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Abstract

Although prior measurements of X-ray radiation from the sun exist, the first detection of a cos-
mical X-ray source in 1962 was still a surprise. It turned out that the signal cames from the
binary system Scorpius X-1. Still a long time after this discovery, the physical process leading
to the observed luminosities was mysterious. Several years later, the idea that the radiation
originates from mass accretion onto a compact object, for example, a neutron star or a black
hole, became general accepted. This is the case in X-ray binaries: they consist of a compact
object and a normal star orbiting around their common center of mass. If the compact object
orbits close to its companion star, mass accretion becomes possible. The systems are often
deep embedded in sourrounding interstellar medium. As the photons interact with the particles
via scattering and photo-ionization, the primary spectrum is significantly modified after it has
passed the medium. In this thesis, a Monte Carlo simulation of radiative transfer in the inter-
stellar medium is presented. After the basic idea behind the Monte Carlo method is described
in the introduction, the physical background of the involved process are outlined in chapter 2.
The general algorithm is described in detail in chapter 3, with special emphasis on the used
Monte Carlo technique. The shape of the resulting spectra is strongly dependent on the ex-
tension and properties of the interstellar medium. Therefore, in chapter 4, spectra are shown
produced within different geometries. The results are compared with prior models. The shape
and intensity of the fluorescence lines is an important diagnostic tool to determine the prop-
erties of the interstellar medium around X-ray sources. For this reason, different parameters
characterizing the iron Kα -line are calculated as a function of degree of absorption, viewing
angle and iron abundance. The resulting values may help to interpret observational data.
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Zusammenfassung

Obwohl schon im Jahr 1949 Röntgenstrahlung von der Sonne detektiert wurde, war die Ent-
deckung der ersten kosmischen Röntgenquelle 1962, das Doppensternsystem Scorpius-X-1,
eine Überraschung. Zunächst war unklar, welche physikalischen Prozesse für die intensive
Strahlung im Röntgenbereich verantwortlich sein könnten. In den folgenden Jahren setzte
sich dann die Vorstellung durch, dass die Strahlung durch die Akretion von Materie auf ein
kompaktes Objekt, zum Beispiel auf einen Neutronenstern oder ein schwarzes Loch, entsteht.
Denkbare Konstellationen für dieses Szenario sind beispielsweise Röntgendoppelsternsysteme,
in denen ein kompaktes Objekt und ein Hauptreihenstern um ihren gemeinsamen Schwerpunkt
kreisen. Ist der Orbit eng genug, wird Materietransfer von dem Begleitstern auf das kom-
pakte Objekt möglich. In der unmittelbaren Umgebung solcher Systeme befinden sich häufig
große Mengen Gas, das die Röntgenquelle auch komplett umhüllen kann. Beim Durchgang
der Strahlung wird das Spektrum durch die Wechselwirkung zwischen den Photonen und den
Teilchen im Medium modifiziert und verändert sich. Die wichtigsten Prozesse sind hier Comp-
ton Streuung und Photoabsorption, sowie das Auftreten von Fluoreszenzlinien. In dieser Arbeit
wird eine Monte Carlo Simulation vorgestellt, die den Strahlungstransport durch interstellares
Medium nachbildet und so absorbierte Spektren berechnet. Nachmdem in der Einleitung kurz
die Idee hinter der Monte Carlo Methode erklärt wird, wird in Kapitel 2 zunächst kurz auf
die physikalischen Grundlagen dieser Simulation eingegangen, inwieweit sie für das Verständ-
niss dieser Arbeit wichtig sind. Anschließend wird in Kapitel 3 der der Simulation zugrunde
liegende Algorithmus vorgestellt und die wichtigsten Routinen im einzelnen erklärt. Die Form
der absorbierten Spektren hängt sehr von der Verteilung und der Lage des interstellaren Medi-
ums im Bezug auf die Quelle ab, was in Kapitel 4 anhand verschiedener Geometrien gezeigt
wird. Die Spektren werden zudem noch mit bereits vorhandenen Modelen vergliechen. Inten-
sität und Form der Fluorezenzlinien verändern sich ebenfalls mit der Beschaffenheit des Medi-
ums und sind daher wichtige Hilfmittel, um die Eigenschaften von dem die Quelle umgebenden
Material zu bestimmen. In Kapitel 5 werden daher verschiedene Parameter der Eisen Kα -Linie
in Abhängigkeit von Absorptionsgrad, Blickrichtung und Eisenhäufigkeit untersucht. Der Ver-
lauf und die Größenordnung der so erhaltenen Werte könnte für die Interpretation von Beobach-
tungsdaten hilfreich sein.
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1 From the simple to the sublime: The Monte Carlo method
The first thought cross your mind when reading “Monte Carlo” may related with casinos and play-
ing poker. In fact, this gives you an excellent hint where this method came from. Games of chance
have been fascinating men for a long time ago and still do. Already the old Romans were playing
dice and today many people spend their time and money sitting in gambling houses. A game of
chance is strongly affected by any kind of randomizing process and that may account for its attrac-
tion. Even if a player is very skilled in a special game, he could just get a bad break and loose. To
handle this randomness, it becomes interesting to estimate the probability of success and losing.
The first way to manage that is straightforward calculating with probability theory. This is certainly
the most accurate method and it will provide the exact solution if any exists. On the other hand,
the procedure may get very extensive for more complicated problems. Stanislav Ulam, who liked
to relax playing solitaire, was one of the developers of the Monte Carlo method and describes the
second way in his autobiography “Adventures of a Mathematician” (Ulam, 1976): the idea is to
estimate the probability of winning by playing many games of solitaire and then simply count the
fraction of games that could be solved. This procedure is rather practical then compute all combi-
natorial possibilities using probability theory which leads anyway to a solution only for elementary
cases. For sufficiently complicated problems, this procedure is preferred to the examination of all
probability branches. The result after a quantity of simulated games will not lead to the exact an-
swer, but we can give the degree of accuracy and improve the result by increasing the number of
simulated games.

