Heisse unterleuchtkräftige Sterne: Klassifikation und Verifikation

Bachelor-Arbeit

zur Erlangung des Grades

Bachelor of Science (B.Sc.)

im Studiengang Physik

vorgelegt am Datum 15.08.2014

von Jan Friedmann

Dr. Karl Remeis Sternwarte Bamberg Astronomisches Institut der Friedrich-Alexander-Universität Erlangen-Nürnberg

Betreuer: Prof. Dr. Ulrich Heber

Diese Arbeit widme ich Walter Blank († 15.04.2013).

Inhaltsverzeichnis

1	Einleitung				
2	prung-Russell Diagramm	2			
3	Spe	ktralkla	assifikation	4	
	3.1	Harva	rd-Klassifikation	5	
	3.2	Yerkes	-Klassifikation	5	
4	Sub	dwarfs		8	
	4.1	Entste	hungsszenarien	8	
		4.1.1	Roche-Potenzial	8	
		4.1.2	Roche-Lobe-Overflow	9	
		4.1.3	Common-Envelope Ejection	10	
		4.1.4	White Dwarf Merger	10	
	4.2	Klasse	n von unterleuchtkräftigen Sternen	12	
		4.2.1	Blue Horizontal Branch	12	
		4.2.2	Subdwarf B	12	
		4.2.3	Subdwarf O	13	
		4.2.4	Subdwarf OB	14	
		4.2.5	White Dwarf	15	
		4.2.6	Charakteristische Absorptionslinien	16	
5	Spe	ktrosko	opische Doppelsterne	20	
	5.1	Radial	geschwindigkeitsmessung SB1	20	
	5.2	Radial	geschwindigkeitsmessung SB2	21	
6	Die	Suche	nach spektroskopischen Doppelsternen	23	
	6.1	SDSS	- Sloan Digital Sky Survey	23	
		6.1.1	BOSS-Spektrograph	23	

		6.1.2	MUCHFUSS	25	
	6.2	Qualita	ative Spektralanalyse	26	
		6.2.1	Form des Spektrums	26	
		6.2.2	Ergebnisse	28	
	6.3	Quanti	itative Spektralanalyse	33	
		6.3.1	SPAS - Spectrum Plotting and Analysis Suite	33	
		6.3.2	Fehlerabschätzung mit Bootstrapping	35	
		6.3.3	Baryzentrische Korrektur	37	
		6.3.4	Resultate	37	
7	Disk	ussion		42	
8	Zusa	immen	fassung	44	
9	Anha	ang		45	
10	Liter	atur		82	
11	11 Danksagung 8				

1 Einleitung

Heisse unterleuchtkräftige Sterne sind weit entwickelte Sterne, die ihre Leuchtkraft durch thermonukleare Fusion von Helium erzeugen. Sie treten bevorzugt in engen Doppelsternen auf. Ihre Entstehung ist noch nicht vollständig verstanden. Das internationale MUCHFUSS Projekt (Massive Unseen Companion of Hot Faint Underluminous Stars from SDSS) hat sich die Aufklärung dieser Frage auf die Fahnen geschrieben. Ziel dieser Arbeit ist es eine neue Kandidatenliste von 866 Sternen für die Kollaboration zu klassifizieren und zu verfizieren und besonders interessante Objekte für weitergehende Beobachtungen zu identifizieren. Zunächst werden in Kapitel 2 bis 5 die astronomischen Grundlagen rekapituliert. Daraufhin folgt die Suche nach spektroskopischen Doppelsternen mit anschließender Diskussion der Ergebnisse. Zuletzt wird die Arbeit durch eine kurze Zusammenfassung abgerundet.

2 Das Hertzsprung-Russell Diagramm

Das Hertzsprung-Russell Diagramm (*kurz:* HRD) ist benannt nach dessen "Erfindern" Henry Norris Russell und Ejnar Hertzsprung. Aufbauend auf Hertzsprungs Arbeit veröffentlichte Russell im Jahre 1913 eine seiner Arbeiten zur Theorie der Sternentwicklung. Hierin stellte er unter anderem die Beziehung zwischen Leuchtkraft und Farbe bzw. Temperatur der Sterne graphisch in Plots dar. Später wurde diese Art der Darstellung als Hertzsprung-Russell Diagramm bekannt. Anfang des 20. Jh. waren zwar viele parallaktisch bestimmte Entfernungen zu Sternen bekannt, jedoch gab es bis Hertzsprungs und Russells Arbeiten kein übersichtliches Vergleichs- bzw. Evolutionsmodell für Sterne. Das HRD hingegen zeigt sehr kompakt verschiedene Entwicklungsstadien von Sternen und ist seither das Standarddiagramm in der Astrophysik schlechthin (s. Abb. 1).

Variationen des HRD Die Darstellung des HRD kann je nach Zweckmäßigkeit variieren. So wird in der Regel zwar die Leuchtkraft *L* als y-Achsenbeschriftung herangezogen, aber die x-Achsenbeschriftung kann zum Teil die Spektraltypen¹ oder die Effektivtemperaturen (s. Abb. 1) umfassen. Die Leuchtkraft *L* wird durch die absolute Helligkeit *M* des Sterns über die Beziehung:

$$M = M_{Sonne} - 2,5 \log_{10} \frac{L}{L_{Sonne}}$$
(1)

bestimmt. Die Leuchkraft und absolute Helligkeit der Sonne ist sehr gut bekannt, weshalb sie als Referenz dient. Eine weitere Variation zu den bereits aufgezählten Darstellungen ist das sogenannte Farben-Helligkeits-Diagramm in dem die absoluten Helligkeiten der Sterne gegen die Farbe aufgetragen ist.

Evolution im HRD Das HRD gibt Aufschluss über die zeitliche Evolution von Sternen. Die Hauptreihe repräsentiert dabei den Zeitraum von "Geburt - Pubertät" also den Zeitpunkt in dem der Stern zu leben beginnt bis zu dem Zeitpunkt in dem er die erste große Veränderung durch macht. Unsere Sonne beispielsweise, befindet sich seit ihrer Entstehung (vor ca. 5 Mrd. Jahren) auf der Hauptreihe und wird weitere ca. 5 Mrd. Jahre dort verweilen, bis ihr Wasserstoff im Kern aufgebraucht ist. Sodann nimmt sie ihren Verlauf auf dem Roten-Riesen-Ast (*engl.: red giant branch (RGB)*), er

¹Die Spektraltypen werden im Kapitel Spektralklassifikation näher erläutert.

Abbildung 1: In diesem Hertzsprung-Russell Diagramm ist die Leuchtkraft (im Vergleich zur Sonne) gegen die Oberflächentemperatur aufgetragen, wobei beide Achsen logarithmisch eingeteilt sind. Zu sehen sind die Hauptreihe *main sequence* und weitere Bereiche, die unterschiedliche Stufen der Sternentwicklung repräsentieren. (Bild aus: Heber (2009))

beginnt Helium im Kern zu verbrennen und wandert zum Horizontalast (*engl.: horizontal branch*). Der Horizontalast ist im Gegensatz zur Hauptreihe und dem RGB eine Sequenz abnehmender Masse. Unsere Sonne behält aber auf dem Horizontalast noch ausreichend Hüllenmasse und hat deshalb noch zwei Energiespender (die wasserstoffbrennende Schale und den heliumbrennenden Kern) zur Verfügung, um über den Asymptotischen Riesenast (*engl.: asymptotic giant branch* oder *kurz:* AGB) und dem Post-AGB zu den weißen Zwergen zu wandern. Verliert allerdings ein Stern auf dem Horizontalast den Großteil seiner Masse bzw. fast seine komplette Hülle, so fällt einer der beiden Energiespender (die wasserstoffbrennende Schale) weg und der Stern ist nicht mehr in der Lage den selben Weg wie unsere Sonne zu nehmen. Zwischen den EHB-Sternen (extreme horizontal branch), also den Subdwarfs, und den Horizontalaststernen befindet sich eine Lücke (engl.: Newell Gap No. 2). Als erstes stellte dies Newell im Jahre 1973 fest, konnte jedoch die Entstehung der Lücke nicht erklären. Bis Dato gibt es zahlreiche Erklärungsversuche. So gehen z.B. Soker et al. (2001) davon aus, dass die heißesten Horizontalaststerne ($T_{eff} > 20.000 K$) noch kurz vor dem Helium-Flash anfangen Masse zu verlieren und auf dem Horizontalast einer Super-Wind Phase unterzogen werden. Dadurch könnte ein genügend großer Masseverlust eintreten, um den heliumbrennenden Kern fast frei zu legen. Das heißt er geht über in die Klasse der Subdwarfs und wandert dann schließlich direkt zu den weißen Zwergen (engl.: white dwarfs). Wegen der wegfallenden Energiequelle sind zudem Subdwarfs nur ca. halb so leuchtkräftig wie die am Ende des Horizontalast angesiedelten BHB-Sterne. Ausführlicher werden die Klassen der unterleuchtkräftigen Sterne in Kapitel 4 ab Seite 8 erklärt. Wie jeder Entwicklungsprozess genau abläuft ist hier irrelevant, wichtig ist allerdings, dass das Alter eines beliebigen Sterns anhand seiner Position und anhand der Verteilung gleichartiger Sterne im HRD gut abgeschätzt werden kann.

3 Spektralklassifikation

Es stellt sich die Frage, welche Parameter wir über Sterne hauptsächlich in Erfahrung bringen wollen? In erster Linie wollen wir die Masse eines Sterns, dessen Radius, dessen Leuchkraft und die chemische Zusammensetzung wissen. Mit Hilfe dieser Parameter können wir sodann direkt über die Leuchkraft-Temperatur Beziehung (Emerson (1996)) die Effektivtemperatur berechnen:

$$L = 4\pi R^2 \sigma T_{eff}^4 \tag{2}$$

wobei *L* die Leuchtkraft, *R* der Radius und σ die Stefan-Boltzmann-Konstante ($\sigma = 5,670373 \cdot 10^{-8} W/m^2 K^4$) ist. Zudem kann die Oberflächengravitation ermittelt werden durch:

$$g = \frac{GM}{R^2} \tag{3}$$

mit *M* der Masse des Sterns und *G* die allgemeine Gravitationskonstante $G = 6,673 \cdot 10^{-11} m^3 / kg \cdot s^2$. Jedoch sind die so gewonnenen Erkenntnisse noch nicht signifikant, da die chemische Zusammensetzung indes nicht berücksichtigt wurde. Vielmehr muss ein Spektrum aufgenommen werden, um sowohl die chemische Zusammensetzung

als auch die atmosphärischen Parameter (Gravitation g, Temperatur T_{eff} bestimmen zu können. Darum wird in gewisser Weise die Gebundenheit von H, He und $\left[\frac{Fe}{H}\right]$ als Basis der Spektralklassifikation angesehen. Die Notation $\left[\frac{Fe}{H}\right]$ beschreibt das Vorkommen der Elemente Eisen und Wasserstoff in Relation zu unserer Sonne über $log(N_{Fe}/N_H) - log(N_{Fe}/N_H)_{Sonne}$. Ein negativer Wert bedeutet der Stern ist Metall-arm (Emerson (1996)).

Nachdem nun von einem Stern ein Spektrum aufgenommen wurde, gilt es diesen nach bestimmten Eigenschaften zu kategorisieren bzw. klassifizieren. Hierbei bedient man sich an den Standardmodellen der Spektralklassifikation.

3.1 Harvard-Klassifikation

Die Harvard-Klassifikation (*kurz:* HK) wurde Anfang des 20. Jahrhunderts am Harvard Observatorium in den USA entwickelt. Die Basis sind Absorptionslinien, welche stärker von der Temperatur abhängen, als von der Gravitation oder Leuchtkraft. Aufgrund dessen wird der Stern lediglich nach seiner Effektivtemperatur, also der Temperatur an der Oberfläche des Sterns klassifiziert (s. Tab. 2). Die wichtigsten Linien sind dabei unter anderem die Wasserstoff-Balmerlinien, die Absorptionslinien des neutralen Heliums, das H und K Calcium-Doublet und natürlich die Eisenlinien. Wie in Tabelle 2 zu sehen ist kann jeder Stern einem Spektraltyp (O-B-A-F-G-K-M) zugeordnet werden. Da dies eine Einteilung nach der Effektivtemperatur ist, hat jeder Spektraltyp bestimmte aussagekräftige Linien, die überwiegend im jeweiligen Temperaturbereich vorkommen (s. Tab. 1).

Zu den Hauptklassen gibt es außerdem Unterklassen zehn Unterklassen, zum Beispiel G0 - G9, die eine feinere Einteilung ermöglichen. Neben den hier aufgeführten Spektraltypen gibt es noch die Typen C und S, welche Temperaturen von ca. 3.000 K an der Oberfläche besitzen und deshalb parallel zu den Spektraltypen G bis M existieren. Sie unterscheiden sich jedoch durch ihre chemische Zusammensetzung an der Oberfläche. Zudem sind sie weitaus seltener als G-M Sterne, weshalb die detaillierte Behandlung dieser Klassen nicht zweckdienlich ist.

3.2 Yerkes-Klassifikation

Die Yerkes-Klassifikation (*kurz:* YK) wurde eingeführt, da Sterne unterschiedlicher Leuchtkraft die gleiche Effektivtemperatur besitzen können. William W. Morgan, Phi-

Spektraltyp	Farbe	sichtbare Linien
0	Blau	He I, He II, mehrfach ionisierte Elemente wie CIII, NIII, SiV
В	Blau-weiß	He I bis B9, H I, einfach ionisierte Elemente wie Si II, Mg II
А	Weiß	H I, (H+K) Ca II, neutrale Metall-Linien
F	Gelb-weiß	(H+K) Ca II, Fe I, einfach ionisierte Metall-Linien wie Fe II, Cr II
G	Gelb	(H+K) Ca II stark, G band, diverse Metall-Linien
K	Orange-Gelb	starke Metall-Linien, G band, (H+K) Ca II stark, Ca I
М	Rot	TiO band, Ca I sehr stark, viele neutrale Metall-Linien

Tabelle 1: Absorptionslinien für verschiedene Spektraltypen (in Anlehnung an: Karttunen et al. (1987))

lip C. Keenan und Edith Kellman vom Yerkes-Observatorium entwickelten aus diesem Grund die zweidimensionale Spektralklassifikation, welche neben dem Spektraltyp die Leuchtkraft als zweiten Parameter zur Klassifikation von Sternen beinhaltet (s. Tab. 2). Abgeschätzt werden kann die Leuchtkraft z.B. über die Druckverbreiterung der Spektrallinien. Bei gleicher Masse, aber unterschiedlichem Radius herrscht ein höherer Gasdruck an der Oberfläche des kleineren Sterns. Dies hat eine spektrale Linienverbreiterung zur Folge. Über die Linienbreite kann so die Leuchtkraft oder auch die Temperatur mit Hilfe der Leuchtkraft-Radius Beziehung (s. Gl. 4) abgeschätzt werden.

$$L = 4\pi\sigma R^2 T_{eff}^4 \tag{4}$$

Zudem ist die Teilchendichte bei dem kleineren Stern höher, wodurch ein weiterer Leuchtkraftindikator vorhanden ist, das Ionisationsgleichgewicht. Bei hoher Dichte ist das Verhältnis von hoch zu weniger hoch ionisierten Atomen geringer als bei niedrigerer Dichte, unter Voraussetzung gleicher Temperaturen. Deshalb kann auch hier die Leuchtkraft bzw. der Radius des Sterns über selbige Leuchtkraft-Radius Beziehung 4 abgeschätzt werden. Es eröffnen sich also neue Möglichkeiten der Klassifizierung. Diese Art der Spektralklassifikation wird als Yerkes-Klassifikation oder MKK-Klassifikation bezeichnet. Das Problem, dass die Harvard-Klassifikation es nicht vermag zwischen z.B. einem Riesen und einem Hauptreihenstern (bei gleicher Oberflächentemperatur) zu unterscheiden, wurde damit behoben. Eine neuere Entwicklung des MKK-Systems wird von Drilling et al. (2013) beschrieben, die neben der Spektralklasse und der Leuchtkraft einen dritten Parameter, die Helium-Klasse, beinhaltet. Aufgrund dessen wird dieses MKK-System auch als dreidimensionale Spektralklassifikation bezeichnet. Sinn macht diese Klassifikation natürlich nur für Sternklassen, welche Helium aufweisen. Darum wurde das von Drilling et al. (2013) entwickelte System vorallem für die Klasse der Subdwarfs und weißen Zwerge eingeführt.

Harvard	$T_{eff}\left[K\right]$	Yerkes	Beschreibung
0	≈ 20.000	Ia bzw. 0	Leuchtkräftigste Superriesen
В	≈ 15.000	I	Superriesen
А	≈ 9.000	II	Helle Riesen
F	≈ 7.000	III	Riesen
G	≈ 5.500	IV	Unterriesen
К	≈ 4.000	V	Dwarf, Hauptreihensterne
Μ	≈ 3.000	VI	Subdwarf
		VII	White Dwarf

Tabelle 2: Spektralklassifikation

4 Subdwarfs

Die im Hertzsprung-Russell Diagramm am heißen Ende des Horizontalasts angesiedelten Subdwarfs (s. sdO und sdB in Abbildung 1) sind Kern-Heliumbrennende unterleuchtkräftige Sterne und haben nichts mit den kalten Subdwarf links unterhalb der Hauptreihe gemein. Heiße Subdwarfs sind Überreste von Sternen mit Anfangsmassen zwischen $1 - 5 M_{Sonne}$. Die Entstehung der heißen Subdwarfs ist jedoch noch nicht in Gänze verstanden. Allerdings gibt es bereits verschiedene vielversprechende Entstehungsszenarien. Diese Szenarien und die diversen Klassen von Subdwarfs werden im folgenden Kapitel dargestellt.

4.1 Entstehungsszenarien

Um die Entwicklung heißer Subdwarfs zu verstehen ist es unabdingbar nachvollziehen zu können, wie ein Stern auf dem Horizontalast nahezu seine komplette Hülle verliert und das direkt vor oder beim Einsetzen des Kern-Heliumbrennens. Zudem wird davon ausgegangen, dass der Entwicklung von Subdwarf B und Subdwarf O Sterne ein voneinander getrennter Mechanismus zu Grunde liegt, da sdB's überwiegend und sdO's kaum in Doppelsternsystemen zu finden sind, wohingegen sdO's häufiger als Einzelsterne vorgefunden werden. Die Szenarien, welche zu Subdwarfs in Doppelsternsystemen führen können, wie der gemeinsame Hüllenabwurf oder der *Roche-Lobe Overflow* und das Szenario, welches einen einzelnen Subdwarf hinterlässt (verschmelzende Helium- weiße Zwerge), werden in diesem Kapitel erläutert.

4.1.1 Roche-Potenzial

Das Roche-Potenzial beschreibt den Bereich um ein Doppelsternsystem, in dem das umliegende Material noch gravitativ an die einzelnen Sterne gebunden sind. Abbildung 2 zeigt die äquipotenzialflächen des Systems in 2 Dimensionen mit drei ausgezeichneten Punkten L1, L2 und L3. Darüber gelegt ist das dreidimensionale Gravitationspotenzial. Die Punkte L1, L2 und L3 in Abbildung 2 sind die Lagrange-Punkte, an welchen sich die Anziehungskräfte der beiden Sterne aufheben. Vorallem ist L1 von besonderer Bedeutung, da hierüber der Massentransfer in einem Doppelsternsystem von statten geht. Die zu L1 gehörige Äquipotenzialfläche wird als Roche-Grenze bezeichnet.

Abbildung 2: Die dreidimensionale Darstellung des Roche-Potenzials und dessen Äquipotenzialflächen. (Bild aus: http://en.wikipedia.org/wiki/Roche_lobe#mediaviewer/File:RochePotential.jpg, aufgerufen am 29.06.2014)

4.1.2 Roche-Lobe-Overflow

Im Gegensatz zur *Common-Envelope Ejection (CEE)* handelt es sich beim Roche-Lobe-Overflow (*kurz:* RLOF) um einen stabilen Massentransfer. Bei einem Doppelsternsystem, welches anfangs aus zwei Hauptreihensternen gebildet wird, kommt es zum stabilen RLOF, wenn das Massenverhältnis beider Sterne zueinander $\frac{M_1}{M_2} < 1,2$ oder $\frac{M_1}{M_2} > 1,5$ ist. Der schwerere der beiden Sterne wandert auf dem RGB bis er seine Roche-Grenze (*engl.:* Roche-Lobe) ausfüllt. Anschließend setzt der Massenübertrag über einen Lagrangepunkt ein. Ohne also seine Roche-Grenze zu überschreiten akkretiert der leichtere Begleiter Masse bis der rote Riese seine Hülle "fast" vollständig abgegeben hat. Der ehemalige rote Riese beginnt nun das Helium im Kern zu verbrennen und wird dadurch zum heißen Subdwarf. Eine Besonderheit kann sogar dazu führen, dass der Begleitstern zum weißen Zwerg wird, nämlich dann, wenn das Massenverhältnis der ehemals Hauptreihensterne gerade so groß ist, dass es zu einer Kombination aus CEE (s. Kap. 4.1.3) und RLOF kommt. In der Regel ist es allerdings beim RLOF so, dass ein Subdwarf und ein kühler Stern, als Begleiterstern, übrig bleibt, welche dann eine Orbitalperiode zwischen 10 - 500 Tagen aufweisen.

4.1.3 Common-Envelope Ejection

Der gemeinsame Hüllenabwurf eines Doppelsternsystems (engl.: Common-Envelope Ejection) erfolgt unter bestimmten Bedingungen bei zwei gebundenen Sternen. Eine Bedingung ist laut Heber (2009) ein Massenverhältnis von $\frac{M_1}{M_2} \approx 1, 2$, wobei sich der schwerere der beiden Sterne auf dem roten Riesenast (RGB = engl.: Red Giant Branch) befindet. Jener Stern, also der Vorgängerstern eines sdB's, füllt seine Roche-Grenze aus. Da es sich um ein enges Doppelsternsystem handelt, findet ein Massentransfer vom schwereren zum leichteren Stern statt. In diesem Szenario ist der Massentransfer instabil, da der leichtere Stern (M_2) Masse akkretiert, bis er seine eigene Roche-Grenze überschreitet. An diesem Punkt setzt die Common-Envelope Phase ein, da sich die Sternhülle nun über beide Sterne erstreckt. Die Kerne der Sterne kreisen widerum um den gemeinsamen Schwerpunkt, wodurch Energie- und Drehimpulsübertragung an die Hülle erfolgt, bis schließlich der Hüllenabwurf stattfindet. Der genaue Mechanismus des Abwurfs ist jedoch noch nicht bekannt. Jedenfalls beträgt die Orbitalperiode des Systems danach nur noch 0,1 bis 10 Tage und es bleibt ein Subdwarf B Stern mit Begleiter übrig. In Abbildung 3 sind die Formationsszenarien nochmal in Kürze zusammengefasst.

