not binary but triple
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systems, the third component might be almost invisible in the spectrum. Assuming this
third component to be a compact object, like for instance a white dwarf, which would be
too faint to contribute significantly to the spectrum, yields additional pressure broadening
in the spectral lines and therefore higher log g in the binary fit. This effect may not only
affect the hot subdwarf model but also the fit of its companion. The different slope of the
spectrum can in special cases be corrected via an appropriate combination of temperatures
and distance - and therefore θ. Another explanation for this effect might be the presence of
the artefacts in the χ2 landscape of the surface gravities already observed in Sec. 3.3. App.
B.3 shows the χ2 lines around the minimum for candidate SDSS J135057+080110. Two
Minima are clearly visible, but there is no secondary local minimum for values of log g < 5.
Even though higher metalicity might shift the zero age main sequence for cool stars to
higher Teff and log g, as seen in Fig 4.8 when comparing both 0.8M� tracks, three of the
stars reside clearly out of the theoretically allowed region. As discussed above, this might be
due to the presence of a third companion not clearly visible in the spectrum or degeneracies
in the fit. As shown in Sec. 3.4 there is a strong correlation between the surface gravities
of both star. If a numerical problem is the reason for the shape of the χ2 line around the
best fit in log g, this problem might be solved by applying another method in order to find
the best fit. An alternative is discussed in Sec. 5.1.2.
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• The fit routine is able to fit the high resolution (∆λ = 0.2 Å) data of candidate
PG1104+243. Comparing it with the results from previous publications
yields similar results. However, the observation is different from the one used
in the publication and probably the spectrum suffers reliable flux calubration.

• SDSS provides spectra with variable resolution and a strong wavelength
dependence. It also depends on the observing conditions, and especially the
fibre. The code fully accounts for this.

• The fit of five SDSS candidates from a samples of blue stars showing excess
in the IR was executed. The computation times were just a few hours.

• Comparing the results with evolutionary tracks reveales consistency but a
shift towards higher gravities for both companions of two objects. This can
either be explained by a strong corellation between the surface gravities or
the presence of a third component.

• Again, two minima are observed for the surface gravities. In order to exclude
this to be a numeriacal artefact one could intruduce different fit algorithms
and switch in between them.

Summary



5 Outlook and Conclusion

5.1 Outlook and possible improvements

This section gives an overview of ideas which might yield further improvements for the
code developed in the course of this project. In particular, degeneracies amongst surface
gravities and a more advanced subdwarf grid which may replace the standard grid already
in use are discussed. In the end, general short ideas for more accurate fit results are given.

5.1.1 Solving the log g degeneracy problem

As seen in Sec. 3.4, the degeneracy between the surface gravities is a severe problem. Sec.
4.2.2 revealed, that this can also be the reason for the fit drifting to higher values for both
parameters in SDSS spectra. One approach in order to be able to achieve a better fit is to
reduce the number of degrees of freedom, meaning that other parameters should kept fixed
and iterated later on.
This could for instance be implemented by first fitting the parameters of the star which
contributes most of the flux, afterwards iterating the parameters of its component. The
efficiency of this procedure can be increased by specifying wavelength regions, in which
only one component contributes significantly to the lines while the other component is only
visible in the continuum. The list of important spectral lines in Sec. 1.1.2 may serve as a
proxy for the splitting of the spectrum in parts. After alternating between the two stars, a
global fit of all parameters simultaneously may help to find the global minimum.
Another approach would be to put constraints on other parameters using SED fits like
carried out in Németh et al. (2016). θ and Teff are well constrained by photometry.
Especially constraints on Teff are expected to improve the results for the surface gravity.
As θ is the angular diameter of the star and therefore also encodes the distance, additional
constraints can be put on θ if the distance is known. The Gaia mission1 (Perryman et al.,
2001) will provide accurate parallax measurements which will be released within the next
years. The first data release covers already 2 million distances out of 1 billion stars observed
by Gaia. Their results are eagerly awaited.
Furthermore, the list of important spectral lines in Sec. 1.1.2 hosts a number of lines which
are crucial for the problem. Therefore, tiny regions in the spectrum may be able to constrain
single parameters better than using the whole continuum. A solution to be more sensitive
to the deviation in important spectral lines rather than to the whole continuum could be
the introduction of different weights of specific spectral regimes in the determination of the