Getting information about a stochastic process by just trying it out many times and considering
the statistical outcomes is the basic idea of Monte Carlo method. In their book “Monte Carlo
Methods” (Kalos & Whitlock, 2008), M. Kalos and Whitlock define the Monte Carlo Method as the
use of random numbers in a calculation that have the structure of a stochastic process. By stochastic
process a sequence of states is meant whose evolution is determined by random events. In the
solitaire simulation, this random event would be the accidental arrangement of shuffled cards.

A similar procedure can also be used to solve integrals. Monte Carlo integration is a numerical
integration method using random numbers. To estimate a domain A, we put A inside a different
domain B whose area can be easily calculated. Then we produce a number N of random points
inside B. The area of domain A is thus given by the fraction of points that lie also in A multiplied
by the area of domain B. For the mathematical background of Monte Carlo integration, see, for
example, Caflisch (1998).

A simple example of use is the approximation of the mathematical constant π as described, for
example, by Kalos & Whitlock (2008): considering a circle with radius r and its circumscribed
square with side length 2r. The ratio of the area of the circle AC = πr2 to the area of the square
AS = 4r2 is π/4. To estimate π, we generate N random points inside the square. The ratio between
the points inside the circle and the total number of random points will tend to π/4 for a large
number N of simulated points. In Figure 1, the method is demonstrated for 100 random points.
The deviation from π was on average about ∼ 5%. By increasing the number of random points, the
estimation will approximate π.

This method is not the best and fastest way to approximate π, but the example demonstrates the
solution of a mathematical problem by random sampling. In this case, the integral
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I =

1∫
0

√
1−x2∫

0

dxdy.

is estimated. Random sampling is often the computationally most effective method to evalute
multidimensional integrals.

Figure 1: Illustration of Monte Carlo Integration
for N = 100 random points.

Using random numbers to reconstruct
stochastic sequences of events has a wide field
of application. The simulated systems are usu-
ally characterized by a significant uncertainty
of the input parameters as well as of its evolu-
tion. In social science which strongly relies on
statistic methods, hypothesis can be tested with
Monte Carlo method as described, for exam-
ple, by Mooney (1997). It is also used to solve
insurance and financial problems (see Glasser-
man, 2003) like risk estimation. In statistical
physics and chemistry, Monte Carlo simulation
allows to treat systems where thousands of par-
ticles are involved. Examples of use in physics are heat transfer, simulation of quantum systems
and nuclear physics.

