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Deutsche Zusammenfassung

Die vorliegende Masterarbeit beschäftigt sich mit der Entwicklung eines Programms, welches
den beobachteten Fluss von Neutronensternen mit Akkretionssäulen oder Hot Spots berechnet.
Dabei basieren die Berechnungen des Flusses auf beliebig definierbaren Abstrahlungsprofilen
und berücksichtigen speziell und allgemein relativistische Effekte.
Berücksichtigt werden dabei die speziell relativistischen Effekte der Doppler Verschiebung

und der Aberration, und die, der allgemein relativistischen Rotverschiebung und Lichtkrüm-
mung. Der Fokus liegt auf dem allgemein relativistischen Effekt der Lichtkrümmung und sein
Einfluss auf den beobachteten zeitabhängigen Fluss bzw. dem Pulsprofil. Dieses zeigt die
periodische Variabilität des Flusses über die Rotationsperiode des Neutronensterns. Allge-
mein wird diese periodische Variabilität mit der Beschränkung der Strahlung auf bestimmte
Regionen (Akkretionssäule oder Hot Spots) auf der Oberfläche des Neutronensterns erklärt,
die man durch die Rotation unter unterschiedlichen Winkeln betrachtet. Dabei bündelt das
starke Magnetfeld das einfallende Plasma, welches seine kinetische Energie dann an den mag-
netischen Polen auf der Oberfläche des Neutronensterns in Form von Strahlung abgibt. Da
Neutronensterne sehr massereich und kompakt sind, hat der Lichtkrümmungseffekt einen be-
trächtlichen Einfluss, zum Beispiel ist bis zu 85% der Neutronensternoberfläche sichtbar.
Das entwickelte Programm kann jedes beliebige Pulsprofil berechnen, besonders das von

langsam rotierenden Neutronensternen mit Rotationsfrequenzen ≲ 1 Hz, zum Beispiel, High
Mass X-ray Binaries. Es ist möglich zwischen sphärischen Neutronensternen mit zylindrischen
Akkretionssäulen oder mit Hot Spots zu wählen. Jedoch ist das Programm in der Lage jede
beliebig definierte Akkretionssäulengeometrie zu prozessieren. Zusätzlich ist es möglich be-
liebige Abstrahlungsprofile für jede einzelne Region des Objekts zu definieren. Dies erlaubt es
theoretische Modelle unter dem Einfluss relativistischer Effekte, insbesondere der Lichtkrüm-
mung, zu testen. Die Berechnungen der Lichtkrümmung basiert dabei auf der Schwarzschild
Metrik. Die entsprechenden Gleichungen können entweder mit numerischen Verfahren oder
einer analytischen Näherung (Beloborodov, 2002) für Radien größer als zwei Schwarzschild
Radien gelöst werden. Die meisten Neutronensterne besitzen jedoch größere Radien. Darüber
hinaus ist eine Erweiterung für kleinere Radien bis hin zum Schwarzschild Radius möglich.
Weiterhin ist es möglich das Programm für höhere Frequenzen zu erweitern. Dafür muss nur

zusätzlich die durch die spezielle Relativität gegebene Zeitverzögerung bzw. Phasenversatz
der beobachteten Photonen berücksichtigt werden. Dieser Effekt hat besonders für hohe
Rotationsfrequenzen einen großen Einfluss. Diese Erweiterung ist besonders für Millisekunden
Pulsare interessant, da diese Rotationsfrequenzen bis zu 700 Hz haben können.
In dieser Arbeit werden Pulsprofile von Neutronensternen genauer untersucht, die Rota-

tionsfrequenzen ≲ 1 Hz besitzen und von den Akkretionssäulen abstrahlen. Dies geschieht
für verschiedenste Konfigurationen der Akkretionssäulen, d.h. für unterschiedliche Lagen,
Größen, Inklinationen des Systems zum Beobachter und unterschiedlichen Abstrahlprofilen.
Dabei sind die Akkretionssäulen aus einer zylindrischen Hülle und einer sphärischen Kappe
zusammengesetzt und deren Abstrahlung im Einzelnen betrachtet. Diese Pulsprofile zeigen,
dass die Lichtkrümmung ihre Form sehr beeinflusst, aber keinerlei Asymmetrien verursacht.
Asymmetrien in Pulsprofilen langsam rotierender Neutronensterne können nur mit asym-
metrischen Abstrahlprofilen oder asymmetrischer Lage der Akkretionssäulen erklärt werden.
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Abstract

The topic of this thesis is the development of a program, which determines the observed flux
of a neutron star with accretion columns or hot spots. The calculation of the flux is based on
an arbitrary given emission profile and accounts for special and general relativistic effects.
The determination of the flux considers the special relativistic effect of the Doppler shift and

aberration, and the general relativistic effect of gravitational redshift and light bending. The
main focus is on the general relativistic light bending effect and its impact on the observed
time dependent flux, the pulse profile. The pulse profile shows the periodic variability of
the flux over the rotation period of the neutron star. This periodic variability is commonly
explained by the localized emission regions (accretion columns or hot spots) on the neutron
star seen under different angles due to the rotation. Thereby, the strong magnetic field
collimates incoming plasma, which releases the obtained kinetic energy on the surface of the
neutron star at the magnetic pols in form of radiation. As neutron stars are very massive and
compact, the light bending effect has a considerable influence, e.g., one can see about 85% of
the surface of a neutron star.
The program developed in this thesis can calculate any arbitrary pulse profile, especially

of slow rotating neutron stars with spin frequencies ≲ 1 Hz, e.g., High Mass X-ray Binaries.
Therefore, the program provides the possibility to choose spherical neutron stars with cylin-
drical accretion columns or with hot spots. Furthermore, the program is capable to process
arbitrary defined accretion column geometries. Additionally, it is possible to define arbitrary
emission profiles for each individual part of the object, which allows to test theoretical models
under the influence of relativistic effects, especially the effect of light bending. The deter-
mination of the light bending effect are based on the Schwarzschild metric. The program
provides the possibility to solve the according equations numerically or with an analytically
approximation (Beloborodov, 2002) for radii greater than two Schwarzschild radii. However,
most neutron stars exhibit a greater radius. Nevertheless, an extension to even lower radii,
down to the Schwarzschild radius, is also possible.
Further, the program was designed in a way that it is possible to extend it also for higher spin

frequencies. This extension only requires to additionally account for the special relativistic
effect of the time delay causing a phase shift of the observed photons, which has a considerable
influence for higher frequencies. Especially for Millisecond Pulsars, which can exhibit spin
frequencies up to 700 Hz this extension is of interest.
In this thesis the pulse profile of neutron stars with spin frequencies ≲ 1 Hz are focused on,

where the emission comes from the accretion columns. This investigation is done for various
settings for the accretion columns, namely their position on the neutron star surface, their
size, the inclination of the system to the observer and different emission profiles. Thereby,
the accretion columns are composed of a cylindrical column and a spherical cap and the
emission from these individual parts is distinguished between and discussed individually. The
investigated pulse profiles show that the light bending has a considerable influence on their
shape, but it does not introduce any asymmetry. Namely, asymmetries in pulse profiles
of slowly rotating neutron stars can only be explained by asymmetric emission profiles or
asymmetric accretion column positions on the surface of the neutron star.
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Chapter 1

Introduction

With the theory of special relativity (1905), Albert Einstein has revolutionized our under-
standing of space and time in the sense that both are relative rather then absolute constructs.
Meaning that observers in different inertial frames would measure different times and lengths
for the same event. Space and time are indeed closely intertwined, which led to the introduc-
tion of the four dimensional spacetime, in which space and time are united and invariants can
be defined. In 1915, Einstein presented the final version of his theory of general relativity,
which also accounts for gravity and describes the interaction of spacetime and matter. "Mat-
ter tells spacetime how to curve, and curved space tells matter how to move" is how Wheeler
(1990) puts it. Also Einstein’s theory of general relativity already could successfully explain
the perihelion shift of mercury, which has not been achieved before, it only got commonly
accepted after Arthur Eddington experimentally confirmed (Dyson et al., 1920) the value of
the deflection of light rays observed from stars close to the sun predicted by Einstein’s theory.

1.1. Light Bending
We are used to the idea that the trajectory of massless particles (e.g., photons) is a straight
line. In general relativity, however, a more general definition of such trajectories has to be
made. Geodesics describe the path of the shortest distance between two points, which are not
necessarily straight. For example, if we move from point A to point B on the surface of the
earth in a direct way, our path is not a straight line as we are moving on a curved surface.
The shortest path we can choose to get from one place on the earth to another is along a
great circle connecting these points, whereas a straight line connecting both points would
go through the earth. Similar to the curved surface of the earth, in general relativity the
spacetime can be curved and therefore the movement of particles is more generally described
by geodesics. The shape of the geodesics are determined by the curvature of spacetime (more
precisely by the underlying metric), which is determined by the mass distribution. The more
mass is concentrated in a particular area, the higher is the curvature of the spacetime in its
vicinity. Hence, the trajectory of photons passing by a massive object will show a certain
deviation from a straight path, which is called the gravitational light bending effect.
For experimental evidence Einstein suggested to measure the deflection angle of light rays

from distant stars closely passing by the sun1 and calculated the value of this deflection
predicted by his theory of general relativity. As seen in Fig. 1.1, the path of the starlight
gets bend towards the center of mass, while passing by the sun. Hence, for a distant observer

1This measurement is only possible during an eclipse, as otherwise the light of the sun is too bright.
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1. Introduction

Fig. 1.1.: Illustration of the deflection of star light in the vicinity of the sun. Top:
Star field around the sun. Middle: Same star field as in the top panel in absence of
the sun. Bottom: Comparison of the real position of a star and its apparent position.
(Credits: http://cosmictimes.gsfc.nasa.gov/)

the apparent position of a star, whose light got bended, seems to be further away from the
bending mass than it really is. Comparing the first two panels in Fig. 1.1, in which a star
field is shown in the presents of the sun and without, it is noticeable that the difference of the
star positions with and without the presence of the sun increases the closer the star is to the
center of the sun.
The bending of light not only occurs for photons passing by a massive object, but also for

photons emitted from it. Depending on the mass of the object, which determines the strength
of the light bending, this effect can have a considerable influence on observations of such an
object, like, e.g., neutron stars.

1.2. Neutron Stars
In this section a brief discussion of neutron stars is given with the focus on those properties
important for this thesis. For a more detailed discussion see, e.g., Fürst (2011) and references
therein, which the following section is mainly based on.
Neutron stars are the remnants of dying stars with massesM > 8 M⊙ (Smartt, 2009), where

M⊙ is the mass of the sun. In the final stages the iron core of those dying stars reaches a
critical mass. The iron core is the ash of the last possible stage of nuclear fusion burning lighter
to heavier elements, which provides the necessary energy, in the form of outwards directed

4
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pressure2, to balance the gravitational force. As the fusion of iron and heavier elements
requires energy instead of releasing it, the only force within the iron core counteracting the
gravitation is due to the degeneracy of the electrons. Once the iron core exceeds a critical
mass, beyond which the gravitation overcomes the pressure of the electron degeneracy, the
collapse of the core sets in. In this process the outer layers of the star get expelled, whereas
neutrons are generated via the inverse β-decay in the core, while it is collapsing under its own
gravitation. The collapse can be stopped by the degenerate pressure of the created neutron
gas resulting in a neutron star, otherwise a black hole is formed. The created neutron stars are
very massive, holding a mass of ∼1.4 M⊙ within a radius of only ∼10 km, which results in a
considerable impact on the curvature of spacetime in its vicinity. The structure of the interior
of a neutron star is very complex and not completely understood yet. However, Steiner et al.
(2013) calculated constraints on possible mass to radius ratios based on various theoretical
models seen in Fig. 1.2. This figure shows that most mass to radius ratios theories predict
for neutron stars relate to radii greater than two Schwarzschild radii, where the Schwarzschild
radius is given by

rs ≈ 3 km ⋅ (
M

M⊙

) (1.1)

The knowledge of the mass is necessary to determine the curvature of spacetime (see Sec. 2.1).
Furthermore, the radius of the neutron star is required to predict the degree of bending photons
experience, as the bending depends also on the radius, at which they are emitted (see Sec. 2.2).
Another interesting property many neutron stars exhibit is a periodic variability in their

observed flux over time, where the period of this variability corresponds to the rotation period
of the spinning neutron star. Figure 1.3 shows this variability in form of a pulse profile

2This pressure can be provided by radiation or gas and depends on the exact conditions within the star.
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1. Introduction
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exhibiting two characteristic peaks3 in flux separated by about half a rotation phase. This
phenomenon is commonly explained by the extremely strong magnetic fields (Lamb et al.,
1973) neutron stars can exhibit, which reach up to the order of 1012-1015 G (Haensel et al.,
2007) and can be approximated by a dipole. Such a strong magnetic field has a large influence
on the surroundings of the neutron star. As shown in Fig. 1.4, plasma (ionized material)
attracted by the gravitational force of the neutron star at a certain point, the Alfvén radius,
has to follow the magnetic field lines on its way down onto the surface of the neutron stars.
The resulting collimation of the incoming matter leads to the formation of accretion columns
on the surface of the neutrons star at the magnetic poles.
Furthermore, the kinetic energy the material obtained by transforming the gravitational

energy, is released in the bottom parts of those accretion columns, mainly in form of photons
in the X-ray regime, e.g., produced by bremsstrahlung as the particles are stopped on the
neutron star surface, thermal radiation from the hot spots or cyclotron radiation processes4.
Note, however, that the bending of light is independent of the photon energy (see Sec. 2.2), but
does depend on the location of the emission. Therefore, the geometry of the accretion column
is very important. The geometry, however, depends on several conditions, e.g., the coupling
of the matter to the magnetic field lines and the accretion rate. The simplest geometry
assumable is a cylindrical or cone like filled accretion column (see, e.g., Becker & Wolff,
2007). Nevertheless, also more complex geometries are thinkable, e.g., hollow cylinders or
cones (Kraus, 2001). The formation of the accretion columns depends on the accretion rate.
The supply of sufficient amounts of matter is only possible in binary systems, in which there
is a normal companion star5 besides the neutron star. In Low Mass X-Ray Binaries (LMXBs)
the main accretion channel is the Roche lobe overflow of the companion star, whereas in
High Mass X-ray binaries (HMXBs) it is the stellar wind. These systems are defined by the
mass of their companion star. In HMXBs the companion stars are very massive compared
to those in LMXBs. As the lifespan of stars decrease dramatically with their mass HMXBs

3The pulse profile in Fig. 1.3 is just representative, there are also pulse profiles with a more complex shape.
4The exact mechanisms of the radiation processes are very complex and beyond the scope of this thesis. For
a deeper discussion of this topic see, e.g., Becker & Wolff (2007).

5Normal star in the sense of stars, which still perform nuclear fusion.
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The aim of this master thesis
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Fig. 1.4.: Sketch of a neutron star with accretion columns. The left side (Lamb et al., 1973)
shows a neutron star with its magnetosphere. The dots represent matter, which is falling onto
the neutron star. At the Alfvén surface the ionized matter follows the magnetic field lines
to the magnetic pols on the surface of the neutron star. The focused matter stream causes
the formation of accretion columns (AC) as seen in the zoom in. Emission from the accretion
column walls is called fan beam and that from the cap pencil beam. The rotation axis is
denoted by z.

are very young systems. The lifespan of the massive companion star in HMXBs is short, i.e.,
the progenitor of the neutron star, which evolved even faster, had do be more massive. The
young HMXBs commonly show stronger magnetic fields, which in combination with the high
accretion rates leads to formation of accretion columns especially in these systems.
So far we have seen that the strong magnetic fields of neutron stars combined with a

sufficient accretion rate leads to localized regions on the neutron star producing a considerable
amount of emission. If we additionally consider the rotation of the neutron star, we can explain
the observed pulse profile of those neutron stars seen in Fig. 1.3. While the neutron star is
spinning around its rotation axis, we see different parts of the accretion columns under different
angles, as the axis of the magnetic dipole is not necessarily aligned with the rotation axis,
leading to a periodical variability of the observed flux with the rotation period. Figure 1.4
shows the accretion columns on the neutron star, composed of a cap and a wall, where the
emission from the caps, called pencil beam, is mostly directed along the magnetic field lines,
whereas the emission from the walls, called fan beam, is mostly rectangular to it.
The emission originates from regions close to the surface of the neutron star and therefore

the light bending effect has to be considered in order to make quantitative statements about
the shape of the pulse profiles.

1.3. The Aim of this Master Thesis
The topic of this thesis is the development of a program, which determines the observed flux
of a neutron star with accretion columns, based on an arbitrary given emission profile and
accounting for special and general relativistic effects. The main focus is on the effect of light
bending within general relativity and its impact on the observed flux. Not only the overall
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1. Introduction

flux is of interest, but also the flux of the individual regions contributing to it, for example,
the cap and the wall of the individual accretion columns. Furthermore, the aim is to keep
this program as common as possible, i.e., to avoid constraints of any kind, which limit the
functionality or its extensibility.
The theoretical equations of the light bending effect discussed in Sec. 2.2 are based on

the Schwarzschild metric (Sec. 2.1). In Sec. 2.3 the determination of the observed flux is
discussed, which accounts also for other relativistic effects besides the light bending, namely
the gravitational redshift, Doppler shift and aberration.
Afterwards, Chap. 3 provides detailed information about the implementation of the theo-

retical equations and the structure of the program. Additionally, App. A provides an example
code to demonstrate the usage, where an detailed list of all code related functions with de-
scription of its usage can be found in App. C. In App. B the storing of the results is explained,
i.e., the file structure and the file format.
In Chap. 4 the pulse profile of neutron stars with emission from the accretion columns for

various configurations are looked at under the aspect of general relativistic light bending.
Finally, Chap. 5 provides a summary of the program, the conclusions drawn from the pulse
profiles under the influence of light bending and the future prospects.

8



Chapter 2

Theoretical Background

The mathematical description of General Relativity is given by Einstein’s field equation (Ein-
stein, 1916), which includes a metric gµν containing the information about the curvature of
spacetime, or in other words how distances has to be measured. One of the simplest, but
nevertheless most important solutions the Einstein’s field equation, is the Schwarzschild
metric. In this chapter this solution will be discussed and its related equations will be mo-
tivated and partly deduced. A more detailed discussion can be found in any literature of
General Relativity (see, e.g., Misner et al., 1973; Carroll, 2004; Hartle, 2003; Fließbach, 1990).
All formula presented in the following are given in units such that the speed of light and the
gravitational constant are equal to one (c ≡ G ≡ 1).