1http://www.esa.int/Gaia
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χ2. Giving for instance the Balmer series, the Mg I triplet and some He lines more weight
would yield a faster increase in χ2 when stepping away from the best fit. Therefore, the
degeneracy may be reduced.

5.1.2 Genetic algorithm

In order to deal with the complex χ2 landscape in this particular fit problem one may use
the combination of different fit algorithms, alternating between them in order to find the
best fit. Another idea for future implementation would be to follow a completely different
approach by not doing a fit but rather following the principles of nature. So called genetic
algorithms tend to find the global best fit also in complex χ2 landscapes. The idea behind
these algorithms is that the first generation of spectra is randomly distributed over the
whole parameter range. As only the best adapted individuals of a species survive in nature,
also only the spectra which reproduce the observation best survive. This set of spectra is
used to breed the next generation. Important in this step is, that the breeding takes place
with a random number involved. These steps are executed several times and therefore the
overall ability of the spectra to reproduce the observation improves over time. Additionally,
with some probability mutations should occur during the breeding process. This is the
equivalent of ensuring that the iteration does not to get stuck in a local minimum while
scanning the χ2 landscape during a fit routine.
Using a genetic algorithm is promising to find the best fit faster. Remember, that the
error determination in the current implementation is restarted every time a better fit
was found. The computation time therefore decreases in the case of the genetic code
because the routine does not require that many restarts as working with a downhill simplex
algorithm. The drawback, however, is, that the genetic code itself does not provide simple
termination criteria or uncertainty calculation techniques, but since the χ2 landscape is
scanned extensively during the breeding of new individuals, it might be possible to use this
knowledge to calculate the uncertainties.

5.1.3 Extended LTE grid for the hot subdwarfs

A grid calculated by Ulrich Heber provides a more extended parameter range as well as
a larger wavelength coverage and better resolution, compared to the non-LTE TLUSTY /
SYNSPEC grid used in this work. The parameters and their covered ranges are summarized
in Table 5.1. This grid also considers line blanketing and includes metal lines. Unfortunately,
this grid is not as regular as the non-LTE TLUSTY /SYNSPEC grid and, therefore,
challenges the interpolation routine. Filling the holes in the grid for instance by interpolation
between surrounding spectra would allow to also use this grid for spectral fitting.
On big advantage of the LTE grid is the wavelength coverage from 2700 Å - 12000 Å in
constant 0.05 Å steps. This allows the use of all important lines mentioned in Tab. 1.2 in
the fit - especially the CaII IR triplet which originates from the cool companion only and
therefore provides much information. Furthermore, a large faction of the hydrogen Paschen
series is included, which originates from both stars. The helium abundance values are only
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parameter lower limit stepsize upper limit

λ [Å] 2700 0.05 12000

Teff [K] 9000 1000 50000

log g [cgs] 4 0.2-0.25 6.40

He/H 0.909 0.970, 0.990 0.999

Table 5.1: Parameters and the corresponding ranges covered by the grid calculated by Ulrich Heber. The
helium abundance is given as overall percentage for four different abundances.