In this thesis, a simulation of radiative transfer is presented. This problem is well appropriate to
be analyzed by Monte Carlo simulation. As M. Kalos mentioned, the simulation can be seen both
as solution of the equations of radiative transfer and as a typical Monte Carlo:

“The emission of radiation from atoms and its interaction with matter is an example of a natural
stochastic process since each event is to some degree predictable (...). It lends itself very well to a
rather straightforward stochastic simulation. But the average behavior of such radiation can also be
described by mathematical equations whose numerical solution can be obtained using Monte Carlo
methods. Indeed the same computer code can be viewed simultaneously as a “natural simulation”
or as a solution of of the equations by random sampling (Kalos & Whitlock, 2008, p. 3).”

Within the simulation, single photons are conducted step by step through a medium. The prop-
agation is influenced by random events like absorption, emission and scattering. Each process
occurs corresponding to a certain probability distribution and is choosed by random numbers. To
get a complete spectrum, one has simple to run the simulation over and over again collecting the
escaped photons.

This is a good example how Monte Carlo simulation works. A complex stochastic process
is split up into its individual components and each of this sub-routines is separately figured out.
Information about the entire process is obtained by considering a lot of such sequences.

In this sense Nicholas Metropolis describes the spirit of Monte Carlo method fittingly with the
words: “From the simple to the sublime” (Metropolis, 1987, p. 126).
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2 Physical background
The Monte Carlo code presented in this thesis is designed to reproduce X-ray spectra observed
from real sources. In this chapter, the physical background of the simulation is outlined. I will
first give a short overview about cosmical X-ray sources with special emphasis on X-ray binaries,
which formation and evolution is explained in more detail. Subsequently, the involved interaction
mechanisms between matter and light like Compton scattering and photo-ionization are explained.
Finally, the basic equations describing the radiative transfer through a medium are presented.

2.1 X-ray Sources
As long as humans exist, they look at the sky and are fascinated by the stars. It is therefore not
surprising that optical astronomy has a long history. Because the eye is naturally only sensitive
for visible light and of the absence of other detectors, it took a long time until one noticed that
astronomical objects emit also light in other wavelengths. Karl Jansky was the first who observed a
none optical signal from outside the solar system, it was a radio signal from the center of the Milky
Way (Jansky, 1933).

Figure 2: Illustration of Earth’s atmosphere opacity for electromagnetic radiation (source: NASA
public domain, acquired from Wikimedia Commons)

As seen in Figure 2, only radiation in the optical and radio range is observable from ground, the
Earth’s atmosphere is opaque beyond the ultraviolet region (Trümper & Murdin, 2000) and hence
measurements must be performed in space. The first X-ray measurements from the sun were done
by Friedman in 1949 during a rocket flight (Friedman et al., 1951). Despite this descovery, the
first observation of an extrasolar X-ray source (Giacconi et al., 1962) in the vicinity of the Scorpius
constellation was still a surprise. This source, called Scorpius X-1, has an X-ray luminosity of
2 × 1038 erg s−1. For comparison, the sun has a maximal luminosity of 5 × 1027 erg/s in X-ray1. One
more time after this discovery, the process that leads to an X-ray emission of such quantity was
still mysterious. Zel’Dovich (1964) and Salpeter (1964) were the first who suggest accretion of

1X-ray luminosities from: http://heasarc.gsfc.nasa.gov/docs/heasarc/headates/brightest.html
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Figure 3: X-ray binaries (yellow points) near the Galactic Center (source: NASA public domain)

matter onto a massive object as a possible energy source. In the following years, this idea became
generally accepted.