4.1.4 White Dwarf Merger

Das White Dwarf Merger Szenario geht davon aus, dass zwei heliumreiche weiße Zwerge miteinander verschmelzen und dabei einen Subdwarf hinterlassen. Ist dieses Doppelsternleichensystem, da es sich um Sternleichen zweier Hauptreihensterne handelt, eng genug, so ist der Energie- und Drehimpulsübertrag durch die Gravitationswellen so groß,dass sich hierdurch beide weiße Zwerge einander annähern. Ist der Abstand gering genug, so überschreitet der massenärmere weiße Zwerg seine Roche-Grenze und eine Art Selbstverstärkungsprozess setzt ein. Der Grund dafür ist die Masse-Radius Beziehung weißer Zwerge (s. Gl. 5).

$$R \propto M^{-\frac{1}{3}} \tag{5}$$

Sobald der masseärmere WD seine Roche-Grenze ausfüllt, setzt der RLOF ein, wodurch Masse vom leichteren weißen Zwerg auf den schwereren übertragen wird. Durch den Masseverlust steigt der Radius des leichteren weißen Zwergs und seine Roche-Grenze wird größer. Es wird also noch mehr Masse vom leichteren auf den schwereren WD übertragen. Der Effekt wird zusehends verstärkt, bis schließlich der

Abbildung 3: a) Der stabile RLOF + der gemeinsame Hüllenabwurf zusammen hinterlassen einen weißen Zwerg plus Begleiter. Schafft es der Hauptreihenstern nicht den Helium-Flash zu erreichen, so bildet sich ein System aus sdB und Helium-WD, ansonsten bleibt ein System aus sdB und C/O WD zurück. Die typischen Umlaufdauern belaufen sich auf $P_{orb} = 0, 1 - 10 d$. b) Der gemeinsame Hüllenabwurf bildet in der Regel die Konstellation sdB + Hauptreihenstern aus. Die Periode ist mit $P_{orb} = 0, 1 - 10 d$ klein. c) Der stabile RLOF führt im Allgemeinen zu einem weiten Doppelsternsystem aus Subdwarf und einem Hauptreihenstern bzw. einem Unterriese. Die beiden Komponenten sind zwar noch aneinander gebunden, entwickeln sich aber auf Grund der große Umlaufperiode von $P_{orb} = 10 - 500 d$ getrennt voneinander. (Bild aus: Heber (2009))

leichtere weiße Zwerg zerrissen wird. Es bildet sich sodann eine Akkretionsscheibe um den schwereren weißen Zwerg. Dadurch wird dem zurückgebliebenen weißen Zwerg ermöglicht zusätzlich Masse anzusammeln und das Heliumbrennen im Kern zu starten. Somit wird der ehemaligen Sternleiche wieder Leben eingehaucht und ein heißer Subdwarf ensteht. Somit kann die Entstehung von einzelnen, nicht gebundenen, Subdwarfs erklärt werden. Des Weiteren ist dies eine plausible Erklärung für die Entstehung von heliumreichen Subdwarf O Sternen.

4.2 Klassen von unterleuchtkräftigen Sternen

4.2.1 Blue Horizontal Branch

Sterne, welche am blauen, also heißem Ende des Horizontalasts zu finden sind, werden als BHB-Sterne bezeichnet. Das Spektrum gleicht annährend dem eines sdB's (s. Abb. 4), jedoch handelt es sich bei dieser Sternkategorie nicht um ein kompaktes Objekt. Aus diesem Grund herrscht eine geringere Oberflächengravitation, weshalb die Wasserstoff-Balmerlinien bis zur Ordnung n = 14 - 16 sichtbar sind.² Zudem zeigt sich bei BHB-Sternen deutlich der Balmersprung, welcher Druck-Ionisation hervorgerufen wird. Der Balmersprung stellt den Übergang vom Niveau n = 2 ins Kontinuum dar, also das Einsetzen der Kontinuumsabsorption. Weitere Sprünge sind der Lymansprung (Übergang von n = 1 ins Kontinuum) oder der Paschensprung (Übergang von n = 3 ins Kontinuum). Der Lymansprung ist nicht sichtbar, da jener bei einer Wellenlänge von 9120 nm erfolgt und damit im nahinfrarot-Bereich liegt. Hier ist der Fluss bereits so weit abgeflacht, dass der Lymansprung nicht mehr zu erkennen ist. Der Paschensprung hingegen läge bei 8206 Å, jedoch sind Sprünge der Ordnung n > 2 stark vom Druck abhängig und deshalb meist so stark aufgeweicht, dass sie nicht klar zu erkennen sind. Solche Sprünge dienen also als Indikator für Druck und dahingehend für die Oberflächengravitation.

4.2.2 Subdwarf B

Das Spektrum eines Subdwarf B Sterns (*kurz:* sdB) ähnelt stark dem eines Hauptreihensterns des Spektraltyps B, jedoch mit dem Unterschied, dass die Wasserstofflinien deutlich breiter sind. Die Erklärung hierfür ist das *Hydrostatische Gleichgewicht* (s. Gl. 6), welches die Dichte des Sterns beinhaltet. Bei höherer Dichte ist der Gasdruck größer und somit auch der Starkeffekt. Der Starkeffekt äußert sich in der Verschiebung und Aufspaltung der Spektrallinien, wodurch die Linienbreite zunimmt.

$$\frac{dP}{dr} = -\frac{GM(r)\rho(r)}{r^2} \tag{6}$$

SdB's sind darum besonders durch ihre starken Wasserstoff-Balmerlinien ausgezeichnet (s. Abb. 5). Im Allgemeinen bewegen sich Subdwarf B Sterne in einem Temperaturbereich von $T_{eff} = [20k, 40k] K$.

²Zum Vergleich: bei sdB's sind H-Linien bis $n \approx 12$ und bei Weißen Zwergen sogar nur bis $n \approx 8$ sichtbar.

Abbildung 4: Das Spektrum eines BHB's zeigt den starken Balmersprung bei ca. 3647Å. Des Weiteren sind die Calcium II (H+K) Linien (rosa), die H-Balmerlinien (grün) und einige Helium I Linien (blau) sichtbar. Helium II (dunkelblau) kommt jedoch nicht vor.

4.2.3 Subdwarf O

So wie das SdB Spektrum seinem Spektraltyp äquivalenten Hauptreihenstern ähnelt, ist es ebenso bei Subdwarf O Sternen (*kurz:* sdO). Diskrepanzen bestehen jedoch wie bei den anderen Subdwarf Klassen in der Linienbreite und spezifischen Absorptionslinien, die ein Subdwarf nicht ausbildet. In den Abbildungen 6 und 7 ist deutlich zu erkennen, dass der sdO durch seine Heliumlinien dominiert wird. Es handelt sich dabei im Allgemeinen um die He II Pickering Serie. Bei dieser Sternklasse kann zudem zwischen zwei Unterklassen unterschieden werden:

Wasserstoff Subdwarf O Die Klasse der Wasserstoff Subdwarf O Sterne (H-sdO) ist die erste der beiden Unterklassen. Sie weisen neben der einfach ionisierten Heliumlinie (*He II* = 4686 Å) starke Wasserstoff-Balmerlinien auf (s.Abb. 6) und haben Oberflächentemperaturen von $T_{eff} = [40k, 70k] K$.

Helium Subdwarf O Die zweite Unterklasse wird von den Helium Subdwarf O Sternen (He-sdO) gebildet. Diese liegen im selben Temperaturbereich wie H-sdO's mit Ef-

Abbildung 5: Subdwarf B Sterne zeichnen sich durch starke Wasserstofflinien (grün) im Spektrum aus. Obendrein sieht man das Calcium Doublet (rosa), einige Helium I Linien (blau), aber keine Helium II Linien (dunkelblau). Der Unterschied zu BHB Sternen ist der weniger ausgeprägte Balmersprung. Allerdings ist ohne Bestimmung der atmosphärischen Parameter (z.B. der Effektivtemperatur) der Unterschied nicht immer klar zu erkennen.

fektivtemperaturen von $T_{eff} = [40k, 70k] K$. Da jedoch keine Wasserstoffhülle mehr vorhanden ist, sind keine oder nur sehr schwache H-Balmerlinien im Spektrum zu sehen. Stattdessen ist bei jedem He-sdO die He II Pickering Serie klar zu erkennen (s. Abb. 7).

4.2.4 Subdwarf OB

Subdwarfs die sowohl bestimmte Merkmale eines sdB's als auch eines sdO's aufweisen nennt man Subdwarf OB Sterne (*kurz:* sdOB). Diese Kategorie zeichnet sich vorallem dadurch aus, dass verbreiterte H-Linien, He I-Linien und die einfach ionisierte He II-Linie (4686 Å) im Spektrum zu sehen sind (s. Abb. 8). Die Oberflächentemperatur reicht deshalb von $T_{eff} = [35k, 40k] K$.

Abbildung 6: Der H-sdO ist geprägt durch die Wasserstoff-Balmerlinien (grün), zeigt jedoch Helium II (dunkelblau), weshalb er sich vom sdB unterscheidet. Zusätzlich ist hier zu erkennen, dass vereinzelt Helium I Linien (blau) zu sehen sind. Das Calcium Doublet ist in Rosa dargestellt.

4.2.5 White Dwarf

Der weiße Zwerg (*engl.:* white Dwarf) gehört ebenfalls zur Klasse unterleuchkräftiger Sterne. In Hauptreihensternen halten sich der Gas- bzw. Strahlungsdruck und die Gravitation die Waage. Ist am Ende solch eines Sternlebens der Treibstoff im Kern aufgebraucht, so nimmt die Kerndichte zu, da der Gravitation nicht mehr viel entgegenwirkt. Erst wenn der gravitative Druck stark genug ist, um das Elektronengas vollständig zu entarten, stellt sich ein Gleichgewicht ein. In diesem Moment ist ein weißer Zwerg entstanden. Jedoch ereilt nicht jedem Hauptreihenstern dieses Schicksal. Nur Sterne deren Kernmassen unter der Chandrasekhar-Masse $M_{Ch} \approx 1, 2 - 1, 4 M_{Sonne}$ liegen, entwickeln sich zu weißen Zwergen. Abbildung 9 zeigt für drei verschiedene Kernmassen M_1 , M_2 und M_3 die zentrale Dichte ρ . M_1 befindet sich unterhalb der Chandrasekhar-Masse, weshalb dieser als einziger der drei Sterne als weißer Zwerg endet. Durch zusätzliche Massenakkretion oder durch die Verschmelzung mit einem anderen weißen Zwerg kann jedoch, unter bestimmten Umständen, M_{Ch} überschritten werden und es kann hieraus ein Neutronenstern enstehen. Allerdings kann eine Verschmelzung weißer Zwerge ebenso zur Entstehung eines Subdwarfs führen. Hierzu

Abbildung 7: Das Spektrum eines Helium Subdwarf O weist keine oder nur sehr schwache H-Linien (grün) auf. Die Helium I Linien (blau) sind indes sehr stark. Im Allgemeinen erscheinen Absorptionslinien (grün), welche keine H-Linien sind. Diese sind Helium I Elektronenübergänge, die lediglich den Wellenlängen der H-Balmerlinie entsprechen.

bedarf es jedoch der Verschmelzung zweier Helium-WD's. Das zum Subdwarf führende Szenario (die sog. white Dwarf Merger) wurde in Kapitel 4.1.4 näher beschrieben.

4.2.6 Charakteristische Absorptionslinien

Liegt ein Spektrum eines EHB (*engl.:* extreme horizontal branch) Sterns oder eines BHB's vor, so sind manchmal Absorptionslinien zu sehen, welche ein Subdwarf nicht besitzt. Ist das der Fall, dann ist das ein starker Hinweis, mehr sogar ein Beweis, auf einen Begleitstern. Solche Systeme werden als Doppelsterne des Typs SB2 (*engl.:* double-lined binaries) bezeichnet. Auf die verschiedenen Typen von Doppelsternen wird in Kapitel 5 ab Seite 20 näher eingegangen. Sind also z.B. folgende Linien vorhanden:

- G-Band (430 nm),
- Calcium H (396,9 *nm*) + Calcium K (393, 3 *nm*),
- Magnesium Triplet (518, 37 nm, 517, 27 nm und 516, 74 nm) oder

Abbildung 8: Der Typ Subdwarf OB ist eine Mischform der Typen sdO und SdB. Aus diesem Grund finden sich Absorptionslinien beider Typen im Spektrum.

• Calcium Triplet (849, 8 nm, 854, 2 nm, 866, 2 nm)

so ist bewiesen, dass ein kühler Stern als Begleiter vorhanden sein muss. Das G-Band kommt nur in sonnenähnlichen Spektren vor. Es zeigt den Übergang von Rotationsund Schwingungszuständen des CH-Moleküls an. Solche Molekülbanden würden in heißen Subdwarfs oder auch in Hauptreihensternen der Spektraltypen O, B und A nicht vorkommen, weil aufgrund wesentlich höherer Temperaturen diese Moleküle dissoziieren.³

Die Calcium II (H + K)-Linien sind ebenso ein Indiz auf einen Hauptreihenstern-Begleiter. Das einfach ionisierte Calcium nimmt mit zunehmender Temperatur relativ zum Wasserstoff ab. Deshalb sind in Spektren heißerer B-Sterne beide Ca-Linien nicht mehr so stark, wohingegen in Sternen des Spektraltyps A, F oder G die Gebundenheit deutlich zunimmt. Ebenso verhält es sich mit dem Magnesium Triplet. Wie bereits erwähnt geben die Calcium II (H + K)-Linien ein Indiz für einen kühlen Stern als Begleiter. Allerdings ist zu überprüfen, ob die Linien nicht aus dem interstel-

³Für den interessierten Leser: Emerson (2010) beschreibt die Gebundenheit solcher Moleküle in Sternatmosphären in Anlehnung an die Saha-Gleichung. Für zweiatomige Moleküle nimmt sie folgende Form an: $\frac{N_X N_Y}{N_{XY}} = (\frac{2\pi m kT}{h^2})^{\frac{3}{2}} \frac{U_X U_Y}{U_{XY}} exp(-D/kT)$, mit N_i als Gebundenheit des betreffenden Elements, U_i als Zustandssummen der Elemente und *D* der Dissoziationsenergie.

Abbildung 9: M_1 , M_2 und M_3 beschreiben die Kernmassen dreier verschiedener Sterne. Der Verlauf der Zentraldichte des entarteten Elektronengases bei T = 0 K weist zwei Maxima auf, welche zum Einen der Chandrasekhar-Masse M_{Ch} und zum Anderen der Oppenheimer-Volkoff-Masse $M_{OV} = 1, 2 - 1, 4 M_{Sonne}$ entspricht. Für die Entwicklung weißer Zwerge sind allerdings nur Massen unterhalb von M_{Ch} relevant. (Bild aus: Karttunen et al. (1987))

laren Medium stammen. Vor dem Hintergrund eines heißen Sterns "vermischt" sich das Spektrum des Hintergrunds mit den Absorptionslinien des interstellaren Mediums (kurz: IM). Durch die sehr geringen Dichten interstellarer Materie sind die Linien zwar sehr viel schärfer als die entsprechenden atmosphärischen Calcium-Linien, aber trotzdem nicht durch bloßes Hinsehen klar zu unterscheiden. Deshalb ist es anhand eines einzelnen Spektrums nicht auszumachen, ob die Calcium II (H + K)-Linien vom beobachteten System oder vom IM stammen. Durch mehrere Beobachtungen hingegen ist es möglich das zu überprüfen, denn durch die Bewegung des Hintergrundes werden die Absorptionslinien im Spektrum durch den Dopplereffekt verschoben. Zwar werden die Linien der IM-Wolken auch dopplerverschoben, aber mit Geschwindigkeiten von wenigen 10km/s ist die Verschiebung in der Regel viel kleiner als die des Hintergrunds und zudem konstant. Dadurch sollten aber die beiden Ca II-Linien nur als Indiz und nicht als Beweis für ein Doppelsternsystem herangezogen werden. Als letztes Indiz ist das Calcium Triplet zu erwähnen. Es kann als Temperaturindikator für frühe F-Sterne dienen, da sich das Verhältnis CaII/Paschen mit der Temperatur ändert. Wie auch das Calcium Doublet und das Magnesium Triplet, ist die Gebundenheit des Calcium Triplets bei A- bis K-Sternen am größten. Bei Vorkommen dieses Triplets in einem EHB- oder BHB-Sternspektrum ist also ein kühler Begleiter der Typen A bis K wahrscheinlich.

5 Spektroskopische Doppelsterne

Die Sterne eines Doppelsternsystems kreisen um den gemeinsamen Schwerpunkt. Lassen sie sich nicht optisch separieren, so macht sich die Schwerpunktsbewegung zumindest als Dopplerverschiebung im kombinierten Spektrum bemerkbar. Solche Systeme werden als spektroskopische Doppelsterne bezeichnet, da lediglich das Spektrum Auskunft über das Doppelsternsystem gibt. Zu unterscheiden sind dabei Doppelsterne des Typs SB1 (*engl.:* single-lined binaries), bei dem nur einer der beiden Komponenten im Spektrum zu erkennen ist und Systeme des Typs SB2 (*engl.:* doublelined binaries) in dessen Spektrum beide Sterne zu sehen sind.

5.1 Radialgeschwindigkeitsmessung SB1

Das Phänomen der Linienverschiebung in einem Spektrum wird durch den Dopplereffekt hervorgerufen. Bewegt sich ein Körper auf den Beobachter zu, so wird das Licht ins Blaue verschoben, wohingegen bei einer Bewegung vom Beobachter weg das Licht ins Rote verschoben erscheint (s. Abb. 10).

Abbildung 10: a) Ein Objekt bewegt sich auf den Beobachter zu. Die Absorptionslinien sind relativ zu den ruhenden Referenzlinien ins Blaue verschoben. b) Ruht ein Objekt relativ zum Beobachter, so tritt keine Dopplerverschiebung ein. c) Bewegt sich ein Objekt vom Beobachter weg, so erscheinen dessen Absorptionslinien relativ zur Referenz ins Rote verschoben.

In einem Spektrum ist das sichtbar, indem sich die Istposition einer Absorptionslinie von der Sollposition unterscheidet. Misst man den Unterschied beider Position in der Wellenlänge und gewichtet das Verhältnis mit der Lichtgeschwindigkeit *c* (vgl. Gl. 7), so erhält man direkt die Radialgeschwindigkeit.

$$\frac{\lambda_{Ist} - \lambda_{Soll}}{\lambda_{Soll}} = \pm \frac{\nu_{rad}}{c}$$
(7)

Hat man nun geeignet viele Beobachtungen, zu verschiedenen Zeitpunkten, eines Systems unternommen, so kann aus den vermessenen Radialgeschwindigkeiten eine Radialgeschwindigkeitskurve erstellt werden. Durch einen sinusförmigen Fit, kann die Orbitalperiode *P* und die Geschwindigkeitshalbamplitude *K* ermittelt werden. Mit der Orbitalperiode *P* und der Geschwindigkeitshalbamplitude *K* kann für *single-lined binaries* die Massenfunktion 8 bestimmt werden.

$$f_m = \frac{M_{Begleiter}^3 sin^3 i}{(M_{Begleiter} + M_{Primärstern})^2} = \frac{PK^3}{2\pi G}$$
(8)

Laut Geier (2011) kann die Masse des Subdwarfs mit $M_{Primrstern} \approx 0,47 M_{Sonne}$ abgeschätzt werden, sodass mit Gleichung 8 eine untere Massengrenze des Begleiters abgeschätzt werden kann. Somit ist es bei SB1 Systemen, durch geeignet viele Radialgeschwindigkeitsmesswerte, möglich den Begleiter massebezogen einzugrenzen.

5.2 Radialgeschwindigkeitsmessung SB2

Im Gegensatz zu SB1 Systemen können bei Doppelsternen des Typs SB2 die Radialgeschwindigkeiten beider Sterne gemessen werden. Hierzu müssen die Absorptionslinien des einen Sterns getrennt von den charakteristischen Absorptionslinien des Begleiters vermessen werden. Vos et al. (2013) haben für die in Abbildung 11 dargestellten SB2 Systeme eine genaue Analyse durchgeführt und dabei die in Tabelle 3 aufgeführten Werte erhalten. Dabei beschreibt q das Massenverhältnis beider Sterne M_1/M_2 , edie Exzentrität der Keplerbahn, γ die Systemgeschwindigkeit und P die Orbitalperiode P. Der Übersichtlichkeit halber wurden die Geschwindigkeitshalbamplituden K in Tabelle 3 nicht aufgelistet. Anders als bei Doppelsternsystemen des Typs SB1 können hier die Massen beider Komponenten über die Kepler'schen Gesetze direkt bestimmt werden. SB2 Systeme werden in der qualitativen Spektralanalyse (Kapitel 6.2.2 ab Seite 28) präsentiert, jedoch nicht quantitativ analysiert.