Figure 5.1: Comparison of sdB and sdO synthetic spectra from both available model grids. Note,
that direct comparison is difficult, because of the different conventions for the helium abundance value.
Furthermore, the LTE grid (green) includes metals in contrast to the TLUSTY /SYNSPEC grid.

sampled in 4 steps, which allows the grid to be small and handy. The overall size of the
grid is only 5.6 GB, covering only solar metalicity up to now.
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Fig. 5.1 shows the typical sdB and sdO spectra from both libraries. Of course, the spectra
from the LTE grid provide much more features due to the metals being present in the
synthetic atmosphere. Note, that a direct comparison of both grids is difficult due to the
different conventions for the helium abundance value.
Comparing sdB to sdO spectra shows an interesting behaviour. sdB spectra typically show
more intense lines, which makes fitting much easier. This is a general trend: the higher
the temperature, the more difficult the fit. Therefore, the uncertainties for all inferred
parameters of hotter stars (Teff & 35000 K) ere expected to be larger than the ones of
cooler (Teff . 35000 K) stars. This was, in fact, already observed in Sec. 3.3.

5.1.4 Other possible improvements

In order to further increase precision a more sophisticated grid-interpolation may be used.
Newton- or spline interpolation allows a smoother interpolation, but with the cost of a
longer computing time.
In high-resolution spectra, other line broadening effects become important. One of the most
prominent ones is the rotational broadening, which may easily be implemented. Applying
another convolution with a rotational broadening profile in addition to the Gaussian profile
for instrumental broadening may help to reproduce high-resolution data. Again, more
computation time would be needed and another free parameter (v sin i) would be introduced.
An iterative way of fixing some of the parameters while fitting the others and alternating
between them (as discussed in Sec. 5.1.1) would then probably be required.
A way to minimize the impact of the quality of the flux calibration may be the use of
”spectral windows”. Dividing the spectrum into smaller parts and allow the angular
diameter θ to be fitted separately for each part may allow to correct for flux calibration
flaws on-the-fly during the fit.

5.2 Conclusion

The aim of this project was the analysis of hot subdwarf composite spectra. Previous
attempts met with limited success mainly constrained by limited models or long computation
times. This thesis describes the development of a fast method for the decomposition of their
spectra. Chapter 2 discusses the basic ideas and algorithms which were used to address
this problem.
An observation is reproduced by fitting a linear combination of spectra from two different
libraries to the observation. Spectra from both libraries have to be adapted to the observation
by accounting for the instrumental broadening by convolving them with a Gaussian of the
corresponding width. In order to find the best fitting combinations of the 8 free parameters a
standard downhill simplex routine is used and implemented in the code. The free parameters
are the temperatures and surface gravities for both, the subdwarf and the cool companion,
as well as metalicity and mass for the cool companion and helium abundance for the
subdwarf. An additional scaling parameter, corresponding to the angular diameter of a
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star, allows the flux intensity to be fitted. The code avoids the use of external packages.
Due to the specific aim of the project, optimizations can more easily be implemented in
self-written code rather than in pre-written packages which consist in most cases of rather
general code.
Test cases for the convolution and the fit routine itself were discussed. The convolution has
to be as less time consuming as possible but should produce highly accurate results which
means that a trade-off between calculation time and accuracy has to be found. The test of
the fit routine with a mock binary spectrum and the examination of the determination of
the uncertainties of the final parameters according to standard χ2 statistics shows overall
consistency. However, the surface gravities of both stars suffer a huge degree of degeneracy.
All example spectra are corrected for reddening. The code is used to analyze high-resolution
spectra of the well studied candidate PG1104+243 as well as low-resolution spectra of 5 sdB
binaries. The parameters of PG1104+243 have been estimated by Vos et al. (2012) using
SED fitting. Comparing the results achieved with this code to the values from literature
shows general agreement but shifts towards higher gravities and temperatures for the cool
companion. However, issues regarding the flux calibration are clearly visible in the spectrum
and huge parts could not be used due to contamination with telluric lines. Low-resolution
(∼ 2.5 Å) spectra of 5 sdB binaries from the SDSS spectral database were analyzed with
the code, which was the aim of the project. The wavelength and fibre dependent resolution
of SDSS spectra are discussed and the effect is fully included in the code. Comparing
the resulting atmospheric parameters to evolutionary tracks shows good agreement for
three of them. Two candidates are shifted towards higher gravities (especially their cool
companions). This may be caused by degeneracies and strong correlations between both
surface gravities. Ideas to solve this issue and add further improvements to the code are
discussed.
All in all, the existing code provides the tool needed to be able to disentangle binary star
spectra in a fully automated way. The code accounts for reddening and known radial
velocity as well as arbitrary resolution wavelength dependence. The computation times are
reasonably fast. Because the implementation follows object oriented principles, it is also a
good starting point for further improvements. Even though it has not been tested yet, due
to easily exchangeable spectral libraries, the code should be able to disentangle all kinds of
binaries in all spectral ranges. At the time being, the code provides all requirements to
disentangle hot subdwarf binaries as outlined in Sec. 2.1. A combination with a photometric
analysis of SEDs would be rewarding to constrain the parameters more strictly.