Figure 3 shows the Galactic center in the X-ray regime. The sky in this energy range is domi-
nated by a few hundred very bright stars and most of these stars would be X-ray binaries.2

A X-ray binary is a system consisting of a normal star, which still produces energy by nuclear
fusion, and a stellar remnant like a neutron star or a black hole. The compact object and the
companion star are gravitanionally bound and rotate around their common center of mass. The
compact object has about the same mass as our sun but with a radius of only ∼ 10 km. Thus, it is
extremely dense. Material is drawn from the companion star and falls onto the compact object by
realizing X-rays.3

In the following, an outline of the circumstances that lead to the formation of such a system
is given. Beginning with the evolution of a single star whose life may end with the genesis of a
compact object, the evolution of binary systems is described. Depending on the parameters of the
system, different accretion mechanisms are possible, which are explained at last.

2.1.1 Stellar evolution

The evolution of a single star is elementary for understanding the formation and mechanisms in
binary systems. The process of stellar evolution is very complex and many details are still under
discussion. Therefore, I will give only a rough overview about this subject and summarize the most
basic facts. For details see, e.g. ,Kippenhahn & Weigert (1990) or Salaris & Cassisi (2005).

In 1911, E. Hertzsprung and H. Rosenberg and later in 1914 also H. Russell developed a dia-
gram, today known as Hertzsprung-Russel Diagram (HRD), that illustrates the relation between the
spectral and other characteristics of stars. In a modern HRD, the absolute magnitude or luminosity
of the stars is plotted against their spectral type which is equivalent to an effective temperature.
Traditionally, the coordinate axes are chosen such that the cool and dim stars are located at right
bottom and the bright and hot stars at top left. In Figure 4 (a), a HRD of stars in the vicinity of the
sun is shown.

It is remarkable that stars are not uniformly distributed over the whole diagram, but are mainly
concentrated at the main sequence, extending from the top left corner to the bottom right corner.
But not all stars can be found in this narrow sequence, some stars has moved above the main
sequence (bright but cool) while also few stars can be found below. This motion in HRD is due
to the stellar evolution. The star is born by starting hydrogen burning and, depending on its initial
mass, settles on the mean sequence where it will spent most of its lifetime. When the star is already

2after: http://imagine.gsfc.nasa.gov/docs/science/know_l2/binaries.html
3after: http://heasarc.gsfc.nasa.gov/docs/binary.html
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Figure 4: a) Hertzsprung-Russell diagram for stars in the vicinity of the sun (from Lindegren,
1992). Not all stars are located in the main sequence, some have developed to red giants and a few
to white dwarfs. b) HRD of the young star cluster Pleiades (from Hansen-Ruiz & van Leeuwen,
1997). In this diagram, all stars can still be found in the main sequence.

older and further evolved, it will leave the main sequence to enter the red-giant phase and finally
die remaining a compact object. The motion in the HRD for stars with different initial masses is,
for example, described by Weigert et al. (2005). For comparison, the HRD of the young stellar
cluster Pleiades in Figure 4 (b) has no developed stars.

Star formation It is established that star formation in our Galaxy occurs in dense molecular
clouds which containe a substantial fraction of the total mass of the interstellar medium (Zuckerman
& Palmer, 1974). As described in detail by McKee & Ostriker (2007), star formation is initialized
by turbulences in the cloud which may cause a local collapse: due to velocity fluctuations in the
warm and diffuse medium, matter can be pushed into thermal unstable regions where the gas cools
down by forming a denser domain. This clumps attract even more gas and collapse at some point.

The density and temperature in the core increases and at a certain point hydrogen burning be-
comes possible. In this thermonuclear reaction, several lighter nuclei fuse into one heavier element.
Crucial for the energy account is that the nuclei together have a slightly higher mass before the re-
action than the resulting nucleus. According to Einstein’s equation E = mc2, the missing mass is
transformed into energy. By starting hydrogen burning, the collapsing gas cloud has turned into a
star and will settle on the main sequence according to its mass.

Main sequence The time a star will remain on the main sequence depends on the supply of
hydrogen in its core. This lifetime is proportional to f M/L , where f M is the fraction of the stellar
mass M, which is available for nuclear burning, and L is the averaged luminosity. Since luminosity
and mass are strongly correlated, a heavier star will spent less time on main sequence than a lighter
one.4

4after: http://map.gsfc.nasa.gov/universe/rel_stars.html
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The nuclear fusion of hydrogen into helium can run in two different cycles, the pp-chain and
the CNO-cycle, which are explained in the following. In both cycles the net result is given by

4H→ 4He.

