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Abstract

In this work, we developed an algorithm for estimation of effective
temperature Teff and surface gravity log g of OB-type stars from observa-
tions in different photometric systems. The algorithm was implemented
and tested using synthetic spectra whose creation parameters could be
reproduced accurately.
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1 Introduction

Photometry is one of the easiest ways to quantitatively analyse the light of
stars. On doing so several band-pass filters are used, ”cutting” some (filter
specific) color out of the spectrum of the starlight. The brightness of this color
(in the following called ”magnitude”) is then measured. Practically this can
be done very easily and with high temporal resolution (compared to recording
and analysing the whole spectrum). Thus this method is widely used to obtain
information about astronomical objects. Plotting the magnitude over time, one
can determine the period of a binary star or search for exoplanets for example.
For single stars the magnitudes are not time dependent and can provide the
observer with information about the type of star via the Hertzsprung-Russell
diagram.
Nowadays often also synthetic photometry is used to determine the stellar pa-
rameters more precisely. Synthetic photometry means modelling the physical
processes which determine the starlight‘s evolution until the observation and
then adjusting the models until the predicted magnitudes coincide with the ob-
servations. This yields results for the parameters included in the model, which
are for example effective temperature Teff and surface gravity g.
A program for these computations was written before by Napiwotzki et al. [1993]
for the commonly used Strömgren uvbyβ-system of filters. Here we aimed at
including more (arbitrary) filter systems, e.g. Johnson UBV -system, or the
ugrzi-system used by the Sloan Digital Sky Survey. Furthermore the advan-
tages of self-written code are modifiability and adaptability to existing code,
so this project (hopefully) provides my supervisor Dr. Andreas Irrgang with a
useful tool for his further work.

2 Terminologies

2.1 General astronomical terminologies

The effective temperature Teff of a star is defined as the temperature of a black
body emitting the same total amount of radiation. This is the commonly used
notion of temperature for stars, thus it is also often just called temperature of
the star.
The surface gravity g of a star is measured in cgs-units (which is here cm

s2 ) and

used logarithmically, abbreviated commonly with log g, meaning log(g · s2

cm ).
For comparison one may think of the earth‘s surface gravity g = 9.81 m

s2 giving
log g ≈ 3.
In general, in astronomy the symbol log is meant to be the logarithm to base
10 (instead of e as common elsewhere).
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2.2 Spectroscopical terminologies

In spectroscopy, the spectrum of a star (precisely: the spectrum of the star‘s
light) is recorded and analysed. In this spectrum, one plots the electromagnetic
flux f over the wavelength λ. Physically correct the so called flux is the flux
density over the wavelength, but in spectroscopy this is normally just called
flux. It is defined as radiative power per unit area and wavelength.
The intensity I is defined as radiative power per unit area. Comparison with
the flux gives ∫

f dλ =
dP

dA
=: I . (1)

The intensity is the quantity that is measured when recording photometric mag-
nitudes (see below).
Due to the distance of the star being observed, we have to do a flux correction.
Let F (as for example given by the computed synthetic spectra, see below) de-
note the flux emanating from the star‘s surface 4πR2 where R is the radius of
the star. Then using (1) we get the radiative power Prad of the star by

Prad =

∫∫
F dλ dA =

∫
Irad dA = 4πR2Irad , (2)

where a homogeneous intensity distribution over the star‘s surface was assumed
in the last step.
As the light moves in any direction with the same speed and energy is conserved,
in a distance d from the star the energy radiated from the star‘s surface in
one unit time interval (the power) is now distributed to a sphere with radius
d and thus surface area 4πd2, leading to a reduced intensity Id. The same
consideration as in (2) yields Prad = 4πd2Id. Equating this with (2) one obtains

4πR2Irad = Prad = 4πd2Id ⇔ Id =
R2

d2
Irad = ( 1

2θ)
2Irad , (3)

where θ = 2R
d is the angular diameter of the star (assuming R� d).