2.1. The Metric
The Schwarzschild metric is the unique spherically symmetric vacuum solution for Einstein’s
field equation found by Schwarzschild (1916). In this section this solution is briefly discussed
primarily based on the description of Carroll (2004) and Hartle (2003). In spherical coordi-
nates xµ = (t, r, θ, φ) the according line element (see, e.g., Fließbach, 1990) is given by

ds2
= −(1 −

2M

r
)dt2 + (1 −

2M

r
)

−1

dr2
+ r2 (dθ2

+ sin2 θdφ2) , (2.1)

where the constant M can be interpreted as the mass of the gravitating object. The line
element ds and the metric gµν are connected by the relation

ds2
= gµνdxµdxν . (2.2)

Equation (2.1) is the vacuum solution and therefore only describes spacetime properly outside
the object. The Schwarzschild metric is static in the sense that it is completely independent of
the time coordinate and does not include time-space cross terms (dxidt+dtdxi). The spherical
symmetry can be seen by looking at the two-dimensional surface of constant t and constant
r, reducing the line element (Eq. 2.1) to

dΣ2
= r2

(dθ2
+ sin2 θdφ2

) , (2.3)

which describes a sphere of radius r in flat three-dimensional space. As the properties of the
metric originate in the distribution of mass, the spherical symmetry also has to apply to this.
In fact, the specific form of the mass distribution is irrelevant and can be assumed point like

9



2. Theoretical background

as long as it fulfills this criterion. The point mass relates to an infinite curvature of spacetime
causing the occurrence of a real singularity in the metric at r = 0 as in Eq. 2.1 the metric
coefficients become infinite. There is also a singularity at the Schwarzschild radius

rs = 2M . (2.4)

But unlike the singularity at r = 0, this one originates in the choice of coordinates and can
be avoided by a transformation to more appropriate coordinates. In our case, however, the
chosen coordinates are sufficient as we are only interested in radii exceeding the Schwarzschild
radius.
Another important solution to Einstein’s field equation is the Kerr metric (found by Kerr,

1963), which also accounts for effects inferred by rotation of the gravitating mass at the ex-
pense of the introduction of a new parameter. In the case of no rotation the Kerr metric
converges to the Schwarzschild metric. The drawback of the Kerr metric in contrast to the
Schwarzschild metric is the increased mathematical complexity. Additionally, for none point
like objects rotation also entails the oblateness of the object. The exact degree of the oblate-
ness requires knowledge about the equation of state of the object, which for neutron stars is
barely known. Cadeau et al. (2007) have shown that for fast rotating oblate neutron stars the
effects of the oblateness dominate by far those of the choice of metric and that for spherical
surfaces the differences between Kerr and Schwarzschild are insignificant. They come to the
conclusion that in case of neutron stars there is no advantage of using the Kerr metric in gen-
eral and therefore the calculations presented in the following are based on the Schwarzschild
metric.

2.2. Equations of Motion
Having made the choice which metric to use, the next step is to deduce the equations of
motion to describe the propagation of particles and photons parametrized with xµ(λ). To
achieve this, the Geodesic Equation (see, e.g., Fließbach, 1990)

d2xκ

dλ2
+ Γκµν

dxµ

dλ

dxν

dλ
= 0 (2.5)

has to be solved. Thereby the Christoffel symbols Γκµν depend on the metric gµν and their
derivations. Analog to the equations of motion in classical mechanics, the Geodesic Equa-
tion (Eq. 2.5) can be derived within the Lagrangian formalism by minimizing the relativistic
generalized action (Krolik, 1999)

S = ∫

B

A
L dλ = ∫

B

A
dλ [gµν

dxµ

dλ

dxν

dλ
]

−
1
2

(2.6)

along the path xµ(λ) by means of variation. The combination of the Schwarzschild metric
(Eq. 2.1) with the corresponding solutions for the Christoffel symbols (see, e.g., Fließbach,
1990, Chap. 30) yields to the equations of motion for photons uµ = dxµ/dλ (Pechenick et al.,

10



Equations of motion

1983):

u0
≡

dt

dλ
= (1 − rs/r)

−1 (2.7)

u1
≡

dr

dλ
= [1 − b2 (1 − rs/r) /r

2]
1/2 (2.8)

u2
≡

dθ

dλ
= 0 (2.9)

u3
≡

dΨ

dλ
= br−2 (2.10)

To obtain these equations the different symmetries contained in the Schwarzschild metric were
used. The invariance under time translation leads to conservation of energy and the spherical
symmetry corresponds to conservation of angular momentum meaning the propagation of
particles and photons takes place in a plane. Commonly the equatorial plane θ = π/2 is chosen
to which the coordinate system can be easily rotated, if the photon is not in this plane. Ψ
relates to φ in the equatorial plane. The conservation of angular momentum manifests itself
in the impact parameter b, which is constant over the whole photon trajectory.

2.2.1. Photon Trajectory
We are now interested in the actual trajectory embedded in the Schwarzschild spacetime
photons follow. As the propagation takes place in a plane R(Ψ) or Ψ(R) fully describe the
photon trajectory, where Ψ is the angle between the line of sight (Ψ = 0, escape direction)
and the current position of the photon (see Fig. 2.1). By integrating the quotient of Eq. 2.10
and Eq. 2.8 Ψ(R) can be derived (see, e.g., Beloborodov, 2002):

Ψ(R) = ∫

Ψ(∞)

Ψ(R)
dΨ = ∫

∞

R

dΨ

dλ

dλ

dr
dr

= ∫

∞

R
dr

1

r2
[

1

b2
−

1

r2
(1 −

rs

r
)]

−1/2
(2.11)
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Fig. 2.1.: Sketch of a photon trajectory starting at radius R, seen by an distant observer
(r →∞, Ψ = 0) under the angle ΨR with an impact parameter b.
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2. Theoretical background

Where the upper integration limit refers to the observer, who is set to be far away (r →∞).
The lower limit R corresponds to the radius of the current photon position. As shown in
Fig. 2.1, for R → ∞ the impact parameter equals the distance between the line of sight and
the point the photon hits the observer sky (plane rectangular to the line of sight for r →∞).
Expressing this relation with a formula gives

lim
R→∞

R sin(Ψ(R)) = b . (2.12)

To confirm this relation we look at Eq. 2.11 and simplify it for the case that R →∞. First we
make the substitutions

ur ∶=
rs

r
and u ∶=

rs

R
, (2.13)

with which Eq. 2.11 rewrites to

Ψ(u) = ∫
u

0
dur [

r2
s

b2
− u2

r(1 − ur)]

−1/2

. (2.14)

For ur ≤ u≪ 1 (i.e., R →∞) the following approximation can be done:

Ψ̃(u) ∶= Ψ(u)∣
ur≪1

= ∫

u

0
dur [

r2
s

b2
− u2

r +O(u3
r)]

−1/2

= arcsin(u
b

rs
) (2.15)

Ψ̃(R) = arcsin(
b

R
) (2.16)

Using this simplification it can easily be seen that Eq. 2.12 is fulfilled.
Unfortunately the integral (Eq. 2.11) cannot be solved analytically. Nevertheless, the inte-

grand of Eq. 2.11 reveals some information about the photon trajectory without evaluating
the integral itself. Obviously there are cases in which the integrand is undefined, namely the
radicand in Eq. 2.11 has to fulfill

r4

b2
− r2

(1 −
rs

r
) > 0 .

Multiplying with b2/r and looking at the border case leads to the cubic equation

C(r) ∶= r3
− b2r + b2rs = 0 , (2.17)

where r = 0 has been ruled out as this corresponds to the singularity. The cubic equation
(Eq. 2.17) has three potential solutions for the radius r (see, e.g., Press et al., 1992), which
can be expressed as

rκ(b) = −2

√
b2

3
cos

⎛
⎜
⎝

cos−1 (3
√

3
2

rs
b ) + κ ⋅ 2π

3

⎞
⎟
⎠

, (2.18)

where κ = −1,0,1. These solutions only apply, if b > bc with the critical impact parameter

bc =
3
√

3

2
rs =

√
3rc , (2.19)
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Fig. 2.2.: Plots of C(r) for three different values of b. b = 3
√

3
2 rs marks the transition between

the case C(r) > 0 for all r > 0 and the case C(r) < 0 for r−1 < r < r1 (shaded region).

where rc = r−1,1(bc) is the critical radius. Otherwise C(r) = 0 only has one real solution for r,
which is always smaller than or equal to zero. But we are only interested in r > 0 by definition.
Accordingly, for b > bc the solution for κ = 0 can be neglected as well. This leaves the two roots
r−1 and r1, between which C(r) is negative and therefore the integral (Eq. 2.11) undefined.
In Fig. 2.2 C(r) is plotted for three different b values. A more detailed interpretation reveals
three different kinds of photon orbits. On the on hand trajectories with an impact parameter
below the critical value bc are unbound orbits, on which photons travel from infinity towards
the singularity at r = 0 or vice versa1. For impact parameter greater than the critical value
there are two possible kinds of orbits. Firstly, there exists bound orbits, laying within the
region 0 ≤ r ≤ rc. On the other hand, there are unbound orbits for r > rc, which are entirely
outside the critical radius rc. A more detailed discussion of the different kinds of possible
orbits is given by Chandrasekhar (1983).
The orbits of interest in this thesis are those in which the trajectory reaches the observer

(r →∞) as we want analyze the impact of relativistic effects on the observations. These are the
unbound orbits, which have to be treated differently for calculation purposes. Unbound orbits
without a periastron are just determined by Eq. 2.11 in contrast to orbits with a periastron

rp(b) ∶= r1(b) = −2

√
b2

3
cos

⎛
⎜
⎝

cos−1 (3
√

3
2

rs
b ) + 2π

3

⎞
⎟
⎠

, (2.20)

where rp corresponds to the maximum of the solutions of Eq. 2.18. To obtain a correctly
described trajectory crossing the periastron the integral to calculate Ψ(R) has to be split in
a way that first the path from infinity to the periastron is calculated and then that from the

1The orbits themselves are not limited by the Schwarzschild radius. However, the required energy to escape
the gravitating objects reaches infinity at the event horizon making it impossible for anything to escape
once it crossed the event horizon.
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Fig. 2.3.: Sketch of a photon trajectory starting at radius R approaching the periastron at
(rp,Ψp) then traveling outwards and passing again the radius R at (R,ΨR), seen by an distant
observer (r →∞, Ψ = 0) under the angle Ψ∗

R with an impact parameter b.

periastron to the radius R, which can be written as

Ψ∗
(R) = 2Ψ(rp) −Ψ(R) , (2.21)

where Ψ∗ relates to angles greater than Ψ(rp). Figure 2.3 shows an example for such an
trajectory. Note that these photon trajectories are symmetric to their periastron, which can
be seen easily by looking at Eq. 2.11.
There is a more suitable variable to describe a photon path, especially if not the entire orbit

is involved, e.g., when describing the relativistic photon trajectories of photons emanating
from the surface or the vicinity of a compact object. Here the emission angle α is much
more convenient, which is defined as the angle between the radial component of the photons
four-velocity and its overall direction (see, e.g., Beloborodov, 2002):

tan(α) =
∣u3∣

∣u1∣
∣
θ=π

2

=

√
g33u3u3

√
g11u1u1

RRRRRRRRRRRθ=π
2

= [
R2

b2
(1 −

rs

R
)
−1

− 1]

−1/2
(2.22)

leading to

sin(α) =
b

R

√

1 −
rs

R
(2.23)

The emission angle allows to distinguish more easily whether the photon trajectory exhibits
a periastron or not, as the emission angle is unique along a trajectory. Namely, α < π/2 for
those without a periastron and α > π/2 for those with a periastron. α = π/2 corresponds to the
periastron itself. Note that the symmetry of the photon trajectory regarding the periastron
combined with Eq. 2.23 gives the following relation:

α∗ = π − α (2.24)
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as sinα∗ = sinα for α∗ ≠ α (see Fig. 2.4). Furthermore, there is a maximum value for
the emission angle for trajectories with periastron based on the critical impact parameter bc
(Ferrigno et al., 2011):

αmax(u) ∶= π − arcsin(
bc
rs
u
√

1 − u)

= π − arcsin(
3
√

3

2
u
√

1 − u)

(2.25)

bc is the minimal possible impact parameter for trajectories with periastron and therefore
corresponds to the maximal emission angle for a given emission radius. The corresponding
maximal angle Ψ is then given by

Ψmax(u) ∶= Ψ∗
(u)∣

b=bc
. (2.26)

Additionally, we can test the classical limes for flat spacetime, in which Ψ is supposed to
be equal to α. By substituting the impact parameter in Eq. 2.16 with the relation given in
Eq. 2.23 and calculating the limes

lim
R→∞

Ψ̃(R) = lim
R→∞

arcsin (sin(α)/
√

1 − rs/R) = α

indeed leads to equality of Ψ and α.

2.2.2. Time Delay
Another value of interest is the time difference in the arrival time of photons due to the
different lengths of their trajectories. At first we derive the travel time itself similar to the

α∗

α∗
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Fig. 2.4.: Sketch of a photon trajectory starting at radius R with an emission angle α∗ ap-
proaching the periastron at (p,Ψp) then traveling outwards and passing again the radius R
at (R,ΨR) with α = π − α∗, seen by an distant observer (r → ∞, Ψ = 0) under the angle Ψ∗

R

with an impact parameter b.
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2. Theoretical background

derivation of the photon trajectory (Eq. 2.11), which leads to:

t(R) = ∫

t(∞)

t(R)
dt = ∫

∞

R

dt

dλ

dλ

dr
dr

= ∫

∞

R
dr (1 −

rs

r
)
−1

[1 −
b2

r2
(1 −

rs

r
)]

−1/2 (2.27)

Integrating the radius to infinity obviously leads to infinite travel times. Therefore, it is
necessary to define the difference of travel times to a certain reference, which is chosen to be
the trajectory with b = 0 (see, e.g., Poutanen & Beloborodov, 2006), which coincides with the
line of sight:

∆t(R) ∶= t(R) − t(R)∣
b=0

= ∫

∞

R
dr (1 −

rs

r
)
−1 ⎧⎪⎪

⎨
⎪⎪⎩

[1 −
b2

r2
(1 −

rs

r
)]

−1/2

− 1

⎫⎪⎪
⎬
⎪⎪⎭

(2.28)

Furthermore, we also need to take into account that for trajectories starting at different radii
there is an additional contribution to the time delay, which is necessary in order to be able to
compare their time delays. Namely, this is the time difference between the reference points as
shown in Fig. 2.5, which can be calculated easily:

δt(R1,R2) ∶= t(R1)∣
b=0

− t(R2)∣
b=0

= ∫

R2

R1

dr (1 −
rs

r
)
−1

= rs ln(
R2 − rs

R1 − rs
) +R2 −R1

(2.29)

Now we can write down the overall time delay ∆T (R) a distant observer measures between
simultaneously emitted photons:

∆T (R) ∶= ∆t(R) + δt(Rref,R)

= ∫

∞

R
dr (1 −

rs

r
)
−1 ⎧⎪⎪

⎨
⎪⎪⎩

[1 −
b2

r2
(1 −

rs

r
)]

−1/2

− 1

⎫⎪⎪
⎬
⎪⎪⎭

+ rs ln(
R − rs

Rref − rs
) +R −Rref

(2.30)

Rref can be chosen arbitrarily as long as it exceeds rs. Note that the symmetry of the photon
trajectory is also maintained for the time delay. Hence, the same relation as for the photon
trajectory with periastron (Eq. 2.21) has to be taken into account, which leads to

∆T ∗(R) = 2∆T (p) −∆T (R) . (2.31)

2.2.3. Analytical Approximations
As already mentioned, the integral determining the photon trajectory (Eq. 2.11) is not analyt-
ically solvable. The same applies to the time delay (Eq. 2.28). However, Beloborodov (2002)
came up with a very simple yet extremely precise analytical approximation. He considered

x ∶= 1 − cos(α) (2.32)
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Fig. 2.5.: Shown are two photon trajectories emitted at different radii R1 and R2 with different
impact parameter b1 and b2. ∆t(R) (Eq. 2.28) would measure the time difference ∆t(R2)

between the solid and the red-filled circle and respectively ∆t(R1) between the triangles. To
compare these, also the time difference δt(R1,R2) (Eq. 2.29) between points marked with a
solid triangle and solid circle has to be calculated. If a trajectory possesses a periastron this
has to be taken into account according to Eq. 2.31. For example, the time delay between
simultaneous emitted photons at the white-filled circle and the red-filled triangle would be
∆T ∗(R2) −∆T (R1) with arbitrary Rref.

to be a small parameter. Following Beloborodov (2002), we substitute the impact parameter
in Eq. 2.14 with the relation given by Eq. 2.23, which leads to

Ψ =
b

rs
∫

u

0
dur [1 − x(2 − x)

u2
r(1 − ur)

u2(1 − u)
]

−1/2

, (2.33)

where
x(2 − x) = u2

(1 − u) sin2 α . (2.34)

Equation 2.33 can now be simplified using the binomial approximation:

Ψ ≈
b

rs
∫

u

0
dur [1 +

1

2
x(2 − x)

u2
r(1 − ur)

u2(1 − u)
]

=
b

rs
u [1 + x(2 − x)

4 − 3u

24(1 − u)
]

(2.35)

This approximation only holds, if the second expression of the radicand in Eq. 2.33 is smaller
one, which is fulfilled for u < 2/3. However, this is no issue as for the approximation derived
in the following the upper limit for u is below that value.
In the next step we insert Eq. 2.35 into the expansion of

y ∶= 1 − cos(Ψ) , (2.36)
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leading to the following expression (Beloborodov, 2002):

y = 1 − 1 +
Ψ2

2!
−

Ψ4

4!
+O(x6

)

=
x

1 − u
− u2

[
1

112
(

x

1 − u
)

3

+
1

224
(

5

3
− u)(

x

1 − u
)

4

+O(x5
)]

(2.37)

Taking only the linear term in x in Eq. 2.37, it provides the analytical approximation in the
more readable form:

Ψ = arccos(1 −
1 − cosα

1 − u
) = arccos(1 −

1 − cosα

1 − rs
R

) (2.38)

This equation requires that u ≤ 1/2 (and accordingly R ≥ 2rs) for arbitrary α ≤ π/2. Note that
this limitation makes it necessary to redefine the critical impact parameter and the critical
radius as rc < 2rs (Eq. 2.19). Therefore we set rc = 2rs in case of the approximation and
accordingly

bc = 2
√

2 rs =
√

2 rc . (2.39)

Keep in mind that this redefinition also changes the equations (Eq. 2.25 & Eq. 2.26) for the
maximal emission angle αmax and Ψmax.
By combining the approximation Eq. 2.38 and Eq. 2.23, we find (see Beloborodov, 2002)

r(Ψ) = [
r2

s (1 − cos Ψ)2

4(1 + cos Ψ)2
+

b2

sin2 Ψ
]

1/2

−
rs(1 − cos Ψ)

2(1 + cos Ψ)
. (2.40)

It is important to keep in mind that Eq. 2.38 and Eq. 2.40 only describe the photon trajectory
up to the periastron even though this is not obvious by looking at these equations. To account
for trajectories with a periastron Eq. 2.21 has to be considered just like for the exact equation
of the photon trajectory (Eq. 2.11).
Also notice that in the expansion of y (Eq. 2.37) the x2-term vanishes, what explains the

high accuracy of this approximation as seen in Fig. 2.6, which shows the contours of the error
δβ/β, where

β = Ψ − α (2.41)

is the bending angle. For example, the error is less than 3% for R > 3rs and α ≤ π/2. The
highest accuracy is achieved for large radii and small emission angles and as expected the
error increases with increasing α and u. Beloborodov (2002) also states that this accuracy is
much higher compared to the approximation derived by expanding Eq. 2.33 in terms of small
rs/R. Furthermore, Fig. 2.6 shows the region in the α-u plane a neutron star withM = 1.4 M⊙

can occupy, where the maximal range of the mass to radius ratio u is based on Steiner et al.
(2013). For such a neutron star, the error is less than 9%.
The equations for the time delay can be approximated with the same approach as above.

Using the substitution given in Eq. 2.13 and using the binomial approximation the time delay
in Eq. (2.28) rewrites as

∆t = rs∫

u

0
dur

1

u2
r(1 − ur)

⎧⎪⎪
⎨
⎪⎪⎩

[1 −
b2

r2
s

1

u2
r(1 − ur)

]

−1/2

− 1

⎫⎪⎪
⎬
⎪⎪⎭

≈ rs∫

u

0
dur

1

u2
r(1 − ur)

{[1 +
1

2

b2

r2
s

1

u2
r(1 − ur)

] − 1}

= x
rs

u(1 − u)
− x2 rs

2u(1 − u)
.