A C++ Code

A.1 Downhill Simplex Algorithm - The code

1 c l a s s s implexFi t {
2
3 i n t maxRestarts ;
4 i n t maxI t e ra t i ons ;
5 double f t o l ; // t y p i c a l l y 1e−4
6 double c h i s q ;
7 vector<double> simplexSum ;
8 std : : vector< std : : vec to r <double> > s implex ;
9 std : : vector<double> ch i sqVec ;

10
11
12
13
14 i n t s implexFi t : : doFit ( ) {
15
16
17 // F i r s t c a l c u l a t e ch i s quare at a l l s imp lex po in t s
18 f o r ( i n t k = 0 ; k < s implex . s i z e ( ) ; k++) {
19 double value = f ( s implex [ k ] ) ;
20 ch i sqVec . push back ( va lue ) ;
21 }
22
23
24 f o r ( cnt = 0 ; cnt < maxI t e ra t i ons ; cnt++) {
25
26 // Find h i ghe s t , second h i g h e s t and l owe s t ch i s quare
27
28 // Recompute Simplexsum
29 simplexSum . c l e a r ( ) ;
30 simplexSum ( ) ;
31
32 i n t i n h i = 0 ;
33 i n t i h i = 0 ;
34 i n t i l o = 0 ;
35 f l o a t TINY = 1.0 e−10;
36 double ndim = s implex . s i z e ( ) − 1 ;
37 f o r ( i n t i = 0 ; i < s implex . s i z e ( ) ; i++) {
38 i f ( ch i sqVec [ i ] <= chisqVec [ i l o ] )
39 i l o = i ;
40 i f ( ch i sqVec [ i ] > ch i sqVec [ i h i ] ) {
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41 i n h i = i h i ;
42 i h i = i ;
43 } e l s e i f ( ch i sqVec [ i ] > ch i sqVec [ i n h i ] && i != i h i ) {
44 i n h i = i ;
45 }
46 }
47 c h i s q = chisqVec [ i l o ] ;
48
49 //Compute t o l e r anc e and check whether l im i t i s ach ieved
50 // c r i t e r i o n from Nelder & Mead 1965
51 double sum = 0 ;
52 double average = 0 ;
53 f o r ( i n t i = 0 ; i< s implex . s i z e ( ) ; i++)
54 average += chisqVec [ i ] ;
55 average /= s implex . s i z e ( ) ;
56
57 f o r ( i n t i = 0 ; i< s implex . s i z e ( ) ; i++)
58 sum +=( chi sqVec [ i ] − average ) ∗ ( ch i sqVec [ i ] − average ) ;
59 double r t o l = s q r t (sum / s implex . s i z e ( ) ) ;
60
61 i n t d o r e s t a r t = 0 ;
62 i f ( r t o l < f t o l ) {
63 cout << ” Fit converged ! − r t o l : ” << r t o l << ” f t o l : ” << f t o l
64 << ” Red . Chisquare : ” << ch i sqVec [ i h i ] / ( do f )
65 << ” I t e r a t i o n s : ” << cnt << endl ;
66 re turn 1 ;
67
68 }
69
70 // check whether f a c t o r i s sma l l e r than zero
71 f o r ( i n t i = 0 ; i < s implex . s i z e ( ) ; i++) {
72 i f ( s implex [ i ] [ 3 ] < 0)
73 s implex [ i ] [ 3 ] = − s implex [ i ] [ 3 ] ;
74 i f ( s implex [ i ] [ 7 ] < 0)
75 s implex [ i ] [ 7 ] = − s implex [ i ] [ 7 ] ;
76 }
77
78 //Begin new I t e r a t i o n . F i r s t e x t r a p o l a t e by a f a c t o r o f −1 through the