Abbildung 11: Die Radialgeschwindigkeitskurven für $BD + 29^{\circ}3070$ (links), $BD + 34^{\circ}1543$ (mitte) und *Feige*87 (rechts). Alle drei SB 2 Systeme bestehen aus sdB + Hauptreihenstern. Die Radialgeschwindigkeit bezogen auf die Phase ist in den oberen Grafiken dargestellt, die unteren Grafiken die jeweiligen *residuals*. (Bild aus: Vos et al. (2013))

Parameter	$BD + 29^{\circ}3070$	$BD + 34^{\circ}1543$	Feige87
е	$0, 15 \pm 0, 01$	$0, 16 \pm 0, 01$	$0,11\pm0,01$
γ (kms ⁻¹)	≈ -57	≈ 33	≈ 33
P(d)	1283 ± 63	972 ± 2	936 ± 2
q	$0,39 \pm 0,01$	$0,57\pm0,01$	$0,55\pm0,01$

Tabelle 3: Auszug wichtiger Parameter für Doppelsternsysteme

6 Die Suche nach spektroskopischen Doppelsternen

6.1 SDSS - Sloan Digital Sky Survey

Der Sloan Digital Sky Survey ist eine Kollaboration von Instituten aus verschiedenen Ländern (u.a. Deutschland, USA und Japan) zur großflächigen Untersuchung des Himmels, indem jeweils ein Ausschnitt der Größe 1,5.1,5 Grad abgerastert und nach verschiedensten leuchtenden Objekten durchforstet wird. Das ursprüngliche Ziel war es die Eigenschaften von Quasaren und Galaxien zu untersuchen. Aufgrund der Fülle an Daten bietet SDSS jedoch für jeden Bereich der Astronomie interessante Informationen. Nicht zuletzt, weil sowohl spektroskopische als auch photometrische Aufnahmen gemacht werden. Seit dem Jahr 2000 werden so mit Hilfe eines eigens für dieses Projekt gebauten 2,5 m Teleskops Beobachtungen gemacht. Das Teleskop befindet sich am Apache Point Observatory (APO) in Sunspot, New Mexico, und wird verwaltet vom Astrophysical Research Consortium (ARC). Seit den ersten Beobachtungen wurden so bisweilen Daten von über 930.000 Galaxien und 120.000 Ouasaren gesammelt und so rund 1/3 des Nachthimmels kartiert (s. Abb. 12). In regelmäßigen Zeitabständen werden die von SDSS gesammelten Daten in Datenpaketen veröffentlicht, die sogenannten Data releases. Für diese Arbeit sind die photometrischen Daten in solch einem Datenpaket nur vom sekundären Interesse, weshalb lediglich die Spektren betrachtet werden. Ein Spektrum darin ist eine Kombination aus drei einzelnen Spektren. Von Vorteil ist das kombinierte Spektrum, da bereits unerwünschte Artefakte wie kosmische Strahlen bereits herausexerziert wurden. Die aktuellsten Pakete sind DR9 (Data release 9) und DR10 (Data release 10), welche in dieser Arbeit zur Analyse verwendet wurden.

6.1.1 BOSS-Spektrograph

Seit DR8 wurde bei SDSS der SDSS-I Spektrograph durch den BOSS-Spektrographen (Baryon Oscillation Spectroscopic Survey) ersetzt (s. Abb. 13). BOSS ist in der Lage einen Wellenlängenbereich von 3600 – 10400 Åabzudecken und weist eine höhere Sensitivität im UV-Bereich und nah-infrarot-Bereich auf, weshalb die aufgenommenen Spektren im Vergleich zum SDSS-I Spektrographen einen deutlich höheren Informationsgehalt haben. Sowohl SDSS-I, als auch BOSS, sind fasergekoppelte Multiobjektspektrographen. Damit ist BOSS in der Lage 1000 Spektren in einer Belichtung aufzunehmen.

Abbildung 12: *unten:* Die durch SDSS bereits abgedeckten Bereiche des Nachthimmels. *oben:* von links nach rechts: Ein 1,5 mal 1,5 Grad großer Ausschnitt des Nachthimmels wird herangezoomt. Die Galaxie Messier 33 wird vergrößert dargestellt. Hier wird ein kleiner Teilbereich nochmals herangezoomt. Somit ist der planetare Nebel NGC 604 deutlich zu erkennen. (Bild aus: http://www.sdss.org/includes/sideimages/orangespider.jpg, aufgerufen am 18.06.2014)

Abbildung 13: Der grundsätzliche Aufbau des BOSS-Spektrographen. *Links unten*: Die zwei Kameras für den roten und blauen Wellenlängenbereich sind zu sehen. *Rechts oben*: Zwei weitere Kameras für rot und blau. *Mitte*: Hier befindet sich die Fokalebene, sowie die zugehörigen 1000 optische Fasern. (Bild aus: http://www.sdss3.org/images/boss/boss_spectrograph.jpg, aufgerufen am 18.06.2014)

Weitere Verbesserungen zum Vorgänger des BOSS-Spektrographen sind in Tabelle 4 in Kürze zusammengefasst.

	SDSS-I	BOSS
Anzahl optischer Fasern	640	1000
Faser Durchmesser	3 arcsec	2 arcsec
CCDs	2 · (2048 x 2048) für rot	4K x 4K für rot
	2 · (2048 x 2048) für blau	4K x 4K für blau
Wellenlängenbereich	3800 - 9200 Å	3600 - 10400 Å
Spektrale Auflösung	1850 - 2200	1560 - 2650
Anzahl der Spektrographen	2	2

Tabelle 4: Vergleich zwischen dem Vorgängerspektrographen zum BOSS-Spektrographen

6.1.2 MUCHFUSS

MUCHFUSS (Massive Unseen Companion to Hot Faint Underluminous Stars from SDSS) ist ein Projekt zur Suche von massiven kompakten Begleitern heißer Subdwarfs. Dabei kann es sich um weiße Zwerge ($M > 1.0 M_{Sonne}$), Neutronensterne oder gar um schwarze Löcher handeln. Bestimmt man die Massenfunktion (vgl. Gl. 8 auf S. 21) eines potenziellen Doppelsternsystems und nimmt $M_{Subdwarf} = 0,47 M_{Sonne}$ an, so kann eine untere Massengrenze des Begleiters aus der Massenfunktion abgeschätzt werden. Liegt nun die Masse des Begleiter unterhalb von 0,45 M_{Sonne}, so kann der Begleiter entweder ein leuchtschwacher kühler Stern sein, dessen Leuchtkraft zu schwach ist, um im optischen Spektrum detektiert werden zu können, oder ein weißer Zwerg. Ist hingegen die Masse des Begleiters größer als 0, 45 $M_{\it Sonne}$ und kann nicht im Spektrum detektiert werden, so eröffnen sich neue Möglichkeiten. Der Begleiter kann dann ein weißer Zwerg sein oder, sofern das Chandrasekhar Limit von $M = 1,40 M_{Sonne}$ überschritten wird, ein Neutronenstern oder ein schwarzes Loch sein (Geier et al. (2012)). So ist es möglich einen massiven kompakten Begleiter zu identifizieren. Zur genaueren Analyse wurden sodann von Geier et al. (2011) eine Radialgeschwindigkeitsstudie durchgeführt.Die MUCHFUSS Kollaboration bedient sich hierbei den SDSS Spektren beginnend mit Data Release 6. Im Zuge dieser Studie wurden 1100 heiße Subdwarfs identifiziert und inspiziert, wobei 127 davon eine Radialgeschwindigkeitsvariation aufwiesen. Hier wird das Potenzial dieses Projekts deutlich, da der Zugang zu einer Menge neuer Informationen ermöglicht wird, die bisher im dunklen geblieben sind.

6.2 Qualitative Spektralanalyse

Bei der qualitativen Spektralanalyse geht es darum lediglich anhand diverser Indizien im Spektrum Doppelsternsysteme zu identifizieren. Die Grundlage hierzu boten die Datenpakete 9 und 10 des SDSS (Data Release 9 & 10), wobei durch die MUCHFUSS Kollaboration die Subdwarf und BHB betreffenden Spektren herausgefiltert wurden. Mit den gefilterten Spektren wurde sodann ein "Indizienprozess" durchgeführt. Es galt nun die zur Verfügung stehenden 866 Spektren zunächst nach Sterntyp zu klassifizieren und anschließend nach Anzeichen für das Vorhandensein eines Begleiters zu durchforsten. Die Kategorien beschränkten sich auf:

- Blaue Horizontalaststerne (BHB),
- Subdwarf B (sdB),
- Subdwarf OB (sdOB),
- Helium Subdwarf O (He-sdO),
- Wasserstoff Subdwarf O (H-sdO),
- und nicht zuordenbare Spektren (unknown).

Nach Durchsehen jedes einzelnen Spektrums konnten 84% der Spektren einem Sterntyp zugeordnet werden (s. Abb. 14). Die restlichen 16% wurden als nicht zuordenbar klassifiziert (unknown) und später einer detaillierteren Durchsicht unterzogen. Bei der detaillierteren Durchsicht wurde sowohl auf die Form des Kontinuums, als auch auf charakteristische Absorptionslinien geachtet.

6.2.1 Form des Spektrums

Die Spektrenform ist ein wichtiger Hinweis auf mögliche Doppelsterne. So verlaufen manche Spektren viel flacher als erwartet. Am Bespiel eines sdO's mit einem Hauptreihenstern als Begleiter kann das verdeutlicht werden. Das Wien'sche Verschiebungsgesetz⁴ (s. Gl. 9)sorgt dafür, dass sich das Intensitätsmaximum je nach Temperatur in der Wellenlänge verschiebt.

 $^{^{4}}http://www.wolframalpha.com/input/?i=wien\%27s+displacement+law\&lk=4,\ aufgerufen\ am\ 02.07.2014$

Abbildung 14: Die Klassifizierung der 866 Spektren aus dem SDSS sind farblich kodiert. Die Häufigkeit eines Sterntyps wird durch die Größe des Tortenstückes repräsentiert.

$$\lambda_{max} = \frac{b}{T}, \text{ mit } b \approx 2,89777 \mu K$$
 (9)

Ein Subdwarf O besitzt Oberflächentemperaturen im Bereich von $T_{eff} = [40k, 70k]K$, wohingegen ein sonnenähnlicher Hauptreihenstern (z.B. Spektraltyp G) nur eine Oberflächentemperatur von $T_{eff} \approx 5.500 K$ hat. Dementsprechend liegt das Maximum der Strahlung beim sdO im Bereich von $\lambda_{max} = [414, 724]Å$ und das des G-Hauptreihensterns bei $\lambda_{max} = 5.269$ Å. Zwar beziehen sich diese Werte auf die Schwarzkörperstrahlung, ist in erster Näherung jedoch ausreichend um das Prinzip zu verdeutlichen. Daraus resultierend kann es sein, dass das kombinierte Spektrum ab einer gewissen Wellenlänge vom nicht mehr vom Subdwarf, sondern vom kühlen Begleiter dominiert wird. Németh et al. (2012) beschrieben diesen Effekt an solch einem System (GALEXJ2038-2657)⁵, wie in Abbildung 15 zu sehen ist. Im Zuge der Analyse dieses Systems wurden die Temperaturen für den sdO zu $T_{eff} \approx 58.450 K$ und die Effektivtemperatur des G-Sterns zu $T_{eff} = 5272 K$ bestimmt.⁶

⁵Die Messdaten für das System J2038-2657 stammen vom GALEX Survey.

⁶stelweb.asu.cas.cz/ñemeth/work/galex/catalog/galex_sd_nkv.pdf, aufgerufen am 02.07.2014

Sieht also ein Spektrum ungewöhnlich flach aus, ist dies ein Indiz, dass ein Begleiter existiert. Häufig sind die kühlen Begleiter G-Sterne, da deren absolute Helligkeiten denen eines sdB's ähneln.

Abbildung 15: Die zwei modellierten Spektren repräsentieren einen Subdwarf O (grau) und einen G5III - Hauptreihenstern (schwarz). Der Bereich um den Schnittpunkt beider Spektren ist in einem kleinen Bildausschnitt dargestellt. Die Filter B, V, J und H stellen die Beiträge beider Sterne zur synthetischen Photometrie dar. *Oben rechts:* Der herein gezoomte Ausschnitt um den Schnittpunkt. Der Übergang des sdO Spektrums in das des G5III Sterns ist in der Realität sanft, weist also keinen starken Knick auf, wie die oberen zwei Linien zeigen. (Bild aus: Nemeth et al. (2012))

6.2.2 Ergebnisse

Mit Hilfe der beschriebenen Anhaltspunkte wurden die zunächst 135 als "unknown" klassifizierten Spektren einer zweiten Durchsicht unterzogen. Dabei blieben 7 potenzielle Doppelsternsysteme übrig (s. Tab. 5).

Stern	Flach	Ca (H+K)	Ca Triplet	Mg Triplet	G-Band
SDSSJ072421.40+385630.6	x	Х	Х	х	Х
SDSSJ082902.62+224636.7		Х	Х	Х	Х
SDSSJ085201.98+165205.5	х	Х	Х	Х	
SDSSJ090917.09+002514.0	х	Х	Х	Х	Х
SDSSJ153509.92+240415.0	х	Х	Х		Х
SDSSJ151107.07+173215.2	х	Х	Х	Х	Х
SDSSJ134658.10+065604.6	Х	Х			

Tabelle 5: Potenzielle Doppelsternsysteme aus DR9 und DR10

Im Zuge der qualitative Analyse stehen keine Methoden zur Verfügung, um atmosphä-

rische Parameter ($log(g), T_{eff}, log(y)$) und Radialgeschwindigkeiten quantitativ zu bestimmen. Allerdings ist das nicht zwingend notwendig, um Doppelsternsysteme zu identifizieren. In Abbildung 16, dem Sternsystem SDSSJ072421.40 + 385630.6, sind die wichtigsten Anzeichen eines Doppelsternsystems vorhanden. Zu sehen sind nicht nur alle im Kapitel 4.2.6 beschriebenen charakteristischen Absorptionslinien kühler Begleiter, sondern ebenso der vergleichsweise flache Verlauf des Kontinuums. Da die für sdO's typische He II Linie (4686 Å) nicht vorhanden ist, kein ausgezeichneter Balmersprung eines BHB's zu sehen ist, jedoch starke Wasserstoff-Balmerlinien das Spektrum prägen, handelt es sich bei SDSSJ072421.40 + 385630.6 höchstwahrscheinlich um ein Doppelsternsystem bestehend aus einem sdB und einem Begleiter. Wie im Kapitel 6.2.1 beschrieben deutet der flache Verlauf des Kontinuums auf Grund des Wien'schen Verschiebungsgesetzes auf einen kühlen Stern als Begleiter hin. Der Spektraltyp dieses Begleiter kann auf F, G oder K eingeschränkt werden, da das G-Band in kühlen Sternen der Spektraltypen O, B und A nicht vorkommt. Um eine noch genauere Aussage zu treffen müssten synthetische Spektren, wie in Abb. 15 dargestellt, an das gemessen Spektrum gefittet werden, um die beste Übereinstimmung zu finden.

Abbildung 16: Im kombinierten Spektrum des Sternsystems SDSSJ072421.40+385630.6 ist das Magnesium-Triplet (gelb), das Calcium-Triplet (rosa), das Calcium (H+K) Doublet (rosa) und das G-Band (grün) zu erkennen.

Die gleiche Argumentation kann für die Systeme SDSSJ090917.09 + 002514.0 (s.

Abb. 17), SDSSJ151107.07 + 173215.2 (s. Abb. 18) und SDSSJ085201.98 + 165205.5 (s. Abb. 19) angeführt werden. Allerdings befindet sich in SDSSJ085201.98 + 165205.5 keine G-Band Absorption, weshalb hier der Spektraltypen F als kühler Begleiter wahrscheinlicher ist. Der Spektraltyp O scheidet aus, da kein He II im Spektrum vorhanden ist. Zudem ist ein B-Stern ebenfalls unwahrscheinlich, da nicht ionisiertes Helium (He I) zu sehen sein müsste.

Abbildung 17: Im kombinierten Spektrum des Sternsystems SDSSJ090917.09+002514.0 ist das Magnesium-Triplet (gelb), das Calcium-Triplet (rosa), das Calcium (H+K) Doublet (rosa) und das G-Band (grün) zu erkennen.

Im Vergleich zu den in diesem Kapitel bereits näher erläuterten Spektren weisen die Systeme SDSSJ153509.92 + 240415.0 (s. Abb. 20) und SDSSJ134658.10 + 065604.6 (s. Abb. 22) Äußerst starke Calcium (H+K) Linien auf. Das kann zwei Gründe haben: entweder es liegt ungewöhnlich viel interstellares Material zwischen uns und dem betreffenden System oder es liegen F- oder G-Sterne als Begleiter vor, da hier starke Ca II (H+K) Linien zu erwarten sind. In SDSSJ153509.92 + 240415.0 findet sich obendrein eine starke G-Band Absorption und das Calcium Triplet. Zusammen mit dem flachen Kontinuumsverlauf ist deshalb zu vermuten, dass es tatsächlich einen kühlen Begleiter des Typs F oder G gibt. Ein wenig anders verhält es sich mit SDSSJ134658.10 + 065604.6, da weder das G-Band, noch das Magnesium Triplet, sondern nur Ca (H+K) vorhanden ist. Die Calcium (H+K) Linien könnten allerdings auch interstel-

Abbildung 18: Im kombinierten Spektrum des Sternsystems SDSSJ151107.07+173215.2 ist das Magnesium-Triplet (gelb), das Calcium-Triplet (rosa), das Calcium (H+K) Doublet (rosa) und das G-Band (grün) zu erkennen.

laren Ursprungs sein. Zur Überprüfung des Sachverhalts bedarf es jedoch, wie in Kapitel 4.2.6 beschrieben, der Untersuchung der Einzelspektren, um die Bewegung des Hintergrunds relativ zum IM sichtbar zu machen. Nichtsdestotrotz kann aufgrund des flachen Verlaufs des Kontinuums und den Calcium Doublet Linien davon ausgegangen werden, dass ein Begleiter vorliegt. Das Spektrum selbst weist keine He I oder He II Linien und keinen starken Balmersprung auf, weshalb alles für ein Doppelsternsystem aus Subdwarf B und einem kühlen Begleitstern spricht. Auszuschließen ist ein weißer Zwerg als Begleiter, da hierdurch der flache Kontinuumsverlauf nicht erklärt werden könnte. Demnach bieten sich nicht viele Möglichkeiten für den Begleiter. Aufgrund der fehlenden Heliumlinien, des abwesenden G-Bands und des fehlenden Magnesium Triplets kommt somit nur ein F- Stern in Frage. Ein A-Stern als Begleiter kann ausgeschlossen werden, da die Leuchtkraft so groß wäre, dass das Spektrum des sdB's überblendet wäre.

Das nun noch nicht erläuterte System SDSSJ082902.62 + 224636.7 war zugleich das Interessanteste. Der, relativ zu den anderen beschriebenen Systeme, nicht so flache Verlauf des Kontinuums ist kein ausschlaggebender Grund, dieses System auf ein Einzelsternsystem zu reduzieren. Im Spektrum sind mit Ausnahme des eben erwähnten

Abbildung 19: Im kombinierten Spektrum des Sternsystems SDSSJ085201.98+165205.5 ist das Magnesium-Triplet (gelb), das Calcium-Triplet (rosa) und das Calcium (H+K) Doublet (rosa) zu erkennen.

Kriteriums alle Doppelstern-Indizien vorhanden, sodass es mit hoher Wahrscheinlichkeit ein Doppelsternsystem ist. Interessant ist jedoch das Vorkommen von Helium I und der bei 4686 Å liegenden Helium II Linie. Unter Berücksichtigung der starken H-Balmerlinien liegt darum ein Wasserstoff Subdwarf O als Primärstern vor. Würden die Heliumlinien vom Begleiter stammen, so dürfte bei kürzeren Wellenlängen (bis ca. 5000 Å) die Absorption nur noch sehr schwach zu sehen sein, wohingegen bei größeren Wellenlängen tiefere Linien zu erwarten wären. Bei den höheren Wellenlängen (ab 6000 Å), also dem vom Begleiter dominierten Bereich, sind aber keinerlei Heliumlinien zu erkennen. Deshalb kann SDSSJ082902.62 + 224636.7 als ein Doppelsternsystem aus H-sdO und G- oder K-Stern klassifiziert werden.

Um die Erkenntnisse zu untermauern ist es nötig eine quantitative Spektralanalyse durch zu führen. Dabei werden die Einzelspektren für die oben beschriebenen potenziellen Doppelsternsysteme benötigt. Mit Hilfe der Einzelspektren kann eine Radialgeschwindigkeitsstudie durchgeführt werden, um zu sehen, ob die Systeme eine Variation der Radialgeschwindigkeit aufweisen. Im folgenden Kapitel wird dieses Vorgehen auf einige Subdwarf B Sterne angewandt, um quantitativ Doppelsternsysteme zu finden.

Abbildung 20: Im kombinierten Spektrum des Sternsystems SDSSJ153509.92+240415.0 ist das Calcium-Triplet (rosa), das Calcium (H+K) Doublet (rosa) und das G-Band (grün) zu erkennen.

6.3 Quantitative Spektralanalyse

6.3.1 SPAS - Spectrum Plotting and Analysis Suite

In seiner Doktorarbeit an der Dr. Remeis-Sternwarte entwickelte Heiko Hirsch (2009) SPAS als ein benutzerfreundliches Programm zur Analyse und grafischen Darstellung von Spektren. Vorlage dazu bot das von Ralf Napiwotzki entwickelte FITSB2, welches im Gegensatz zu SPAS jedoch nicht so komfortabel zu handhaben ist. SPAS basiert auf den nativen Programmiersprachen C/C++, wodurch eine prozessornahe Implementierung effektiver Algorithmen⁷ bewerkstelligt werden konnte.

Zur quantitativen Spektralanalyse können so z.B. Gauß- und Lorentzfunktionen an das Spektrum gefittet werden (s. Abb. 23).

Durch solche Fits ist es möglich Radialgeschwindigkeitsmessungen vorzunehmen. Allerdings ist das nur die Spitze des Eisbergs an Möglichkeiten, die SPAS bietet. Wird ein Gitter synthetischer Spektren in SPAS eingebunden, so vermag es das Programm die atmosphärischen Parameter (log(y) - die Heliumgebundenheit, log(g) - die Oberflä-

⁷Als Beispiel sei der *downhill simplex algorithm* genannt, welcher unter anderem lokale Minima aufspürt. Wichtig ist das vorallem beim Fitten von synthetischen Spektren. Vgl. Hirsch (2009)

Abbildung 21: Im kombinierten Spektrum des Sternsystems SDSSJ082902.62+224636.7 ist das Magnesium-Triplet (gelb), das Calcium-Triplet (rosa), das Calcium (H+K) Doublet (rosa) und das G-Band (grün) zu erkennen.

chengravitation und T_{eff} - die Oberflächentemperatur) zu fitten. Dazu wird nicht nur ein *Simplex*⁸ Algoritmus verwendet, sondern ebenso ein Polynomialfit der 3. Ordnung. Die in Abbildung 23 unten, mittig angezeigte He II Linie (4686Å) scheint nicht besonders gut geeignet für die Bestimmung der Radialgeschwindigkeit. Allerdings ist das ein Ausschnitt aus der Bestimmung atmospärischer Parameter, wodurch diese Linie durchaus sinnvoll für die Messung der Heliumgebundenheit (log (y)) ist. Selbst wenn keine Absorption nachweisbar ist, liefert diese Linie eine wichtige Information zur Einschränkung der Temperaturen, weshalb sie in jeder Analyse berücksichtigt werden sollte. In der hier aufgeführten quantitativen Spektralanalyse wurden so von 18 kombinierten Spektren zunächst die atmosphärischen Parameter, die Radialgeschwindigkeiten der 155 zugehörigen Einzelspektren vermessen. Die Fehlerabschätzung erfolgt hierbei mit dem Bootstrapping-Verfahren, welches im nachfolgenden Kapitel näher erläutert wird.