(2.42)
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Fig. 2.6.: This figure (adapted from Beloborodov, 2002, Fig. 2) shows the accuracy of the
analytical approximation (Eq. 2.38) by giving the contours of the error δβ/β, with the bending
angle β = Ψ−α, depending on the emission angle α and the inverse emission radius rg/R. The
contours are given in logarithmic steps of 0.5. The gray and red areas relate to combinations
of α and u, for which there is no solution for the exact photon trajectory in Eq. 2.21 and
respectively for the approximation (Eq. 2.38), where αmax is given by Eq. 2.25. The blue
shaded area confines the region a neutron star with M = 1.4 M⊙ can occupy (Steiner et al.,
2013). Note that in this figure the y-axis begins at u = 0.01. However, we would expect that
δβ = 0 for u = 0 and arbitrary α, as for u = 0 the apparent and real emission angle are equal
(α = Ψ). For numerical reasons the contours of δβ/β do not behave well for u → 0, therefore
the plot shows only values u > 0.01.

Keeping only the linear term in x we find

∆t = R(1 − cos Ψ) , (2.43)

which corresponds to the time delay one would expect in flat space time. As Poutanen
& Beloborodov (2006) point out, the accuracy of this approximation is not as good as for
Eq. 2.38, but is sufficient for most calculations. A higher accuracy would require to consider
higher orders already in the expansion of the time delay in Eq. 2.42, which, in combination
with Eq. 2.37, leads to (see Poutanen & Beloborodov, 2006)

∆t = R(1 − cos Ψ) [1 +
u(1 − cos Ψ)

8
+
u(1 − cos Ψ)2

8
(

1

3
−
u

14
)] . (2.44)

2.3. Flux
In the previous sections (2.1 & 2.2) of this chapter the properties of photon trajectories
in a general relativistic framework using the Schwarzschild metric were discussed. Besides
gravitational light bending and time delays there are other relativistic effects, which have to
be accounted for to describe observations appropriate. These effects will be motivated and
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2. Theoretical background

partly derived in this section and eventually we obtain an equation for the observed flux of a
(fast) rotating compact object a distant observer measures considering all previously discussed
relativistic effects.

2.3.1. Gravitational Redshift
The gravitational redshift, which is a consequence of Einsteins Principle of Equivalence, de-
creases the energy of photons and accordingly their frequency while they propagate out of
the gravitational potential of a gravitating mass. The deeper the potential the photon has
to overcome, the higher the redshift. Hence this effect is especially relevant for massive and
compact objects. In this section the derivation of the gravitational redshift is outlined and
mainly based on the description of Carroll (2004).
The frequency ν of a photon, which is traveling along the path xµ(λ) (see Sec. 2.1 & 2.2),

measured by an observer moving with the four-velocity Uµ is given by

ν = −gµνU
µdxν

dλ
. (2.45)

The four-velocity also fulfills the relation

UµU
µ
= gµµU

µUµ = −ε , (2.46)

where ε is constant. We now consider a stationary observer in Schwarzschild coordinates,
which means that the three spatial components equal zero leaving only the U0 component,
which can be determined to

U0
= ε(1 −

rs

r
)
−1/2

(2.47)

by using Eq. 2.46 and the according entry of the Schwarzschild metric (Eq. 2.1). This relation
combined with Eq. 2.45 leads to

ν = −g00U
0 dt

dλ

= ε(1 −
rs

r
)
−1/2 (2.48)

We are now interested in the ratio of the frequencies of a photon emitted at radius R and
observed by a distant observer, which can be obtain from Eq. 2.48:

νobs

ν0
= (1 −

rs

R
)

1/2

, (2.49)

where νobs is the observed frequency of a photon at r → ∞, which was originally emitted
with the frequency ν0 at radius R. Also interesting is that this relation makes only sense
for photons emanated from radii exceeding the Schwarzschild radius, at which the redshift
approaches infinity.

2.3.2. Relativistic Doppler Shift & Aberration
Until now only gravitational effects were discussed, but there are also special relativistic effects
that have to be accounted for introduced by the relative motion of observer and the source
of the photons. In this case we consider the motion caused by the rotation of the object. To
transfrom values correctly from the frame of the source and that of the observer, the Lorentz
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Transformation has to be applied, which on the one hand causes the photons emitted from
the surface of a rotating object to be Doppler shifted by the factor

δ ∶=
ν′

ν
=

√
1 − β2

1 − β cos ξ
, (2.50)

where ν′ relates to the photon frequency in the corotating frame of the object and ν to the
fixed lab frame of the observer (from now on primed values correspond to the corotating
frame). β = v/c is the velocity of the spot on the object, where the photon is emitted and ξ is
the angle between the direction of the spot velocity and the emission direction of the photon.
On the other hand the Lorentz Transformation provides the following relation (see Poutanen
& Beloborodov, 2006)

cosα′ = δ cosα (2.51)

between the emission angle in the corotating and the lab frame, which relates to the relativistic
beaming/aberration causing the emission being directed along the direction of motion.

2.3.3. Lab Frame
To be able to give the equations of the previous section in a more concrete form we have to
choose a coordinate system for our lab frame. We will adopt the coordinate system Poutanen
& Beloborodov (2006) used, which is shown in Fig. 2.7. The unit vector n points from the
center of the object toward the position of the spot were the photon gets emitted. While
the object is rotating around its spin axis, which is chosen to coincide with the z axis, the
spot direction of motion is given by β. The direction of the photon at the point of emission
is denoted with the unit vector k0, where the angle between k0 and n is the real emission
angle α. While the photons propagate away from the object their direction changes due to
the effect of gravitational light bending. Only those photons propagating along the line of
sight, given by the unit vector k, at large distances arrive the observer. k is chosen to be
within the x, z-plane, where i is its inclination angle measured from the spin axis. The angle
between the line of sight and n, denoted with Ψ, is the apparent emission angle.
Having given the coordinate system we now can rephrase the previous derived equations ac-

cordingly, starting with the absolute value of the spot velocity β, which can easily determined
to be

β = 2πR
f

√
1 − u

sin θ , (2.52)

where R is the radius at which the photon emanates from and the spin frequency f already was
corrected for the redshift (Eq. 2.49). The second value we have to rephrase to determine the
Doppler factor (Eq. 2.50) is the angle ξ between the initial direction of the photon propagation
and the spot velocity. To obtain this value we first express k as

k = n cos Ψ +n� sin Ψ , (2.53)

where n� is that vector rectangular to n, which lies in the plane defined by n and k. Now
the initial propagation direction can be expressed in terms of k and n as follows:

k0 = n cosα +n� sinα

= n cosα +n� sin Ψ
sinα

sin Ψ
+n cos Ψ

sinα

sin Ψ
−n cos Ψ

sinα

sin Ψ

= k
sinα

sin Ψ
+n

sin(Ψ − α)

sin Ψ

(2.54)
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Fig. 2.7: Scheme of the
geometry of light bending
and its fundamental pa-
rameter. Dotted line re-
lates to the photon tra-
jectory. Adopted from
Poutanen & Beloborodov
(2006).

Explicitly writing down

n =

⎛
⎜
⎜
⎝

sin θ cosφ

sin θ sinφ

cos θ

⎞
⎟
⎟
⎠

(2.55)

and

k =

⎛
⎜
⎜
⎝

sin i

0

cos i

⎞
⎟
⎟
⎠

(2.56)

we can determine
cos ξ = k0 ○

β

β
=

sinα

sin Ψ
⋅ k ○

β

β

= −
sinα

sin Ψ
sinφ sin i ,

(2.57)

where the direction of the spot velocity is simply the unit vector in φ direction (β/β = eφ) and
accordingly β ○ n = 0. Now the Doppler factor is completely described by quantities within
the lab frame.
There is also and relation between Ψ and the other system parameters given by

cos Ψ = k ○n

= cos i cos θ + sin i sin θ cosφ ,
(2.58)
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which describes the periodical change of the apparent emission angle of the emitting spot with
the rotation of the object.
Furthermore, we also need an additional parameter to determine the impact point of the

photon on the observer sky as the impact parameter b only gives the projected distance to the
origin of coordinates. Therefore, we define the observer sky to be centered to the line of sight
with the two axis A and B, where A coincides with the y axis as ey ○ k = 0. Introducing an
azimuthal angle ρ, specifying the rotation around the line of sight, A and B can be written as

A = b cosρ and B = b sinρ , (2.59)

where ρ is defined by the following two relations:

cosρ =
[k × (n × k)] ○ ey

∣k × (n × k)∣

=
sin θ sinφ

√
sin2 θ sin2 φ + (sin i cos θ − cos i sin θ cosφ)2

(2.60)

sinρ =
∣[k × (n × k)] × ey ∣

∣k × (n × k)∣

=
sin i cos θ − cos i sin θ sinφ

√
sin2 θ sin2 φ + (sin i cos θ − cos i sin θ cosφ)2

(2.61)

2.3.4. Observed Spectral and Bolometric Flux
In the previous sections of this chapter the special and general relativistic effects were dis-
cussed, which occur for photons emitted in the vicinity of compact objects. In this section,
which mainly follows the description of Poutanen & Beloborodov (2006), we finally obtain
the observed flux from a spot on the surface of the object accounting for these effects. The
spectral flux at a photon energy E is given by

dFE = IEdΩ , (2.62)

where IE is the specific radiative intensity and dΩ the solid angle, both in the lab frame. The
solid angle can be expressed as

dΩ =
δ

1 − u
cosα

d cosα

d cos Ψ

dS′

D2
, (2.63)

where dS′ is the area of the spot in the corotating frame and D the distance from the object
to the observer. Further, we can determine d cosα/d cos Ψ to be

d cosα

d cos Ψ
= 1 − u , (2.64)

using Eq. 2.23 and the approximation given in Eq. 2.38. Note that Eq. 2.63 only applies to
spots, whose surface vector dS aligns with the position unit vector n or in other words, to
spots on a sphere. In general one can write

dΩ = cosγ′
dS′

D2
, (2.65)
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where γ′ is the emission offset angle in the corotating frame given by

cosγ′ = dS′ ○ k′0/∣dS
′
∣ (2.66)

and respectively
cosγ = dS ○ k0/∣dS∣ (2.67)

in the lab frame. The relation between dS and dS′, and between k0 and k′0 is given by
a Lorentz transformation (Poutanen & Beloborodov, 2006). For spots on a sphere α ≡ γ
and Eq. 2.63 equals Eq. 2.65 using Eq. 2.64. Based on the Liouville’s theorem for curved
spacetime (see, e.g., Misner et al., 1973) the relation between the observed intensity and the
local intensity I ′E′(γ

′) measured in the corotating frame is:

IE = (
E

E′
)

3

I ′E′(γ
′
) , (2.68)

where the ratio of the observed and emitted photon energy is given by

E

E′
= δ

√
1 − u , (2.69)

a combination of the Doppler shift (Eq. 2.50) and the gravitational redshift (Eq. 2.49). Putting
everything together the spectral flux reads as

dFE = I ′E′(γ
′
) δ3

(1 − u)3/2 cosγ′
dS′

D2
. (2.70)

By integrating Eq. 2.68 over the energy we get the relation between the observed and local
bolometric intensity:

I = (
E

E′
)

4

I ′(γ′) , (2.71)

with which the bolometric flux can be written as:

dF = I ′(γ′) δ4
(1 − u)2 cosγ′

dS′

D2
(2.72)

Also notice that the equations for the spectral and the bolometric flux (Eq. 2.70 and
Eq. 2.72) do not account for time delays caused by different propagation paths of photons
(see Sec. 2.2.2) emitted at different phases φ. To obtain the flux at the observed phase φobs
one has to follow the relation

dF̄ (φobs) = dF (φobs −∆φ) , (2.73)

where ∆φ is given by
∆φ = 2πf∆T . (2.74)
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Chapter 3

Implementation

In this Chapter, the implementation of the theoretical formulas discussed in Chap. 2 will be
explained. After a short outline of the basic structure of the program, the single modules
will be focused on in more detail. The intention of this chapter is to give an overview of the
program deriving the observed flux and its modules, and a general understanding how the
theoretical equations discussed in Chap. 2 were implemented. The code itself is written in Isis
(Houck & Denicola, 2000), a script language using the S-Lang1 interpreter. In this chapter
no actual code will be shown. For a list of functions related to the program and their usage
see App. C.
Figure 3.1 shows a sketch of the structure of the program, which is divided into modules

containing the the different calculation steps. The boxed numbers correspond to the individual
sections in this Chapter, in which the according module is discussed.

Parameter (Sec. 3.1):
At the very beginning all important physical as well as code related parameters are
stored into a Struct_Type, which will be passed to all following modules (see App. C,
lb_par_init).

Object (Sec. 3.2):
After the parameters have been specified, the geometrical structure of the object is
built, which is sampled by small surface elements.

Mapping (Sec. 3.3):
The mapping module creates a lookup table for the individual values of the photon
trajectory. This module is independent of the object module.

Interpolation (Sec. 3.4):
To obtain the parameters of the photon trajectory at a specific point, the values within
the lookup table have to be interpolated.

Projection (Sec. 3.5):
The projection module is the core of the program performing the actual projection of
the defined object onto the observer sky for each rotation phase. It projects the locations
of the individual surface elements of the object by interpolating the trajectory values
stored in the lookup table.

Overlap & oversize (Sec. 3.6):
An optional step is the search for overlaps, in which for each phase those regions of
the object are identified, which would overlap in the observer plane.

1See http://www.jedsoft.org/slang/
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parameter

object mapping

projection

interpolation

surface element
flux

flux(t,E)

overlap
oversize

3.6

3.7

3.7

3.5

3.4

3.3

3.1

3.2

Fig. 3.1.: Structure of the program, where the projection is the core module. The solid
arrows connecting the individual modules indicate their dependencies, e.g., the object and the
mappingmodule are independent. Dashed arrows relate to optional steps. For modules marked
with red ellipses, the program provides plotting functions. The boxed numbers correspond to
the individual sections in this Chapter, in which the according module is discussed.

Surface element flux (Sec. 3.7):
The first of two steps to calculated the observed flux, in which the flux of every single
surface element is calculated based on a given emission profile.

Flux(t,E) (Sec. 3.7):
In the next step, the flux portions of the surface elements are summed up according to
a given time and energy grid, resulting in a time and energy resolved flux matrix. The
obtained flux also distinguishes between the different parts of the object.
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Plotting (App. C):
Additionally, the program provides plotting functions to visualize the projection, the
projection combined with the surface element flux and the time resolved flux.

Storing (Sec. B):
Furthermore, it is possible to save and load the results of each of the individual modules.

3.1. Parameter
In this very first step all important parameter concerning the characteristics of the object
are set, which in this case is a neutron star. Included are all general information about the
neutron star, like its radius R, mass M and spin frequency f. Additionally, Rac, hac and iac give
the radius, height and inclination, with respect to the neutron star spin axis, of the accretion
column(s) or hot spot(s). The inclination angle of the observer to the spin axis of the neutron
star and the distance are denoted with i and D. Besides these parameters describing the
system and the geometry of the object, there are also parameters specifying routine related
settings, e.g., which projection method should be used, where one can choose between the
exact relativistic photon trajectory (Eq. 2.11), the analytical approximation (Eq. 2.38) or
simply the geometrical projection. This list of parameters gets then passed to the other
modules, which select the required information. Note that in general all these parameters
are fixed throughout the whole routine with only two exceptions, rmin and rmax, defining the
minimal and maximal occurring radius, are changed by the function lb_obj_rrange. The
description of the individual parameters will be given in the respective section. A list of all
parameters is given in the description of lb_par_init in App. C.

3.2. Object
This program is designed to model a spherical neutron star with accretion columns2. In
this module the main purpose is to build the three dimensional geometrical structure of the
object. However, before going into details the general approach to model the structure will
be explained.
The basic idea is that the geometrical structure of the object represents the surface, from

which the photons emanate. We assume that this surface is solid, i.e., photons hitting it are
absorbed or, in other words, we only consider trajectories directly reaching the observer. The
object is fully described by two dimensional surfaces. It is convenient to sample these surfaces
in a way that the surface of the object is totally covered without any gaps, which can be
achieved by suitably describing the surfaces with triangles. The choice of triangles was made
as they are the simplest way to define a plane. Moreover, the surface vectors of triangles
can be easily determined, which are needed in several steps later on (e.g., emission profiles).
Eventually, the object builds up of surface elements, each containing the vertex vectors of
the underlying triangle, its surface vector3 and the barycentric vector4. Each surface element
represents a spot dS′ (see Eq. 2.70, Eq. 2.72) in the flux equation (Eq. 2.70, Eq. 2.72). To
calculate the flux, we also have to obtain the light bending parameters (see Sec. 2.2), which

2Note that in principle the program is capable to process any geometrical structure as long as it is given in
the format defined by lb_obj_init.

3The surface vector is defined by dS =N ∣dS∣, where N is the normal vector to the surface and ∣dS∣ its area.
4The barycentric vector is the vector to the centroid of a given surface.
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Fig. 3.2.: Sphere created with lb_obj_build_sphere seen under the inclination of 90○ (left)
and 0○ (right).

will be related to the according barycentric vector of each surface element at the according
phase φ (see Fig. 2.7). The geometrical structure of the specified object is constant. However,
the spinning of the object around its z-axis can be easily accounted for by rotating the vectors
to the according phase. Furthermore, the surface elements include information about their
affiliation (e.g., neutron star surface, accretion column wall/cap), which allows to calculate
the contribution of each of these individual parts of the object to the flux. In particular, the
object module provides two main functions to build the different parts of a neutron star.
Firstly, the lb_obj_build_sphere function, which creates a sphere with radius R, where the
number of surface elements this sphere is sampled with can be varied. Figure 3.2 shows an
example for such an sphere seen under the inclination of 90○ and 0○. Note that the vertices
of the surface elements are equidistant in θ and φ in spherical coordinates and therefore their
area is not constant.
The other function is called lb_obj_build_column and creates an accretion column or a

hot spot. The accretion column is composed of a cylindrical wall with radius Rac and height
hac, and a cap as seen in Fig. 3.3. The cap can be set to be either flat or convex, where the
radius of the convexity is

√
R2 − Rac2 + hac, with the neutron star radius R. It is also possible

to create a hot spot with this function by just generating the accretion column cap and set
its height to zero.
Additionally, there is a function lb_obj_build_ns combining the functionalities of the

previous two. lb_obj_build_ns builds a neutron star with two accretion columns, whose
radii and heights can be set individually. Furthermore, the accretion columns can be inclined
with respect to the spin axis of the neutron star according to the iac parameter. Figure 3.4
shows a neutron star with two antipodal accretion columns aligned with the spin axis. Note
that the composition of the sphere and the columns leads to hidden regions beneath the
column. The effort to create smooth connections is very high, especially if the accretion
columns are inclined with different angles. Moreover a smooth connection would not prevent
overlaps of projected surface elements on the observer sky. Therefore, a step, in which these
overlaps are identified is necessary either way and it is sufficient to just stick the columns onto
the neutron star.
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Fig. 3.3.: Accretion column created with lb_obj_build_column seen under the inclination
of 90○ (left) and 20○ (right). Red and blue lines relate to surface elements building up the
accretion column wall and accretion column cap respectively.

Fig. 3.4: Composition of a neutron star with
antipodal accretion columns provided by
lb_obj_build_ns.