For clarity, second products are not shown in the following reactions. The chemical equations can
be found, for example, in Salaris & Cassisi, p. 118f (2005).

Figure 5: Temperature-dependence of the pp-chain and the CNO-cycle (from Salaris & Cassisi,
2005, Fig. 18.8).

• Proton-Proton chain
For a moderate core temperature, helium is produced by the proton-proton chain:

1H + 1H→ 2D
2D + 1H→ 3He

3He + 3He→ 4He + 21H

This process is called pp-I cycle. Also a pp-II and pp-III cycle exist, but pp-I dominates.

• CNO-cycle
In the cycle, the presence of some isotopes of C, N or O are necessary:

12C +1 H→13 N
13N→13 C

13C +1 H→14 N
14N +1 H→15 O

15O→15 N
15N +1 H→12 C +4 He

Since C, N and O are both produced and destroyed, they behave like catalyzer in this cycle.
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The rate of energy production ε is temperature dependent as explained, for example, by Rolfs &
Rodney (1988), p. 375.: since at lower stellar temperatures the pp-chain is mainly responsible
for the energy production (see also Fig. 5), the CNO-cycle becomes more important for higher
temperatures and is finally the dominating process. The steep rise of εCNO is mainly caused by the
high Coulomb barriers occurring in the CNO reactions. In the pp-chain, two protons collide which
means the Coulomb potential must be overcome. This is easier for a singly charged proton than for
the reactions in the CNO cycle (see Salpeter 1955).

In Salaris & Cassisi (2005) the efficiency of nuclear energy production as a function of the
temperature ε ∝ T υ is specified for the different cycles. For a core temperature T ≤ 15 × 106 K,
the pp-chain process dominates with an averaged υ ≈ 4. The CNO cycle becomes important for
higher temperatures where εCNO ∝ T 18 at T ≈ 10 × 106 K. The comparison between the energy
productions rates from pp-chain and CNO-cycle leads to the conclusion that hydrogen is faster
exhausted in high massive stars, which reach higher temperatures.

Higher burning stages If all hydrogen in the central region of a star is converted into helium,
the temperature is too low to start helium burning an thus the nuclear burning expires at first. By
the decrease of radiation pressure, the star contracts by its own weight resulting in a density and
temperature increase in the core. If it is heavy enough, the temperature and pressure reach critical
values to ignite the next burning stage. In addition, further burning areas exist in shells around the
core where the temperature is high enough to convert lighter elements. Due to this shell-burning,
the radiation pressure increase in the outer layers and the star expands. In this phase, the star
is called a red giant. At this principle, the star passes several subsequent burning stages, which
lifetime decreases consequently.

The last burning stage is the nuclear fusion of silicon into iron. Since iron is the nucleus with
the highest binding energy, the fusion into a next heavier element would require additional energy
to stabilize the core instead of an energy gain. Therefore the star collapses, if the silicon in the
core is exhausted. The different burning stages and evolutionary steps are explained in detail, for
example, by Salaris & Cassisi (2005).

Stellar remnants After a star has burned all its resources, it evolves into one of three types of
objects, depending on its initial mass.

• White draws
The gravitational collapse of the burned star stopps when the core reaches a critical density,
wherein the electron gas becomes degenerated. The pressure of the degenerated electron
gas can resist the gravitational pressure as long as the mass is below ∼ 1.4 Mò (the Chan-
drasekhar limit, see Chandrasekhar, 1931). Since stars with masses > 2 Mò loose a large
part of their envelope before the collapse (see Weidemann et al., 1992), stars with masses up
to ∼ 8 − 10 Mò ends up as withe dwarfs (from Weigert et al., 2005, p. 202).