face o f the s imp lex acre s s from the h igh point , i . e . r e f l e c t the s imp lex
from the h igh po in t .

79 double c h i s q t r y = amotry ( i h i , −1.0) ;
80
81
82 //Gives a r e s u l t b e t t e r than the b e s t point , so t r y an add i t i o n a l

e x t r a p o l a t i o n by a f a c t o r 2 .
83 i f ( c h i s q t r y <= chisqVec [ i l o ] )
84 c h i s q t r y = amotry ( i h i , 2 . 0 ) ;
85
86 //The r e f l e c t e d po in t i s worse than the second−h i ghe s t , so l ook f o r an

in t e rmed ia t e lower point , i . e . do a one dimensiona l con t rac t i on
87 e l s e i f ( c h i s q t r y >= chisqVec [ i n h i ] ) {
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88 double c h i s q s a v e = chisqVec [ i h i ] ;
89 c h i s q t r y = amotry ( i h i , 0 . 5 ) ;
90 // Can ’ t seem to ge t r i d o f t h a t h igh po in t . Be t t e r con t rac t around the

l owe s t ( b e s t ) po in t .
91 i f ( c h i s q t r y >= c h i s q s a v e ) {
92 f o r ( i n t i = 0 ; i < s implex . s i z e ( ) ; i++) {
93 i f ( i != i l o ) {
94 f o r ( i n t j = 0 ; j < ndim ; j++)
95 s implex [ i ] [ j ] = simplexSum [ j ] = 0 .5
96 ∗ ( s implex [ i ] [ j ] + s implex [ i l o ] [ j ] ) ;
97 ch i sqVec [ i ] = f ( simplexSum ) ;
98 }
99 }

100
101 }
102 }
103
104 i n t c n t o l d = cnt ;
105 i f ( d o r e s t a r t == 1) {
106 cnt = maxI t e ra t i ons ;
107 }
108
109 i f ( cnt == maxI t e ra t i ons ) {
110 pr intS implex ( ) ;
111 cout << ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
112 << endl ;
113 f ( s implex [ i l o ] ) ;
114 }
115 // I t e r a t i o n End
116 }
117 }
118 pr intS implex ( ) ;
119 re turn 1 ;
120
121 }
122
123 double s implexFi t : : amotry ( i n t i h i , f l o a t f a c ) {
124
125 i n t ndim = s implex . s i z e ( ) − 1 ;
126 vector<double> ptry ;
127
128 double fac1 = ( 1 . 0 − f a c ) / ndim ;
129 double fac2 = fac1 − f a c ;
130 f o r ( i n t j = 0 ; j < ndim ; j++) {
131 ptry . push back ( simplexSum [ j ] ∗ f a c1 − s implex [ i h i ] [ j ] ∗ f a c2 ) ;
132 }
133
134 double c h i s q t r y = f ( ptry ) ;
135
136 // I f ch i s quare at t e s t−po in t lower : Replace e v e r y t h in g in c h i s q v e c und