3.3. Mapping

In this step a table for the different parameter of the photon trajectory is created. This is a
necessary step, as it is not possible to obtain the emission angle α and impact parameter b
for a given emission radius R and angle Ψ, if trajectories with periastron are allowed. The
reason is that for the given values (R,Ψ) it is not a priori known, whether a periastron exits
or not. Therefore, the periastron rp (Eq. 2.20) and the according Ψp has to be calculated
at first. The determination of the periastron, however, requires the impact parameter b,
which is unknown by then. But for each spot on the object, specified by (R,Ψ), we want
to determine the according emission angle and impact parameter. Hence, a lookup table is
needed. Fortunately, this lookup table only has to be two dimensional as the trajectories lie
in a plane (see Sec. 2.2). Moreover, a lookup table is even an advantage in the case that the
exact equations are used, as a time-consuming numerical integration for every spot at every
phase step can be avoided.
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Fig. 3.5.: Visualization of the table parameter. Right top and bottom panel shows the distri-
bution of the points in the r-α and r-Ψ plane, where each point contains the values (r,α,Ψ, b).
The left panel shows the same as the right top panel, but in polar coordinates. The black
shaded region mark the boundaries given by rmin, rmax, αmax(R) (Eq. 2.25) and accordingly
Ψmax(R) (Eq. 2.26). The value of the impact parameter of each point is given by its color.
The color scale for the values of b is shown in the left panel, to which the second y-axis
corresponds.

3.3.1. Lookup table
Now we will look more closely into the creation of the lookup table. To give the emission
angle and radius, and then calculate the according apparent emission angle with Eq. 2.21 and
the impact parameter with Eq. 2.23 is the most convenient approach to obtain all required
information about the photon trajectory. To create a lookup table this calculation is done
for nmr equidistant radii R within [rmin, rmax] and nma different emission angles within
[0, αmax(R)], where αmax(R) depends on the emission radius R (Eq. 2.25). In contrast to the
equidistant radii, the step size between each α is set to follow the distribution given by

αn = αmax(R) [1 − (1 −
n

nma − 1
)
ashape

] , (3.1)

where n ∈ [0,nma − 1], which is supposed to improve the coverage of evaluated points simul-
taneously in the r-α and r-Ψ plane. Otherwise, choosing equal step sizes for α as well, the
points in the r-Ψ plane would be concentrated at low values of Ψ, meaning that the distance
of adjacent Ψ’s close to the maximum Ψmax (Eq. 2.26) would be greater than those close to
zero by a huge factor. Figure 3.5 visualizes the table with its trajectory parameters calculated
based on the approximation (Eq. 2.38), for which ashape = 1.65 turned out to be the best value
(see Sec. 3.4). As seen in the left panel of Fig. 3.5 the coverage for large Ψ is noticeably lower
than for small Ψ. However, receiving photons from this region is unlikely, if the object is a
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Fig. 3.6.: Integrand fu,α(z) (Eq. 3.3) for different values of u (color coded) and different
emission angles (panels).

neutron star with reasonable sized accretion columns. Moreover note that this example table
underlying Fig. 3.5 has only (nma × nmr) = (50 × 50) points and is supposed for visualization
purposes. nma relates to the number of individual emission angles α and nmr to the number
of emission radii the table is created with. Besides the ratio of these numbers, which can be
chosen arbitrarily, the point coverage of the table depends on the minimal (rmin) and maximal
(rmax) radius of the object. The different photon trajectories also can be seen in Fig. 3.5,
especially in the left panel, as the impact parameter, which is color coded, is constant over
the whole trajectory. Meaning that points of the same color relate to the same trajectory.

3.3.2. Numerical solution to the exact photon trace
Besides the approximated solution (Eq. 2.38) for the photon trajectory, it is also possible to
create a table based on the exact photon trajectory (Eq. 2.11). Unfortunately the integrand
of Eq. 2.11 diverges for r → rp as shown in Sec. 2.2.3. Hence, Eq. 2.11 is unsuitable for simple
numerical integration methods. However, there is a substitution avoiding this divergence:

Ψ = ∫

1

0
dz fu,α(z) , (3.2)

where z ∶=
√

1 −R/r and

fu,α(z) = 2z sinα{cos2 α(1 − u) + z2 sin2 α [(2 − z2
)(1 − u) − u(1 − z2

)
2]}

−1/2
. (3.3)

Figure 3.6 shows the integrand fu,α(z) for different inverse emission radii u and for different
emission angles α in each panel. As can be seen, fu,α(z) does not diverge at the periastron,
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but forms a sharp edge for α = π/2 and z → 0. However, overall fu,α(z) is well behaved,
especially for u < 0.5. Therefore, it is sufficient to use simple integration methods to solve this
integral (Eq. 3.2). The standard method, which is used in the present case, is the Romberg
method adapted from Press et al. (1992, Sec. 4.3). The Romberg method solves Eq. 3.2
with high accuracy within appropriate time scales. Only for α → π/2 the calculation time
goes noticeably up for requested relative accuracies below ∼ 10−6 due to the steep slope.
Nevertheless, this accuracy is sufficient for our interests.

3.4. Interpolation
The mapping module, described in the last section, provides a table for all important param-
eters (r,α,Ψ, b) of the photon trajectory on a certain grid. After creating the object and
the lookup table, we want to obtain these parameters for a given point (R,Ψ) on the object,
which can be achieved by interpolation. In the following the interpolation method used in the
present routine is described.

3.4.1. Bilinear interpolation

Figure 3.7, which is basically a zoom in of the bottom right panel in Fig. 3.5, sketches the
different steps of the interpolation procedure to determine the emission angle α and impact pa-
rameter b related to a given point (R,Ψ). The basic idea is to perform a bilinear interpolation.
However, an additional step is necessary before a bilinear interpolation can be performed. The
reason is that the grid in the r-Ψ plane of the table is not completely rectangular, which is a
requirement for this kind of interpolation. As can be seen in Fig. 3.7, the points are aligned
in columns of constant radius. Based on this condition, two vertices with the same r1 < R
and Ψ1 ≤ Ψ < Ψ2 can be found. Afterwards, the according second two vertices with r2 > R at
Ψ1 and Ψ2 are obtained by interpolation. These four vertices now compose the rectangular
required for the bilinear interpolation, with which eventually α and b are determined. Note
that for Ψ → Ψmax it can happen that there is no vertex (r1,Ψ2) with Ψ2 > Ψ. In that case
the two left sided vertices relate to the two last points in that r-column and the second step
in the bilinear interpolation is an extrapolation instead (see Fig. 3.7, right panel).

3.4.2. Interpolation accuracy

A simple method to get a feeling for the quality of the interpolation is to obtain the in-
terpolated values αI and bI for a given point (R,Ψ), then calculate b(R,αI) (Eq. 2.23) and
Ψ(R,αI) (Eq. 2.21) and compare these with the given Ψ and bI. Figure 3.8 shows the result
for this testing procedure for various combinations of R and Ψ. Obviously the accuracy of
the interpolated Ψ value significantly decreases the closer it is to the maximum value Ψmax.
The reason is that dΨ/dα and accordingly the changes between each grid point are highest
for α → αmax. Therefore, the accuracy of the interpolation in this region is worse, as linear
interpolations are used. In principle, the interpolation to obtain the two missing vertices could
be replaced by a polynomial interpolation and additionally using more points, but doing so
shows no noticeable improvements in the accuracy. Another way to account for this loss in
accuracy is to increase the point coverage in this region in the table, which was already done
(see Sec. 3.3) by introducing a parameter ashape, which controls the distance between two ad-
jacent points (Eq. 3.1). Note that the values of the accuracy relates to interpolations based on
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Fig. 3.7.: Sketch of the individual interpolation steps based on a given table (see Fig. 3.5).
For a given point (R,Ψ) (cross), in the beginning the two left sided vertices (r1,Ψ1) and
(r1,Ψ2) (black circles) are identified in the table, where the circles mark the points included
in the table and the gray line relates to Ψmax. For a bilinear interpolation also (r2,Ψ1) and
(r2,Ψ1) (squares) are needed. As these are not included in the table, the according values
of the emission angle αij and impact parameter bij , with i = 1,2 and j = 2, are obtained by
interpolation of the surrounding points in the r2 column (red circles). The next steps follow
those of a bilinear interpolation. At first αi and bi at (R,Ψi) (blue diamonds) for i = 1,2 are
determined by linear interpolation of the two according upper (i = 2) and lower (i = 1) vertices
(r1,Ψi) and (r2,Ψi). Finally α and b related to (R,Ψ) are determined by interpolating, or if
necessary extrapolating (right panel), these two points (blue diamonds).

the table shown in Fig. 3.5, which has only 50×50 points for a large range of radii (rmin = 2rs,
rmax = 10rs). The accuracy significantly increases with increasing number of table points.

3.5. Projection

The projection module presented in this chapter is the core of the routine. This module
projects every surface element of the object at different preset phases onto the observer sky
using the previously calculated table of trajectory parameters. In addition to the given (R,Ψ)

values the according emission angle α, the Doppler factor δ and the emission offset angle γ
are provided, where γ is defined as the angle between the initial emission direction k0 and
the surface vector dS of the surface element. Besides these parameters, which are needed to
determine the observed flux, also the impact parameters A and B for the centroid and vertices
are calculated, which are necessary to deal with projection effects related to the finite spot
size. A and B are the x and y components of the impact parameter b on the plane of the
observer sky, where b =

√
A2 +B2. For a detailed discussion of these parameters see Sec. 2.3.3.
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Fig. 3.8.: Absolute and relative accuracy of the interpolation procedure based on the table
shown in Fig. 3.8. The top panels show the comparison between a given Ψ and Ψinterpol,
which is calculated using Eq. 2.21 and the interpolated value αinterpol, where the color relates
to different emission radii. The bottom panel shows the same for the impact parameter.

3.5.1. Types of Photon Trajectories
First of all we have a closer look at the entirety of the photon trajectories, which can be
classified into different regions. As seen in Fig. 3.9 there are four distinguishable regions.
Depending on the radius R of the object a critical photon trajectory can be specified, whose
periastron equals the radius of the object and therefore is a limit for trajectories exhibiting a
periastron. This limit can be quantified with the according limiting impact parameter

blim ∶= b(α = π/2,R)

=
R

√
1 − rs/R

,
(3.4)

similar to the critical impact parameter bc (Eq. 2.19). All trajectories with a smaller impact
parameter are without a periastron, meaning they end on the object surface.
Otherwise the trajectories exhibit a periastron. These trajectories can be separated again.

Each line in Fig. 3.9 corresponds to a photon trajectory. Noticeable is the region behind the
object, from the observer point of view, in which the trajectories intersect. A photon emitted
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Fig. 3.9.: The four panels in this figure show various photon trajectories (blue & green lines),
which can be classified in different regions separated by a maximally bent trajectory (black
line) with b = blim, where the periastron equals the radius of the object. There are trajectories
without a periastron (green lines) and those with periastron (blue lines). For the later ones
there is also a region, in which photons have two possible trajectories to reach the observer
(blue intersecting lines). Photons emitted in the red region can not reach the observer. Note
that all trajectories are calculated using the analytical approximation (Eq. 2.38).

at such an intersection can follow two possible trajectories to reach the observer, where the
relation between the two solutions is Ψ2 = 2π−Ψ1 for the same radius. The apparent emission
angle at the periastron Ψp is always less than 180○ for R < 2rs, and hence, at least one of the
two possible trajectories exhibits a periastron. This region enlarges for decreasing radii of the
object in expand of the region, in which there is only one possible trajectory.
Additionally, there is also a region directly behind the object with respect to the observer

sky, from which no photon can reach the observer. Note that it can not easily be determined,
whether or not there are solutions for a given point (R,Ψ). If there exists a solution for a
photon emitted at (R,Ψ), the other solution (R,2π−Ψ) cannot be ruled out. Therefore, both
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(black dot) can follow to reach the
observer.

possibilities have to be considered.
Furthermore, the restriction of R > 2rs prevents regions with three or more potential tra-

jectories. The top left panel of Fig. 3.9 shows the limit R = 2rs, in which a trajectory with
the deflection angle 180○ exists. Note that this limit relates to the analytical approximation
(Eq.2.38). The approximation, however, always overestimates the light bending effect and
therefore there are also no regions with more than two solutions for the exact calculations, if
R > 2rs.

3.5.2. Projection Procedure
The basic projection procedure follows the idea of this classification. After rotating the
object to the current phase, for the centroid of each surface element the coordinate (R,Ψ) is
determined, where Ψ is given by Eq. 2.58. Afterwards, the trajectories regarding (R,Ψ) and
(R,2π − Ψ) are calculated and matched with the limiting trajectory defined by blim. There
is an additional criterion regarding photons in order to be emitted in the first place, namely
that the emission offset angle γ′ in the corotating frame has to be less than π/2. Otherwise
the photon would be emitted toward the surface. For each possible solution the remaining
parameters of the trajectory are calculated with respect to the centroid of the surface element.
In the end for each solution of each surface element’s centroid, the parameters (α, γ, δ,A,B)

are known. In addition also the impact parameters of the vertices of the surface elements are
determined, which are needed for further selections (e.g., overlaps, see Sec. 3.6).

3.5.3. Uniqueness of the Trajectory for Neutron Stars
with Accretion Columns

Note that it is very unlikely for one surface element to have two actual solutions k1
0 and k2

0,
as this case would require that the according emission offset angles, γ1 as well as γ2, are
smaller than π/2. This condition is only fulfilled, if the surface vector dS is directed toward
the center of mass of the gravitating object, meaning dS ○ n/∣dS∣ < 0, where the direction
range is limited by π − (γ1 + γ2) = α1 + α2 − π as shown in Fig. 3.10. This range shrinks with
decreasing emission radius R and Ψ. The reason for this restriction is that at least one of the
two solutions relates to a trajectory with an emission angle α > π/2 and k1

0 as well as k2
0 lie

in different semi-planes of the k-n plane divided by n. Only a photon source detached from
the neutron star surface could fulfill this requirements and provide two trajectories reaching
the observer.
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Fig. 3.11.: Geometrical (left panel) and relativistic (right panel) projected neutron star with
R = 10 km and M = 1.35 M⊙ seen under an inclination of i = 80○ at a phase φ = 0.06, where
φ = 0 corresponds to the phase, in which the upper accretion column is in the very front. The
two antipodal accretion columns have a radius RAC = 3 km, a height of hAC = 3 km and an
inclination of iAC = 45○ with respect to the spin axis of the neutron star.

3.5.4. Relativistic versus Geometrical Projection
Figure 3.11 shows the comparison of the geometrical and the relativistic projection based
on the analytical approximation (Eq. 2.38). The most obvious effect of the relativistic light
bending is the apparent enlargement of the projected object radius compared to its real radius,
where the apparent radius is blim. The enlargement is connected to the visibility of a higher
fraction of the surface, which is given by

Sv/S =
1

2
(1 − cos Ψp)

=
1

2(1 − u)
,

(3.5)

for the approximation (Eq. 2.38). For the relativistic example shown in Fig. 3.11 the fraction
Sv/S = 0.83, which is 33% higher than in the geometrical case. For example, both poles of
the spin axis are visible in the relativistic case in contrast to the geometrical one. Moreover,
this effect also increases the visibility of the accretion columns. Due to the relativistic light
bending the wall of the rear accretion column is completely visible, whereas in the geomet-
rical projection only a small fraction is visible. Also noticeable is that there is a significant
stretching in tangential direction of surfaces close to the maximal apparent emission angle.

3.6. Overlaps
In Sec. 3.2 it was already mentioned that there are surface elements, which overlap in the
observer sky. For example, the upper accretion column in Fig. 3.11 covers parts of the neutron
star surface. To avoid including photons emitted from this covered region into the further
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calculations, the according surface elements have to be determined. The approach to identify
these overlaps implemented in the present routine and related issues are discussed in the
following.
To find overlapping regions in the observer sky, we look at the projections of the individual

surface elements. We now have to compare each of those projections and spot those, which are
overlapping in the A-B plane. It is not necessary to compare every projected surface element
to each other, but only those very close. Looking at the individual projection of the surface
elements one can a priori exclude those elements from the comparison procedure, between
which the distance is greater than the sum of their circumferences. Taking advantage of this
fact reduces the number of individual comparisons dramatically. Therefore, the observer sky
is divided into cells by overlying it with a grid, where the size of the cells is defined by the
maximal occurring circumference of the projected surface elements. Then a given projection
only has to be compared to those within the same cell and those of the next neighbor cells.
The basic idea of the comparison itself is to check whether or not for a given projection, there
exists another projection, whose centroid is enclosed by the projected vertices of the given
surface element. The algorithm5 used to perform this check is based on Orwant et al. (1999,
Chap. 10). Two surface elements are defined to overlap, if the centroid of the projection of
one of these surface elements lies within the projected area of the other one. The next step
is to determine, which of these two overlapping elements is covering the other, which can be
achieved by comparing the apparent emission angles accordingly.
Note that this procedure includes approximations, namely the definition of overlap. A more

accurate way would be to perform the check for every vertex instead of only for the centroid.
However, this would increase the processing time at least by a factor three. Furthermore, in
case of an overlap, the contribution of the covered surface element to the flux is completely
ignored, instead of only the covered fraction. The calculation of the real covered fraction
would be very complex, as the covered fraction in the observer sky does not correspond to
the covered fraction in the corotating frame. The reason for this mismatch is related to the
deformation of the plane of the surface element introduced by the projection (see below).
However, the error introduced by these assumptions can be reduced by downsizing the surface
elements. Furthermore, this procedure is not always necessary. For example, in the case of
a neutron star with accretion columns, where only emission from the accretion columns is
considered. In order to test, whether or not it is necessary to find overlaps, the projection can
be plotted (see, e.g., Fig. 3.11) with the provided plotting functions (see App. C).

3.6.1. Deformation
Besides these general effects of the light bending described in the last section, there are also
effects related to the finite size of the surface elements, with which the object is sampled.
The relativistic projection can cause a deformation of the plane of a surface element, such
that the projection of the vertices, defined in the corotating frame, no longer encloses the
projected surface. Figure 3.12 shows an example of such a deformation. For simplicity we
consider a linear surface element, which is specified by the two vertices (R,Ψ1) and (R,Ψ2).
In the projection procedure described above, we normally only project these vertices and
the according centroid. In Fig. 3.12 for every point of the surface element the according
impact parameter is given. Note that there are points in that plane with impact parameters
outside the range enclosed by the vertices. Therefore, the projection of the vertices of the

5In our case the surface elements are triangular, which simplifies this procedure.
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Fig. 3.12.: Scheme showing the deformation of the plane of a surface element two dimensionally
simplified. (R,Ψ1) and (R,Ψ2) relate to the vertices of the surface element and (RM ,ΨM) to
the location with the minimal impact parameter, where the values of the impact parameter
are color coded. Additionally the trajectories to the three mentioned points are drawn.

original surface element do not define the projection properly. This deformation effect can
be minimized by reducing the size of the surface elements, as the degree of the deformation
depends on the spread of the radius R combined with the spread of the emission angle α over
the surface element (see Fig. 3.5).

3.6.2. Magnification

Another effect related to the finite size of the surface elements is the occurrence of excessively
magnified projected surface elements, where the diameter of the projected surface can reach
2blim. This magnification originates from large angles between the individual k-n planes of the
different vertices of a surface element and the fact that the relativistic light bending enlarges
distances in radial direction. This effect especially occurs for large surface elements or ones
near or along the line of sight on the other side of the gravitational center (Ψ → π). The
second case, however, can be neglected for neutron stars with accretion columns as this region
is not visible or would require surface elements, whose surface vector are directed towards
the neutron star (see Fig. 3.9). Therefore, a sufficiently small size of the surface elements is
enough to minimize this effect.
It is worth mentioning that the two effects described above do not influence the calculations

of the flux, as neither the shape nor the projected size of the surface elements are needed for
its calculation (Eq. 2.70, Eq. 2.72). In contrary, the procedure of the overlap identification
relies on the projections of the surface elements and therefore these effects have to be taken
into account at this point. In this program, it is possible to set a maximum value par.magnilim
for the relative magnification dS/dS′ of the size of a surface element and to get a list of those
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surface elements, which exceed this limit. Elements in that list will be excluded from the
overlap procedure. Otherwise these deformed and oversized projected surface elements would
cause to find overlaps, which do not exist.