⁸Ein Simplex ist ein (N+1)-dimensionales Polyeder im N-dimensionalen Raum.

Abbildung 22: Im kombinierten Spektrum des Sternsystems SDSSJ134658.10+065604.6 ist lediglich das Calcium-Triplet (rosa) und das Calcium (H+K) Doublet (rosa) zu erkennen.

6.3.2 Fehlerabschätzung mit Bootstrapping

Für die Fehlerrechnung in der Astronomie gibt es viele verschiedene Methoden. Die in SPAS implementierte Methodik nennt sich *Bootstrapping* und ist eine sogenannte *Resampling*-Methode, d.h. es werden viele Statistiken einer Stichprobe erstellt. Vergleichbar ist das Verfahren mit dem Ziehen mit Zurücklegen, wobei aus einer Stichprobe *n* mal ein Wert mit Zurücklegen gezogen wird. So kann zum Beispiel laut Renè Andrae (2010) aus einem Datenset $\{x_1, x_2, x_3, x_4\}$ bei 5 Durchgängen mit jeweils 4maligem Ziehen folgendes Ergebnis zustande kommen:

- $\{x_1, x_2, x_3, x_4\}$
- $\{x_1, x_2, x_1, x_4\}$
- $\{x_1, x_2, x_2, x_4\}$
- $\{x_1, x_2, x_3, x_3\}$
- $\{x_2, x_2, x_2, x_2\}.$

Abbildung 23: Die Bestimmung der atmosphärischen Parameter erfolgt durch Anpassung synthetischer Spektren an das beobachtete Spektrum. Die gefitteten Linien sind in rot dargestellt. *Oben links:* Die Ausgabewerte für die gewünschten Parameter. *Oben mitte:* Die Eingabewerte der gewünschten Parameter. *Oben rechts:* Die verwendeten *Grids* innerhalb dessen ein Spektrum analysiert wird.

Solche Ergebnisse aus einem Datenset werden als dessen *bootstraps* bezeichnet. Andrae (2010) beschreibt des Weiteren, dass die Reihenfolge der Datenpunkte keine Rolle spielt, weshalb die Anzahl der möglichen *bootstraps* für *N* Datenpunkte gegeben ist durch:

$$\binom{2N-1}{N} = \frac{(2N-1)!}{N!(N-1)!}.$$
(10)

Füer die Datensets, welche mit SPAS analysiert werden, wurden durchgängig 2000 bootstraps veranschlagt. Das entspräche lediglich $N \approx 7$ Datenpunkten. Jedoch sind es in der Regel deutlich mehr Datenpunkte, da füer die Ermittlung der Radialgeschwindigkeit mehrere Absorptionslinien als Referenz dienen. Allerdings wären bei geschätzten durchschnittlich 200 Datenpunkten füer eine Radialgeschwindigkeitsmessung ca. $5 \cdot 10^{118}$ bootstraps möglich. Dennoch reichen die 2000 bootstraps für eine zuverlässige Fehlerermittlung aus. Werden Tests mit einer steigenden Anzahl an bootstraps durchgeführt, so stellt man fest, dass sich der Fehler nicht signifikant ändert. Die benötigte Rechnerzeit steigt indes enorm an. So bieten schon vergleichsweise wenige *bootstraps*, respektive geringe benötigte Rechnerzeit, eine stabile Fehleranalyse. Aus diesem Grund ist das *Bootstrapping*-Verfahren eine häufig angewandte statistische Methode.

6.3.3 Baryzentrische Korrektur

Für Radialgeschwindigkeitsmessungen von erdgebundenen Beobachtungen ist die baryzentrische Korrektur von äußerster Wichtigkeit. Das Baryzentrum ist der gemeinsame Schwerpunkt unseres Sonnensystems und liegt innerhalb der Sonne. Der durchschnittliche Abstand der Erde zur Sonne beträgt 1 AU (ca. 150 Mio. km), weshalb das Licht durchschnittlich ca. 8 Minuten zum Baryzentrum benötigt. Bei Vernachlässigung dieser Korrektur, wären die Linien im Spektrum durch die Bewegung der Erde um die Sonne und der Eigenrotation der Erde dopplerverschoben. Damit dies nicht passiert wurde mit Hilfe von MIDAS (*engl.*: Munich Image Data Analysis System) die Korrektur durchgeführt. Dabei muss das Julianische Datum zum Gregorianischen Datum konvertiert werden. Ebenso benötigt werden die Rektaszension α und die Deklination δ des untersuchten Systems, sowie der Längen- und Breitengrad der beobachtenden Sternwarte (Apache Point Observatory in Sunspot, New Mexiko). Die meisten der nötigen Angaben finden sich bereits in den Namen der SDSS Spektren. So wird der Name von SDSS Spektren wie folgt angegeben: SDSSJ000426.61 - 003826.2 _55477 _ 4216 _0096, wobei folgendermaßen deklariert wird:

- 000426.61 die Rektaszension (*α*),
- -003826.2 die Deklination (δ),
- 55477 das modifizierte Julianische Datum (MJD),
- 4216 die Platten ID (Plate ID) und
- 0096 die Faser ID (FiberID).

6.3.4 Resultate

Um den Rahmen einer Bachelorarbeit einzuhalten wurden nur von Peter Nemeth ausgewählte Spektren analysiert. Das heißt, dass nur Spektren deren Primärstern ein Subdwarf B ist, untersucht wurden. Die analysierten Daten umfassen 18 kombinierte Spektren, aus deren die atmosphärischen Parameter mit SPAS, wie in Kapitel6.3.1 dargestellt, bestimmt wurden (s. Tab. 8 im Anhang). Zur Fehleranalyse der atmosphärischen Parameter wurden 500 *bootstraps* als ausreichend erachtet, da die benötigte Rechnerzeit bei Erhöhung der Anzahl an *bootstraps* enorm zunimmt, der Fehler sich jedoch nicht signifikant ändert. Nach den atmosphärischen Parametern wurden die zugehörigen 155 Einzelspektren zur Radialgeschwindigkeitsmessung herangezogen. Unter Berücksichtigung der baryzentrischen Korrekturen ergeben sich die Werte in Tabelle 9 im Anhang. Zu erkennen ist, dass alle der 18 Systeme eine Variabilität der Radialgeschwindigkeit aufweisen (s. Abb. 24). Welcher Datenpunkt dabei zu welchem System gehört kann Tabelle 6 entnommen werden.

Abbildung 24: Die größte Radialgeschwindigkeitsdifferenz eines Systems ist aufgetragen gegen die zugehörige Differenz der Beobachtungszeitpunkte. Die schraffierte Fläche stellt den weniger interessanten Bereich dar, da die Umlaufperiode zu groß und die Radialgeschwindigkeitsdifferenz zu klein ist.

Laut Geier et al. (2011) befinden sich die interessanten Sterne im nicht-schraffierten Bereich. So zeigen 12 von 18 Sternen eine maximale Radialgeschwindigkeitsvariation von über $100 \ km/s$ und 3 Systeme sogar eine maximale Radialgeschwindigkeitsvariation von über $200 \ km/s$ (SDSSJ082508.55 + 484031.1, SDSSJ163205.75 + 172241.3 und SDSSJ211651.95 - 003328.5). Der Zeitraum dieser Variationen beträgt zumeist $1 - 20 \ d$. Allerdings sind auch Sterne dabei, deren Beobachtungszeiträume mehrere Jahre auseinanderliegen (SDSSJ082332.09 + 113641.9, SDSSJ083006.17 + 475150.3 und SDSSJ152222.14 - 013018.4). Bei allen Systemen wurden sodann mit zwei Programmen die Periodizitäten vermessen. Das erste Programm ist *RV Curve*, ein Fortran Programm, welches von Horst Drechsel und Ralf Napiwotzki an der Dr. Remeis-Sternwarte in Bamberg entwickelt wurde. Das zweite Programm ist *FAMI*-

System	$\Delta RV[km/s]$	$\Delta t[d]$
SDSSJ074551.13+170600.3	52.4	10.02
SDSSJ082332.09+113641.9	152.8	1451.10
SDSSJ082508.55+484031.1	225	15.85
SDSSJ082944.75+132302.4	25.7	0.02
SDSSJ083006.17+475150.3	170.9	4021.91
SDSSJ095101.28+034757.0	73.8	3.92
SDSSJ133040.91-001710.7	169.6	7.97
SDSSJ134947.70+250810.9	134.3	17.96
SDSSJ141505.40+272733.6	21.7	0.01
SDSSJ142741.03+014254.9	127.6	2.95
SDSSJ145322.69+392947.4	124.2	5.94
SDSSJ151306.73+011439.1	98.5	2.92
SDSSJ151733.34+225908.0	148.8	22.92
SDSSJ152222.14-013018.4	167.8	2917.90
SDSSJ163205.75+172241.3	215.5	0.96
SDSSJ163212.26+175318.3	10.4	0.03
SDSSJ173057.93+320737.0	107.9	2.97
SDSSJ211651.95-003328.5	202.3	1.01

Tabelle 6: Maximale Radialgeschwindigkeitsvariation

AS (*engl.:* Frequency Analysis and Mode Identification for Asteroseismology), ein auf C++ basierendes *open source* Programm, welches vom astronomischen Institut der KU Leuven (Belgien) entwickelt wurde. Die Analyse der Daten mit beiden Programmen führte zum gleichen Ergebnis. In Abbildung 25 ist exemplarisch das Ergebnis der Periodizitätenmessung mit *FAMIAS* für SDSSJ074551.12 + 170600.2 dargestellt⁹.

Zu sehen ist, dass es nicht nur eine mögliche Periode gibt, sondern vielmehr eine Reihe plausibler Ergebnisse. Aus diesem Grund kann keine verlässliche Aussage über die Periode von SDSSJ074551.12 + 170600.2 gemacht werden. Auch bei den restlichen Spektren ist keine ausgezeichnete Periodizität zu erkennen. Da SDSSJ082508.55 + 484031.1 die größte Variation der Radialgeschwindigkeit zeigt, wurde es zusätzlich mit *Period04* untersucht¹⁰. Hieraus konnten folgende Parameter gewonnen werden:

- Frequenz $f = 2,049 \pm 0,002 \, 1/d$
- Amplitude 111, $37 \pm 12, 97 \, km/s$

 $^{^9 \}text{Die}\ RV\ Curve$ Periodizitätenmessung von SDSSJ074551.12 + 170600.2 findet sich im Abbildung 27 im Anhang

¹⁰*Period04* ist im Speziellen ein Programm zur statistischen Analyse von Langzeitbeobachtungen in der Astronomie. Basierend auf Java und C++, wurde *Period04* von Patrick Lenz am astronomischen Institut der Universität Wien entwickelt.

Abbildung 25: Die Vermessung der Periodizität mit FAMIAS. Die Amplitude in km/s ist dabei gegen die Frequenz aufgetragen. Die zwei linken lokalen Maxima repräsentieren die wahrscheinlichsten Perioden. Der kleinere Peak bei $P \approx 9 d$ stimmt mit der *RV Curve*-Messung überein.

• Phase $\phi = 3,965 \pm 0,006$.

Somit konnte eine mögliche Periode an die Messdaten gefittet werden (s. Abb. 26). Aber auch dieses Ergebnis ist nur eine von sehr vielen möglichen Perioden.

Abbildung 26: Die Radialgeschwindigkeitskurve von SDSSJ082508.55+484031.1. Die mit *period04* gefundenen Parameter der Sinuskurve (blau) passen gut zu den Messdaten (grün - Messwerte, rot - Fehlerbalken).

7 Diskussion

In Tabelle 7 sind die Ergebnisse der qualitativen Spektralanalyse in Kürze zusammengefasst. Auffällig ist, dass auf die hier präsentierte Vorgehensweise zur Identifikation von Doppelsternsystemen, nur kühle Sterne als Begleiter gefunden wurden. Hierin wiederum kamen hauptsächlich F-, G- oder K-Sterne in Frage. Die Ursachen hierfür sind vielschichtig. So sind vorallem Selektionseffekte dafür verantwortlich.

Stern	Primärstern	Begleiter Spektraltyp
SDSSJ072421.40+385630.6	sdB	F, G oder K
SDSSJ082902.62+224636.7	H-sdO	G oder K
SDSSJ085201.98+165205.5	sdB	F
SDSSJ090917.09+002514.0	sdB	F, G oder K
SDSSJ153509.92+240415.0	sdB	F oder G
SDSSJ134658.10+065604.6	sdB	F
SDSSJ151107.07+173215.2	sdB	F, G oder K

Tabelle 7: Bestandteile der potenziellen Doppelsternsysteme

Zum Einen wurden die SB2 Systeme bereits durch das MUCHFUSS heraus selektiert, weshalb hier nur diejenigen übrig geblieben sind, die von MUCHFUSS übersehen wurden. Zum Anderen waren die verwendeten Indizien das Calcium Triplet, Magnesium Triplet, Calcium Doublet (H+K), G-Band und der flache Kontinuumsverlauf. Diese Merkmale sind Eigenschaften von kühlen Sternen, weshalb auch nur solche gefunden werden können. Es überrascht dabei nicht, dass vorwiegend Sterne des Typs F bis K gefunden werden. Denn an Hand spektroskopischer Doppelsterne ist es laut Han et al. (2003) besonders einfach diese Spektraltypen als Begleiter zu identifizieren. Die Leuchtkraft dieser Sterntypen gleicht annährend derer von EHB oder BHB Sternen. Sterne der Typen O, B oder A sind zu leuchtkräftig, weshalb diese EHB- bzw. BHB-Sterne überstrahlen würden. M-Sterne sind hingegen zu leuchtschwach, wodurch sie im Spektrum nicht zu erkennen sind.

Zudem begründet Girven et al. (2012) die Häufigkeit der F- bist K-Sterne durch den sehr effizienten *Roche-Lobe Overflow*. Dahingehend decken sich die Ergebnisse in Tabelle 7 mit den eben beschriebenen Annahmen.

Es ist jedoch nicht auszuschließen, dass mehr als die gefundenen 7 Doppelsternsystemen in den 866 überprüften Spektren zu finden sind. Denn die Überprüfung aller Merkmale sollte ein paralleler Prozess sein, um nichts zu übersehen. Leider war dies nicht der Fall, da bei der ersten Durchsicht auf diese Merkmale kein besonderes Augenmerk gelegt wurde. Anstatt dessen wurden nur die auffälligsten Spektren als "unknown" klassifiziert. Erst bei der zweiten Durchsicht, also den verbliebenen 135 Spektren, wurde auf die oben beschriebenen Indizien geachtet. Dadurch könnte dieser Verfahrensfehler dazu geführt haben, dass ein paar SB2 Systeme übersehen wurden. Trotzdem konnten mit Hilfe der qualitativen Spektralanalyse einige SB2 Systeme identifiziert und klassifiziert werden. Auf SB1 Systeme ist die qualitative Spektralanalyse in der hier präsentierten Vorgehensweise hingegen nicht anwendbar, weshalb man sich dabei der quantitativen Spektralanalyse bedient. Atmosphärische Parameter, Radialgeschwindigkeiten und Periodizitäten wurden dabei vermessen. Die in Tabelle 8 angegebenen Parameter können bedingt durch große Radialgeschwindigkeitsvariationen von den tatsächlichen Werten abweichen, da hierdurch eine nicht-berücksichtigte Linienverbreiterung eintritt. Trotzdem bewegen sich die atmosphärischen Parameter in einem sdB typischen Bereich:

- $T_{eff} = [26k, 40k] K$
- log(g) = [5.1, 5.7]
- log(y) = [-1.7, -3.4].

Allerdings ist eine Heliumgebundenheit von log(y) < -3 kein verlässliches Ergebnis, da für SPAS nur ein Gitter bis log(y) = -3 benutzt wurde. Dadurch sollte bei genauerer Betrachtung eines betroffenen Spektrums das Gitter erweitert werden. Alle Spektren zeigen eine Variation der Radialgeschwindigkeit, aber die Periodizitätenmessungen haben leider keine Aussagekraft, da im Allgemeinen vermutlich zu wenige Messdaten vorhanden sind. So sind z.B. für SDSSJ082508.55 + 484031.1 lediglich 9 Messpunkte vorhanden, die in zwei Blöcken aufgenommen wurden und ca. 16 Tage auseinander liegen. Bei einer in Kapitel 6.3.4 ab Seite 37 ermittelten Frequenz von $f = 2,049 \pm 0,002$ wären das bei 16 Tagen ca. 32 Zyklen. Um also aussagekräftige Ergebnisse zu erhalten bräuchte man zum Einen mehr Beobachtungsdaten und zum Anderen kürzere Beobachtungsabstände. Zwar werden durch SDSS enorm viele Objekte am Nachthimmel beobachtet, jedoch leidet somit die Anzahl an Messdaten eines Objekts darunter. Für Folgeprojekte sollte das Augenmerk vorallem auf die Systeme SDSSJ082508.55 + 484031.1, SDSSJ163205.75 + 172241.3 und SDSSJ211651.95 - 003328.5 gelegt werden, da hier die größten Radialgeschwindigkeitsänderungen zu sehen sind. Innerhalb dieser Gruppe sollten SDSSJ163205.75 + 172241.3 und SDSSJ211651.95 - 003328.5 Priorität auf Grund der massiven Radialgeschwindigkeitsvariation innerhalb eines Tages haben.

8 Zusammenfassung

Heisse unterleuchtkräftige Sterne sind weit entwickelte Sterne, die ihre Leuchtkraft durch thermonukleare Fusion von Helium erzeugen. Sie treten bevorzugt in engen Doppelsternen auf. Ihre Entstehung ist noch nicht vollständig verstanden. Ziel dieser Arbeit war es eine neue Kandidatenliste von 866 Sternen für die MUCHFUSS Kollaboration anhand ihrer SDSS Spektren zu klassifizieren und zu verifizieren. Zudem sollten besonders interessante Objekte für weitergehende Beobachtungen identifiziert werden. Zunächst wurden hierfür alle 866 Spektren anhand charakteristischer spektraler Signaturen mit bloßem Auge analysiert und schließlich kategorisiert. Dabei wurden 6 Doppelsterne mit sdB Beteiligung und sogar einer mit H-sdO Beteiligung identifiziert und klassifiziert. Als Begleiter wurden ausschließlich kühle F- bis K-Sterne gefunden. Im Zuge einer detaillierten Betrachtung der gefundenen Doppelsternsysteme könnte der jeweilige Begleiter weiter in seinem Spektraltyp eingeschränkt werden oder festgestellt werden, ob es sich um Hauptreihensterne oder RGB-Sterne als Begleiter handelt. Das MUCHFUSS Konsortium hat 18 der Sterne hohe Priorität eingeräumt, deren Spektren dann analysiert wurden. Dabei erfolgte die Messung der Radialgeschwindigkeit und die Bestimmung der atmosphärischen Parameter durch Anpassen synthetischer Spektren an die beobachteten mit dem SPAS Programmpaket. Zur Suche nach Variationen der Radialgeschwindigkeit wurden 155 SDSS Einzelspektren mit dem MIDAS Programm baryzentrisch korrigiert und ausgemessen. Alle Sterne erweisen sich als veränderlich. Dabei zeigten SDSSJ082508.55 + 484031.1, SDSSJ163205.75 + 172241.3 und SDSSJ211651.95 - 003328.5 mit $\Delta RV > 200 km/s$ die größte Variation der Radialgeschwindikeit, weshalb diese Systeme im Zuge weiterer Beobachtungen analysiert werden sollten. Die Datenbasis erweist sich jedoch als nicht ausreichend, um die Umlaufperioden der Doppelsternsysteme zu bestimmen, wie numerische Experimente mit drei Analysepaketen (RV Curve, FAMIAS und Period04) zeigten. Zusätzliche spektroskopische Beobachtungen sind erforderlich.