s imp lex .
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137 i f ( c h i s q t r y < ch i sqVec [ i h i ] ) {
138 ch i sqVec [ i h i ] = c h i s q t r y ;
139 f o r ( i n t j = 0 ; j < ndim ; j++) {
140 simplexSum [ j ] += ptry [ j ] − s implex [ i h i ] [ j ] ;
141 s implex [ i h i ] [ j ] = ptry [ j ] ;
142 }
143 }
144
145 return c h i s q t r y ;
146 }
147
148 void s implexFi t : : simplexSum ( ) {
149
150 // ! This f unk t i on updates the simplexSum member v a r i a b l e o f

s im p l e x f i t .
151
152 vector<double> ssum ;
153 f o r ( i n t j = 0 ; j < s implex [ 0 ] . s i z e ( ) ; j++) {
154 double value = 0 ;
155 f o r ( i n t i = 0 ; i < s implex . s i z e ( ) ; i++)
156 value = value + s implex [ i ] [ j ] ;
157 ssum . push back ( va lue ) ;
158 }
159 simplexSum = ssum ;
160 }
161
162
163 }

Listing A.1: Main part of the code for the simplex algorithm as used in the software, consisting of the
three functions int doFit(), double amotry(int, float) and void simplexSum(). For reasons of clarity and
comprehensibility, some housekeeping parts are omitted. All functions are member functions of the class
simplexFit. The function f(std::vector <double>) returns the χ2 for the given combination of parameters
in the passed in std::vector. Some comments are from Press et al. (2007).

A.2 Numerical convolution

The code for convolving a spectrum to a constant FWHM ∆λ instrument is given below.
For instruments with wavelength dependent ∆λ, the code is slightly different. In principle,
the calculation of the weights and the normalization (lines 27-51) are put inside the for-loop
(line 69). This allows the width of the Gaussian for the convolution to be different at each
pixel.

1 us ing namespace std ;
2
3
4 double i n t e r p o l a t e ( double p o s t o i n t e r p o l a t e ,
5 double p o s i t i o n n e x t l o w e r v a l u e , double next lower va lue ,
6 double p o s i t i o n n e x t h i g h e r v a l u e , double n e x t h i g h e r v a l u e ) {
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7 // ! I n t e r p o l a t e s between two Values l i n e a r l y
8 double r = nex t l owe r va lue
9 + ( ( n e x t h i g h e r v a l u e − nex t l owe r va lue )

10 / ( p o s i t i o n n e x t h i g h e r v a l u e − p o s i t i o n n e x t l o w e r v a l u e ) )
11 ∗ ( p o s t o i n t e r p o l a t e − p o s i t i o n n e x t l o w e r v a l u e ) ;
12 re turn r ;
13 }
14
15
16
17 i n t main ( ) {// ! Convolves spectrum to wave l eng t h s ca l e
18 // ! Only f o r long− s l i t ! Eche l l e would r e qu i r e wave lengthdependence o f

sigma
19
20
21 double s igma range = fwhm / s q r t (8 ∗ l og (2 ) ) ;
22
23 // sampling ra t e around each p i x e l o f the f i n a l convo lu t ion , the more , the

b e t t e r , the s lower . d i s t r i b u t e d in 3sigma range
24 i n t gnum = 81 ;
25
26
27 // c a l c u l a t e we i gh t s depending on sigma
28 double weights [ gnum ] , x pos [ gnum ] ;
29 double i n c r = ( double ) 2 ∗ 3 ∗ ( double ) s igma range / ( double ) (gnum − 1) ;
30 f o r ( i n t i = 0 ; i < gnum ; i++) {
31 weights [ i ] = exp (
32 −pow ( ( i − (gnum / 2) ) ∗ incr , 2)
33 / ( s q r t ( ( 2 . 0 ) ∗ pow( sigma range , 2) ∗ 3.14159265359) ) ) ;
34 x pos [ i ] = ( i − (gnum / 2) ) ∗ i n c r ;
35 }
36
37 f o r ( i n t i = 0 ; i < gnum ; i++) {
38 weights [ i ] = exp (
39 −pow ( ( i − (gnum / 2) ) ∗ incr , 2)
40 / ( ( 2 . 0 ) ∗ pow( sigma range ,