3.7. Flux
The last step is to calculate the observed flux based on the preparations described in the
previous sections. The calculation6 is divided into two steps. At first, the flux of each
individual surface element at every phase is determined based on the equation for the spectral
(Eq. 2.70) or bolometric (Eq. 2.72) flux. Additionally, the emission profile I ′ has to be
specified, which in general can be chosen arbitrarily. This routine provides the possibility to
choose isotropic and homogeneous emission (I ′ ≡ 1), or emission depending on the emission
offset angle γ′, where I ′(γ′) is either a uniform or a normal distribution with I ′(0) = 1.
Figure 3.13 shows an example for the relativistic projection at various phases of a neutron
star with isotropic and homogeneous emission from the two identical and antipodal accretion
columns.
In the second step the fluxes of the individual surface elements are combined to obtain an

overall time and energy dependent flux information. We are not only interested in the overall
observed flux, but also in the contribution of the individual parts of the object. Therefore
the routine provides also the contribution of the individual parts to the flux beside the overall
flux. This separation allows a detailed analysis and comparison. For example, we can create
a pulse profile and compare the contribution of each of the emitting parts. Figure 3.14
shows the pulse profile of the neutron star shown in Fig. 3.13 for every single part and their
possible combinations. Distinguishable are the contributions of the surface of the neutron
star (NS), the individual accretion column caps (cap) and walls (wall). Additionally, different
combinations are provided, namely the sum of the accretion column caps (pencil), the sum of
the walls (fan), the individual accretion columns (AC) in total and the overall contribution
of both accretion columns. In principle, it is also possible to define arbitrary regions on the
object surface.
To get a feeling for the impact of the choice of the number of surface elements (#SE) the

object is build up with (see Sec. 3.2) and the size of the mapping table (#R×#α), with which
the light bending parameters are interpolated (see Sec. 3.3, Sec. 3.4), we vary these parameters
for a given object. Figure 3.15 shows the pulse profile of Fig. 3.14 calculated with different
amounts of surface elements. In this case #SE relates to the number of surface elements the
accretion column is sampled with as the neutron star surface is not emitting in this case.
Also notice that the relative difference of the pulse profiles is approximately constant over all
phases. Furthermore, lowering the amount of surface elements reduces the mean flux, i.e., the
flux is underestimated.
Figure 3.16 shows the pulse profile of Fig. 3.14 based on different mapping tables with

varying number of points #R×#α. This figure shows that the impact is very small, although
the tables are very small. The explanation for this small impact is that the relation between
the apparent emission angle Ψ and the emission angle α is approximatively linear for small
values of α or respectively Ψ and therefore the bilinear interpolation (see Sec. 3.4) is very
accurate, also for only few grid points. Note that during the projection procedure (Sec. 3.5) a

6The important parameters regarding the flux calculation are stored in an own Struct_Type, where the
specification of spectral or bolometric flux is included. In the spectral case also information about the
energy grid can be given (see App. C).
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Fig. 3.13.: Projection of a neutron star (R = 10 km, M = 1.35 M⊙, i = 80○, f = 1 Hz) with
isotropic and homogeneous emission (I ′ ≡ 1) from the antipodal accretion columns (RAC =

3 km, hAC = 3 km, iAC = 45○) at different phases φ. The color relates to the Doppler factor δ
and the brightness to the strength of the bolometric flux.
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Fig. 3.14.: Pulse profile of the neutron star shown in Fig. 3.13. The shown flux is considered
to be bolometric, where the emission is isotropic and homogeneous (I ′ ≡ 1), and normalized
to the maximum flux. Parts with index 1 relate to the upper accretion column and index 2
to the lower one.

limiting impact parameter blim (Eq. 3.4) according to the radius of neutron star was defined.
This definition also results in a limiting apparent emission angle Ψlim, which is always smaller
than the maximal angle Ψmax. Hence, angles Ψ within [Ψlim,Ψmax] are not allowed. In this
case the radius of the neutron star is sufficiently large to ensure that Ψlim is small enough to
avoid angles within the region, in which the accuracy of the interpolation drops as described
in Sec. 3.4. However, Ψlim → Ψmax for R → 2rs and therefore the impact of the size of the
mapping table increases with decreasing radius of the object.
In summary, the developed program presented in this Chapter is suitable to determine

the time and energy dependent observed spectral or bolometric flux of a neutron star with
accretion columns or hot spots accounting for general relativistic effects, namely gravitational
redshift (Sec. 2.3.1) and moreover light bending (Sec. 2.2), and special relativistic effects,
Doppler shift and aberration (Sec. 2.3). The program was designed to especially use the
analytical approximation (Sec. 2.2.3) for the photon trajectory, which has the restriction
R > 2rs. Although the exact solution for the photon trajectory is not a subject to that
restriction, the implemented numerical procedure solving the integral (Eq. 2.11) is optimized
for the same range of R (Sec. 3.3.2). Therefore, the program in general request that R > 2rs.
Nevertheless, this limitation only exclude a small fraction of possible mass to radius ratios of
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Fig. 3.15.: Pulse profile for different number of surface elements (#SE). The pulse profiles in
the top panel correspond to the overall pulse profile in Fig. 3.14, where the flux is normalized
to the maximal flux in the pulse profile with the highest #SE. The bottom panel shows the
relative differences of each pulse profile to the one with the highest #SE.

neutron stars as seen Fig. 1.2. If needed, an extension for radii smaller then two Schwarzschild
radii can be easily implemented.
Furthermore, the processing time to obtain the flux observation of a given object is very

small. The processing time for the projection procedure at one phase mainly depends on the
chosen number of surface elements and the size of the mapping table. This time has to be
multiplied with the number of phases. Overall the processing time7 to obtain the flux of an
object over several phases ranges between several seconds and several minutes for adequate
chosen settings.

7The calculations were performed on a machine with an Intel(R) Core(TM) i5 (3.20 GHz).
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Fig. 3.16.: Pulse profile for varying sizes of the mapping table (#R×#α). The pulse profiles in
the top panel correspond to the overall pulse profile in Fig. 3.14, where the flux is normalized
to the maximal flux in the pulse profile with the highest #R ×#α. The bottom panel shows
the relative differences of each pulse profile to the one with the highest #R ×#α.

Note that in this program the time delay discussed in Sec. 2.2.2 is not accounted for.
However, the effect of the time delay, or more precisely the resulting phase shift ∆φ (Eq. 2.74),
is only important for high spin frequencies f ′ of the neutron star. This effect causes photons
emitted simultaneously from the object to arrive the observer at different times. The higher
the frequency the more important this effect gets. The maximal possible observed phase shift
for a neutron star of radius R and an intrinsic spin frequency f ′ based on the approximated
time delay (Eq. 2.43) is given by

∆φmax = 4π
R

c
√

1 − u
⋅ f ′ (3.6)

where the expression (1 − cos Ψ) = 2 as this is the maximum value this expression can have.
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Considering a radius R = 16 km, for the entirety of the neutron star with accretion columns,
and a mass M = 1.4 M⊙ for the neutron star we get

∆φmax ≈ 8 ⋅ 10−4
(
f ′

Hz
) (3.7)

The maximal observed phase shift is less than 0.013% for such a neutron star with f ′ =
1 Hz. Hence, the calculations performed with the presented program are sufficient for small
frequencies, for which the time delay can be neglected.
To also account for the time delay, the flux contributions of the single surface elements have

to be phase shifted accordingly and summed up based on a new phase grid. Note that the
phase shift introduces an individual phase grid for each surface element.
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Chapter 4

Results

In this Chapter we have a closer look at the observed flux of a neutron star determined with
the program described in Chap. 3 giving an insight in the possibilities of the program. We are
choosing a setup for our neutrons star and vary one specification, where the other parameters
are fixed, and look at the individual pulse profiles. The basic setup is a neutron star with a
radius R = 10 km and a mass M = 1.35 M⊙, resulting in a Schwarzschild radius rs = 4 km
and a mass to radius ratio rs/R = 0.4. The neutron star is spinning with a period of 1 sec
(f ′ = 1 Hz), where the inclination of the line of sight to the spin axis is i = 80○. Further, the
isotropic and homogeneous emission (I ′ ≡ 1) comes from the two antipodal accretion columns,
which both have a radius RAC = 3 km and height hAC = 3 km, and are inclined to the spin axis
of the neutron star by iAC = 45○. Besides the overall pulse profile of this neutron star, also
the pulse profiles of the individual parts (see Sec. 3.7) will be given to show the contribution
of each of these parts. Note that in the case of constant intensity (I ′ ≡ 1) the flux per area is
constant. Furthermore, the flux scale in all figures in this chapter is relative to the respective
one in the top left panel.

4.1. Comparison of the projection methods
At first we look at the pulse profiles based on the different projection methods provided by
the program. Figure 4.1 shows the pulse profile using the relativistic projection determined
with the exact photon trajectory (Eq. 2.11) and with the approximated photon trajectory
(Eq. 2.38). Furthermore, the figure shows the pulse profile obtained with simple geometrical
projection, i.e., Ψ ≡ α. The relative difference of the two relativistic methods is less than
0.4% and shows the high accuracy of the analytical approximation suggested by Beloborodov
(2002), whereas the shape of the geometrical overall pulse profile is totally different compared
to the relativistic cases and also the mean flux is much lower. As seen in Fig. 3.11, the light
bending causes the accretion columns to be visible over a longer time, which results in a
broadening of the peaks seen in the individual pulse profiles, especially for the emission from
the walls of the accretion columns. Disregarding the difference of their minimal and maximal
flux, the shape of the relativistic as well as the geometrical fan beam contribution looks similar:
In both cases there are two peaks at phase φ ∼ 0.25,0.75. Distinguishing the contribution,
however, of the individual walls of the accretion columns one sees that in the relativistic case
each contribution is single peaked in contrast to the geometrical case. Fig. 3.13 shows that
both relativistically projected accretion columns are visible over the whole rotation period.
Moreover, the flux of the individual walls peaks when the according accretion column is in the
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Fig. 4.1.: Pulse profiles of a neutron star (R = 10 km, M = 1.35 M⊙, i = 80○, f = 1 Hz) with
isotropic and homogeneous emission (I ′ ≡ 1) from the antipodal accretion columns (RAC =

3 km, hAC = 3 km, iAC = 45○) based on different projection methods. The top panel shows
the pulse profile according to the exact relativistic projection (Eq. 2.11), the second panel the
approximation (Eq. 2.38) and the bottom panel the geometrical projection. In the third panel
the relative difference of the overall pulse profile of the second to the first panel is given.
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very back. In the geometrical case, the accretion column walls are only partly visible at these
phases, i.e., a certain part of the emission is covered by the neutron star reducing the observed
flux and causing the double peaked pulse profile. Overall, Fig. 4.1 shows the importance to
account for the effect of light bending and the accuracy of the analytical approximation.

4.2. Variation of the Accretion Column Settings
Now we investigate the impact of the size and the location of the accretion columns on the
neutron star onto the pulse profile. In Fig. 4.2, the inclination i of the line of sight with respect
to the spin axis of the neutron star and the inclination iAC of the accretion columns with
respect to the spin axis is varied. For small i the variability of the individual contributions is
small and increases with increasing inclination. Furthermore, the cap of the second accretion
column gets more and more visible, increasing the contribution of the according accretion
column, until the pulse profile of both accretion columns are identical for i = 90○. In the
latter case the observer looks edge on to the neutron star with its identical and antipodal
accretion columns leading to the high symmetry in the pulse profile. On the other hand, the
increase of iAC also increases the variability. The ratio of the mean flux of the two accretion
columns, however, remains nearly constant. The variability increases due to the higher change
of the location of the accretion column on the neutron star. For example, if the magnetic field
is aligned to the rotation axis the system would show now changes over a rotation as the
accretion column would just rotate around its symmetry axis. The ratios of the contributions
remain similar as the accretion columns are identical and antipodal, and the inclination i is
close to 90○. In all cases, the mean flux of the overall pulse profile barely changes, similar to
the ratio of the fan and pencil beam.
A closer look at the pulse profile with i = 70○ (Fig. 4.2, left middle panel) reveals a narrow

peak in the profile of the second accretion column wall at φ = 1. At this phase this accretion
column is located behind the neutron star. This narrow peak is due to the special configura-
tion, where the inclination of the line of sight is close to the inclination of one of the accretion
columns. In the case that both inclinations coincide these peaks are most pronounced. Fig-
ure 4.3 shows that for i = iAC these peaks are always present. The explanation for these
extraordinary peaks is that for such configurations the wall of the according accretion column
is fully visible, seen as a ring1 around the neutron star as shown in Fig. 4.4. This ring effect
is only possible due to the light bending. While the accretion column is moving to the back
its projection is enlarged in tangential direction. The closer the accretion column is to the
very back the more of the wall gets visible and the greater the tangential enlargement, until
a whole ring is visible. The increase of the visible area combined with the fact that the ac-
cording surfaces are seen under small emission offset angles γ lead to the peak in the observed
flux. Furthermore, the fraction of the phase, in which this ring effect occurs, is rather small,
causing the peak to be narrow compared to the other peaks in the pulse profile. The closer the
accretion column is to the spin axis, the longer the ring is visible resulting in a broadening of
the peak. It is worth mentioning that this effect particularly applies for the accretion column
wall. To see this effect for the cap of the accretion column or a hot spot their size has to be
unreasonable large, covering over ∼20% of the neutron star surface (see Eq. 3.5).
Further, Fig. 4.3 shows the case of unequal inclinations for the two accretion columns,

namely the first one is fixed to iAC1 = 45○, where the inclination iAC2 of the other accretion

1Similar to the Einstein ring (Einstein, 1936) observed in gravitational lens systems.
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column is varied. Therefore, only the contribution of the the second accretion column changes.
The shape of the fan beam is similar to the shapes we already saw in the previous plots,
however, the profile of the pencil beam differs. The asymmetry in the inclinations of the
accretion columns causes the slopes of the peaks to be unequal. In all previous plots, e.g.,
in the four bottom panels of Fig. 4.3 the pulse profile of the pencil beam is flat around the
phases, where the pulse profiles of the individual caps intersect. This flatness is due to the
equal slopes of the peaks. For unequal inclinations of the accretion columns, however, the
slopes are different caused by their different rotational velocities. The difference in the slopes
results in different shapes of the pencil beam peaks, especially, if the contributions of both
caps are of the same order as for iAC2 = 60○. Furthermore, this effect is most noticeable for the
pencil beam as its emission is more focused in one direction than for the fan beam resulting
in a steeper slope of the pencil beam peaks.
In Fig. 4.5, we now change the size of the accretion columns and their radius to height ratio

and look at the resulting pulse profiles. First of all, the mean flux drops significantly with the
reduction of the size as the emitting area is reduced. Furthermore, we again see that the shape
of the individual pulse profiles remains similar. For example, the fan beam in every panel
shows two peaks and their ratio remains similar. Furthermore, if one compares the two cases,
in which RAC = hAC, the ratio of the fan and pencil beam show no noticeable differences.
Therefore, the accretion column size mainly changes the scaling of the flux, at fixed height to
radius ratios. On the contrary, the ratio of the accretion column height to its radius mainly
influences the ratio of the contributions of the fan and pencil beam. The greater the radius
the higher is the contribution of the pencil beam compared to the one of fan beam. It is also
worth mentioning that the maximal fluxes of the two peaks of the fan beam occurring in most
pulse profiles described so far are equal, excluding peaks caused by the ring effect. The ratio
of the according dips changes. For the pencil beam this situation is vice versa, the minimal
flux of the dips are always equal, where the ratio of the peaks varies. This symmetry is due
to the fact that the accretion columns are either antipodal or of the same size or both.

4.3. Emission Profile I ′ = I ′(γ′)
Until now, we considered the emission from the accretion columns to be isotropic and homo-
geneous, i.e., I ′ ≡ 1. We now let the emission depend on the emission offset angle γ′ in the
corotating frame (see Sec. 2.3.3), where I ′(γ′) is following a normal distribution

I ′(γ′) = exp(−
γ′2

2σ′2
) , (4.1)

which is normalized such that I ′(0) = 1. In other words, the emission is focused into the
direction aligned with the surface elements normal vector dS′ (γ′ = 0), whereas the intensity
decreases for directions close to the surface plane (γ′ → 90○). Note that the intensity is not
constant and therefore the flux per area is neither.
Figure 4.6 shows examples for various values for the distribution width σ′. Starting from

the top left to the bottom right the width is reduced from very large to very small. This
decrease results in a decreased mean flux, as the flux per area is not constant in this case.
Moreover, there are significant changes in the shapes of the individual pulse profiles. The
profile of the fan and pencil beam in the panel with largest distribution width looks similar
to those shown in Fig. 4.5. The reduction of the width leads to an increase of the relative
variability of the individual pulse profiles. The further the distribution width decreases the

49



4. Results

i = 20◦
1

0.8

0.6

0.4

0.2

0

21.510.50

wall2

cap2

wall1

cap1
fan
pencil
AC2

AC1

overalliAC = 15◦

21.510.50

i = 70◦
1

0.8

0.6

0.4

0.2

0

iAC = 30◦

i = 90◦

21.510.50

1

0.8

0.6

0.4

0.2

0

iAC = 45◦

21.510.50

fl
u
x

time [s] time [s]

fl
u
x

phase

fl
u
x

phase

Fig. 4.2.: Pulse profile of a neutron star (R = 10 km, M = 1.35 M⊙, i = 80○, f = 1 Hz) under
different inclinations i (left column) with isotropic and homogeneous emission (I ′ ≡ 1) from
the antipodal accretion columns (RAC = 3 km, hAC = 3 km, iAC = 45○), where iAC is varied in
the right column.
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Fig. 4.3.: Pulse profile of a neutron star (R = 10 km, M = 1.35 M⊙, i = 80○, f = 1 Hz) with
isotropic and homogeneous emission (I ′ ≡ 1) from the antipodal accretion columns (RAC =

3 km, hAC = 3 km). In the left column the inclinations i and iAC are varied, where i = iAC. In
the right column the inclination of the first accretion column is fixed at iAC1 = 45○ and iAC2
is varied. The fluxes are normalized to the maximum flux of the first panel.
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Fig. 4.4.: Projection of a neutron star (R = 10 km, M = 1.35 M⊙, i = 90○, f = 1 Hz) with
isotropic and homogeneous emission (I ′ ≡ 1) from the antipodal accretion columns (RAC =