Assuming that the spectral distribution does not change, we can derive the flux
f at the distance d as

f = ( 1
2θ)

2F . (4)

2.3 Photometrical terminologies

As already mentioned, photometry is about measuring the intensities of starlight
shining through different filters. These filters are normally grouped to filter
systems containing several filters transparent for different parts of the electro-
magnetic spectrum. What part of the spectrum the filter is transparent for is
specified by the filter function.
This function also includes the response of the detection device and therefore
differs in definition whether an energy integrating (e.g. a photomultiplier) or a
photon counting (e.g. a CCD) device is used. As the published filter functions
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assume photon counting devices, we did so too. This results in the filter func-
tion being defined at some wavelength λ as the output signal of the instrument
per incoming photons with wavelength λ. (Usually the filter functions are nor-
malized to meet some requirement, for example that the integral over λ equals
1 or that the peak value is 1). This sort of filter function is also called photonic
passband.
The assumption of photonic passbands has to be regarded when computing
intensities (e.g. in (7)). According to (1) the intensity can be written as

I =

∫
f(λ)S′(λ) dλ =: 〈f〉 (5)

where S′(λ) gives the percentage of energy coming through the filter. But as
defined above, the function S(λ) gives the output signal of our instrument per
incoming photons. But the spectroscopic flux f again is in units of energy.
Obviously using the Planck-Einstein-relation Ep = hc

λ we can convert f to the

photon flux np via np(λ) = f(λ)
Ep(λ) ∝ f(λ)λ. Now we get the mean photon

flux 〈np〉 by 〈np〉 =
∫
np(λ)S(λ) dλ and according to Bessell and Murphy [2012]

(equation A13), this is proportional to the mean energy flux 〈f〉, giving

I
(5)
= 〈f〉 ∝ 〈np〉 ∝

∫
f(λ)S(λ)λ dλ . (6)

As we normally (see (7)) just look at quotients of intensities, we do not have to
worry about the proportionality constants here.
Unfortunately this paragraph had to be a little technical in order to simplify
the next one.
The measured quantities in photometry are magnitudes and colors, named like
the corresponding filter (e.g. ”the Johnson V magnitude” means the intensity
measured with the V filter of the Johnson system).
A magnitude m is the intensity of starlight (eventually filtered by some filter),
measured logarithmically in comparison with some reference star (usually Vega):

m :=− 2.5 log

(
I

Iref

)
+mref

(6)
= −2.5 log

( ∫
f(λ)S(λ)λ dλ∫
fref(λ)S(λ)λ dλ

)
+mref (7)

=− 2.5 log

∫
f(λ)S(λ)λ dλ−2.5 log

∫
fref(λ)S(λ)λ dλ+mref︸ ︷︷ ︸

=:mZP

(8)

where f(λ) is the incoming flux, S(λ) is the filter function, fref(λ) is the flux of
the reference object and mref is the corresponding magnitude of the reference
object. mref is actually just definition (i.e. the Johnson V magnitude of Vega
for example is defined to be 0.027). Sometimes the reference flux and magnitude
are combined (as in (8)) to give the zero point magnitude mZP. The factor of
−2.5 and the reference magnitudes are historically induced; notice the minus
sign, which results in smaller magnitudes representing higher intensities and
vice versa.
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Here we want to distinguish between the notion of a magnitude, which is ex-
plained above, and a color. A color is a difference of two magnitudes, the
Johnson U − B color is a common example. Using these colors, one can ob-
tain information about the distribution of the flux in one part of the spectrum
relative to another part (remember that the magnitude scale is logarithmic: a
difference in magnitudes corresponds to a quotient in intensities). Sometimes
also further constructions like differences of colors are used, which for simplicity
we will also call colors (or indices). One example is the c1 index of the Strömgren
uvbyβ-system being computed as c1 = (u− v)− (v − b).
One application of colors is interstellar reddening. The light emitted from a star
has to travel through space to reach the earth. On its way, it meets interstellar
dust and similar matter, modifying the spectral distribution: When the light
hits dust particles, some energy-rich blue photons are scattered at the particles
and therefore losing energy, which increases the wavelength. Thus some of the
flux from the blue part of the spectrum is shifted redwards. This process is
called interstellar reddening and its effect obviously is the larger, the more mat-
ter the light meets on its way. As measure for interstellar reddening we used
the color excess E(B − V ) of the Johnson B − V color. This color excess is
defined as the difference of the ”intrinsic” (the emitted) B − V color and the
observed (thus ”reddened”) color. As interstellar reddening shifts flux from the
blue part (represented by the B filter) to the red part (represented by the V
filter), B− V should grow with increasing reddening (remember the minus sign
in the definition of a magnitude). Thus it suits as a measure for reddening. To
achieve comparability amongst different stars which might have different B−V
intrinsically, this intrinsic value is subtracted, giving the definition above.