2) ) ) ;
41 x pos [ i ] = ( i − (gnum / 2) ) ∗ i n c r ;
42 }
43
44 //Normal izat ion
45 double sum = 0 ;
46 f o r ( i n t i = 0 ; i < gnum ; i++) {
47 sum += weights [ i ] ;
48 }
49 f o r ( i n t i = 0 ; i < gnum ; i++) {
50 weights [ i ] /= sum ;
51 }
52
53
54 sum = 0 ;
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55 f o r ( i n t i = 0 ; i < w l s c a l e . s i z e ( ) ; i++) {
56 sum += f l u x [ i ] ;
57 }
58 f o r ( i n t i = 0 ; i < w l s c a l e . s i z e ( ) ; i++) {
59 f l u x [ i ] /= sum ;
60 }
61
62 // p r i n c i p a l s t r a t e g y : loop over output x−g r i d −> c r ea t e a u x i l i a r y mini−

g r i d around each po in t and loop over i t to numer ica l l y perform
in t e g r a t i o n

63 // numerical i n t e g r a t i o n r e qu i r e s i n t e r p o l a t i o n o f w l s c a l e on x pos
64
65 vector<double> f i n a l s p e c ;
66
67 i n t k o ld = 0 ;
68
69 f o r ( i n t i = 0 ; i < newWlscale . s i z e ( ) ; i++) // loop over output x−g r i d
70 {
71
72 i n t k = k o ld ;
73 sum = 0 ; // i n i t i a l i z e s sum to zero
74 f o r ( i n t j = gnum ; j > 0 ; j−−) // loop over a u x i l i a r y mini−g r i d
75 {
76
77 whi l e ( w l s c a l e [ k ] < newWlscale [ i ] + x pos [ j ]
78 && k + 1 < w l s c a l e . s i z e ( ) )
79 k++;
80
81 whi l e ( w l s c a l e [ k−1] > newWlscale [ i ] + x pos [ j ] && k >0)
82 k−−;
83
84
85 i f ( j == 0)
86 k o ld = k ;
87
88 i f ( k == 0)
89
90 sum += weights [ j ] ∗ f l u x [ k ] ; // l i n e a r l y i n t e r p o l a t e between po in t s

to the l e f t ( index k−1) and r i g h t ( index k )
91 e l s e
92 sum += i n t e r p o l a t e ( newWlscale [ i ] + x pos [ j ] , w l s c a l e [ k − 1 ] ,
93 f l u x [ k − 1 ] , w l s c a l e [ k ] , f l u x [ k ] ) ∗ weights [ j ] ; // l i n e a r l y

i n t e r p o l a t e between po in t s to the l e f t ( index k ) and r i g h t ( index k+1)
94 }
95
96 f i n a l s p e c . push back (sum) ;
97 }
98
99 // Save convo lved spectrum and rep l a c e wave l eng t h s ca l e

100 f l u x . swap ( f i n a l s p e c ) ;
101 w l s c a l e = newWlscale ;
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102 }

Listing A.2: Numerical convolution code for constant resolution used in this project. The method is
adapted from an ISIS code written by Andreas Irrgang and slightly modified.

A.3 Golden section search

This method is capable to find the minimum in one dimensional minimization problems. It
is very easy to implement, but less time efficient than more sophisticated algorithms. The
function to minimize has to be monotonic and continuously defined. The description here
is based on the illustration in Press et al. (2007).

Figure A.1: Graphical illustration of the golden section search. From Press et al. (2007). See text for
details.

The procedure is illustrated in Fig. A.1. The idea is, to provide 3 points which bracket
the minimum at initialisation (1,3,2). Subsequently, the function is evaluated at a point in
between the point with the highest function value and the mid-point in order to get rid
of the highest point. In Fig. A.1 (1,3,4) are the bracketing points in this step. The next
iterations result in a bracketing of the minimum by the points (5,3,4) and then (5,3,6). This
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simple approach is repeated until the termination condition (given as a maximum distance
between the points) is met.
One can show, that the optimal value for convergence is achieved if the point where the
function is evaluated is given by the Golden Section1 between the two neighbouring points.
The convergence is linear: the bracketing of the minimum increases by a factor of 0.62 per
iteration.
The code below illustrates the implementation of the Golden Section search in the code.