3 km, hAC = 3 km, iAC = 90○) visualizing the ring effect.
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Fig. 4.5.: Pulse profile of a neutron star (R = 10 km, M = 1.35 M⊙, f = 1 Hz) with isotropic
and homogeneous emission (I ′ ≡ 1) from the antipodal (iAC = 45○) accretion columns with
different radii RAC and heights hAC.
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Fig. 4.6.: Pulse profile of a neutron star (R = 10 km, M = 1.35 M⊙, i = 80○, f = 1 Hz) with
emission from the antipodal accretion columns (RAC = 3 km, hAC = 3 km, iAC = 45○), where
the emission profile I ′ = I ′(γ′) depends on the emission offset angle γ′ and is following a
normal distribution (Eq. 4.1).
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less is the contribution of the second cap. On the contrary, the relative contribution of the
peak in the pencil beam at phase φ = 1, which is related to the first cap, first increases for
σ′ = 90○ to σ′ = 20○ and then decreases again. Furthermore, the two peaks of the fan beam
each split up into two new peaks for σ′ ≤ 20○, leading to a four peaked fan beam. At a closer
look this splitting already occurs for σ′ ≤ 40○ for the profiles of the individual accretion column
walls, but only becomes noticeable in the fan beam for lower distribution widths. Overall the
number of peaks increases from two over four to five. The relative increase of the contribution
of the fan beam compared to the pencil beam is easily explained by the fact that the emission
of the pencil beam is focused in one direction, whereas the emission of the fan beam is focused
into a plane. The focusing is given by the distribution of the normal vectors of the according
surfaces. Therefore, the wall of the accretion column provides a much higher range of emission
angles at any given time compared to the cap. Or in other words, the window, in which the
emission of the cap can be observed is much smaller. On the other hand, if the cap is in that
window the focused pencil beam leads to steep peaks.
It is noticeable that all of the discussed pulse profiles show general symmetries. First of

all, the pulse profiles are symmetric to φ = 0.5, i.e., flipping the pulse profile at this phase
results in the same profile. This symmetry is simply due to the fact that the location of the
two accretion columns on the neutron star are separated in phase by φ = 0.5. And moreover,
the shape of each peak is symmetric to its maximum. One way to obtain asymmetric shaped
peaks in the composed pulse profiles is a phase separation of the individual accretion columns
unequal to half a phase. In such a case, the sum of symmetric peaks can lead to an asymmetric
composition. The symmetry of the peaks in the pulse profiles of the individual parts of the
object, however, is independent of the phase separation of the accretion column. Meaning
that the an asymmetric phase separation only explains the asymmetry of peaks composed
of at least two individual peaks. There are two further possibilities to introduce asymmetric
shaped peaks also for peaks which are not a composition. On the one hand, one can choose
an asymmetric emission profile. On the other hand the spin frequency of the neutron star can
be increased to values above 1 Hz (Eq. 3.6), where the influence of special relativistic effects,
especially the time delay, has to be considered.
Amongst other effects (e.g., oblateness) the increase of the spin frequency increases the

impact of the phase shift (Eq. 2.74) caused by the time delay of the photons (Sec. 2.2.2).
For example, the maximal possible phase shift given by Eq. 3.7 is ∼ 13% for an intrinsic
spin frequency f ′ = 1000 Hz. As mentioned in Sec. 3.7, the program is not yet accounting
for this effect2. Nevertheless, it is possible to make some general statements. Additionally,
to the increase with the spin frequency, the phase shift increases with increasing apparent
emission angle Ψ. Considering an emitting spot, whose apparent emission angle Ψ periodically
decreases and increases while the spot is moving toward and away from the observer due to
the rotation (Eq. 2.58) results in an increase and decrease of the phase shift. Furthermore,
the time a spot needs to rotate from the back to the front and vice versa decreases with
increasing spin frequency. Therefore, the observed flux of an emitting spot gets compressed
in time, when it is moving towards the observer and stretched in time, when it is moving
away. Hence, the phase shift has an impact on the shape of the pulse profile and degrades the
symmetry of the peaks. For example, the slope of a pencil beam peak on the ascending side
increases and decreases on the descending side.

2The focus in this thesis is on HMXBs and LMXBs, in which the neutron star exhibits spin frequencies less
than 1 Hz and therefore, the effect of the time delay is not important. The program, however, was designed
to be easily extendable for this effect.
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Additionally, the Doppler factor (Eq. 2.50) depends on the spin frequency. Moreover, the
Doppler factor of a spot over a rotation period is asymmetric, i.e., the maximal and minimal
Doppler factor for a given spot on the object over a complete rotation are not symmetric
around δ = 1, e.g., as seen in Fig. 4.4.
The phase shift and the Doppler shift are special relativistic effects, which are important for

high velocities or respectively high spin frequencies. Hence, we can conclude that the general
relativistic effect of the light bending does not introduce any asymmetry to the pulse profiles.
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Chapter 5

Conclusions & Future Prospects

5.1. Summary & Conclusions
In summary, the developed program presented in this thesis is suitable to determine the
time and energy dependent flux of a neutron star with accretion columns or hot spots. The
calculation of the flux is based on an arbitrary given emission profile and accounts for gen-
eral relativistic effects, namely gravitational redshift and moreover light bending, and special
relativistic effects, namely the Doppler shift and aberration.
The program is subdivided in modules to separate the individual calculation steps and to

make it easier to implement extensions. With the object module functions are provided to
build a spherical neutron star with cylindrical accretion columns, with either a flat or spherical
cap, or circular hot spots. However, it is possible to define arbitrary geometries as long as the
object satisfies the code structure described in Sec. 3.2.
The mapping module, which is independent of the object, creates a lookup table for the

special and general relativistic parameters of the photon trajectory. The equations of the
general relativistic effects are based on the Schwarzschild metric. The calculations to obtain
the lookup table uses an analytical approximation (Beloborodov, 2002), which restricts R >

2rs, or alternatively numerical methods to solve the exact photon trajectory. Although the
exact solution for the photon trajectory is not subject to the restriction of R > 2rs, the
implemented numerical procedure solving the integral (Eq. 2.11) is optimized for the same
range of R (Sec. 3.3.2), which is reasonable for neutron stars. Therefore, the program in
general requests that R > 2rs, which excludes only a small fraction of possible mass to radius
ratios of neutron stars (see Fig. 1.2). Moreover, if needed it is possible to extend this module
with numerical methods to also solve the exact solution for rs < R ≤ 2rs.
Further, I will implement an alternative interpolation method, as the bilinear interpolation

used in the interpolationmodule requires a particular point distribution of the lookup table.
The bilinear interpolation is sufficient in most cases, however, for large deflection angles of the
photon trajectories close to the maximal possible value it looses accuracy (see Fig. 3.8). An
interpolation method, which does not rely on a particular point distribution could increase
the accuracy. Nevertheless, the advantage of the bilinear interpolation is its speed.
In Chap. 4 the pulse profile of neutron stars with emission from the accretion columns for

various configurations were looked at. Thereby, the focus was on the effect of light bending
to the pulse profile and the contribution of the individual parts of the accretion columns. For
slowly rotating neutron stars with rotation periods over 1 second, e.g. HMXBs, especially
the effect of light bending is very important as the influence of the special relativistic effects
is insignificant for these rotation periods. The investigated pulse profiles show that the light
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bending has a considerable influence on their shape, but it does not introduce any asymmetry.
Namely, asymmetries in pulse profiles of slowly rotating neutron stars can only be explained
by asymmetric emission profiles or asymmetric accretion column positions on the surface of
the neutron star, i.e., phase separations unequal to half a phase.

5.2. Future Prospects
The flux module provides the possibility to choose between isotropic and homogeneous emis-
sion or emission dependent on the emission offset angle γ following an uniform or normal
distribution. However, the module is designed to include arbitrary emission profiles, which
may depend not only on the emission angle, but also on the location on the object, the photon
energy and the time, or other parameters. Therefore, it will be possible to include realistic
emission profiles, e.g., based on theoretical models of the radiative processes within the accre-
tion columns (see, e.g., Araya & Harding, 1999; Becker & Wolff, 2007; Schönherr et al., 2007).
These models describe the theoretical structure of the accretion columns and their emission
profiles. By combining and including them into this program it will be possible to provide
self-consistent models. The great advantage of the presented program is that it in general
does not introduce any constraints for the objects1.
There are other works on this subject, for example, the decomposition method developed

by Kraus et al. (1995), which was successfully used in several analysis of pulse profiles of
HMXBs (e.g., Blum & Kraus, 2000; Sasaki et al., 2010; Caballero et al., 2011; Sasaki et al.,
2012). The approach of Kraus et al. (1995) to decompose an observed pulse profile into single-
pole pulse profiles, however, relies on several assumptions and prerequisites. For example, the
assumption that an asymmetric pulse profile is the sum of two symmetric contributions or that
the emission regions are equal with axisymmetric beam patterns. For a detailed discussion of
this decomposition method read Kraus et al. (1995). In contrast, the geometrical structure of
the emission region and moreover the according emission profile can be defined arbitrarily in
the program developed in this thesis. Furthermore, it is also possible to define an individual
and arbitrary emission profile for each of these regions.
Further, the program was designed in a way that it is possible to extend it also for higher

spin frequencies than 1 Hz. This extension only requires to additionally account for the special
relativistic effect of the time delay causing a phase shift of the observed photons. The maximal
phase shift caused by the time delay is about 0.013% (Eq. 3.6, Eq. 3.7) for a neutron star with
an intrinsic spin frequency of 1 Hz. Further, the phase shift is proportional to the frequency
(Eq. 2.74) and therefore has a considerable influence for higher frequencies. The increase of
the spin frequency also increases the influence of the Doppler factor, as it is dependent on
it. Furthermore, high spin frequencies cause the oblateness of the neutron star, i.e., it can
no longer assumed to be spherical (see, e.g., Cadeau et al., 2007). All these effects connected
to high spin frequencies are the subject of further extensions for this program, which allow
to investigate particularly the impact of the special relativistic effects additionally to the
relativistic light bending. This extension will allow to study the observed flux and especially
the pulse profiles of fast rotating neutron stars, like, e.g., millisecond pulsars, which exhibit
spin frequencies up to 700 Hz (see, e.g., Hessels et al., 2006).

1Objects of interest are especially neutron stars exhibiting rotations periods ≳ 1 s, like, e.g., HMXBs, which
show the strongest magnetic fields and exhibit a sufficient accretion rate to allow the formation of accretion
columns. Furthermore, most neutron stars have radii greater than two Schwarzschild radii.
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Appendix A

Example code

In the following an example code is shown. It is very basic only using the necessary functions
to determine the bolometric flux of neutron star with two antipodal accretion columns, and
to plot the projection for every phase and the according pulse profile for chosen parts.

% Inc lud ing the l i g h t bending l i b r a r y
r e qu i r e (" l b s c r i p t s " ) ;

% I n i t i a l i z a t i o n o f the parameter s t r u c tu r e
v a r i a b l e par = lb_par_init ( ; path = getcwd , ID = "example " ,

lbmeth = "belob " ,
onns = 0 , onac = 1 ,
nphi = 64 ,
u = 0 . 4 , R = 10e3 , f = 1 ,
i = 80 .∗PI /180 . ,
Rac = 3e3 , hac = 3e3 , i a c = 45 .∗PI /180 . ,
nns = 43 , nac = 55 ,
nma = 100 , nmr = 100 ) ;

% Build the ob j e c t : Neutron s t a r with a c c r e t i on columns
va r i ab l e obj = lb_obj_build_ns ( par ) ;

% Create lookup tab l e f o r the l i g h t bending parameter
v a r i a b l e map = lb_psir2b_map ( par ) ;

% Perform the p r o j e c t i o n procedure
va r i a b l e bend , pro j ;
( bend , pro j ) = lb_pro j ec tob j ( par , obj , map ) ;

% I n i t i a l i z a t i o n o f the parameter s t r u c tu r e f o r the f l u x
va r i ab l e fpar = lb_f luxpar_in i t ( par ;

FID = " f luxmodel " ,
f l u x = "bolo " ) ;

% Ca l cu la t i on o f the su r f a c e element f l u x . I (gamma) f o l l ow s normal
% d i s t r i b u t i o n with width s i g
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va r i ab l e s e f l u x = lb_flux_se ( par , fpar , obj , bend ;
d i s = "normal " , s i g = 45 .∗PI /180 . ) ;

% Caculat ion o f the time (& energy ) dependent f l u x
va r i ab l e f l u x = lb_f lux ( par , fpar , obj , s e f l ux , bend ) ;

% Plo t t i ng the p r o j e c t i o n f o r every phase
va r i a b l e x f ;
x f = lb_xf ig_plot_pro ject ion ( par , fpar , obj , proj , bend , s e f l u x ;

g r i d ) ;

% Determine the parts , f o r which the pu l s e p r o f i l e w i l l be p l o t t ed
va r i ab l e u f i e l d = [" a l l " ," ac1cap " ," ac1co l " ," ac2cap " ," ac2co l " ] ;

% P lo t t i ng the ac tua l pu l s e p r o f i l e
v a r i a b l e pp = lb_x f i g_p lo t_pu l s ep ro f i l e ( par , fpar , f l u x ;

u s e f i e l d s = u f i e l d ) ;
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Appendix B

Storing

The routine provides functions to save and load the results of each module described in
Chap. The description of this function can be found in App. C. The files are in the Fits
format (see Hanisch et al., 2001). The main <path> to the directory, in which the files are
being stored is defined with the par.path variable in the parameter structure. The parameter
structure (par) itself is stored in a text file, which is readable by Isis. For each object
with an individual identification par.ID a separate directory is created automatically. This
folder contains the object (obj), the table (map) and the projection parameter (bend, proj).
Additionally, the parameter (fpar) for each flux model (fpar.FID) a stored in a individual file,
where the according flux of the individual surface elements (seflux) and the processed flux
(flux) in an extra subfolder. If not otherwise specified the plots created with the plotting
functions are also stored in this subfolder. The following diagram shows the file structure:

<path>

– <ID>_par.sl

– <ID>

ë <ID>_obj.fits

ë <ID>_map.fits

ë <ID>_bend.fits

ë <ID>_proj.fits

ë <ID>_<FID>_fpar.fits

ë <ID>_<FID>

⌞ <ID>_<FID>_seflux.fits

⌞ <ID>_<FID>_flux.fits

Furthermore each Fits-file contains the parameter par. When loading this file, the stored
parameters are compared to the original parameters in the main directory to ensure that there
were no changes.
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Appendix C

Function declarations & usage

The code is written in Isis1 (Interactive Spectral Interpretation System), a script language
using the S-Lang2 interpreter.
In the following a list of all functions within the light bending routine is given. Besides a
description for each function the expected arguments and their data type, possible qualifiers
with their standard value and data type, the data type of the return value and potential
dependencies are given, if they exists.

function_name( arguments )
Argument arg1 = data type optional note
Qualifier qual1 [standard value] (dt) optional note
Return data type
Dependencies function_name
Description First the function name and its expected arguments are given. Then the

single arguments are listed and which data type they have to have. The
squared bracket following the data type give the expected dimension(s):
No brackets relates to none array, empty brackets to array of arbitrary
length, entries separated by backslashes to possible array lengths and
entries separated by comma to a matrix (e.g. [n,m] n × m matrix).
For the qualifiers the data type is given in a shortened form within
round brackets, where I relates to Integer_Type, D to Double_Type, S
to String_Type, V to Vector_Type and R to Ref_Type. If (–) is given
instead of a real data type, the qualifier just have to exist to enable
the functionality given in its description. In the dependencies row the
function names of those function, which get called within it, are given.
If one of these functions is not defined within the light bending routine,
the containing library will be given in brackets. The dependencies are
supposed to show, to which functions qualifiers get passed through.
That means that these qualifier can be given the superior function,
even if it does not appear in its description.

1See Houck & Denicola (2000) or http://space.mit.edu/cxc/isis/
2See http://www.jedsoft.org/slang/
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parameter

lb_grid_phase( par )
Argument par = Par_Type See lb_par_init
Qualifier nphi [par.nphi] (Integer_Type) Number of phase grid points

dphi [par.dphi] (Double_Type) Distance between two adjacent
phase grid points

Return Double_Type[nphi]
Description Returns a phase grid (low bins) with nphi equidistant points or a distance

of dphi within [0,2π[.

lb_partson( par )
Argument par = Par_Type See lb_par_init
Return Integer_Type[]
Description Gives an integer array of indices corresponding to the components of the

object, which are set to be included in flux calculation (Needed for plot-
ting). For technical reasons each component requires 2 indices: Neutron
star (NS) [1,2]; cap of first accretion column (AC1cap) [3,4]; wall of first
accretion column (AC1col) [5,6]; AC2cap [7,8]; AC2col [9,10].

lb_part_index( n )
Argument n = Integer_Type
Return Integer_Type[]
Description Returns an integer or integer array of unique indices corresponding to the

components of the object.

lb_part_name( index )
Argument index = Integer_Type
Return String_Type[]
Dependencies lb_part_index
Description Returns the name(s) of a component of the object according to the given

index (see lb_part_index).
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C. Function declarations & usage

lb_par_init( )
Qualifier i [80 π

180] (D) Inclination to NS spin axis [ra-
dian]

f [1] (D) NS spin frequency [Hz]
u [0.4] (D) rs/r

R [12 ⋅ 103] (D) NS radius [m]
M [uRc

2

(2G) ] (D) NS Mass [kg]
D [1] (D) Distance to Observer

Rac [1 ⋅ 103] (D[1/2]) AC1/2 radius [m]
hac [1 ⋅ 103] (D[1/2]) AC1/2 height [m]
iac [0] (D[1/2]) AC1/2 inclination to NS spin

axis
rmin [2] (D) Minimal radius [rs]
rmax [10] (D) Maximal radius [rs]
nns [65] (I) Degree of NS grid fineness
nac [65] (I) Degree of AC grid fineness
nmr [200] (I) # radii in rα-map
nma [800] (I) # α in rα-map
onns [0] (I) Emission from NS [0/1]
onac [1] (I) Emission from AC [0/1]

oncap [1] (I) Emission from AC cap [0/1]
oncol [1] (I) Emission from AC col [0/1]

ng [6] (I) # plotted grid lines / pattern
gridns [onns] (I) Add grid lines of NS [0/1]
gridac [1] (I) Add grid lines of AC [0/1]
nphi [1] (I) Number of phase grid points
dphi [] (D) Distance between two adjacent

phase grid points
lbmeth [’belob’] (S) Projection method [’exact’, ’be-

lob’, ’geome’]
magnilim [8] (I) Magnification limit in

oversize
ID [’unnamed’] (S) Object identification

path [] (S) Main saving path
Return Par_Type ∶= Struct_Type{ID, path, i, f, u, R, M, rs, D, Rac1,

hac1, iac1, Rac2, hac2, iac2, rmin, rmax, nns, nac, nmr, nma,
onns, oncap, oncol, ng, gridns, gridac, nphi, dphi, lbmeth,
magnilim, c, G}

Description Initialize the parameter structure containing all important values for the
routine. Besides the listed qualifiers, the returned structure also contains
the speed of light c, the gravitational constant G and the Schwarzschild
radius rs. Most values are expected to be one-dimensional, but the three
(Rac, hac, iac) defining the accretion column. If one or more specifications
of the individual accretion columns are not equal a two-dimensional array
for the according value can be given.
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build_object

lb_obj_init( )
Qualifier N [0] (I) Length of r, ds & pg

Nv [0] (I) Length of v
sph [] (–) Vectors in spherical coordinates

Return Obj_Type ∶= Struct_Type{v=type[Nv], pg=Integer_Type[N,3],
r=type[N], ds=type[N], no=Integer_Type[N],
grid=Array_Type[0]}

Description Initializes an object and returns a Struct_Type containing the individual
position vectors v of the vertices of the surface elements, where pg stores
the according indices; the barycentric vector r and the surface vector ds
of the surface elements; a list of integers on, where the entries define the
part of the neutron star the according surface element belongs to and a
grid array containing lists of indices specifying grid lines for the plotting
module. If the sph qualifier is given type=Sph_Type (typedef struct{
r, phi, theta } Sph_Type), otherwise type=Vector_Type

lb_cart2sph( v )
Argument v = Vector_Type[]
Return Sph_Type[]
Description Transforms a given vector v from Cartesian into spherical coordinates.