9 Anhang

Tabelle 8: Liste der ausgewählten Sterne aus DR9 und DR10

Stern	Wert	Fehler	Parameter		
SDSSJ074551.13+170600.3_00049201	22		$v_{rad}[km/s]$		
	35518	332	$T_{eff}[K]$		
	5,55	0,06	log (g)		
	-2,82	0,17	log (y)		
SDSSJ082332.09+113641.9_00042981	6		v _{rad} [km/s]		
	31819	819	$T_{eff}[K]$		
	5,57	0,09	log (g)		
	-1,71	0,25	log (y)		
SDSSJ082508.55+484031.1_00105558	113		v _{rad} [km/s]		
	29039	754	$T_{eff}[K]$		
	5,18	0,11	log (g)		
	-2,60	0,20	log (y)		
SDSSJ082944.75+132302.4_00124554	153		v _{rad} [km/s]		
	39193	820	$T_{eff}[K]$		
	5,39	0,09	log (g)		
	-3,28	0,26	log (y)		
SDSSJ083006.17+475150.3_00137177	80		$v_{rad}[km/s]$		
	27642	1220	$T_{eff}[K]$		
	5,53	0,19	log (g)		
	-3,44	0,23	log (y)		
SDSSJ095101.28+034757.0_00012555	119		v _{rad} [km/s]		
	28027	427	$T_{eff}[K]$		
	5,41	0,07	log (g)		
	-2,61	0,15	log (y)		
SDSSJ133040.91-001710.7_00126286	78		v _{rad} [km/s]		
	28097	901	$T_{eff}[K]$		
	5,33	0,12	log (g)		
Fortsetzung auf der nächsten Seite					

Stern	Wert	Fehler	Parameter		
	-2,78	0,34	log (y)		
SDSSJ134947.70+250810.9_00144298	-119		v _{rad} [km/s]		
	31163	414	$T_{eff}[K]$		
	5,54	0,11	log (g)		
	-2,99	0,36	log (y)		
SDSSJ141505.40+272733.6_00145150	-58		$v_{rad}[km/s]$		
	29322	1072	$T_{eff}[K]$		
	5,40	0,17	log (g)		
	-2,88	0,49	log (y)		
SDSSJ142741.03+014254.9_00127698	-23		v _{rad} [km/s]		
	30556	413	$T_{eff}[K]$		
	5,29	0,08	log (g)		
	-3,20	0,15	log (y)		
SDSSJ145322.69+392947.4_00143857	-70		$v_{rad}[km/s]$		
	32338	466	$T_{eff}[K]$		
	5,78	0,09	log (g)		
	-2,47	0,29	log (y)		
SDSSJ151306.73+011439.1_00127707	4		$v_{rad}[km/s]$		
	28897	644	$T_{eff}[K]$		
	5,26	0,10	log (g)		
	-2,28	0,30	log (y)		
SDSSJ151733.34+225908.0_00129103	-71		$v_{rad}[km/s]$		
	26782	681	$T_{eff}[K]$		
	5,10	0,09	log (g)		
	-2,71	0,31	log (y)		
SDSSJ152222.14-013018.4_00114752	-64		$v_{rad}[km/s]$		
	27199	1099	$T_{eff}[K]$		
	5,36	0,18	log (g)		
	-2,84	0,42	log (y)		
SDSSJ163205.75+172241.3_00116892	-136		$v_{rad}[km/s]$		
Fortsetzung auf der nächsten Seite					

Tabelle 8 – Fortsetzung der vorhergehenden Seite

Stern	Wert	Fehler	Parameter
	29479	851	$T_{eff}[K]$
	5,30	0,12	log (g)
	-2,54	0,43	log (y)
SDSSJ163212.26+175318.3_00116892	35		v _{rad} [km/s]
	38311	431	$T_{eff}[K]$
	5,40	0,06	log (g)
	-3,21	0,08	log (y)
SDSSJ173057.93+320737.0_00051159	37		v _{rad} [km/s]
	26648	588	$T_{eff}[K]$
	5,32	0,09	log (g)
	-2,68	0,12	log (y)
SDSSJ211651.95-003328.5_00119756	-63		$v_{rad}[km/s]$
	28559	821	$T_{eff}[K]$
	5,32	0,13	log (g)
	-3,10	0,35	log (y)

Tabelle 8 – Fortsetzung der vorhergehenden Seite

Tabelle 9: Liste der ausgewählten Einzelspektren aus DR9 und DR10

Stern	Julianisches Datum	v_{rad}	v_{rad} Fehler	
SDSSJ074551.13+170600.3_00049201	4485.697202	69.2	26.7	
SDSSJ074551.13+170600.3_00049202	4485.713076	53.0	29.1	
SDSSJ074551.13+170600.3_00049203	4485.728908	71.5	32.5	
SDSSJ074551.13+170600.3_00049204	4485.744724	36.5	22.8	
SDSSJ074551.13+170600.3_00049205	4485.776061	31.7	19.9	
SDSSJ074551.13+170600.3_00049206	4485.792010	46.4	22.7	
SDSSJ074551.13+170600.3_00049209	4485.813005	69.6	19.5	
SDSSJ074551.13+170600.3_00049210	4485.829041	31.0	20.0	
SDSSJ074551.13+170600.3_00049211	4485.844851	42.6	19.5	
SDSSJ074551.13+170600.3_00049374	4495.695543	51.6	20.8	
Fortsetzung auf der nächsten Seite				

Stern	Julianisches Datum	v_{rad}	v_{rad} Fehler	
SDSSJ074551.13+170600.3_00049375	4495.713239	41.5	18.2	
SDSSJ074551.13+170600.3_00049376	4495.732713	34.2	11.8	
SDSSJ074551.13+170600.3_00049377	4495.752011	19.1	17.5	
SDSSJ074551.13+170600.3_00049380	4495.775692	33.1	18.0	
SDSSJ074551.13+170600.3_00049381	4495.795002	35.8	14.7	
SDSSJ082332.09+113641.9_00042981	4149.593349	34.4	12.2	
SDSSJ082332.09+113641.9_00042982	4149.609112	-32.2	11.0	
SDSSJ082332.09+113641.9_00042985	4149.627358	-43.5	13.4	
SDSSJ082332.09+113641.9_00126398	5600.728753	109.3	12.5	
SDSSJ082332.09+113641.9_00126400	5600.751483	-7.6	14.3	
SDSSJ082332.09+113641.9_00126401	5600.762861	-33.3	11.0	
SDSSJ082332.09+113641.9_00126402	5600.774226	-37.9	9.9	
SDSSJ082332.09+113641.9_00126403	5600.785591	-27.8	11.1	
SDSSJ082332.09+113641.9_00126404	5600.796968	7.2	9.3	
SDSSJ082508.55+484031.1_00105558	5192.998794	-88.6	10.8	
SDSSJ082508.55+484031.1_00105559	5193.010757	-67.1	13.0	
SDSSJ082508.55+484031.1_00105560	5193.022776	-47.0	14.0	
SDSSJ082508.55+484031.1_00107200	5208.846815	136.4	13.3	
SDSSJ082508.55+484031.1_00107201	5208.858401	118.6	11.7	
SDSSJ082508.55+484031.1_00107202	5208.870027	113.0	13.8	
SDSSJ082508.55+484031.1_00107203	5208.881572	107.8	13.8	
SDSSJ082508.55+484031.1_00107204	5208.893129	99.6	14.2	
SDSSJ082508.55+484031.1_00107205	5208.904726	90.3	15.8	
SDSSJ082944.75+132302.4_00124554	5563.839543	153.5	17.3	
SDSSJ082944.75+132302.4_00124555	5563.850920	169.2	13.9	
SDSSJ082944.75+132302.4_00124556	5563.862299	147.8	18.7	
SDSSJ082944.75+132302.4_00124557	5563.873664	172.7	15.9	
SDSSJ082944.75+132302.4_00124558	5563.885031	173.5	15.1	
SDSSJ082944.75+132302.4_00124559	5563.896408	168.5	18.9	
SDSSJ083006.17+475150.3_00137177	5895.816507	23.3	6.9	
SDSSJ083006.17+475150.3_00137178	5895.827873	52.9	8.0	
SDSSJ083006.17+475150.3_00137179	5895.839262	98.2	7.5	
Fortsetzung auf der nächsten Seite				

Tabelle 9 – Fortsetzung der vorhergehenden Seite

Stern	Julianisches Datum	v_{rad}	v_{rad} Fehler	
SDSSJ083006.17+475150.3_00137180	5895.850629	129.7	7.8	
SDSSJ083006.17+475150.3_00137181	5895.861996	151.1	8.7	
SDSSJ083006.17+475150.3_00137182	5895.873363	154.1	8.8	
SDSSJ083006.17+475150.4_00007094	1870.013374	68.9	8.1	
SDSSJ083006.17+475150.4_00007181	1873.950548	14.3	7.4	
SDSSJ083006.17+475150.4_00007182	1873.962852	-16.8	7.1	
SDSSJ083006.17+475150.4_00007183	1873.974948	-11.8	8.2	
SDSSJ083006.17+475150.4_00007184	1873.987414	7.6	7.7	
SDSSJ095101.28+034757.0_00012555	2282.958174	176.8	8.8	
SDSSJ095101.28+034757.0_00012556	2282.970501	183.0	14.3	
SDSSJ095101.28+034757.0_00012603	2286.865165	148.7	10.5	
SDSSJ095101.28+034757.0_00012604	2286.880809	121.8	12.2	
SDSSJ095101.28+034757.0_00012605	2286.894947	109.2	10.3	
SDSSJ133040.91-001710.7_00126286	5597.988686	-43.0	9.3	
SDSSJ133040.91-001710.7_00126287	5598.000053	-55.0	6.9	
SDSSJ133040.91-001710.7_00126288	5598.011431	-32.0	9.5	
SDSSJ133040.91-001710.7_00126289	5598.028215	-49.5	8.3	
SDSSJ133040.91-001710.7_00126343	5599.957729	-36.7	8.4	
SDSSJ133040.91-001710.7_00126344	5599.969096	-28.4	7.6	
SDSSJ133040.91-001710.7_00126345	5599.980462	-36.7	7.0	
SDSSJ133040.91-001710.7_00126696	5605.935967	93.5	7.7	
SDSSJ133040.91-001710.7_00126697	5605.947333	84.4	7.7	
SDSSJ133040.91-001710.7_00126698	5605.958700	106.8	7.4	
SDSSJ133040.91-001710.7_00126699	5605.970090	114.6	8.2	
SDSSJ134947.70+250810.9_00144298	6072.712148	-98.2	7.6	
SDSSJ134947.70+250810.9_00144299	6072.723524	-48.9	7.4	
SDSSJ134947.70+250810.9_00144300	6072.734901	-28.9	7.2	
SDSSJ134947.70+250810.9_00144700	6090.695027	-163.2	6.1	
SDSSJ134947.70+250810.9_00144701	6090.706392	-144.4	6.5	
SDSSJ134947.70+250810.9_00144702	6090.717768	-112.9	7.0	
SDSSJ141505.40+272733.6_00145150	6100.688131	-86.8	13.4	
SDSSJ141505.40+272733.6_00145153	6100.722331	-68.6	15.1	
Fortsetzung auf der nächsten Seite				

Tabelle 9 – Fortsetzung der vorhergehenden Seite

Stern	Julianisches Datum	v_{rad}	v_{rad} Fehler
SDSSJ141505.40+272733.6_00145154	6100.733696	-90.3	12.0
SDSSJ141505.40+272733.6_00145180	6101.688417	-87.3	8.7
SDSSJ141505.40+272733.6_00145181	6101.699794	-79.9	10.4
SDSSJ142741.03+014254.9_00127698	5626.941009	-35.3	5.9
SDSSJ142741.03+014254.9_00127699	5626.952376	-29.5	6.1
SDSSJ142741.03+014254.9_00127700	5626.963754	-13.5	7.6
SDSSJ142741.03+014254.9_00127701	5626.975155	-6.0	5.8
SDSSJ142741.03+014254.9_00127702	5626.986534	-0.6	6.2
SDSSJ142741.03+014254.9_00127823	5629.894450	92.3	10.2
SDSSJ145322.69+392947.4_00143857	6064.857444	-11.5	14.4
SDSSJ145322.69+392947.4_00143858	6064.868810	-11.6	12.2
SDSSJ145322.69+392947.4_00143911	6065.816845	-78.9	8.5
SDSSJ145322.69+392947.4_00144202	6070.790800	-133.9	10.1
SDSSJ145322.69+392947.4_00144203	6070.802165	-135.7	8.8
SDSSJ145322.69+392947.4_00144204	6070.813531	-128.1	10.7
SDSSJ145322.69+392947.4_00144253	6071.802451	-34.4	10.6
SDSSJ145322.69+392947.4_00144254	6071.813817	-33.5	11.0
SDSSJ145322.69+392947.4_00144255	6071.825182	-32.0	11.6
SDSSJ151306.73+011439.1_00127707	5627.008369	-13.1	12.6
SDSSJ151306.73+011439.1_00127828	5629.916501	58.2	17.9
SDSSJ151306.73+011439.1_00127829	5629.927879	85.4	13.7
SDSSJ151306.73+011439.1_00127830	5629.939246	64.5	14.2
SDSSJ151306.73+011439.1_00127831	5629.950648	30.8	14.7
SDSSJ151306.73+011439.1_00127832	5629.962014	62.2	12.9
SDSSJ151306.73+011439.1_00127833	5629.973393	46.7	14.5
SDSSJ151306.73+011439.1_00127834	5629.984771	50.2	12.6
SDSSJ151733.34+225908.0_00129103	5654.932279	21.1	7.3
SDSSJ151733.34+225908.0_00129104	5654.943656	21.3	8.8
SDSSJ151733.34+225908.0_00129105	5654.955023	32.2	8.1
SDSSJ151733.34+225908.0_00129106	5654.966412	55.5	8.2
SDSSJ151733.34+225908.0_00129107	5654.977778	65.0	7.7
SDSSJ151733.34+225908.0_00130044	5677.813742	-64.4	9.0
	Fortsetzung a	uf der nä	ichsten Seite

Tabelle 9 – Fortsetzung der vorhergehenden Seite

Stern	Julianisches Datum	v_{rad}	v _{rad} Fehler	
SDSSJ151733.34+225908.0_00130045	5677.825107	-76.2	8.0	
SDSSJ151733.34+225908.0_00130046	5677.836473	-68.6	8.8	
SDSSJ151733.34+225908.0_00130047	5677.847839	-69.6	12.2	
SDSSJ151733.34+225908.0_00130049	5677.870605	-75.3	12.5	
SDSSJ151733.34+225908.0_00130051	5677.893360	-83.8	11.8	
SDSSJ151733.34+225908.0_00130053	5677.916091	-57.2	10.2	
SDSSJ151733.34+225908.0_00130132	5678.818110	-83.1	8.5	
SDSSJ152222.14-013018.3_00015005	2405.884291	-51.0	27.4	
SDSSJ152222.14-013018.3_00015006	2405.896507	-43.0	23.1	
SDSSJ152222.14-013018.3_00015063	2408.889556	-158.8	35.4	
SDSSJ152222.14-013018.3_00015064	2408.901957	-187.0	159.4	
SDSSJ152222.14-013018.3_00015114	2409.878459	-47.6	124.5	
SDSSJ152222.14-013018.4_00114752	5323.807934	-104.4	26.3	
SDSSJ152222.14-013018.4_00114753	5323.819369	-57.8	19.7	
SDSSJ152222.14-013018.4_00115015	5326.775290	-40.4	17.9	
SDSSJ152222.14-013018.4_00115016	5326.786887	-41.5	27.4	
SDSSJ152222.14-013018.4_00115017	5326.798415	-19.2	23.0	
SDSSJ152222.14-013018.4_00115018	5326.809943	-55.7	21.7	
SDSSJ152222.14-013018.4_00115019	5326.822304	-69.6	16.5	
SDSSJ152222.14-013018.4_00115020	5326.833832	-68.8	35.1	
SDSSJ152222.14-013018.4_00115021	5326.845290	-78.7	27.5	
SDSSJ152222.14-013018.4_00115125	5327.842964	-110.6	24.9	
SDSSJ163205.75+172241.3_00116892	5365.841716	-99.0	10.7	
SDSSJ163205.75+172241.3_00116893	5365.853163	-80.0	11.5	
SDSSJ163205.75+172241.3_00116894	5365.864622	-67.4	8.9	
SDSSJ163205.75+172241.3_00116895	5365.876102	-63.6	10.1	
SDSSJ163205.75+172241.3_00116955	5366.809453	-238.6	11.4	
SDSSJ163205.75+172241.3_00116956	5366.820910	-252.1	10.3	
SDSSJ163205.75+172241.3_00116957	5366.832380	-279.1	11.1	
SDSSJ163212.26+175318.3_00116892	5365.841683	17.3	11.0	
SDSSJ163212.26+175318.3_00116893	5365.853130	21.4	9.5	
SDSSJ163212.26+175318.3_00116894	5365.864589	17.6	10.1	
Fortsetzung auf der nächsten Seite				

Tabelle 9 – Fortsetzung der vorhergehenden Seite

Stern	Julianisches Datum	v_{rad}	v _{rad} Fehler
SDSSJ163212.26+175318.3_00116895	5365.876069	27.7	10.0
SDSSJ163212.26+175318.3_00116955	5366.809420	22.3	12.1
SDSSJ163212.26+175318.3_00116956	5366.820878	22.7	10.6
SDSSJ163212.26+175318.3_00116957	5366.832347	19.1	9.7
SDSSJ173057.93+320737.0_00051159	4545.926270	53.9	9.2
SDSSJ173057.93+320737.0_00051160	4545.945646	55.5	7.5
SDSSJ173057.93+320737.0_00051161	4545.964940	64.3	7.8
SDSSJ173057.93+320737.0_00051164	4545.989021	71.8	8.9
SDSSJ173057.93+320737.0_00051192	4549.974734	84.9	7.6
SDSSJ173057.93+320737.0_00051262	4551.942724	-23.0	8.3
SDSSJ211651.95-003328.5_00119756	5468.626678	2.2	16.0
SDSSJ211651.95-003328.5_00119757	5468.638044	-5.3	15.9
SDSSJ211651.95-003328.5_00119758	5468.649408	-14.2	14.7
SDSSJ211651.95-003328.5_00119759	5468.660785	-6.9	12.7
SDSSJ211651.95-003328.5_00119779	5469.623844	-199.1	16.4
SDSSJ211651.95-003328.5_00119780	5469.635209	-200.1	17.1
SDSSJ211651.95-003328.5_00119781	5469.646585	-191.0	16.8

Tabelle 9 – Fortsetzung der vorhergehenden Seite

Tabelle 10: Liste der Sterne aus DR9 und DR10

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ000426.61-003826.2	55477	4216	0096	64	HsdO
SDSSJ000552.02+064920.2	55831	4415	0864	51	BHB
SDSSJ000607.88-010321.1	55478	4217	0306	49	unknown
SDSSJ001654.24+070430.0	55806	4537	0436	54	HsdO
SDSSJ004233.42+004717.6	55184	3588	0872	63	sdB
SDSSJ004233.43+004717.5	55444	4222	0876	49	sdB
SDSSJ005107.02+004232.4	55451	4223	0920	69	HsdO
SDSSJ010251.88+000435.7	55455	4225	0856	32	unknown
SDSSJ011127.43+211115.6	55863	5125	0846	66	HsdO
SDSSJ011235.80+004818.7	55214	3736	0954	37	BHB
Fortsetzung auf der nächsten Seite					