1 double p a r a b o l a f i t : : f i t ( s td : : vec to r <double> s t a r t v a l u e s ) {
2 // F i t t i n g the parameter a o f the parabola , us ing go lden s e c t i on search ,

accord ing to Numerical Rec ip i e s 2007
3 double t o l = 1e−10;
4
5 double ax = s t a r t v a l u e s [ 0 ] ;
6 double bx = s t a r t v a l u e s [ 1 ] ;
7 double cx = s t a r t v a l u e s [ 2 ] ;
8
9 const double R = 0.6180339 , C = 1 .0 − R;

10
11 double x1 , x2 ;
12 double x0=ax ;
13 double x3=cx ;
14
15 i f ( abs ( cx−bx ) > abs (bx−ax ) ) {
16 x1=bx ;
17 x2=bx+C∗ ( cx−bx ) ;
18 } e l s e {
19 x2=bx ;
20 x1=bx−C∗ (bx−ax ) ;
21 }
22 double f 1=g o l d e n f i t f u n ( x1 ) ;
23 double f 2=g o l d e n f i t f u n ( x2 ) ;
24
25 double cnt = 0 ;
26 whi l e ( f abs ( x3−x0 ) > t o l ∗ ( f abs ( x1 )+fabs ( x2 ) ) && cnt < 10000) {
27 i f ( f 2 < f 1 ) {
28 x0=x1 ;
29 x1=x2 ;
30 x2=R∗x2+C∗x3 ;
31 f1=f2 ;
32 f2=g o l d e n f i t f u n ( x2 ) ;
33 } e l s e {
34 x3=x2 ;
35 x2=x1 ;
36 x1=R∗x1+C∗x0 ;
37 f2=f1 ;
38 f1=g o l d e n f i t f u n ( x1 ) ;

1The Golden Section or Golden Ratio is a ratio which is regarded to be aesthetic. The discovery dates
back to even before Euklid (300 B.C.). It is defined by a

b = a+b
a , corresponding a ratio of 0.618% and

0.382%.
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39 }
40 cnt++;
41 }
42
43 double xmin , fmin ;
44 i f ( f 1 < f 2 ) {
45 xmin=x1 ;
46 fmin=f1 ;
47 } e l s e {
48 xmin=x2 ;
49 fmin=f2 ;
50 }
51 std : : cout << ” Best f i t =” << xmin << std : : endl ;
52
53 re turn xmin ;
54 }

Listing A.3: Golden Section search C++ code. golden fit fun(x) calls the function evaluation at point x.
For reasons of clarity and comprehensibility, some housekeeping parts are omitted.



B Data Analysis

B.1 Fit in χ2 line for Example 1
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Figure B.1: Fit for the high χ2 region in the χ2 lines for the surface gravity in Fig. 3.5. log g of the
companion was fixed to 4.46287. The best fit for the other parameters is given in the table below the plot.
The surface ratio is 20.0561, χ2

red = 1.86785. A deviation is clearly seen in the region close to the Balmer
jump and also in the balmer lines. The reason for this remains unclear. See text for discussion.
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B.2 χ2 lines of Example 2 for S/N = 75
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Figure B.2: ∆χ2 single parameter lines around the best fit for Example 2. Some of the parameters show
a highly complicated pattern in their ∆χ2 line with two local minima.
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B.3 χ2 line of candidate SDSS J135057+080110
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Figure B.3: ∆χ2 single parameter lines around the best fit for candidate SDSS J135057+080110. Some of
the parameters show a highly complicated pattern in their ∆χ2 line with several local minima.
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