lb_sph2cart( v )
Argument v = Sph_Type[] See lb_obj_init
Return Vector_Type[]
Description Transforms a given vector v from spherical into Cartesian coordinates.

lb_obj_cart2sph( obj )
Argument obj = Obj_Type See lb_obj_init
Return Obj_Type
Dependencies lb_obj_init, lb_cart2sph
Description Transforms the according entries of the object obj from Cartesian into

spherical coordinates.

lb_obj_sph2cart( obj )
Argument obj = Obj_Type See lb_obj_init
Return Obj_type
Dependencies lb_obj_init, lb_sph2cart
Description Transforms the according entries of the object obj from spherical into

Cartesian coordinates.
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lb_obj_rotate( obj, angle )
Argument obj = Obj_Type See lb_obj_init

angle = Dobule_Type Rotation angle in radian
Qualifier n [(0,0,1)] (V) Rotation axis
Return Obj_Type
Dependencies lb_obj_init
Description Rotates a given object obj around the axis n with the given angle, where

the vectors in obj have to be in Cartesian coordinates (Vector_Type).

lb_obj_dphi( obj, angle )
Argument obj = Obj_Type See lb_obj_init

angle = Dobule_Type Rotation angle in radian
Return Obj_Type
Description Rotates a given object obj around the z-axis by adding the given angle

to the phi components, where the vectors in obj have to be in spherical
coordinates (Sph_Type).

lb_obj_build_column( par, R, h )
Argument par = Par_Type See lb_par_init

R = Dobule_Type Radius of Column
h = Dobule_Type Height of Column

Qualifier oncap [par.oncap] (I) Emission from AC cap [0/1]
oncol [par.oncol] (I) Emission from AC col [0/1]

ng [par.ng] (I) # plotted grid lines / pattern
grid [par.gridac] (I) Add grid lines of AC [0/1]

n [par.nac] (I) Degree of AC grid fineness
Rns [par.R] (D) NS radius [m]
eps [89 π

180] (D) Distinguish between AC cap & col
onlycap [] (–) Only column cap

flat [] (–) Column cap is flat
Return Obj_Type
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Description In this function a cylindrical accretion column with radius R and height h is
build. If the qualifier flat is given the cap is flat, otherwise it is is a spherical
segment of a sphere with radius

√
Rns2 − R2 +h. Furthermore, the column

gets an offset to the origin according to the Rns qualifier, meaning that
the column is adjusted, so that it would sit on the surface of a sphere with
radius Rns. If the qualifier onlycap exists or h = 0,the column only consists
of the column cap (e.g. to define a hot spot). The amount of surface
elements depends on n. oncap and oncol control whether there is emission
from the column cap/wall or not. In case of no emission the according
entries in obj.on are negative, where the absolute value corresponds to
part of the object (See lb_partson). If gridac = 1 grid lines, used in the
plotting module, are determined, where the amount depends on ng. The
grid lines are stored in obj.grid, an array of lists with indices corresponding
to the according entries in obj.v. eps is just a variable used to distinguish
between column cap and wall to determine the according entries of obj.on.

lb_obj_build_sphere( par, R )
Argument par = Par_Type See lb_par_init

R = Dobule_Type Radius of sphere
Qualifier on [par.onns] (I) Emission from NS surface [0/1]

ng [par.ng] (I) # plotted grid lines / pattern
grid [par.gridns] (I) Add grid lines of NS [0/1]

n [par.nac] (I) Degree of NS grid fineness
Return obj
Description In this function a sphere/neutron star with radius R is build. The amount

of surface elements depends on n. on controls whether there is emission
from the surface of the sphere or not. In case of no emission the according
entries in obj.on are negative, where the absolute value corresponds to
part of the object (See lb_partson). If gridns = 1 grid lines, used in the
plotting module, are determined, where the amount depends on ng. The
grid lines are stored in obj.grid, an array of lists with indices corresponding
to the according entries in obj.v.

lb_obj_merge( objs )
Argument objs = Obj_Type[] Array of obj’s (See lb_par_init)
Return Obj_Type
Description This function merges several obj’s into one obj and adjusts the entries of

those struct fields, that contain indices.

lb_obj_rrange( par, obj )
Argument par = Par_Type See lb_par_init

obj = Obj_Type See lb_obj_init
Qualifier digit [3] (I) # significant digits
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Description Determines the maximal and minimal occurring radius within the given
obj, round these to the number of significant digits given by digit and stores
them in par.rmin/par.rmax.

lb_obj_build_ns( par )
Argument par = Par_Type See lb_par_init
Qualifier Rac [[par.Rac1,par.Rac2]] (D[2]) Radii of AC1 & AC2 [m]

hac [[par.hac1,par.hac2]] (D[2]) Heights of AC1 & AC2 [m]
iac [[par.iac1,par.iac2]] (D[2]) Inclination of AC1 & AC2 to

NS spin axis
Return Obj_Type
Dependencies lb_obj_build_sphere, lb_obj_build_column, lb_obj_rotate,

lb_obj_merge, lb_obj_rrange
Description Combines the functionality of lb_obj_build_sphere and

lb_obj_build_column and creates a neutron star with accretion
columns according to the given parameters. lb_obj_rrange is also
called in this function.

mapping

lb_b_ua( u, alpha )
Argument u = Double_Type Inverse emission radius u = rs/R

alpha = Double_Type Emission angle α
Qualifier lbmeth [] (S) If ’geome’, geometrical projection
Return Double_Type
Description Calculates the impact parameter b according Eq. 2.23. If qualifier lb-

meth=’geome’ the geometrical projected counterpart (sin(α)/u) is re-
turned.

lb_a_ub( u, b )
Argument u = Double_Type Inverse emission radius u = rs/R

b = Double_Type Impact parameter b
Qualifier lbmeth [] (S) If ’geome’, geometrical projection
Return Double_Type
Description Calculates the emission angle α ≤ π/2 according Eq. 2.23. If qualifier

lbmeth=’geome’ the geometrical projected counterpart (arcsin(bu)) is re-
turned.

lb_p_b( b )
Argument b = Double_Type Impact parameter b
Qualifier lbmeth [] (S) If ’geome’, geometrical projection
Return Double_Type
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Description Calculates the periastron rpaccording Eq. 2.20. If qualifier lbmeth=’geome’
the geometrical projected counterpart (b) is returned.

lb_alphamax( u )
Argument u = Double_Type[] Inverse emission radius u = rs/R

Qualifier rcrit [2] (D) Critical radius rc (Eq. 2.19)
bcrit [lb_b_ua(1/rcrit,π/2)] (D) Critical impact parameter

bc (Eq. 2.19)
Return Double_Type
Dependencies lb_b_ua
Description Calculates the maximal emission angle αmax (Eq. 2.25) based on the

specified critical impact parameter.

lb_psimax( u )
Argument u = Double_Type[] Inverse emission radius u = rs/R

Return Double_Type[]
Dependencies lb_psi_ua, lb_alphamax
Description Calculates the maximal angle Ψmax (Eq. 2.26) based on the specified

critical impact parameter.

lb_psiper( up )
Argument up = Double_Type[] Inverse periastron u = rs/rp

Qualifier lbmeth [’belob’] (S) Projection method [’exact’, ’belob’, ’geome’]
Return Double_Type[]
Dependencies lb_psi_ua_exact
Description Calculates the apparent emission angle at the periastron Ψp. lb-

meth=’exact’: Eq. 2.11; lbmeth=’belob’: Eq. 2.38; lbmeth=’geome’:
Ψp ≡ π/2.

lb_psi_ua_belob_( u, alpha )
Argument u = Double_Type Inverse emission radius u = rs/R

alpha = Double_Type Emission angle α
Return Double_Type
Description Calculates the angle Ψ according to Eq. 2.38 for α ≤ π/2.

lb_psi_ua_belob( u, alpha )
Argument u = Double_Type Inverse emission radius u = rs/R

alpha = Double_Type Emission angle α
Qualifier b [lb_b_ua(u, alpha)] (D) Impact parameter b
Return Double_Type
Dependencies lb_b_ua, lb_p_b, lb_psi_ua_belob_
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Description Calculates the angle Ψ according to Eq. 2.38 and Eq. 2.21 for α ≤ αmax.

lb_psi_ua_exact_( x )
Argument x = Double_Type
Qualifier u [] (D) Inverse emission radius u = rs/R

alpha [] (D) Emission angle α
Return Double_Type
Description Evaluates the integrand of the photon trajectory at the point x. Note,

that the numerical integration functions require only one argument and
additional parameters, like u and alpha, to be given as qualifiers.

lb_psi_ua_exact( u, alpha )
Argument u = Double_Type Inverse emission radius u = rs/R

alpha = Double_Type Emission angle α
Qualifier method [&qromb] (R) Integration method

fkt [&lb_psi_ua_exact_] (R) Function to be integrated
b [lb_b_ua(u, alpha)] (D) Impact parameter b

Return Double_Type
Dependencies qromb(isisscripts), lb_psi_ua_exact_
Description Calculates the angle Ψ according to Eq. 2.11 and Eq. 2.21 for α ≤

αmax with numerical methods. This function will integrate the function
assigned to the fkt qualifier, which needs to have exactly one argument
(any other variables can be given as qualifier). The integration method
can be set with the method qualifier, which requests three arguments:
the function, which is to be integrated; the lower and upper integration
limit.

lb_psi_ua( u, alpha )
Argument u = Double_Type Inverse emission radius u = rs/R

alpha = Double_Type Emission angle α
Qualifier lbmeth [’belob’] (S) Projection method [’exact’, ’belob’, ’geome’]
Return Double_Type
Dependencies lb_psi_ua_exact, lb_psi_ua_belob
Description Calculates the angle Ψ with the method set in the lbmeth qualifier.

lbmeth=’exact’: Eq. 2.11; lbmeth=’belob’: Eq. 2.38; lbmeth=’geome’:
Ψ ≡ α.

lb_psir2b_map( par )
Argument par = Par_Type See lb_par_init
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Qualifier nr [par.nmr] (I) Number of radii
na [par.nma] (I) Number of emission angles

rmin [par.rmin] (D) Minimal radius [rs]
rmax [par.rmax] (D) Maximal radius [rs]

lbmeth [’belob’] (S) Projection method [’exact’, ’belob’, ’ge-
ome’]

ashape [1.65] (D) Shape of α grid
Return Map_Type ∶= Struct_Type{(r,a,p,b)=Double_Type[nr,na]}
Dependencies lb_alphamax, lb_b_ua, lb_psi_ua
Description Creates a table for the photon trace parameter within the boundaries

[rmin, rmax], where nr gives the number of radii this region is sampled
with (equidistant). na specifies the number of emission angles, with
which the region [0, αmax] is sampled. The step size between each α
depends on ashape following Eq. 3.1. For lbmeth=’exact’, ’belob’ or ’ge-
ome’, ashape = 1.3, 1.65 and 1, respectively. A Struct_Type is returned,
containing the radius, α, Ψ and b at na×nr different points given in the
r − α plane.

lb_dbb_map( )
Qualifier n [32] (I) Dimension of returned struct fields (n × n)

belob [] (–) If given: αmax = π/2

Return Struct_Type
Dependencies lb_alphamax, lb_b_ua, lb_psi_ua
Description Similar to lb_psir2b_map, but calculates the exact as well as approx-

imated photon trajectory parameter to provide the error δβ/β (see
Fig. 2.6).

interpolation

lb_interp( map, r, p )
Argument map = Map_Type See lb_psir2b_map

r = Double_Type Radius [rs]

p = Double_Type Apparent emission angle Ψ

Qualifier imethod1 [&interpol_polynomial] (R) Interpretation method
imethod2 [&interpol_points] (R) Interpretation method

next [0] (I) # of additional interpola-
tion points

only [] (–) Only b is determined
Return (a=Double_Type, ) b=Double_Type
Dependencies interpol_points, interpol_polynomial(isisscripts)
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Description Finds and returns the to r and p according emission angle a and impact
parameter b by interpolating the given map (trajectory table). The
interpolation method to perform the bilinear interpolation is set with
the imethod2 qualifier and that to determine the second two required off
grid vertices by imethod1, where next sets the additional points taken
into account.

lb_interp_test( )
Argument par = Par_Type See lb_par_init
Qualifier inr [10] (I) Number of radii

inp [50] (I) Number of emission angles
irmin [2.1] (D) Minimal radius [rs]
irmax [9.9] (D) Maximal radius [rs]
map [lb_psir2b_map(par)] (M) Trajectory table
rnd [] (–) Random r ∈ [irmin, irmax] and

Ψ ∈ [0,Ψmax]

Return Struct_Type[inr]{(r,p,b,a,rb,rp)=Double_Type[inp]}
Dependencies lb_psir2b_map, lb_psimax
Description Tests the interpolation performed by lb_interp by interpolating inr

radii r within [irmin,irmax] and inp Ψ (p) within [0,Ψmax(R) to obtain
the according impact parameters b and emission angles a. The inter-
polated emission angle a then is used to calculate the real according
impact parameter rb (Eq. 2.23) and the real apparent emission angle
rp. If the rnd qualifier is given the initial radii and Ψ’s are randomly
distributed with their boundaries.

Projection

lb_sincos_rho( st, ct, si, ci, sp, cp )
Argument st = Double_Type sin θ

ct = Double_Type cos θ

si = Double_Type sin i

ci = Double_Type cos i

sp = Double_Type sinφ

cp = Double_Type cosφ

Return sinrho=Double_Type, cosrho=Double_Type
Description Calculates and returns (sinρ, cosρ) (Eq. 2.61 & Eq. 2.60).
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lb_beta( c, f, rs, r, st )
Argument c = Double_Type Speed of light

f = Double_Type NS spin frequency f
rs = Double_Type NS Schwarzschild radius rs

r = Double_Type Emission radius R
st = Double_Type sin θ

Return Double_Type
Description Calculates and returns the absolute value of the spot velocity β (Eq. 2.52).

lb_delta( beta, alpha, psi, si, sp )
Argument beta = Double_Type Absolute value of spot velocity

alpha = Double_Type Emission angle α
psi = Double_Type Apparent emission angle Ψ

si = Double_Type sin i

sp = Double_Type sinφ

Return Double_Type
Description Calculates and returns the Doppler factor δ (Eq. 2.50).

lb_psi_pt_( si, ci, st, ct, cp )
Argument si = Double_Type sin i

ci = Double_Type cos i

st = Double_Type sin θ

ct = Double_Type cos θ

cp = Double_Type cosφ

Return Double_Type
Description Calculates and returns the apparent emission angle Ψ (Eq. 2.58).

lb_k0_dir( r, k, a )
Argument r = Vector_Type Position vector r of spot

k = Vector_Type Line of sight k
a = Double_Type Emission angle α

Return Vector_Type
Description Calculates and returns the initial emission vector k0 by rotating r around

r × k with angle α.

lb_gamma( r, ds, alpha, k )
Argument r = Vector_Type Position vector r of spot

ds = Double_Type Surface vector dS

alpha = Double_Type Emission angle α
k = Vector_Type Line of sight k

Return Double_Type
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Description Calculates and returns the emission offset angle γ between the initial emis-
sion direction k0 and the surface vector dS of the spot.

lb_projectobj( par, obj, map )
Argument par = Par_Type See lb_par_init

obj = Obj_Type See lb_obj_init
map = Map_Type See lb_psir2b_map

Qualifier phase [lb_grid_phase(par)] (D[]) Phase grid
rmin [par.R] (D) Radius of spheric NS [m]

chatty [0] (I) Information output
Return Bend_Type ∶= Struct_Type[#phase]{

(psi,alpha,gamma,delta,dp)=Array_Type[#SE](Double_Type[#sol])},
Pro_Type ∶= Struct_Type[#phase]{
(a,b)=Array_Type[#SE](Double_Type[#sol]),
(pga,pgb)=Array_Type[#SE][#sol](Double_Type[3]}

Dependencies lb_grid_phase, lb_b_ua, lb_obj_cart2sph, lb_sincos_rho,
lb_psi_pt_, lb_interp, lb_beta, lb_gamma, lb_delta,
lb_alphamax, lb_obj_dphi

Description Performs the projection procedure of the given object obj based on the
table map at the individual phases set with phase. The value given with
rmin defines the minimal radius a trajectory can exhibit without hitting
the surface of the spherical neutron star surface. The function returns
two Struct_Types, where each field is an array according to the number
of phases (#phase). The first structure contains (Ψ, α, γ, δ,∆φ) for each
surface element (#SE) and each possible solution (#sol), where ∆φ is
the phase delay (Eq. 2.74). Note, that the value of ∆φ is just a dummy.
The second structure contains the impact parameter A and B (Eq. 2.59)
of the centroid of each spot and those of the according vertices (pga,
pgb).

lb_se_size_projected( a, b, gamma )
Argument a = Double_Type[3] A of spot vertices

b = Double_Type[3] B of spot vertices
gamma = Double_Type Emission offset angle γ

Return Double_Type
Description Calculates and returns the apparent spot area for one spot in the observer

sky.

lb_se_sizemagni( par, obj, proj )
Argument par = Par_Type See lb_par_init

obj = Obj_Type See lb_obj_init
proj = Pro_Type See lb_projectobj
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Qualifier magni [] (–) Sizes relative to ∣dS∣

smin [] (R) If given, stores min. projected spot size
smax [] (R) If given, stores max. projected spot size

oversize [] (R) If given, stores lists of indices of oversized spots
(par.magnilim)

Return Array_Type[#phase][#SE](Double_Type[#sol])
Dependencies lb_se_size_projected
Description Calculates and returns the apparent spot area for every spot at every

phase in the projection proj of the object obj. If the magni qualifier
is given, the spot sizes are divided by their according size ∣dS∣ in the
corotating frame. Additionally a Ref_Type smin or smax can be given,
which then stores the minimal and maximal occurring projected spot
size. A list of indices related to those spots, which exceed the specified
magnification limit set with par.magnilim is stored in oversize, which is
OList_Type ∶= Array_Type[#phase](Integer_Type[*,2]).

overlap

point_in_triangle( px,py,x,y )
Argument px = Double_Type x coordinates of point

py = Double_Type y coordinates of point
x = Double_Type[3] x coordinates of triangle
y = Double_Type[3] y coordinates of triangle

Return Double_Type
Description Returns 1, if point (px, py) is within the triangle defined by (x, y) and 0,

if not.

lb_se_maxabsize( pro )
Argument pro = Pro_Type[1] See lb_projectobj
Qualifier oversize [Integer_Type[0,2]] (I[*,2]) Indices of oversized sur-

face elements
Return (amin,amax,bmin,bmax,maxda,maxdb)=Double_Type
Dependencies lb_se_in_overlaplist
Description Determines the maximal overall expansion (amin, amax) and

(bmin,bmax) in A and B coordinates on the observer sky. Addi-
tionally the maximal surface element size (maxda,maxdb) is returned.
Surface elements in the oversize list are being ignored.

lb_se_lookuptable( pro )
Argument pro = Pro_Type[1] See lb_projectobj
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Qualifier oversize [Integer_Type[0,2]] (P) Indices of oversized surface el-
ements

enlarge [10−5] (D) Area enlargement percentage
notable [] (–) Table with only one field

Return Array_Type[na,nb](Integer_Type[2])
Dependencies lb_se_in_overlaplist
Description Creates a lookup table for the location of the surface elements. The

dimensions (na,nb) of the table are determined by the values obtained
from lb_se_maxabsize. If na or nb are smaller three, or the notable
qualifier is given, na and nb are set to zero.

lb_neighbours( I, J, dim )
Argument I = Integer_Type Index I

J = Integer_Type Index J
dim = Integer_Type[2] Dimensions of I and J

Return Integer_Type[*,*]
Description Returns a index list of the neighbors cell of the given cell (I, J) in the

lookup table, which has the dimensions dim.

lb_se_overlap( par, obj, pro )
Argument par = Par_Type See lb_par_init

obj = Obj_Type See lb_obj_init
pro = Pro_Type See lb_projectobj

Qualifier oversize [OList_Type] (O) Array of indices of oversized surface
elements, see lb_se_sizemagni

Return OList_Type
Dependencies lb_se_lookuptable, lb_neighbours, point_in_triangle,

array_remove(isisscripts)
Description Returns for each phase a list of indices of those surface elements, which

are covered by another surface element in the observer sky. Surface
elements listed in oversize are ignored.

lb_se_in_overlaplist( olaplist, i, j )
Argument olaplist = OList_Type See lb_se_sizemagni

i = Integer_Type Index of the surface element
j = Integer_Type Index of the solution

Return Integer_Type
Description Returns 1, if the j-th solution of the i surface element is listed in the given

list olaplist.

flux
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lb_fluxpar_init( par )
Argument par = Par_Type See lb_par_init
Qualifier FID [’fluxmodel’] (S) Flux model identification

fpath [] (S) Saving (sub) path for flux model
nphase [1] (D) # phases for time grid

tend [1/par.f] (D) Maximal time for time grid
Ebin [1] (I) # energy bins
Emin [1.] (D) Minimal energy
Emax [100.] (D) Maximal energy
Escl [’log’] (S) ’log’ or ’linear’ energy grid
flux [’bolo’] (S) bolometric or spectral flux

flux_eq [] (S) Stores flux model
tdelay [0] (I) Consider time delay 0/1

periodic [1] (I) Periodical pulse profile 0/1
Return FPar_Type ∶= Struct_Type{FID, fpath, flux, flux_eq, nphase,

tend, Ebin, Emin, Emax, Escl, tdelay, periodic}
Description Initializes a structure containing parameter related to the flux calculations.