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ011537.73+213757.2	55923	5126	0241	36	sdB
SDSSJ014908.87+011342.6	55447	4232	0784	22	sdB
SDSSJ015235.10+223122.8	55895	5112	0187	32	unknown
SDSSJ022422.20+000313.5	55181	3647	0575	22	sdOB
SDSSJ022422.20+000313.5	55827	3647	0577	21	sdOB
SDSSJ022422.20+000313.5	55856	3615	0580	20	sdOB
SDSSJ022422.20+000313.5	55945	3647	0535	20	sdOB
SDSSJ022422.22+000313.3	55478	4237	0159	31	HsdO
SDSSJ023532.60-063437.8	55811	4399	0306	30	HesdO
SDSSJ072201.31+403210.2	55241	3656	0356	56	sdB
SDSSJ072421.40+385630.6	55240	3655	0086	57	unknown
SDSSJ072614.69+415748.9	55205	3658	0556	60	sdB
SDSSJ072824.72+414953.6	55205	3658	0602	74	sdOB
SDSSJ073220.14+270408.5	55537	4456	0452	56	sdOB
SDSSJ073701.46+225637.7	55587	4470	0464	57	sdB
SDSSJ073856.98+401941.9	55185	3666	0346	59	unknown
SDSSJ073904.06+393051.9	55245	3664	0266	25	sdB
SDSSJ073912.58+225311.5	55587	4470	0380	70	BHB
SDSSJ074010.50+284120.8	55536	4452	0520	18	unknown
SDSSJ074154.02+475036.3	55478	3668	0292	63	unknown
SDSSJ074313.24+423334.8	55185	3666	0952	22	sdB
SDSSJ074458.09+324259.8	55539	4443	0066	34	sdB
SDSSJ074541.02+235345.5	55587	4470	0971	45	sdB
SDSSJ074551.12+170600.2	55565	4492	0226	52	sdB
SDSSJ074613.16+333307.6	55539	4443	0985	59	HesdO
SDSSJ074720.59+384910.6	55480	3670	0274	41	BHB
SDSSJ074806.15+342927.7	55501	3791	0364	49	sdB
SDSSJ074807.31+193247.6	55836	4485	0268	48	sdB
SDSSJ074811.34+435239.3	55186	3676	0436	63	sdB
SDSSJ074818.99+482108.1	55247	3665	0953	67	unknown
SDSSJ074843.87+325348.6	55539	4443	0018	32	HesdO
SDSSJ074852.07+454903.8	55178	3673	0190	72	sdB
SDSSJ074902.84+124811.1	55569	4502	0322	49	sdB
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ075053.27+144814.9	55566	4495	0367	52	sdB
SDSSJ075108.88+162325.7	55566	4495	0650	51	sdB
SDSSJ075227.28+194512.1	55836	4485	0036	54	sdB
SDSSJ075236.79+441642.3	55186	3676	0804	32	HsdO
SDSSJ075610.33+410453.6	55210	3680	0370	49	sdB
SDSSJ075649.90+231736.4	55617	4471	0598	25	BHB
SDSSJ075711.83+134508.3	55590	4501	0420	49	HsdO
SDSSJ075718.55+440936.9	55186	3676	0928	32	sdB
SDSSJ075732.18+184329.2	55629	4490	0930	29	HsdO
SDSSJ075733.11+235827.9	55857	4466	0034	28	HsdO
SDSSJ075847.74+115806.3	55568	4506	0141	25	BHB
SDSSJ075944.98+371503.1	55509	3801	0716	61	HsdO
SDSSJ080049.97+125614.4	55603	4505	0512	68	sdB
SDSSJ080119.56+252313.0	55858	4465	0827	22	HsdO
SDSSJ080313.95+383037.7	55514	3802	0740	26	unknown
SDSSJ080313.95+383037.7	55528	3802	0732	36	unknown
SDSSJ080438.03+453238.8	55268	3686	0308	23	unknown
SDSSJ080453.73+301607.2	55537	4451	0544	41	sdOB
SDSSJ080540.81+424350.7	55178	3683	0078	54	unknown
SDSSJ080700.24+505516.0	55517	3699	0846	66	HesdO
SDSSJ080700.24+505516.0	55590	4527	0851	54	HesdO
SDSSJ080739.43+384226.5	55514	3802	0892	31	sdOB
SDSSJ080739.43+384226.5	55528	3802	0882	37	sdOB
SDSSJ080801.40+120826.9	55603	4505	0168	75	sdB
SDSSJ080833.76+180221.8	55585	4493	0560	68	HesdO
SDSSJ080833.76+180221.8	55866	4487	0050	51	HesdO
SDSSJ080921.96+160841.2	55572	4499	0756	63	sdB
SDSSJ081017.92+191749.1	55588	4486	0492	32	sdB
SDSSJ081204.81+135204.6	55571	4504	0526	44	sdB
SDSSJ081329.81+383326.8	55269	3805	0380	41	HesdO
SDSSJ081342.91+275034.7	55858	4457	0698	55	sdB
SDSSJ081531.20+245222.6	55868	4463	0090	63	sdB
SDSSJ081640.05+305632.4	55542	4447	0856	21	HesdO
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ081837.70+413313.3	55511	3807	0328	28	unknown
SDSSJ081917.72+423338.7	55511	3807	0276	62	sdB
SDSSJ082110.89+183924.1	55588	4486	0013	31	HsdO
SDSSJ082159.06+411227.9	55505	3806	0900	29	sdB
SDSSJ082159.06+411227.9	55513	3808	0496	31	sdB
SDSSJ082226.26+394119.0	55269	3805	0972	48	sdB
SDSSJ082332.09+113641.9	55600	4508	0738	57	sdB
SDSSJ082508.55+484031.1	55208	3693	0896	44	sdB
SDSSJ082550.89+153307.9	55544	4496	0464	26	HsdO
SDSSJ082657.29+122818.0	55600	4508	0910	49	HsdO
SDSSJ082726.18+511526.9	55209	3694	0826	21	sdB
SDSSJ082751.06+410925.7	55513	3808	0302	28	HesdO
SDSSJ082802.03+404008.8	55513	3808	0338	42	HsdO
SDSSJ082824.20+212556.6	55587	4483	0918	36	sdB
SDSSJ082902.62+224636.7	55894	4467	0412	60	unknown
SDSSJ082944.75+132302.4	55563	4503	0138	51	sdB
SDSSJ083006.16+475150.7	55277	3696	0252	67	sdB
SDSSJ083006.17+475150.3	55895	5160	0544	63	sdB
SDSSJ083015.57+024111.4	55923	4789	0372	38	sdB
SDSSJ083139.68+162316.4	55544	4496	0852	36	sdB
SDSSJ083241.95+483445.1	55277	3696	0184	50	sdB
SDSSJ083425.05+063722.2	55927	4903	0502	50	sdB
SDSSJ083537.12+063534.2	55927	4903	0532	22	HsdO
SDSSJ083612.02+191755.8	55545	4489	0954	69	unknown
SDSSJ083619.70+205747.4	55565	4484	0776	54	sdB
SDSSJ083733.14+030209.1	55923	4789	0028	66	sdB
SDSSJ083929.99+391903.4	55508	3765	0584	24	sdB
SDSSJ083929.99+391903.4	55514	3764	0174	24	sdB
SDSSJ083935.90+030840.8	55533	3809	0376	60	unknown
SDSSJ084328.87+082438.2	55893	5289	0570	71	BHB
SDSSJ084421.11+135807.6	55865	5288	0586	45	unknown
SDSSJ084446.99+113909.9	55865	5288	0362	80	unknown
SDSSJ084556.15+542357.6	55864	5154	0384	24	unknown
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ084628.65+014216.9	55531	3810	0160	40	unknown
SDSSJ084628.65+014216.9	56015	3810	0156	50	unknown
SDSSJ085201.98+165205.5	55926	5292	0354	28	unknown
SDSSJ085341.37+190141.9	55955	5175	0434	81	sdB
SDSSJ085422.39+013650.8	55532	3813	0064	81	unknown
SDSSJ085900.32+023313.0	55272	3816	0760	77	sdB
SDSSJ085907.68+451038.8	56008	4688	0628	17	sdB
SDSSJ085912.11+025006.6	55272	3816	0750	40	BHB
SDSSJ090302.39+205008.9	56009	5773	0068	27	sdB
SDSSJ090318.36+043533.7	55277	3817	0750	69	sdB
SDSSJ090831.05+101533.2	55896	5302	0432	24	sdB
SDSSJ090902.40+161207.4	55987	5301	0390	36	unknown
SDSSJ090917.09+002514.0	55532	3818	0932	42	unknown
SDSSJ091052.27+074934.6	55927	5299	0090	21	sdB
SDSSJ091137.59+353035.2	55623	4645	0024	33	unknown
SDSSJ091137.59+353035.2	55922	4644	0488	28	unknown
SDSSJ091225.13+421922.4	55999	4603	0898	38	sdB
SDSSJ091512.05+191114.5	56017	5768	0739	24	sdOB
SDSSJ091528.37+114153.4	55896	5302	0905	55	sdOB
SDSSJ091528.37+114153.4	55980	5303	0222	55	HesdO
SDSSJ091615.48+132833.1	55980	5303	0846	40	sdB
SDSSJ091701.20+024044.6	55544	3822	0776	47	sdB
SDSSJ091738.39+114955.6	55980	5303	0128	49	unknown
SDSSJ092245.79+214238.9	56011	5771	0896	20	HesdO
SDSSJ092447.10+231917.6	56002	5774	0280	51	sdB
SDSSJ092924.84-014855.2	55214	3767	0538	54	BHB
SDSSJ092924.84-014855.2	55243	3781	0040	68	BHB
SDSSJ093245.91+081618.5	55952	5314	0468	56	HsdO
SDSSJ093521.38+482432.4	55998	5740	0456	24	HsdO
SDSSJ093652.26+160515.5	55978	5315	0664	45	sdOB
SDSSJ094044.08+004759.6	55563	3826	0732	24	unknown
SDSSJ094315.82+165556.9	56000	5317	0120	56	sdB
SDSSJ094445.34+463532.2	55980	5741	0388	48	sdB
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ094552.63+374533.9	55622	4572	0236	23	sdOB
SDSSJ094712.33+053158.0	55672	4798	0869	22	unknown
SDSSJ094750.70+162731.7	55999	5320	0662	41	sdB
SDSSJ094758.91+091012.1	55953	5319	0894	39	HsdO
SDSSJ094850.46+551631.6	56011	5743	0396	25	sdB
SDSSJ094918.62+144142.5	55999	5320	0224	34	sdB
SDSSJ095019.72-010423.5	55564	3768	0576	52	unknown
SDSSJ095022.02+081557.5	55953	5319	0054	18	unknown
SDSSJ095054.97+460405.1	55649	4694	0504	33	sdB
SDSSJ095058.04+182618.4	56003	5322	0742	48	sdB
SDSSJ095101.28+034756.9	55645	4743	0784	67	sdB
SDSSJ095254.16+470919.1	55980	5741	0922	23	sdB
SDSSJ095601.68+091137.7	55947	5324	0785	26	HesdO
SDSSJ095613.20-030009.2	55564	3768	0162	44	HesdO
SDSSJ095638.13+145258.5	55980	5325	0738	22	BHB
SDSSJ095911.47+220003.8	56029	5784	0716	34	unknown
SDSSJ095929.84+220921.8	56029	5784	0709	51	BHB
SDSSJ100019.98-003413.4	55300	3829	0464	46	HsdO
SDSSJ100041.41+364507.6	55616	4637	0648	54	sdB
SDSSJ100451.92+433653.2	55632	4693	0366	22	HesdO
SDSSJ100617.25-021008.6	55240	3769	0432	59	sdB
SDSSJ100621.06-002049.9	55300	3829	0128	50	HsdO
SDSSJ100832.34+162925.4	55981	5332	0344	52	BHB
SDSSJ101113.54-010626.3	55240	3769	0816	26	sdOB
SDSSJ101136.22-021214.7	55269	3784	0496	53	unknown
SDSSJ101218.95+004413.3	55574	3830	0768	33	HsdO
SDSSJ101420.73-025228.1	55269	3784	0372	70	HesdO
SDSSJ101422.92+182849.0	56033	5883	0304	31	sdB
SDSSJ102050.99+114024.2	55957	5336	0912	25	BHB
SDSSJ102120.44+444636.9	55644	4692	0818	31	HesdO
SDSSJ102241.20+203839.6	56027	5872	0062	32	HesdO
SDSSJ102320.67+075934.1	55922	5339	0178	90	BHB
SDSSJ102320.80+053445.9	55652	4802	0822	48	BHB
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ102407.23+392253.4	55569	4558	0409	34	sdOB
SDSSJ102439.41+383917.8	55597	4559	0558	51	sdB
SDSSJ102815.93+060623.5	55680	4851	0192	29	BHB
SDSSJ103027.04+152548.2	56011	5340	0952	40	BHB
SDSSJ103104.58-021315.9	55241	3785	0270	28	sdB
SDSSJ103104.58-021315.9	55273	3785	0276	32	sdB
SDSSJ103218.40+101725.8	55931	5341	0014	24	sdB
SDSSJ103424.78+155544.3	56008	5347	0492	42	sdOB
SDSSJ103512.77+002728.9	55290	3833	0690	78	BHB
SDSSJ103549.68+092551.7	55924	5344	0953	50	HesdO
SDSSJ103604.46+175009.9	56036	5885	0212	39	sdB
SDSSJ103702.56-024443.2	55544	3771	0416	62	sdB
SDSSJ103806.64+134412.0	55978	5348	0626	45	HesdO
SDSSJ103832.41+133848.2	55978	5348	0668	41	BHB
SDSSJ104054.47+112023.7	55978	5348	0163	20	sdOB
SDSSJ104242.84+181025.0	56034	5886	0358	25	HesdO
SDSSJ104248.94+033355.4	55649	4733	0548	42	unknown
SDSSJ104312.01+180038.7	56034	5886	0306	47	HesdO
SDSSJ104349.87-015456.6	55563	3786	0576	26	unknown
SDSSJ104725.10+010847.1	55649	4733	0210	43	BHB
SDSSJ104739.09+094424.1	55952	5351	0218	44	HesdO
SDSSJ105428.85+010514.7	55570	3835	0944	52	sdB
SDSSJ105428.85+010514.7	55648	4732	0386	45	sdB
SDSSJ105759.28-023002.2	55277	3772	0058	44	unknown
SDSSJ105812.27+391901.7	55630	4629	0006	41	BHB
SDSSJ110053.54+034622.7	55925	4771	0345	47	HsdO
SDSSJ110215.45+024034.1	55648	4732	0982	40	HesdO
SDSSJ110256.31+010012.4	55302	3836	0874	30	BHB
SDSSJ110302.36-010338.9	55240	3773	0550	70	unknown
SDSSJ110445.00+092530.8	55973	5361	0338	67	HsdO
SDSSJ110546.37+101538.8	55973	5361	0780	31	unknown
SDSSJ110614.29+180918.5	56041	5888	0730	44	sdB
SDSSJ110621.16+170525.3	56041	5888	0284	27	sdB
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ111156.17+440421.8	55657	4685	0926	18	unknown
SDSSJ111225.70+392332.6	55649	4621	0771	39	sdOB
SDSSJ111438.57-004024.3	55246	3788	0828	39	HsdO
SDSSJ111621.61+390254.2	55617	4617	0502	34	sdB
SDSSJ111633.29+052507.8	55931	4769	0546	33	unknown
SDSSJ111650.45+393914.2	56008	4651	0444	42	HsdO
SDSSJ112056.22+093641.7	55976	5371	0490	58	HsdO
SDSSJ112140.20+183613.7	56033	5878	0220	24	sdB
SDSSJ112213.10+142621.7	56003	5370	0590	47	unknown
SDSSJ112217.87+372652.8	55600	4618	0606	59	HsdO
SDSSJ112415.16+141346.1	56003	5370	0716	44	HsdO
SDSSJ112457.67+153426.6	55986	5367	0039	23	HsdO
SDSSJ112555.19+020250.0	55630	4730	0314	39	BHB
SDSSJ112736.12+070315.2	55947	5374	0468	30	sdB
SDSSJ112757.48+010044.2	55575	3839	0945	50	sdB
SDSSJ112757.48+010044.2	55630	4730	0212	50	sdB
SDSSJ113018.02+124611.0	56003	5370	0058	33	unknown
SDSSJ113149.29+344100.8	55599	4619	0920	59	BHB
SDSSJ113317.49+400154.3	55620	4655	0236	20	BHB
SDSSJ113400.73+015925.6	55651	4740	0392	16	BHB
SDSSJ113659.78+350911.7	55618	4615	0132	37	sdB
SDSSJ113715.31+120810.0	55986	5379	0522	53	HsdO
SDSSJ113725.58+051550.7	55946	4767	0176	54	HsdO
SDSSJ113902.88+065716.8	55946	4767	0948	17	sdB
SDSSJ113902.88+065716.8	55957	5377	0376	21	sdB
SDSSJ114251.75+111507.8	55986	5379	0141	23	HsdO
SDSSJ114604.93+082934.8	55982	5382	0518	27	HesdO
SDSSJ114821.29+033625.7	55674	4765	0462	33	sdB
SDSSJ114823.59+064043.4	55955	4848	0844	19	HsdO
SDSSJ115006.57+360018.2	55648	4650	0540	55	BHB
SDSSJ115009.48+061042.0	55931	4847	0508	26	HsdO
SDSSJ115059.67+163139.4	56035	5892	0008	33	HsdO
SDSSJ115131.91+125109.7	56008	5386	0456	19	unknown
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ115141.24+130200.2	55984	5384	0744	22	HesdO
SDSSJ115141.24+130200.2	56008	5386	0464	22	sdOB
SDSSJ115358.81+353928.8	55648	4650	0310	53	sdB
SDSSJ115411.43+075703.0	55982	5382	0111	21	BHB
SDSSJ120232.88+140223.1	56002	5390	0598	34	BHB
SDSSJ120254.16+180639.4	56037	5847	0548	38	sdB
SDSSJ120352.21+235343.3	56046	5970	0380	44	sdOB
SDSSJ120352.21+235343.3	56072	5970	0376	40	sdOB
SDSSJ120359.77+105938.4	55983	5388	0154	50	sdB
SDSSJ120427.94+172745.2	56037	5847	0610	25	sdB
SDSSJ120521.47+224702.1	56069	5969	0137	35	HsdO
SDSSJ120605.99+080943.1	55953	5389	0937	71	sdOB
SDSSJ120613.39+205523.1	56067	5973	0306	29	sdB
SDSSJ120829.97+253044.5	56046	5970	0880	13	HsdO
SDSSJ120829.97+253044.5	56072	5970	0866	24	sdOB
SDSSJ120855.51+403716.0	55709	4700	0823	25	sdB
SDSSJ121029.23+090553.9	55946	5393	0624	30	HesdO
SDSSJ121124.25+064322.8	55679	4831	0982	18	BHB
SDSSJ121124.25+064322.8	55946	5393	0284	24	BHB
SDSSJ121148.83+163345.0	56033	5849	0486	41	unknown
SDSSJ121357.05+035903.1	55633	4749	0188	55	sdB
SDSSJ121437.44+105916.8	56001	5394	0192	19	sdB
SDSSJ121523.73+135102.3	56003	5395	0686	39	sdB
SDSSJ121734.65+071415.7	55680	4832	0747	26	BHB
SDSSJ121735.89+375824.9	55709	4701	0158	60	unknown
SDSSJ122132.16+163256.3	56011	5398	0674	38	HsdO
SDSSJ122535.22+053559.8	55679	4833	0348	59	BHB
SDSSJ122541.69+220818.7	56074	5982	0648	16	sdB
SDSSJ123137.55+074621.7	55927	5402	0778	46	sdB
SDSSJ123227.35+181653.8	56034	5852	0968	20	sdB
SDSSJ123536.37+040427.5	55674	4753	0930	25	sdB
SDSSJ123808.65+053318.2	55685	4834	0202	42	sdOB
SDSSJ123821.48-021211.5	55214	3793	0492	31	sdOB
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ123953.52+062853.0	55685	4834	0926	46	sdB
SDSSJ124007.45+215610.4	56089	5985	0810	25	sdB
SDSSJ124248.89+133632.4	56010	5405	0014	36	sdB
SDSSJ124310.58+343358.3	55322	3971	0314	35	HsdO
SDSSJ124520.88+030951.4	55660	4755	0176	27	sdOB
SDSSJ124552.81+175112.1	56090	5856	0617	34	sdOB
SDSSJ124619.99+160050.4	56014	5414	0516	30	unknown
SDSSJ124706.79-003925.8	55214	3793	0912	70	sdB
SDSSJ124738.69+115234.0	55981	5412	0466	24	HsdO
SDSSJ124819.07+035003.1	55653	4757	0489	46	HsdO
SDSSJ124940.68+405758.7	55617	4703	0348	37	sdB
SDSSJ125129.03+164509.9	56090	5856	0002	16	sdB
SDSSJ125129.17+062152.1	55688	4835	0976	51	HesdO
SDSSJ125129.17+062152.1	56016	4835	0976	60	HesdO
SDSSJ125301.62+394622.0	55589	3972	0960	40	HesdO
SDSSJ125410.86-010408.3	55241	3794	0598	50	sdB
SDSSJ125551.60+043238.8	55653	4757	0886	23	sdOB
SDSSJ125738.32+181724.0	56065	5859	0820	37	sdOB
SDSSJ125740.73+083750.3	55978	5417	0590	44	sdB
SDSSJ125806.38+240604.6	56076	5991	0493	14	HsdO
SDSSJ125810.07+084834.8	55982	5415	0163	24	BHB
SDSSJ125941.87-003928.7	55241	3794	0954	64	unknown
SDSSJ130139.52+101824.5	55982	5415	0980	16	HsdO
SDSSJ130214.31+120822.1	55983	5419	0738	48	HsdO
SDSSJ130318.38+103101.8	55980	5421	0542	23	HsdO
SDSSJ130543.94+115840.7	55983	5419	0940	50	sdB
SDSSJ130625.04+131602.2	56009	5420	0288	28	unknown
SDSSJ130625.91+133349.1	56009	5420	0298	46	BHB
SDSSJ130839.23+201132.8	56047	5864	0472	22	sdOB
SDSSJ131035.06+023327.6	55327	4007	0690	34	unknown
SDSSJ131218.11+381535.1	55330	3978	0964	20	HesdO
SDSSJ131224.00+273915.5	56101	5994	0914	31	sdOB
SDSSJ131452.97+023740.2	55327	4007	0928	31	BHB
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ131546.07+161326.4	56033	5424	0076	51	sdB
SDSSJ131745.79+010450.5	55321	4004	0870	49	sdB
SDSSJ131858.88+003530.3	55321	4004	0922	29	sdB
SDSSJ132209.92+401557.3	55653	4707	0306	45	sdB
SDSSJ132357.27+261502.5	56096	5996	0786	39	unknown
SDSSJ132502.08+095220.6	56000	5430	0351	26	BHB
SDSSJ132526.73+233225.2	56093	5995	0568	34	HsdO
SDSSJ132602.77+102522.3	56000	5430	0736	21	sdB
SDSSJ132840.05+071208.5	55703	4839	0868	29	BHB
SDSSJ132850.84+282917.5	56102	6000	0710	22	sdB
SDSSJ133040.91-001710.7	55599	4050	0014	70	sdB
SDSSJ133040.91-001710.7	55605	4046	0538	55	sdB
SDSSJ133054.52+152708.1	56033	5434	0284	21	sdB
SDSSJ133135.41+020919.8	55622	4045	0872	50	sdB
SDSSJ133447.88+030206.2	55626	4042	0542	35	sdB
SDSSJ133449.25+041014.8	55649	4759	0112	46	unknown
SDSSJ133512.81+195155.7	56069	5861	0168	35	sdB
SDSSJ133543.00+330558.3	55320	3985	0230	26	HesdO
SDSSJ133555.72+125137.6	56008	5432	0984	21	sdB
SDSSJ133611.02-011156.0	55605	4046	0214	27	HsdO
SDSSJ133620.23+180031.7	56045	5862	0350	23	sdB
SDSSJ133638.82+111949.4	55982	5435	0811	50	sdB
SDSSJ133653.98+112605.3	55982	5435	0816	61	unknown
SDSSJ133800.92+015733.1	55626	4042	0732	24	sdB
SDSSJ133804.34+130118.4	56002	5438	0627	20	unknown
SDSSJ133805.38+395044.8	55704	4708	0146	18	HsdO
SDSSJ133905.54+190814.6	56045	5862	0820	48	unknown
SDSSJ134045.18+031341.3	55651	4786	0208	28	sdB
SDSSJ134054.62+383423.6	55590	3987	0788	21	unknown
SDSSJ134131.48+045446.7	55651	4786	0830	68	HsdO
SDSSJ134133.71+071849.6	55973	5437	0210	24	HsdO
SDSSJ134441.85+375445.6	55590	3987	0974	20	unknown
SDSSJ134545.23-000641.6	55605	4040	0538	38	unknown
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ134600.02+013558.1	55648	4039	0310	27	sdB
SDSSJ134621.22+224836.7	56072	6001	0348	41	HesdO
SDSSJ134635.67-001804.5	55605	4040	0474	21	sdB
SDSSJ134658.10+065604.6	55713	4865	0926	27	unknown
SDSSJ134748.58+080616.1	55978	5442	0358	28	sdB
SDSSJ134947.70+250810.9	56072	6001	0786	50	sdB
SDSSJ135043.87+350924.6	55268	3853	0316	42	BHB
SDSSJ135140.68+023429.2	55330	4036	0532	41	sdB
SDSSJ135150.62+035718.0	55659	4785	0110	20	HesdO
SDSSJ135210.12-015836.2	55361	4041	0586	19	sdOB
SDSSJ135400.46+255010.5	56090	6005	0740	29	HsdO
SDSSJ135401.84+134350.4	56010	5443	0952	49	unknown
SDSSJ135401.84+134350.4	56014	5446	0361	49	sdB
SDSSJ135505.63+114440.0	55987	5445	0750	22	HesdO
SDSSJ135534.70+160017.1	56014	5446	0749	50	HsdO
SDSSJ135539.20+145438.3	56014	5446	0268	50	sdB
SDSSJ135627.84+264110.7	56090	6005	0870	41	unknown
SDSSJ135728.13+065038.4	55688	4863	0536	33	HsdO
SDSSJ135807.95+261215.5	56090	6005	0934	34	sdB
SDSSJ135836.89+184922.8	56045	5868	0184	38	sdB
SDSSJ135920.77+320846.4	55274	3861	0064	28	HsdO
SDSSJ140031.74+331841.5	55274	3861	0960	24	unknown
SDSSJ140118.74-012024.9	55363	4038	0552	48	sdB
SDSSJ140203.87+072539.0	55688	4863	0753	64	sdB
SDSSJ140232.81+000555.3	55631	4037	0810	56	sdB
SDSSJ140248.81+225538.9	56065	5870	0828	28	sdB
SDSSJ140258.73+003727.5	55631	4037	0876	24	unknown
SDSSJ140416.72+012712.7	55332	4033	0338	30	sdB
SDSSJ140419.45+381813.3	55737	4711	0262	21	HsdO
SDSSJ140453.68+124428.4	56013	5448	0012	42	sdOB
SDSSJ140532.34+410626.0	56090	6058	0202	14	HsdO
SDSSJ140545.26+014418.9	55332	4033	0267	58	sdB
SDSSJ140715.40+033147.5	55652	4783	0214	35	HesdO
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ140747.84+235424.3	56066	6007	0652	49	unknown
SDSSJ140803.07+242549.3	56093	6008	0090	35	sdOB
SDSSJ140916.12+382832.1	55738	4712	0514	46	unknown
SDSSJ140944.64+183042.2	56015	5454	0662	27	sdB
SDSSJ141259.91+050619.0	55654	4782	0566	24	sdB
SDSSJ141323.33+170306.7	56015	5454	0158	31	sdOB
SDSSJ141505.40+272733.6	56101	6012	0468	47	sdB
SDSSJ141511.68+213906.1	56047	5896	0114	27	HsdO
SDSSJ141556.68-005815.0	55383	4035	0950	35	sdOB
SDSSJ141558.19-022714.3	55383	4035	0112	39	sdB
SDSSJ141705.35+013543.2	55634	4030	0150	23	HsdO
SDSSJ141812.49-024426.9	55383	4035	0006	39	HsdO
SDSSJ142044.12+161713.6	56018	5461	0570	23	sdB
SDSSJ142339.80+014947.1	55629	4027	0278	52	sdB
SDSSJ142508.61+072405.2	55710	4861	0960	36	BHB
SDSSJ142538.51+041614.1	55653	4781	0270	37	HsdO
SDSSJ142551.28-013317.2	55333	4032	0926	56	HsdO
SDSSJ142558.43+402257.8	56063	5170	0882	29	sdOB
SDSSJ142604.72+132216.3	56003	5463	0646	28	sdB
SDSSJ142625.09+141200.2	56018	5461	0088	39	BHB
SDSSJ142645.41-023155.3	55333	4032	0074	32	unknown
SDSSJ142706.71+443934.4	56092	6056	0080	22	sdB
SDSSJ142741.03+014254.9	55629	4027	0036	66	sdB
SDSSJ142756.57+213757.2	56043	5900	0570	50	unknown
SDSSJ142801.66+443904.0	56092	6056	0040	21	sdB
SDSSJ142803.07+055855.3	55691	4860	0338	42	sdOB
SDSSJ142821.87+135945.2	56003	5463	0790	21	sdB
SDSSJ142834.06+042733.2	55653	4781	0118	46	HsdO
SDSSJ142903.24+115534.4	56003	5463	0168	19	sdOB
SDSSJ142939.35+152623.6	56018	5461	0994	19	sdOB
SDSSJ143026.15+195346.6	56043	5900	0281	35	sdB
SDSSJ143058.03+282740.8	56067	6018	0766	44	sdB
SDSSJ143127.88+014416.2	55646	4024	0360	24	sdB
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ143145.38+174228.8	56035	5464	0894	40	sdB
SDSSJ143246.79+062158.4	55691	4860	0034	57	sdB
SDSSJ143257.99+011857.2	55646	4024	0214	38	sdB
SDSSJ143319.91-015434.6	55618	4029	0854	25	sdB
SDSSJ143404.06+024207.8	55646	4024	0878	54	HsdO
SDSSJ143423.03-012856.3	55618	4029	0916	22	unknown
SDSSJ143458.48+085425.7	55973	5467	0698	70	sdB
SDSSJ143549.91+411458.5	56076	6061	0456	48	sdB
SDSSJ143609.24-023929.1	55618	4029	0056	28	HsdO
SDSSJ143632.86+013812.4	55620	4021	0474	34	sdB
SDSSJ143729.14-021506.0	55325	4026	0414	60	sdOB
SDSSJ143736.75+214537.7	56046	5904	0570	30	HsdO
SDSSJ143836.91+315539.5	55360	3868	0762	21	unknown
SDSSJ143917.63+010251.0	55620	4021	0326	65	sdB
SDSSJ143921.80+014102.3	55620	4021	0352	47	BHB
SDSSJ144023.58+135454.6	56034	5471	0362	27	BHB
SDSSJ144024.72+022118.5	55620	4021	0730	46	unknown
SDSSJ144141.36+450651.2	56099	6057	0958	41	sdB
SDSSJ144209.90+105733.7	56008	5470	0830	38	sdB
SDSSJ144307.70+093133.9	56008	5470	0164	41	sdB
SDSSJ144321.33+402834.0	56071	5172	0644	60	HesdO
SDSSJ144511.27+041710.5	55656	4779	0118	19	BHB
SDSSJ144513.66+010112.7	55352	4022	0790	50	BHB
SDSSJ144514.92+000248.8	55352	4022	0806	45	unknown
SDSSJ144621.33+120749.3	56033	5473	0250	21	HsdO
SDSSJ144634.32+191202.8	56064	5903	0280	34	unknown
SDSSJ144702.93+161738.8	56036	5474	0377	33	sdB
SDSSJ144820.93+320956.1	55273	3869	0292	45	BHB
SDSSJ144836.90+230955.5	56067	6021	0288	39	BHB
SDSSJ144837.43+081222.5	55976	5472	0034	59	sdB
SDSSJ144924.42+172606.2	56036	5474	0770	47	HsdO
SDSSJ145141.40+090645.1	55986	5476	0739	37	BHB
SDSSJ145322.69+392947.4	56071	5172	0004	59	sdB
Fortsetzung auf der nächsten Seite					