3 Synthetic photometry

As mentioned in section 1, synthetic photometry is about modifying model pa-
rameters such that the predicted magnitudes match the observed ones. Here I
will give a short explanation of the used models, which aim at simulating the
light’s evolution from creation in the star until the observation.
We begin with a model atmosphere for the observed star. This model contains
the parameters effective temperature Teff of the star, its surface gravity log g,
abundances of several elements and things like turbulences in the atmosphere.
From this model, the spectrum of the star can be computed. Such a com-
puted spectrum is called a synthetic spectrum. This spectrum resembles the one
emitted by the star, if the chosen model parameters resemble the ones really
occurring in the observed star (assuming sufficient correctness of the model).
The next step is the light travelling through space to earth. As explained in
section 2.3 this leads to interstellar reddening, measured by the color excess
E(B − V ).
As the starlight reaches the earth it has to pass the earth‘s atmosphere, which
obviously also has a big impact on the spectral distribution. This impact
strongly depends on time and location of the observation and therefore is sup-
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posed to be corrected for already in the observational data. Thus we do not
have to consider this here.
By now, the model computation provides us with the spectrum of the star as it
is supposed to reach the telescope. As mentioned above, photometry is about
filtering the starlight. As the filter functions for the commonly used filter sys-
tems are published, the filtering step can easily be done numerically using (7).
In this way one obtains the synthetic magnitudes for a fixed set of model pa-
rameters. These parameters are:

• Effective temperature Teff and surface gravity log g

• Chemical elemental abundances in the star‘s atmosphere

• Motion of the star and turbulences in its atmosphere

• The interstellar reddening, described as color excess E(B − V )

• The flux correction (see sect. 2.2) parametrized by the star‘s angular
diameter θ

The elemental abundances in the star‘s atmosphere mainly give absorption lines
in the spectrum, which are few to fractions of Ångströms in width. These are
negligible compared to filters with around 100-1000 Å in width and therefore
do not have a significant impact on photometric magnitudes. Neither do the
star‘s motion nor the turbulences, so in this work we set all those parameters
to standard values and did not change them. This leaves Teff , log g, E(B − V )
and θ as variables. Now we wrote a program that searches the best match of
these parameters with the observational data and thus gives values for these
variables, providing information about the star under consideration.

4 Implementation

4.1 Terminologies

The conclusion of section 3 was that we are left with the parameters Teff , log g,
E(B−V ) and θ and now from these have to compute the synthetic magnitudes
to compare them with the observations. The main part of this computation is
the fit function, which takes said parameters and computes the synthetic mag-
nitudes. By evaluating the fit function for several different sets of parameters,
a standard fit algorithm can determine the set of parameters, that best matches
the observations. This is the optimal fit.