A unique flux model name can be given with FID. fpath specifies a path for
saving, which is a sub folder of par.path by default. For the time grid either
nphase or tend can be set, which defines the number of phases to included
or the end time. The energy grid has Ebin bins between Emin and Emax
with a linear or logarithmic scale (Escl=’log’,’linear’). flux=’bolo’,’spec’
defines whether the flux is bolometric or spectral, where the according
flux model is stored in flux_eq. If tdelay=1 the time delay considered
(not implemented yet) and if in addition periodic=1 the pulse profile is
periodically continued.

lb_grid_energy( fpar )
Argument fpar = FPar_Type See lb_fluxpar_init
Return Double_Type[fpar.Ebin+1]
Description Creates a linear or logarithmic energy grid, according to fpar.Escl between

fpar.Emin and fpar.Emax with fpar.Ebin bins. The returned array contains
the nested bin low/high values.

lb_grid_time( par, fpar )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init
Qualifier nphase [fpar.nphase] (D) # phases for time grid

tend [fpar.tend] (D) Maximal time for time grid
Return lb_grid_phase
Dependencies Double_Type[]
Description Creates a time grid within [0, tend]. The returned array contains the

nested bin low/high values.
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lb_int_dist_normal( x, s, mu )
Argument x = Double_Type[]

s = Double_Type Standard deviation σ
mu = Double_Type Mean µ

Return Double_Type[]
Description Calculates the normal distribution with standard deviation s and mean

mu at x.

lb_int_dist_uniform( x, lo, hi )
Argument x = Double_Type[]

lo = Double_Type Lower limit
hi = Double_Type Upper limit

Return Integer_Type[]
Description Returns 1, if x is within [lo,hi], otherwise 0.

lb_domega( par, delta, gamma )
Argument par = Par_Type See lb_par_init

delta = Double_Type Doppler factor δ
gamma = Double_Type Emission offset angle γ

Return Double_Type
Description Calculates dΩ (Eq. 2.65).

lb_efrac( u, delta )
Argument u = Double_Type Inverse emission radius u

delta = Double_Type Doppler factor δ
Return Double_Type
Description Calculates the energy ratio E/E′ (Eq. 2.69).

lb_dflux_define( par, fpar )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init
Qualifier sig [45 π

180] (D) Standard deviation/width
dis [’isho’] (S) Intensity distribution I ′(γ′)

Description Defines the lb_dflux function, which calculates the flux (Eq. 2.70 or
Eq. 2.72), according to the parameter specified in par, fpar and the qual-
ifier. dis defines the intensity distribution: ’isho’ for isotropic and ho-
mogeneous intensity; ’uniform’/’normal’ for a uniform/normal distribution
of I ′(γ′) with width/standard deviation sig around the mean γ = 0. If
fpar.flux=’spec’ the exponent of E/E′ is set to the according value for the
spectral flux (Eq. 2.68), otherwise the bolometric value (Eq. 2.71) is used.
Additionally the definition of lb_dflux is stored in fpar.flux_eq as string.
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lb_dflux( par, R, delta, gamma )
Argument par = Par_Type See lb_par_init

R = Double_Type Emission radius R
delta = Double_Type Doppler factor δ

gamma = Double_Type Emission offset angle γ
Return Double_Type
Dependencies lb_int_dist_normal, lb_int_dist_uniform, lb_dcadcp_belob,

lb_dcadcp_exact, lb_domega, lb_efrac
Description This function is defined by lb_dflux_define and calculates the flux for

a surface element.

lb_flux_se( par, fpar, obj, bend )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init
obj = Obj_Type See lb_obj_init

bend = Bend_Type See lb_projectobj
Qualifier egrid [lb_grid_energy(fpar)] (D[]) Energy grid

tgrid [lb_grid_time(par,fpar)] (D[]) Time grid
Return SEFlux_Type ∶= Array_Type[#tbins][#SE][#sol][#Ebins]
Dependencies lb_dflux_define, ld_dflux, lb_grid_energy, lb_grid_time
Description Calculates the flux for each surface elements according the definition of

lb_dflux using the specified time and energy grid. Note that the time
grid depends on the phase grid used for the projection procedure.

lb_flux_add( flux )
Argument flux = Flux_Type See lb_flux
Qualifier combis [[’all’,’ac’,’ac1’,’ac2’,’cap’,’col’]] (S[]) NS Part combina-

tions
Return Flux_Type
Description This functions adds to flux the possible combination out of combis of the

fields of the given flux structure.

lb_flux( par, fpar, obj, flux_se, bend )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init
flux_se = SEFlux_Type See lb_flux_se

obj = Obj_Type See lb_obj_init
bend = Bend_Type See lb_projectobj

79



C. Function declarations & usage

Qualifier egrid [lb_grid_energy(fpar)] (D[]) Energy grid
tgrid [lb_grid_time(par,fpar)] (D[]) Time grid

tdelay [fpar.tdelay] (I) Consider time delay
0/1

periodic [fpar.periodic] (I) Periodical pulse profile
0/1

overlap [OList_Type] (O) Array of indices of
oversized/overlapping
surface elements, see
lb_se_sizemagni

Return Flux_Type ∶= Struct_Type{ <fields> =
Double_Type[#tbins,#ebins]}

Dependencies lb_flux_add
Description Calculates the overall flux based on the given flux of each surface el-

ement flux_se. The <fields> of the returned structure relate to the
different parts of the neutron star (ns,ac1cap,ac1col,ac2cap,ac2col) and
their combinations: all, ac, ac1, ac2, cap or col. The structure only
contains those fields, which relate to parts of the neutron star speci-
fied to emit photons (par.onns, par.oncap, par.oncol). Each <fields> is a
(#tbins × #ebins) matrix, where each entry corresponds to the flux at
a certain time and energy.

plotting

lb_xfig_prepare_grid( pro, grid )
Argument pro = Pro_Type[1] See lb_projectobj

obj = Obj_Type See lb_obj_init
Return Struct_Type[]{ (a,b) = Integer_Type[]}
Description For a given projection (pro) at one phase the grid lines (obj.grid) are pre-

pared for plotting. obj.grid is an Array_Type[#gridlines], where each en-
try contains indices of those surface element vertices defining the grid line.
This function selects the according A and B solutions in pro. Each individ-
ual continuous line is stored as an entry of the returned Struct_Type[].

lb_array_trans( array )
Argument array = Array_Type[](<type>)
Return <type>[]
Description Transforms the given Array_Type into a <type> array.

lb_delta_mima( bend )
Argument bend = Bend_Type See lb_projectobj
Return (dmin, dmax) = Double_Type
Dependencies lb_array_trans
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Description Finds the minimal and maximal value of the Doppler factor (dmin,
dmax) in bend.

lb_seflux_mima( seflux )
Argument seflux = SEFlux_Type See lb_flux_se
Return (fmin, fmax) = Double_Type
Dependencies lb_array_trans
Description Finds the minimal and maximal value of the flux of a single surface

element (fmin, fmax) in seflux.

lb_xfig_plot_pulseprofile( par, fpar, flux )
Argument par = Par_Type See lb_par_init

fpar = Fpar_Type See lb_fluxpar_init
flux = Flux_Type See lb_flux

Qualifier path [fpar.fpath] (S) Saving path
name [] (S) File name
type [’.pdf’] (S) File type

usefields [] (S[]) Fields of flux to plot
lstyle [] (I[]) Line styles
lcolor [] (S[]) Line colors
lwidth [] (I[]) Line widths

size [[12,9]] (D[2]) Plot sizes
tgrid [lb_grid_time(par,fpar)] (D[]) Time grid

energy [[*]] (I[]) Indices of energy to
include & sum up

norm [] (D) Normalization
pmark [] (D) Phase marker within

[0,1]
fonts [4] (I) Font size within

[0,9]
norender [] (–) Plot will not be ren-

dered
Return Struct_Type
Dependencies lb_grid_time, (slxfig), (isisscripts)
Description Creates and renders a xfig plot showing the pulse profile(s) of the spec-

ified fields (usefields) of the given flux. By default usefields includes all
available fields. The line style(s), line color(s) and line width(s) can be
specified by style, lcolor and lwidth, where their lengths must match the
numbers of fields to plot. The given time grid (tgrid) specifies the time
axis label. The energy qualifier is a list of indices related to the energy
grid used to calculate the flux. The according entries in the given flux
will be summed up to create the pulse profile. A normalization norm
for the flux can be given and corresponds by default the maximal value
occurring in the pulse profile. If pmark is set to a value within [0,1] a
marker is plotted at the according phase.
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C. Function declarations & usage

lb_xfig_plot_projection( par, fpar, obj, pro, bend, seflux )
Argument par = Par_Type See lb_par_init

fpar = Fpar_Type See lb_fluxpar_init
obj = Obj_Type See lb_obj_init
pro = Pro_Type See lb_projectobj

bend = Bend_Type See lb_projectobj
seflux = SEFlux_Type See lb_flux_se

Qualifier path [fpar.fpath] (S) Saving path
name [] (S) File name
type [’.png’] (S) File type
size [2] (D) Plot size factor

fonts [4] (I) Font size within [0,9]

rmax [] (D) Plot dimensions
dmin [] (D) Minimal Doppler factor
dmax [] (D) Maximal Doppler factor
fmin [] (D) Minimal SE flux
fmax [] (D) Maximal SE flux
color1 [’#111111’] (S) Grid element color
color2 [’#333333’] (S) NS grid element color
color3 [’brown’] (S) AC grid element color
overlap [OList_Type] (O) See lb_se_sizemagni

background [’black’] (S) No axis, background color
notrickdepth [] (–) No SE depth calculation

grid [] (–) Additional grid lines
nocolorscale [] (–) No color scale

flux [] (F) Additional pulse profile
usefields [[’all’,’ac1’,’ac2’]] (S[]) Fields of flux to plot

makemovie [] (–) Creates movie
bitrate [600] (I) Bit rate of movie

fps [8] (I) Frame per second of movie
Return Struct_Type
Dependencies (slxfig); (isisscripts); lb_xfig_add_colorscale,

color_create_map(plotting_colormap.sl);
lb_delta_mima, lb_seflux_mima, lb_xfig_prepare_grid,
lb_xfig_plot_pulseprofile

Description Renders a plot of the projected object pro for each phase. Plot di-
mensions in A and B are given with rmax. For surface elements with
obj.on > 0 the plotted color corresponds to its Doppler factor and the
brightness to its flux. The minimal and maximal values for the Doppler
factor and the flux are given by dmin, dmax, fmin and fmax or being
automatically calculated. Surface elements in the overlap list are not
plotted. If flux=Flux_Type is given a pulse profile for each usefields is
added. grid activates grid lines. notrickdepth disables the depth calcula-
tion of the individual surface elements. If background is given, axis are
deactivated and the background color is set accordingly.
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storing

fits_read_keys( file, keynames )
Argument file = S Path to file

keynames = S[] Keys names to read in file
Return Struct_Type{ <keys> }
Description Reads keys, whose names are given with keynames, in file

lb_save_prep( par )
Argument par = Par_Type See lb_par_init
Qualifier itlim [10] (I) Maximal new path tries

overwr [0] (I) Overwrite existing path 0/1
Description Prepares saving path and test for its existence. If path already exists a

new path is chosen or is overwritten if overwr qualifier exists.

lb_save_make_fname( par (, fpar), fext )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init (optional argument)
fext = String_Type File name extension

Return String_Type
Description Generates a file path and file name.

lb_load_file_exists( fname )
Argument fname = String_Type File name
Description Tests the existence of a file and returns the number of files with name

fname.

struct_compare( s, r )
Argument s = Struct_Type

r = Struct_Type
Qualifier sigdig [13] (I) Significant digits of doubles to test
Dependencies String_Type[]
Description Compares the structure s to the structure r and returns mismatch-

ing fields as string array. sigdig specifies the number of digits for
Double_Type, which are being compared.

lb_save_parameter( par )
Argument par = Par_Type See lb_par_init
Qualifier fname [par.ID+’_par’] (S) File name
Description Saves parameter in an ISIS readable file.
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C. Function declarations & usage

lb_load_parameter( fname )
Argument fname = String_Type File name
Dependencies lb_load_file_exists
Description Evaluates fname (in ISIS), if existent.

lb_save_map( par, map )
Argument par = Par_Type See lb_par_init

map = Map_Type See lb_psir2b_map
Dependencies lb_save_make_fname

lb_load_map( par )
Argument par = Par_Type See lb_par_init
Return Map_Type
Dependencies lb_load_file_exists, fits_read_keys, struct_compare
Description Loads Map_Type and compares the parameters

Vector2Double( v )
Argument v = Vector_Type[]
Return Double_Type[*,3]

Double2Vector( d )
Argument d = Double_Type[*,3]
Return Vector_Type[]

Array2Matrix( a )
Argument a = Array_Type[]
Return <type>[d1, d2 (, d3)]
Description Converts an Array_Type[d1](<type>[d2]) to a <type>[d1,d2] Matrix

and an Array_Type[d1][d2](<type>[d3]) to a <type>[d1,d2,d3] Ma-
trix.

Matrix2Array( m )
Argument m = <type>[d1, d2 (, d3)]
Return Array_Type[]
Description Converts a <type>[d1,d2] Matrix to an

Array_Type[d1](<type>[d2]) and a <type>[d1,d2,d3] Matrix to
an Array_Type[d1][d2](<type>[d3]).
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lb_save_object( par,obj )
Argument par = Par_Type See lb_par_init

obj = Obj_Type See lb_obj_init
Dependencies lb_save_make_fname, Vector2Double, Array2Matrix

lb_load_object( par )
Argument par = Par_Type See lb_par_init
Return Obj_Type
Dependencies lb_save_make_fname, lb_load_file_exists, fits_read_keys,

struct_compare, Double2Vector, Matrix2Array

lb_merge_phasedfiles( par )
Argument par = Par_Type See lb_par_init
Dependencies fits_read_keys
Description Merges files relating to the same <object> (e.g. Bend_Type) into one

file, which were split up into different phases.

lb_save_projection( par, proj )
Argument par = Par_Type See lb_par_init

proj = Pro_Type See lb_projectobj
Qualifier noff [0] (I) # of first phase bin
Dependencies lb_save_make_fname, Array2Matrix
Description Saves Pro_Type. If proj does not include par.nphi phases the name of

created file is extended with the phase bin numbers it includes, where
the number of the first phase included in proj has to be specified with
noff.

lb_load_projection( par )
Argument par = Par_Type See lb_par_init
Dependencies lb_save_make_fname, lb_load_file_exists, fits_read_keys,

struct_compare, Matrix2Array

lb_save_bending( par, bend )
Argument par = Par_Type See lb_par_init

Bend = Bend_Type See lb_projectobj
Qualifier noff [0] (I) # of first phase bin
Dependencies lb_save_make_fname, Array2Matrix
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C. Function declarations & usage

Description Saves Bend_Type. If bend does not include par.nphi phases the name of
created file is extended with the phase bin numbers it includes, where
the number of the first phase included in bend has to be specified with
noff.

lb_load_bending( par )
Argument par = Par_Type See lb_par_init
Dependencies lb_save_make_fname, lb_load_file_exists, fits_read_keys,

struct_compare, Matrix2Array

lb_save_arraytype( par, array, fname, fext )
Argument par = Par_Type See lb_par_init

array = Array_Type
fname = String_Type File path and name
fext = String_Type Extension name

Qualifier noff [0] (I) # of first phase bin
Dependencies Matrix2Array
Description Saves an Array_Type[d1](<type>[d3]) or

Array_Type[d1][d2](<type>[d3]). If d1 is not equal to par.nphi
the file name is extended with the numbers of phase bin range the
array relates to, where the first phase bin must be set with noff. fext is
the extension name corresponding to the single d1 entries.

lb_load_arraytype( par (, fpar), fext )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init (optional argument)
fext = String_Type File name extension

Return OList_Type or SEFlux_Type
Dependencies lb_save_make_fname, lb_load_file_exists, fits_read_keys,

struct_compare, Matrix2Array

lb_save_overlap( par, olap )
Argument par = Par_Type See lb_par_init

olap = OList_Type See lb_se_sizemagni
Dependencies lb_save_make_fname, lb_save_arraytype

lb_load_overlap( par )
Argument par = Par_Type See lb_par_init
Return OList_Type
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Dependencies lb_load_arraytype

lb_save_oversize( par, osize )
Argument par = Par_Type See lb_par_init

osize = OList_Type See lb_se_sizemagni
Dependencies lb_save_make_fname, lb_save_arraytype

lb_load_oversize( par )
Argument par = Par_Type See lb_par_init
Return OList_Type
Dependencies lb_load_arraytype

lb_save_fluxparameter( par, fpar )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init

lb_load_fluxparameter( par )
Argument par = Par_Type See lb_par_init
Qualifier FID [”] (S) Flux identification
Return FPar_Type[]
Dependencies lb_load_file_exists, fits_read_keys, struct_compare
Description Reads and returns every FPar_Type matching the specifications in par

and has the sub string FID in its file name.

lb_save_seflux( par, fpar, seflux )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init
seflux = SEFlux_Type See lb_flux_se

Dependencies lb_save_make_fname, lb_save_arraytype

lb_load_seflux( par, fpar )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init
Return SEFlux_Type
Dependencies lb_load_arraytype
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C. Function declarations & usage

lb_save_flux( par, fpar, flux )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init
flux = Flux_Type See lb_flux

Dependencies lb_save_make_fname

lb_load_flux( par, fpar )
Argument par = Par_Type See lb_par_init

fpar = FPar_Type See lb_fluxpar_init
Dependencies lb_save_make_fname, lb_load_file_exists, fits_read_keys
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