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ145412.79+213216.0	56065	5905	0120	39	sdB
SDSSJ145419.32+020323.7	55622	4018	1000	27	sdOB
SDSSJ145419.32+020323.7	55624	4015	0536	24	sdOB
SDSSJ145506.85+094203.9	55986	5476	0914	46	sdB
SDSSJ145634.65+300450.9	55364	3875	0261	62	sdB
SDSSJ145734.40+034759.5	55707	4777	0388	55	sdB
SDSSJ145803.55+043922.0	55707	4777	0652	33	HsdO
SDSSJ145815.90+370017.4	56047	5174	0002	37	HesdO
SDSSJ145817.52+022806.6	55624	4015	0728	27	sdB
SDSSJ150011.76+064211.4	55712	4856	0538	44	sdB
SDSSJ150013.05+060410.5	55712	4856	0464	23	sdB
SDSSJ150147.85+133856.4	56014	5478	0986	28	unknown
SDSSJ150150.22+130549.3	56014	5478	0012	33	BHB
SDSSJ150150.76+383147.1	56035	5168	0644	30	sdOB
SDSSJ150222.35+320220.7	55273	3870	0058	40	sdB
SDSSJ150230.30+091357.2	55983	5481	0766	48	HsdO
SDSSJ150246.51+042348.7	55707	4777	0080	52	sdB
SDSSJ150304.30+052436.6	55712	4856	0362	22	HsdO
SDSSJ150307.11+121832.6	56017	5483	0424	24	sdOB
SDSSJ150308.16+405009.1	56089	6054	0376	28	sdB
SDSSJ150547.57+100627.8	56063	5485	0424	35	BHB
SDSSJ150649.30+014941.5	55629	4013	0436	28	sdB
SDSSJ150704.09+212257.4	55660	3962	0452	26	sdOB
SDSSJ150737.71+072416.3	55712	4856	0912	43	sdB
SDSSJ150827.09+042242.2	55652	4776	0318	41	BHB
SDSSJ150844.09+033701.1	55652	4776	0298	29	HsdO
SDSSJ150851.01+400745.7	56066	5167	0723	24	BHB
SDSSJ150936.17+211433.2	55660	3962	0334	47	unknown
SDSSJ151030.68-014345.8	55329	4017	0200	66	HesdO
SDSSJ151032.91+021207.6	55629	4013	0836	68	BHB
SDSSJ151042.06+040955.6	55652	4776	0190	51	HsdO
SDSSJ151107.07+173215.2	56039	5484	0906	44	unknown
SDSSJ151231.28+005317.7	55629	4013	0086	34	HsdO
Fortsetzung auf der nächsten Seite					

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ151231.28+005317.7	55630	4014	0624	19	HsdO
SDSSJ151248.61+042205.5	55652	4776	0072	26	sdB
SDSSJ151250.01-015436.3	55329	4017	0110	76	unknown
SDSSJ151254.55+150447.0	56030	5486	0780	42	HsdO
SDSSJ151306.73+011439.1	55629	4013	0096	52	sdB
SDSSJ151314.23+234248.8	55654	3961	0392	43	sdB
SDSSJ151344.87-023419.8	55329	4017	0053	60	HsdO
SDSSJ151519.20+054333.3	55708	4775	0626	59	BHB
SDSSJ151546.68+255046.6	55648	3964	0278	25	sdB
SDSSJ151617.04+415905.2	56067	5164	0612	48	sdB
SDSSJ151628.36+340657.5	55691	4720	0910	40	sdOB
SDSSJ151646.27+092631.6	55982	5487	0952	46	unknown
SDSSJ151655.86+115500.2	56013	5488	0174	50	BHB
SDSSJ151717.22+021937.5	55635	4011	0602	54	unknown
SDSSJ151733.34+225908.0	55654	3961	0210	57	sdB
SDSSJ151733.34+225908.0	55678	3955	0598	63	sdB
SDSSJ151902.41+071535.3	55710	4878	0986	21	sdB
SDSSJ151903.65+000104.0	55327	4012	0518	59	sdB
SDSSJ151913.31+261720.6	55648	3964	0896	63	unknown
SDSSJ152046.66+180300.7	55648	3945	0436	61	HesdO
SDSSJ152143.87+450022.5	56101	6040	0820	39	HesdO
SDSSJ152208.01+342502.8	55738	4716	0132	28	sdOB
SDSSJ152222.14-013018.4	55327	4012	0363	46	unknown
SDSSJ152250.06+351425.7	55738	4716	0922	26	sdB
SDSSJ152306.95+080541.2	56003	5490	0176	19	HsdO
SDSSJ152332.80+353236.8	56036	4978	0412	44	HsdO
SDSSJ152354.76+002331.0	55327	4012	0776	26	unknown
SDSSJ152458.80+181940.5	55648	3945	0784	39	sdB
SDSSJ152607.88+001640.7	55327	4012	0892	72	HsdO
SDSSJ152704.26+080236.4	56002	5209	0462	38	sdB
SDSSJ152708.31+003308.2	55327	4012	0912	32	HesdO
SDSSJ152719.67+102748.5	56009	5493	0276	26	sdOB
SDSSJ152746.24-001437.7	55327	4012	0080	26	BHB
Fortsetzung auf der nächsten Seite					

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ152820.28+103032.0	56009	5493	0234	51	HsdO
SDSSJ152852.27+093144.2	56002	5209	0634	61	sdB
SDSSJ152905.62+002137.3	55327	4012	0988	38	sdB
SDSSJ153000.97+211218.1	55650	3949	0104	49	sdB
SDSSJ153000.97+211218.1	55660	3944	0714	48	sdB
SDSSJ153021.99+343423.6	56037	4975	0740	34	unknown
SDSSJ153024.80+045454.5	55734	4803	0930	28	sdB
SDSSJ153204.35+324152.6	56033	4723	0656	31	sdOB
SDSSJ153218.00+120243.1	55736	4891	0312	21	HsdO
SDSSJ153231.94+204604.9	55660	3944	0842	44	unknown
SDSSJ153237.93+275636.9	55329	3958	0404	25	sdOB
SDSSJ153239.75+232732.3	55331	3948	0580	40	sdB
SDSSJ153251.11+050536.6	55715	4805	0635	49	HesdO
SDSSJ153419.41+372557.2	56047	4977	0308	20	sdOB
SDSSJ153431.80+072910.0	55735	4885	0827	33	unknown
SDSSJ153509.92+240415.0	55331	3948	0682	26	unknown
SDSSJ153526.06+211440.9	55336	3943	0472	58	unknown
SDSSJ153526.06+211440.9	55660	3944	0966	48	unknown
SDSSJ153529.06+053838.2	55715	4805	0758	18	sdB
SDSSJ153602.81+313719.6	56033	4723	0144	49	sdB
SDSSJ153627.23+252539.2	55322	3953	0068	33	HsdO
SDSSJ153701.00+182024.3	55328	3938	0152	38	HesdO
SDSSJ153707.72+434351.4	56102	6041	0226	33	HsdO
SDSSJ153752.95+160201.7	55335	3933	0238	34	sdB
SDSSJ153815.99+381252.2	56047	4977	0890	36	sdB
SDSSJ153831.32+295731.1	55735	4722	0268	56	sdB
SDSSJ153834.07+030812.9	55358	4054	0824	65	HsdO
SDSSJ153834.07+030812.9	55715	4805	0082	53	sdB
SDSSJ153911.62+225022.3	55331	3948	0095	31	BHB
SDSSJ153935.00+133800.9	55741	4890	0356	35	HesdO
SDSSJ154043.09+435950.0	56102	6041	0072	51	HesdO
SDSSJ154100.52+363840.9	56038	4974	0870	35	sdB
SDSSJ154118.72+041711.5	55715	4805	0012	34	sdB
Fortsetzung auf der nächsten Seite					

Tabelle 10 – Fortsetzung der vorhergehenden Seite
Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ154147.43+132821.7	55741	4890	0230	23	HsdO
SDSSJ154227.88+310601.8	55735	4722	0916	45	HesdO
SDSSJ154328.12+353400.0	56039	4970	0506	24	sdB
SDSSJ154350.98+335404.5	55747	4971	0844	23	unknown
SDSSJ154353.55+361142.1	56038	4974	0969	45	unknown
SDSSJ154359.37+055842.6	55733	4881	0182	18	HesdO
SDSSJ154641.88+062539.2	55733	4881	0070	39	unknown
SDSSJ154720.18+004046.2	55359	4055	0084	50	BHB
SDSSJ154720.93+055937.7	55733	4881	0058	63	BHB
SDSSJ154929.88+193009.6	55352	3937	0016	55	BHB
SDSSJ154958.28+043820.1	55707	4877	0410	27	HsdO
SDSSJ155000.99+204800.7	55302	3936	0306	33	sdB
SDSSJ155006.88+044028.8	55707	4877	0368	18	sdB
SDSSJ155041.99+294523.5	55712	4726	0842	54	sdB
SDSSJ155155.11+092344.0	56003	5210	0791	22	HesdO
SDSSJ155241.50+224810.1	55338	3942	0008	32	unknown
SDSSJ155256.15+044158.7	55707	4877	0208	53	sdB
SDSSJ155327.78+155121.0	55325	3923	0616	26	unknown
SDSSJ155342.72+455339.8	56069	6033	0600	60	BHB
SDSSJ155343.39+131330.3	55739	4900	0074	27	unknown
SDSSJ155344.97+124313.7	55721	4882	0718	19	unknown
SDSSJ155422.34+135914.2	55739	4900	0942	52	unknown
SDSSJ155424.52+194714.2	55350	3931	0836	42	sdB
SDSSJ155454.05+182614.9	55350	3931	0142	34	unknown
SDSSJ155610.40+254640.3	55327	3940	0570	38	HesdO
SDSSJ155642.39+055939.2	55707	4877	0036	39	sdB
SDSSJ155646.78+225008.7	55321	3941	0087	42	HsdO
SDSSJ155820.51+092344.5	55706	4879	0272	31	BHB
SDSSJ155846.44+192219.1	55350	3931	0986	56	HsdO
SDSSJ155904.43+184534.4	55332	3930	0284	36	unknown
SDSSJ155914.09+210300.6	55332	3930	0752	20	HsdO
SDSSJ155918.76+053601.4	55705	4808	0640	54	sdB
SDSSJ155933.43+340502.6	55721	4965	0394	19	unknown
		Fortse	etzung auf	der nä	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ155955.52+444915.3	56069	6033	0188	56	sdB
SDSSJ160043.59+074802.8	55709	4893	0764	38	unknown
SDSSJ160058.01+343726.0	55721	4965	0698	49	sdB
SDSSJ160229.76+111330.9	55711	4901	0090	44	unknown
SDSSJ160231.61+384440.1	56066	5192	0062	39	sdB
SDSSJ160233.32+361345.4	56041	4969	0142	23	HesdO
SDSSJ160240.56+444649.4	56103	6034	0530	26	HsdO
SDSSJ160322.84+093859.4	55706	4879	0038	48	sdB
SDSSJ160325.51+341237.4	55721	4965	0196	48	unknown
SDSSJ160341.45+314322.7	55719	4961	0380	21	sdB
SDSSJ160345.25+080153.1	56018	5207	0444	29	sdB
SDSSJ160345.26+080153.2	55709	4893	0916	32	sdB
SDSSJ160429.11+100002.1	55706	4879	0998	53	BHB
SDSSJ160444.72+102802.8	56036	5204	0306	23	sdB
SDSSJ160450.43+051909.2	55705	4808	0921	28	HesdO
SDSSJ160453.44+115218.2	55711	4901	0024	48	HsdO
SDSSJ160513.11+265855.7	55742	4724	0734	34	BHB
SDSSJ160623.20+363005.5	55749	4964	0560	28	unknown
SDSSJ160711.80+151316.4	55660	4071	0800	23	unknown
SDSSJ160715.22+094629.4	56018	5207	0742	17	HesdO
SDSSJ160715.22+094629.4	56036	5204	0166	15	sdOB
SDSSJ160741.26+254220.3	55742	4724	0174	52	sdB
SDSSJ160759.26+383746.3	56091	5200	0768	63	HsdO
SDSSJ160810.62+103211.6	56034	5203	0412	39	HsdO
SDSSJ160810.62+103211.6	56036	5204	0160	36	HsdO
SDSSJ160835.68+045345.2	55687	4807	0630	22	sdOB
SDSSJ160837.60+430748.8	56103	6034	0282	27	sdB
SDSSJ160911.42+314627.6	55719	4961	0102	23	sdB
SDSSJ160911.89+134744.1	55681	4070	0510	31	sdB
SDSSJ161023.38+371315.7	56091	5200	0132	59	sdOB
SDSSJ161026.97+402646.3	56074	5189	0544	26	sdB
SDSSJ161057.21+304617.9	55707	5009	0862	38	BHB
SDSSJ161057.21+304617.9	55737	4956	0484	36	BHB
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ161059.80+053625.2	55708	4895	0209	45	sdOB
SDSSJ161109.12+105705.6	56034	5203	0266	23	HsdO
SDSSJ161109.12+105705.6	56036	5204	0018	20	HsdO
SDSSJ161114.59+032833.0	55687	4807	0224	26	BHB
SDSSJ161129.88+095004.8	56040	5205	0640	33	HsdO
SDSSJ161132.89+290038.9	55707	5009	0136	50	sdB
SDSSJ161135.10+125744.1	55681	4070	0388	50	HsdO
SDSSJ161143.03+122953.0	55681	4070	0406	39	unknown
SDSSJ161143.03+122953.0	56034	5203	0752	30	unknown
SDSSJ161149.34+192350.6	55365	4069	0586	57	sdB
SDSSJ161221.17+270945.0	55744	5008	0296	70	HsdO
SDSSJ161245.11+041241.5	55687	4807	0860	64	sdOB
SDSSJ161255.04+051152.0	55708	4895	0082	21	unknown
SDSSJ161345.80+384950.7	56074	5189	0380	50	sdOB
SDSSJ161350.95+433233.1	56103	6034	0095	59	sdB
SDSSJ161400.06+150947.2	55679	4074	0434	39	HsdO
SDSSJ161439.04+113049.1	56034	5203	0894	38	HsdO
SDSSJ161442.26+082145.2	55712	4896	0628	47	HsdO
SDSSJ161445.47+212111.9	55357	4057	0560	22	sdB
SDSSJ161555.21+374105.4	56067	5199	0646	46	sdOB
SDSSJ161603.28+101210.6	56034	5203	0044	32	HsdO
SDSSJ161603.28+101210.6	56040	5205	0830	38	HsdO
SDSSJ161614.62+282442.6	55744	5008	0930	24	BHB
SDSSJ161615.52+300531.4	55737	4956	0286	20	BHB
SDSSJ161732.48+171039.1	55663	4073	0436	28	sdB
SDSSJ161804.93+204104.1	55357	4057	0276	43	unknown
SDSSJ161832.12+100654.9	56040	5205	0934	45	sdB
SDSSJ161921.70+295506.0	55710	5007	0704	54	sdB
SDSSJ161932.85+143033.1	55679	4074	0180	39	BHB
SDSSJ161945.14+073156.6	56016	5212	0456	58	sdOB
SDSSJ162035.72+074712.0	55712	4896	0928	50	unknown
SDSSJ162051.03+375059.3	56067	5199	0856	23	unknown
SDSSJ162109.02+212919.7	55357	4057	0886	67	sdB
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ162225.22+233804.4	55450	4184	0564	54	HsdO
SDSSJ162305.06+115652.8	55361	4067	0248	48	unknown
SDSSJ162336.29+153236.4	55357	4056	0580	51	sdOB
SDSSJ162344.84+122913.1	55361	4067	0224	76	sdB
SDSSJ162348.10+174302.7	55663	4073	0886	33	sdB
SDSSJ162411.52+312252.6	55749	4953	0592	46	sdOB
SDSSJ162429.72+333408.1	55750	4955	0670	20	BHB
SDSSJ162435.66+150355.4	55357	4056	0388	37	HesdO
SDSSJ162515.12+174240.1	55663	4073	0966	64	sdB
SDSSJ162535.78+362039.2	56065	5191	0828	27	sdB
SDSSJ162554.94+315435.2	55749	4953	0671	23	sdB
SDSSJ162615.22+115003.5	55444	4066	0556	50	HsdO
SDSSJ162626.25+333315.0	55750	4955	0796	29	sdOB
SDSSJ162641.99+402917.0	56072	6045	0230	34	sdB
SDSSJ162730.30+203416.9	55358	4058	0054	47	BHB
SDSSJ162825.87+353205.0	56048	5195	0444	21	HsdO
SDSSJ162904.19+184639.7	55362	4061	0446	33	sdOB
SDSSJ162905.88+411356.7	56072	6045	0876	26	HsdO
SDSSJ162922.95+221352.6	55450	4184	0115	34	BHB
SDSSJ162928.32+275912.0	55751	5005	0308	70	BHB
SDSSJ162936.86+312411.9	55749	4953	0879	29	HsdO
SDSSJ163023.27+214558.2	55693	4187	0488	65	BHB
SDSSJ163027.19+180233.2	55366	4064	0738	35	HesdO
SDSSJ163119.11+114617.9	55444	4066	0238	36	sdB
SDSSJ163205.75+172241.3	55366	4064	0226	57	sdB
SDSSJ163212.22+303630.2	55749	4953	0980	19	sdB
SDSSJ163212.26+175318.3	55366	4064	0778	73	sdB
SDSSJ163213.05+205124.0	55362	4061	0750	42	sdB
SDSSJ163247.47+392836.2	56077	5190	0960	35	sdB
SDSSJ163258.83+430346.7	56097	6030	0288	16	BHB
SDSSJ163310.21+233949.1	55693	4187	0578	40	sdB
SDSSJ163310.56+373554.7	56048	5195	0782	21	sdB
SDSSJ163316.44+215324.8	55693	4187	0346	27	BHB
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ163320.88+212224.3	55693	4187	0378	59	BHB
SDSSJ163356.54+265538.1	55686	4190	0570	45	unknown
SDSSJ163409.36+163715.1	55366	4064	0108	42	sdOB
SDSSJ163413.09+163109.4	55366	4064	0104	37	HsdO
SDSSJ163416.63+214458.7	55693	4187	0304	52	HsdO
SDSSJ163419.37+344244.8	55803	5188	0772	43	HsdO
SDSSJ163435.32+262101.7	55686	4190	0424	48	HsdO
SDSSJ163446.41+264146.6	55686	4190	0618	42	unknown
SDSSJ163456.60+264216.7	55686	4190	0616	52	sdB
SDSSJ163458.47+264920.6	55686	4190	0620	45	BHB
SDSSJ163511.58+291240.5	55751	5005	0952	36	BHB
SDSSJ163518.31+295203.2	55832	5201	0438	49	unknown
SDSSJ163550.79+135601.2	55445	4068	0858	28	unknown
SDSSJ163557.64+341427.0	55803	5188	0860	44	sdB
SDSSJ163602.14+175401.6	55366	4064	0066	62	sdOB
SDSSJ163605.36+130404.1	55352	4075	0626	31	HsdO
SDSSJ163605.36+130404.1	55445	4068	0136	27	HsdO
SDSSJ163623.72+123802.0	55352	4075	0644	70	BHB
SDSSJ163644.53+251644.9	55691	4186	0552	35	sdB
SDSSJ163700.70+142214.2	55445	4068	0922	52	unknown
SDSSJ163707.43+284240.2	55751	5005	0992	25	sdOB
SDSSJ163715.18+142324.9	55445	4068	0924	32	sdB
SDSSJ163723.58+311304.3	55824	5202	0260	22	HsdO
SDSSJ163723.58+311304.3	55832	5201	0676	19	sdB
SDSSJ163823.06+212624.0	55447	4183	0629	26	BHB
SDSSJ163826.28+111219.3	55352	4075	0216	34	HsdO
SDSSJ163834.68+265110.2	55686	4190	0770	49	sdB
SDSSJ163842.70+224115.6	55693	4187	0924	26	BHB
SDSSJ163845.10+295437.2	55832	5201	0780	21	sdB
SDSSJ163911.72+233313.0	55691	4186	0412	49	sdB
SDSSJ163913.61+384956.9	56090	6038	0326	43	BHB
SDSSJ163932.15+232248.8	55691	4186	0370	42	sdB
SDSSJ164050.80+363650.9	55828	5197	0638	43	HsdO
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ164121.22+363542.6	55828	5197	0676	42	BHB
SDSSJ164125.47+364115.9	56066	5193	0241	17	sdB
SDSSJ164131.02+214026.4	55446	4182	0452	18	sdB
SDSSJ164157.55+205724.4	55447	4183	0810	52	sdB
SDSSJ164216.67+212117.0	55447	4183	0836	50	sdOB
SDSSJ164236.24+351432.1	55828	5197	0314	32	sdB
SDSSJ164327.44+273300.5	55679	4189	0418	42	HsdO
SDSSJ164419.45+452326.4	56103	6027	0258	40	sdB
SDSSJ164444.94+312345.2	56062	5194	0566	70	unknown
SDSSJ164453.34+213711.5	55446	4182	0330	38	sdB
SDSSJ164453.34+213711.5	55447	4183	0942	39	sdB
SDSSJ164501.90+415113.2	56074	6037	0560	19	BHB
SDSSJ164501.90+415113.2	56104	6037	0518	35	BHB
SDSSJ164501.90+415113.2	56106	6037	0518	36	BHB
SDSSJ164512.57+371900.3	56066	5193	0052	40	sdB
SDSSJ164525.27+205132.3	55447	4183	0972	70	sdB
SDSSJ164525.27+205132.3	55684	4179	0518	62	sdB
SDSSJ164553.82+310927.8	56062	5194	0620	31	unknown
SDSSJ164611.45+274752.4	55469	4185	0596	25	sdOB
SDSSJ164634.49+263752.3	55469	4185	0656	76	HesdO
SDSSJ164648.00+374758.7	56066	5193	0026	37	BHB
SDSSJ164706.94+345655.8	55828	5197	0178	26	HsdO
SDSSJ164755.15+264032.9	55469	4185	0692	81	BHB
SDSSJ164846.94+352042.9	55828	5197	0040	40	sdB
SDSSJ164855.30+220020.5	55446	4182	0146	52	sdB
SDSSJ165104.35+204636.0	55684	4179	0865	47	BHB
SDSSJ165114.51+201420.7	55684	4179	0875	33	unknown
SDSSJ165131.40+274229.4	55679	4189	0042	19	HsdO
SDSSJ165135.16+331059.9	55831	5196	0036	31	sdB
SDSSJ165257.85+323030.8	55723	4992	0534	23	HsdO
SDSSJ165323.38+224822.5	55653	4178	0560	55	sdB
SDSSJ165325.76+205659.1	55653	4178	0420	64	sdB
SDSSJ165325.76+205659.1	55684	4179	0950	52	sdB
		Fortse	etzung auf	der nä	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie	
SDSSJ165325.98+270448.4	55679	4180	0559	22	sdB	
SDSSJ165355.55+245635.3	55685	4181	0854	27	unknown	
SDSSJ165446.26+182224.5	55682	4176	0200	30	sdB	
SDSSJ165519.73+274945.5	55723	5013	0469	66	sdOB	
SDSSJ165540.16+201057.8	55684	4179	0996	43	sdB	
SDSSJ165615.33+173558.6	55682	4176	0050	33	unknown	
SDSSJ165732.52+215659.9	55653	4178	0226	26	sdB	
SDSSJ165748.84+450014.5	56102	6028	0886	23	HsdO	
SDSSJ165809.14+214046.4	55653	4178	0182	68	sdB	
SDSSJ165816.53+270132.1	55723	5013	0404	73	unknown	
SDSSJ165823.09+252150.1	55679	4180	0212	49	sdB	
SDSSJ165841.82+413115.5	56071	6026	0283	61	unknown	
SDSSJ165939.68+214704.8	55653	4178	0112	45	HsdO	
SDSSJ165957.59+434136.8	56071	6026	0748	17	HsdO	
SDSSJ165957.59+434136.8	56102	6028	0041	18	sdB	
SDSSJ170035.84+374528.0	55836	4983	0384	21	HsdO	
SDSSJ170040.65+333747.9	55738	4993	0514	53	sdB	
SDSSJ170045.08+391830.2	56098	6063	0304	29	HsdO	
SDSSJ170116.02+240351.6	55688	4177	0670	34	sdB	
SDSSJ170126.99+423115.7	56071	6026	0194	33	HsdO	
SDSSJ170155.41+260403.3	55679	4180	0076	24	HsdO	
SDSSJ170241.54+312518.6	55723	4992	0093	51	HsdO	
SDSSJ170256.37+241757.9	55688	4177	0710	19	sdB	
SDSSJ170343.47+363634.2	55825	4988	0716	21	sdB	
SDSSJ170356.67+341504.9	55738	4993	0630	48	sdB	
SDSSJ170406.87+285416.0	55723	5013	0916	52	sdB	
SDSSJ170411.22+293546.6	55720	4996	0016	48	sdB	
SDSSJ170534.62+245326.9	55688	4177	0817	47	HsdO	
SDSSJ170556.15+363221.8	55825	4988	0831	45	HsdO	
SDSSJ170716.53+275410.4	55717	5014	0622	55	unknown	
SDSSJ170756.65+344901.6	55738	4993	0752	46	BHB	
SDSSJ170802.61+220552.6	55659	4174	0770	26	sdB	
SDSSJ170810.98+244341.4	55688	4177	0958	25	HsdO	
Fortsetzung auf der nächsten Seite						