4.2 Development of the algorithm

As we modified our algorithm several times, using different approaches on the
modelling, I will shortly outline these different approaches here.
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4.2.1 Straightforward modelling

The first approach was to model the processes straightforward as explained in
section 3. This means writing the fit function as follows: first compute the
synthetic spectrum from the input parameters, then do the flux calibration and
interstellar reddening and last but not least compute the synthetic magnitudes
using equation (7). The implementation for computing the synthetic spectra was
previous to my project done by my supervisor Dr. Irrgang and thus not part of
this work. For the interstellar reddening we used the so called reddening curve
of Fitzpatrick [1999] giving a reddening correction r in units of magnitudes per
color excess E(B−V ) as function of wavelength, ending up with the reddening-
corrected flux fred dependent on the incident flux f given as

fred(λ) = f(λ) · 10−0.4r(λ)E(B−V ) . (9)

The term 10−0.4 ... corrects for the mentioned fact that the reddening is given
in magnitudes, which (looking at (7)) includes some −2.5 log . . . .
This approach is very nice, because it directly resembles the physical processes
and thus is easy to adopt to changing conditions. For example one could easily
include also the elemental abundances as parameters, as these would then just
have to be passed additionally to the function computing the synthetic spectrum.
On the other hand, the computation of the synthetic spectra is also the biggest
problem in this method, because it is very CPU-intensive. As the fit function is
called many times by the fit algorithm, this leads to large computation times.

4.2.2 Using a grid

Because one possible application of this program is the fast estimation of Teff and
log g for many stars, we wanted to keep the computational cost for one run as low
as possible. Thus our second approach was to compute a grid for fixed ranges
of our parameters, where we listed the different magnitudes in dependence of
the model parameters. For arbitrary parameter values the fit function then just
has to interpolate between the grid points to obtain the corresponding synthetic
magnitudes. This approach has the advantage of much less computational cost,
as the expensive computation of the synthetic spectra is replaced by a cubic
spline interpolation between the grid points.
The disadvantage is the fixed range of the parameters and the fixed values for
all parameters that are not included in the grid. These are for example the
elemental abundances, which have no big effect on the synthetic magnitudes,
but are needed to compute the spectrum. Also the number of parameters to
be included in the grid should be kept as low as possible, as each parameter
increases the dimension of the grid by 1. So in principle, by having the four
parameters Teff , log g, E(B − V ) and θ, we had to compute a four-dimensional
grid. But looking at (4), (8), one sees that for the flux corrected magnitude mfc
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(as the factor ( 1
2θ)

2 is constant over λ) we obtain

mfc = −2.5 log

∫
( 1

2θ)
2f(λ)S(λ)λ dλ+mZP

= −2.5 log

∫
f(λ)S(λ)λ dλ− 5 log 1

2θ +mZP

= m− 5 log 1
2θ

(10)

where m is the magnitude without flux correction. Thus the computation of the
magnitudes and the flux correction can be separated, which gives us the advan-
tage of just having to compute a 3-dimensional grid and having θ as continuous
parameter.

4.2.3 Further reduction of dimensionality

Our last approach modified the mechanism of reddening. Reading Fitzpatrick
[1999] we realised that the derived reddening curve was based upon the redden-
ing corrections for single magnitudes. As we actually wanted to use it not to
compute reddened spectra, but reddened magnitudes, it seemed to us a little
bit like running in a circle to use reddened magnitudes to compute a reddening
curve to redden a spectrum from which then again the reddened magnitudes
are computed. This is obviously not the direct approach that one would want
to use and thus probably generating unnecessary errors. Also, if it was possible
to redden the computed magnitudes instead of the whole spectrum, like for θ
in the flux correction we could leave E(B − V ) as continuous parameter and
reduce the dimension of the grid to 2.
Because we wanted to keep our approach general and not restrict ourselves to
the Johnson and Strömgren systems used for the data of Fitzpatrick, we did not
want to directly use the values given there. So we computed the values from
our grid from the second approach, where we reddened the spectra using the
complete reddening curve. Obviously, if m and mred denote the unreddened and
the reddened magnitudes respectively, the correction is mred − m. To obtain
the values given by Fitzpatrick, we divided this by the corresponding value of
E(B − V ), giving the general correction term. Now the reddening correction
for a specified E(B − V ) can be obtained by multiplying the general correction
term with E(B−V ). Thus we have eliminated the need to redden the spectrum
and in this way can leave E(B−V ) as continuous parameter in the fit function.

5 Tests of the algorithms with synthetic spectra

In this section I want to show some computations done with my program and
in this way confirm that it works like it is supposed to. The different algorithms
explained in section 4.2 were tested with the following procedure:

1. Compute a synthetic spectrum with random initial parameters

2. Use the synthetic spectrum to compute synthetic magnitudes
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3. Set the computed magnitudes as input values to the algorithm and see
how good the initial parameters are reproduced

In the second step I also tested the two different approaches for the reddening
correction: redden the spectrum prior to computing the magnitudes from it (in
the following ”spectrum reddening”) vs. directly redden the magnitudes (in the
following ”magnitude reddening”).
Here the three algorithms available (see section 4.2) will be referenced as follows:
the first one (sec. 4.2.1) where no grid was used at all by ”no grid”, the second
one (explained in sec. 4.2.2) by ”3D grid” and the last one (sec. 4.2.3) by ”2D
grid”.
This gives a total of six different ways to compute comparable results. For each
of these ways a random sample of 500 ”stars” (sets of random values for the
four parameters Teff , log g, E(B − V ) and θ) was tested. Figure 1 gives a first
glance at the results, table 1 gives the legend for the upcoming figures.

Table 1: The colors used in the following figures to label the different combinations
of reddening the input magnitudes and computing the output parameter values.

no grid 3D grid 2D grid
spectrum reddening black green cyan
magnitude reddening red blue magenta

5.1 Effective Temperature Teff

As shown in figure 2, spectrum reddening in the fit function indeed gives a sys-
tematic error in temperature estimation. Also the effects of grid interpolation
can be seen nicely.

Figure 3 shows that the deviation of the fitted temperature does not signifi-
cantly depend on the initial log g value. Obviously there is also no ”sinusoidal”
systematic error due to the grid interpolation like for the dependence on the
initial Teff .

5.2 Surface gravity log g

In fig. 4 the deviation of the fitted log g to the initial value is plotted against
said initial value (same plot as fig. 2, just for log g). Again one clearly sees
the effect of using different reddening mechanisms. Also the grid interpolation
apparently affects log g not as much as Teff .

Fig. 5 we mainly see the interpretation of fig. 4 strengthened. Unfortuately
here we also see an error for which there is no obvious explanation.
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Figure 1: Fit results for the four input parameters. The different colors code for the
different combinations of algorithms (see table 1 for explanation). Obviously all the
parameters could be reproduced nicely. For further details see below.
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Figure 2: Deviation of the fitted Teff depending on the initial temperature. In fact
this is just a close up look of the plot in fig. 1 where the ”ideal line” Teff,fit = Teff,in