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ170822.67+300136.2	55738	4997	0252	78	HsdO
SDSSJ170957.39+222745.0	55659	4174	0846	40	sdOB
SDSSJ171114.12+212331.8	55659	4174	0096	36	BHB
SDSSJ171142.45+380525.2	55743	4989	0626	38	sdOB
SDSSJ171142.45+380525.2	56069	4989	0604	44	HesdO
SDSSJ171314.07+404109.0	55827	4984	0792	28	HsdO
SDSSJ171315.14+335115.4	55738	4993	0992	14	unknown
SDSSJ171533.84+365214.7	55743	4989	0818	43	BHB
SDSSJ171533.84+365214.7	56069	4989	0840	48	BHB
SDSSJ171553.59+430555.3	56091	6062	0012	26	unknown
SDSSJ171703.15+271637.0	55715	5003	0394	42	HesdO
SDSSJ171729.94+320718.8	55722	4998	0320	48	sdB
SDSSJ171905.70+382003.2	55743	4990	0688	28	sdB
SDSSJ171916.97+365326.6	55743	4989	0940	33	sdOB
SDSSJ171916.97+365326.6	56069	4989	0940	37	sdOB
SDSSJ171929.51+273229.3	55715	5003	0320	44	unknown
SDSSJ172119.36+374538.5	55743	4990	0230	37	HsdO
SDSSJ172221.05+292431.4	55719	5001	0106	56	sdB
SDSSJ172355.82+342220.8	55739	4994	0012	44	sdB
SDSSJ172411.83+313847.0	55710	5002	0634	63	sdOB
SDSSJ172602.97+310624.6	55710	5002	0303	43	unknown
SDSSJ172736.02+361706.3	55739	4995	0886	22	sdB
SDSSJ172800.96+310318.1	55710	5002	0219	47	unknown
SDSSJ172854.34+361958.6	55739	4995	0968	43	sdOB
SDSSJ173057.93+320736.9	55710	5002	0887	61	sdB
SDSSJ173119.14+313831.1	55710	5002	0117	25	unknown
SDSSJ211045.16+000142.0	55444	4191	0700	63	HsdO
SDSSJ211318.36+001738.2	55444	4191	0846	71	sdOB
SDSSJ211406.66-031846.4	55742	4382	0226	28	unknown
SDSSJ211423.98-001034.7	55444	4191	0111	62	HesdO
SDSSJ211651.95-003328.5	55469	4192	0384	45	sdB
SDSSJ211921.36+005749.7	55469	4192	0796	74	sdOB
SDSSJ211924.56-004955.5	55469	4192	0216	31	HsdO
		Fortse	etzung auf	der näo	chsten Seite

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie	
SDSSJ211926.83+061718.4	55367	4082	0165	34	HsdO	
SDSSJ212014.32+003756.2	55469	4192	0844	56	sdB	
SDSSJ212022.64-002407.9	55469	4192	0154	33	sdB	
SDSSJ212044.05+045318.2	55361	4077	0870	39	sdB	
SDSSJ212232.68+000426.6	55476	4193	0618	56	HsdO	
SDSSJ212300.31+043453.0	55361	4077	0950	19	HsdO	
SDSSJ212449.22+061956.4	55365	4081	0880	38	HsdO	
SDSSJ212504.92-000207.0	55476	4193	0740	61	HsdO	
SDSSJ212556.94+045050.2	55447	4084	0482	47	sdB	
SDSSJ212749.34+002924.1	55450	4194	0552	39	HsdO	
SDSSJ212801.67+062719.5	55452	4085	0209	38	HsdO	
SDSSJ213054.60-004117.4	55450	4194	0340	34	sdOB	
SDSSJ213128.84-003823.1	55450	4194	0264	43	sdB	
SDSSJ213229.40-004831.4	55450	4194	0256	54	sdB	
SDSSJ213303.28-004710.9	55450	4194	0180	35	BHB	
SDSSJ213355.33-004512.5	55450	4194	0103	41	BHB	
SDSSJ213401.57-010439.5	55450	4194	0130	34	BHB	
SDSSJ213528.69-004538.0	55452	4195	0425	46	BHB	
SDSSJ213940.90-001028.9	55452	4195	0233	48	unknown	
SDSSJ214048.60-010207.6	55452	4195	0130	24	BHB	
SDSSJ214211.29+045456.3	55449	4087	0133	60	HsdO	
SDSSJ214307.36+005123.6	55478	4196	0636	21	HsdO	
SDSSJ214612.17+005110.0	55478	4196	0792	51	sdOB	
SDSSJ215049.19+010338.4	55831	5146	0141	42	HsdO	
SDSSJ215049.19+010338.4	55854	5147	0493	33	sdB	
SDSSJ215553.90+202802.9	55827	5022	0800	59	sdOB	
SDSSJ215631.55+121237.5	55831	5063	0527	45	sdOB	
SDSSJ215648.71+003620.7	55480	4198	0604	44	sdB	
SDSSJ215722.90+115908.3	55831	5063	0474	52	sdB	
SDSSJ215827.56-000532.0	55480	4198	0324	29	unknown	
SDSSJ215835.42+053645.1	55501	4096	0928	23	unknown	
SDSSJ215854.10+212432.5	56107	5948	0368	63	sdB	
SDSSJ215946.33+215858.5	56107	5948	0700	67	unknown	
Fortsetzung auf der nächsten Seite						

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Stern	MJD	Plate ID	Fiber ID	S/N	Kategorie
SDSSJ215954.70+203113.1	56107	5948	0242	37	sdB
SDSSJ220048.67+123612.3	55831	5063	0824	30	HsdO
SDSSJ220334.07+112203.5	55864	5064	0483	30	sdB
SDSSJ220337.07+120623.6	55864	5064	0534	57	HsdO
SDSSJ220418.28+001236.2	55480	4198	0996	66	sdB
SDSSJ220429.51+211610.6	56107	5948	0060	66	HesdO
SDSSJ220707.38+221527.0	56093	5947	0565	48	sdB
SDSSJ220707.38+221527.0	56102	5951	0210	46	sdB
SDSSJ220745.49+221640.6	56093	5947	0606	47	sdB
SDSSJ220759.09+204506.0	55863	5021	0912	72	sdB
SDSSJ220810.05+115913.9	55864	5064	0738	56	sdB
SDSSJ220922.17+010308.0	55481	4199	0942	53	HsdO
SDSSJ220922.17+010308.0	55499	4200	0556	60	HsdO
SDSSJ221003.91+123614.6	55749	5041	0384	40	BHB
SDSSJ221003.91+123614.6	55864	5064	0802	54	BHB
SDSSJ221118.51+124909.9	55864	5064	0874	37	sdB
SDSSJ221350.44+203907.2	56093	5947	0086	65	BHB
SDSSJ221617.96+135121.0	55749	5041	0976	61	BHB
SDSSJ221728.34+121642.3	55833	5047	0722	62	HsdO
SDSSJ222015.91+125521.2	55833	5047	0850	51	BHB
SDSSJ222238.69+005124.9	55443	4201	0910	61	HsdO
SDSSJ222515.34-011156.9	55445	4202	0288	44	sdOB
SDSSJ222932.80-004822.6	55447	4203	0456	59	HsdO
SDSSJ223028.66-000731.6	55447	4203	0390	57	BHB
SDSSJ223314.90+121934.0	56103	5049	0598	67	BHB
SDSSJ224451.81+010630.9	55454	4205	0629	36	unknown
SDSSJ225215.93+004155.9	55471	4206	0701	66	HsdO
SDSSJ225854.98+060546.2	55894	4413	0772	30	sdB
SDSSJ233541.47+000219.4	55449	4213	0540	69	sdOB
SDSSJ233719.19+062504.0	55884	4407	0874	27	HesdO
SDSSJ234618.57+043555.1	55858	4406	0180	55	sdB

Tabelle 10 – Fortsetzung der vorhergehenden Seite

Abbildung 27: Die Vermessung der Periodizität mit *RV Curve*. Die y-Achse beschreibt chi^2 in Magnituden, weshalb der größte Wert das kleinste chi^2 darstellt. Auf der x-Achse ist die Periode in Tagen aufgetragen.

Abbildungsverzeichnis

1	Hertzsprung-Russell Diagramm	3
2	Roche-Grenze	9
3	Entstehungsszenarien	11
4	Spektrum BHB	13
5	Spektrum sdB	14
6	Spektrum H-sdO	15
7	Spektrum He-sdO	16
8	Spektrum sdOB	17
9	M-lg(ρ) Diagramm	18
10	Dopplereffekt	20
11	Radialgeschwindigkeitskurve	22
12	Himmelskarte des SDSS	24
13	BOSS-Spektrograph	24
14	Verteilung DR9/DR10	27
15	Kombiniertes Spektrum sdO + Hauptreihenstern	28
16	Spektrum SDSSJ072421.40+385630.6	29
17	Spektrum SDSSJ090917.09+002514.0	30
18	Spektrum SDSSJ151107.07+173215.2	31
19	Spektrum SDSSJ085201.98+165205.5	32
20	Spektrum SDSSJ153509.92+240415.0	33
21	Spektrum SDSSJ082902.62+224636.7	34
22	Spektrum SDSSJ134658.10+065604.6	35
23	Auszug aus SPAS	36
24	$\Delta RV - \Delta t$ - Diagramm	38
25	Periodizität SDSSJ074551.12+170600.2 mit FAMIAS	40
26	Radialgeschwindigkeitskurve SDSSJ082508.55+484031.1	41

10 Literatur

Andrae, R.: 2010, Error estimation in astronomy: A guide, ArXiv e-prints, arXiv:1009.2755v3

Benneth, J.; Donahue, M.; Schneider, N. et al.: 2010, *Atronomie - Die kosmische Perspektive*, 5. aktualisierte Auflage, Verlag Pearson Studium

Carroll, B.; Ostile, D.: 1996, *An introduction to modern Astrophysics*, 1. erweiterte Auflage, Verlag Addison-Wesley publishing company

Classen, L.: 2011, Suche nach substellaren Begleitern bei Hot Subdwarfs, Dr. Remeis-Sternwarte Bamberg, Diplomarbeit

Drilling, J.; Jeffrey C.; Heber, U. et al.: 2013, *An MK-like system of spectral classification for hot subdwarfs*, A&A 551, A31

Emerson, D.: 1996, *Interpreting Astonomical Spectra*, 1. erweiterte Auflage, Verlag John Wiley and Sons Ltd.

Geier, S.; Hirsch, H.; Tillich, A. et al.: 2011, *The MUCHFUSS project - searching for hot subdwarf binaries with massive unseen companions*, A&A 530, A28, ArXiv e-prints, arXiv:1103.4045v1

Geier, S.; Schaffenroth, V.; Hirsch, H. et al.: 2012, *MUCHFUSS - Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS*, AN 999, No. 88, 789-794, ArXiv e-prints, arXiv:1206.6984v1

Girven, J.; Steeghs, D.; Heber, U. et al.: 2012, *The Unseen Population of F to K-type Companions to Hot Subdwarf Stars*, Mon. Not. R. Astron. Soc. 000, ArXiv e-prints, arXiv:1205.6803v1

Gray, O.; Corbally, J.: 2009, Stellar Spectral Classification, Princeton University Press

Han, Z.; Podsiadlowski, Ph.; Maxted, P. et al.: 2002, *The origin of subdwarf B stars - I*. *The formation channels*, Mon. Not. R. Astron. Soc. 336, 449-466

Han, Z.; Podsiadlowski, Ph.; Maxted, P. et al.: 2003, *The origin of subdwarf B stars - II*, Mon. Not. R. Astron. Soc. 341, 669-691

Heber, U.: 2009, Hot Subdwarf Stars, Annual Review of A&A, Vol. 47, S. 211-251

Hirsch, H.: 2009, *Hot subluminous stars: On the Search for Chemical Signatures of their Genesis*, Dr. Remeis-Sternwarte Bamberg, Dissertation

Karttunen, H.; Kröger, P; Oja, H. et al.: 1987, *Fundamental Astronomy*, 4. erweiterte Auflage, Verlag Springer

Kuiper, G.: 1939, Two new white dwarfs; notes on proper motion stars, ApJ, vol. 89, 548

Maxted, P.; Heber, U.; Marsh, T.: 2001, *The binary fraction of extreme horizontal branch stars.*, Mon. Not. R. Astron. Soc. 000, 1-10, ArXiv e-prints, arXiv:astro-ph/0103342v1

Nemeth, P.: 2012, A selection of hot subluminous stars in the GALEX survey - II. Subdwarf atmospheric parameters, Mon. Not. R. Astron. Soc. 000, 1-29, ArXiv e-prints, arXiv:1211.0323v1

Nussbaumer, H.; Schmid, H.: 2003, *Astronomie*, 8. überarbeitete Auflage, Verlag vdf Hochschulverlag AG

Soker, N.; Catelan, M.; Rood, R.: 2001, *A superwind from Early Post-Red Giant Stars*, ArXiv e-prints, arXiv:astro-ph/0111295v1

Vos, J.; Ostensen, R.; Nemeth, P. et al.: 2013, *The orbits of subdwarf-B + main-sequence binaries; Three eccentric systems; BD+29*°3070, *BD+34*°1543 and *Feige87*, A&A

http://arxiv.org/

http://www.sdss.org

http://www.sdss3.org

http://www.astro.uni-jena.de/Teaching/Praktikum/pra2002/node93.html

http://www.astro.uni-bonn.de/deboer/eida/eida-atmos.html

http://en.wikipedia.org/wiki/Main_Page

https://www.eso.org/sci/software/esomidas/

11 Danksagung

In erster Linie danke ich meiner gesamten Familie für die Unterstützung und die motivierenden Gespräche während des gesamten Studiums. Des Weiteren möchte ich Herrn Prof. Dr. Ulrich Heber und Dr. Peter Nemeth danken, die bei jeder Fragestellung stets ein offenes Ohr hatten und immer konstruktive Ratschläge gaben. Auch gebührt Prof. Dr. Uli Katz dank, da er sich für eines jeden Studenten Problems Zeit nimmt und bei der Lösung des Problems hilft.

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, dass alle Stellen der Arbeit, die wörtlich oder sinngemäß aus anderen Quellen übernommen wurden, als solche kenntlich gemacht sind und dass die Arbeit in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt wurde.

Erlangen, den 15.08.2014

Unterschrift