was subtracted. See table 1 for color explanation.
Obviously there are two different trends: firstly (black, red, green, blue) the data
from all the pairings of algorithms including spectrum reddening in the fit function
(as do the ”no grid” and the ”3D grid” functions). These four curves mainly all
show the same systematic error which therefore can be assumed to be due to the
use of spectrum reddening in the fit function. Secondly the two curves for the ”2D
grid” fit function which uses magnitude reddening show a much better match with
the initial parameters. But here one can also observe a systematic error, as especially
the magenta curve (where magnitude reddening was used for generation of the input
synthetic magnitudes) shows some strange ”sinusoidal” behavior. Regarding this we
noticed that the zero points of this curve coincided perfectly with the points of the
grid we computed for the ”2D grid” algorithm, which also coincided with the grid
points of the grid used for the computation of the synthetic spectra. The deviation
in between these grid points might be caused by different interpolation algorithms as
the synthetic spectra are linearly interpolated from their grid whereas here we used
a cubic spline interpolation. The cyan-marked data does not show this behaviour as
nicely as the magenta one as the difference between them (see table 1) is the reddening
mechanism at creation of the input synthetic magnitudes which is spectrum reddening
for the cyan data. As mentioned before, using spectrum reddening for the fit function
gives a systematic error, so it can be assumed that this holds for the use of spectrum
reddening at the creation of the input synthetic magnitudes which would explain the
”blurring”.
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Figure 3: Obviously there is no significant dependence of the mistake in temperature
estimation on the initial log g value.
Note that there is also no ”sinusiodal” behaviour as in fig. 2. Thus seemingly the grid
interpolation does not affect the fitting of the log g value significantly.
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Figure 4: Deviation of the fitted log g from the initial values. Here we observe three
trends: firstly there are three sets of data (black, green, magenta) that show a very
good agreement with the initial values. Consulting table 1 one notices that these three
datasets are the ones where the reddening mechanism used in the modelling of the in-
put magnitudes is the same as the one used by the fit function (e.g. the input for
the black data set was created using spectrum reddening and the ”no grid” algorithm
which also uses spectrum reddening).
The remaining three datasets both show a considerably bigger mismatch, where the red
and blue data systematically overestimate log g whereas the cyan data systematically
underestimates log g. We notice that the red/blue and the cyan data are symmetric
to each other (meaning that the picture is symmetric around the 0-axis).
As noted in figs. 2 and 3 the use of spectrum reddening brings in a systematic error.
Seemingly for log g (contrary to T eff) the systematic error by using spectrum red-
dening in the creation of the input synthetic magnitudes is the same (up to the sign)
as the one made by use of spectrum reddening in the fit function. So if both times (at
creation of the input magnitudes and at fitting time) the same reddening mechanism
is used, the mistake cancels out giving a nearly perfect match (as for the three said
datasets). If on the other hand the two available reddening mechanisms are mixed we
make the mistake just once so it affects the data (with respective sign).
Also we note that here we do not see ”sinusoidal” behaviour of any of the shown data.
This empowers the interpretation in fig. 3 that the grid interpolation does not affect
the fitting of the log g value.
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Figure 5: Deviation of log g plotted against initial Teff value. Obviously the system-
atic error due to different reddening mechanisms (see fig. 4) is also dependent on Teff .
Additionally here we see again the ”sinusoidal” behaviour that we came across also in
fig. 2, which once more reinforces the interpretation that the grid interpolation affects
the fit.
But contrary to what one would expect we also see some strange systematic error in
the black data, for which the ”no grid” algorithm was used. This systematic error
resembles the known ”sinusoidal” behaviour, but is asymmetric. Of course the ”no
grid” algorithm still uses a grid to compute the synthetic spectra and the grid points of
this grid also match the visible ”jumps”. But actually, as the fit also uses this grid, the
error should cancel out. Thus unfortunately I can not explain this systematic error.
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Figure 6: Deviation of E(B − V ) from the initial value. Here we see no significant
dependence of the error on the initial value.
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Figure 7: Deviation of θ from the initial value. Again (compare fig. 5) we see that
the error is signed and thus the plot is symmetric.
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5.3 E(B − V ) and θ

Obviously, E(B− V ) (fig. 6) and θ (fig. 7) mainly show the same trends as the
plots before. Thus this will not be discussed further.

5.4 Conclusion

We have seen that the reddening mechanism and the grid interpolation have a
significant influence on the goodness of the result. But one also has to see that
these effects are small (relative errors around 10−2). Thus the sole fact that
we could discuss these small errors shows that overall the results are actually
pretty good. Also as stated at the beginning, this program is meant to do a fast
estimation of the stellar parameters for big samples of stars and is not intended
for high precision computations.
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