• Neutron stars
For stars of higher initial masses ∼ 11−25 Mò (Salaris & Cassisi 2005, p. 233), the pressure
of the degenerated electron gas can not stop the collapse. The core is further compressed
and the electrons are “pressed” into the protons. The infalling matter hits the core that is no
more compressible and bounces back. Strong shock fronts are formed and the star explodes
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as a supernova. The envelope is ejected and a neutron star is left. The neutron concentrate a
mass of ∼ 1.4 Mò in a radius of just 10 km and has a density ρ ≈ 1×1014 g/cm3 (Srinivasan,
1997).

• Black holes
If the the remnant of the supernova exceeds a mass limit of ∼ 2.5 Mò (corresponding to
an initial progenitor mass above ∼ 25 Mò) the pressure of the degenerated neutrons cannot
stabilize the collapse and the core will shrink to a black hole (see Salaris & Cassisi, 2005, p.
236). Its gravitational field is so strong that even light and any other forms of energy cannot
escape from it. This is equivalent to the speed of light c is smaller than the escape velocity
vesc needed to escape from a gravitational field generated by a mass M of radius R:

v2
esc = 2

GM
R
> c2.

This relation gives the radius

RS = 2
GM
c2 = 2.95 × 105 M

Mò

also called the Schwarzschild radius for which the escape velocity for a test mass becomes
greater than c.

2.1.2 Evolution of binary systems

During the collapse of a gas cloud is usually more than a single star formed, thus it is not unlikely
that two stars are born nearby. Due to gravity, the two stars may bound together and start to rotate
around a common center of mass. The gravitational potential of such a bound system is more com-
plicated than for a single mass. This problem, also known as three-body-problem, can described
in an idealized version by the Roche potential (for a detailed derivation see, for example, Frank
et al., 2002), where the stars are considered as point masses. Assuming a co-rotating reference
frame, where the masses M1, M2 located at the positions r1, r2 are fixed. The gravitational field,
experienced by a test particle at position r with the mass m � M1,M2, is than given by

Φ(r) = −
GM1

|r − r1|
−

GM2

|r − r2|
−

1
2

(Ω × r)2 .

The first two terms describe the gravitational potential of M1, M2, respectively, the last term is the
centrifugal force. Due to the co-rotating frame of reference where the position vectors of the stars
r1, r2 are fixed, the angular momentum Ω is fixed as well. In Figure 6, the equipotential surfaces of
the Roche potential for stars with mass ratio M1/M2 = 0.6 is plotted.

The innermost surface connected by Lagrange point L1 is called the Roche surface and represents
the maximal size of the stars. Exceeds one star its Roche volume, the matter outside the Roche
surface is no longer bound and can drift away or is accreted by the other star.

For a detailed overview about the evolution of binary systems see, for example, van den Heuvel
(2011). The evolution of the individual stars in a binary system follows the steps explained in
section 2.1.1 and the massive star will evolute faster than its lighter companion. Therefore, it may
happen that the heavier star ends up as a white dwarf while the other star is still on the main
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Figure 6: The equipotential surfaces of the Roche potential calculated for a mass ratio M1/M2 =

0.6. The five Lagrange points (L1, ..., L5) and the center of mass (CM) are also marked.

sequence. The companion star further evolves and enters at any time the red-giant phase accom-
panied by extension of its outer layers. The white dwarf may become able to accrete matter from
its companion and once its mass exceeds the Chandrasekhar limit, the star explodes in a supernova
remaining a neutron star or a black hole.

2.1.3 Accretion mechanism

Figure 7: Artistic impression of the high-mass X-
ray binary system. The outer layer from the com-
panion star is stripped off and reaches the com-
pact object via Roche Lobe Overflow (source:
NASA public domain).

If, for some reason, mass is transferred from the
companion star onto the compact object, the en-
ergy gained by moving a test particle with mass
m from infinity onto the surface of an object
with mass M and radius R is given by

ΔE =
GMm

R
.

The energy will released in X-ray radiation.
Dependent on the parameters of the binary sys-
tem, several accretion mechanism are possible,
which are explained in the following.

Roche Lobe Overflow Since in many cases
the companion star is a expanded star in the
red-giant phase. Once it exceeds its Roche vol-
ume, the outer layers are no longer bound and
the plasma from the star’s atmosphere passes through L1 into the Roche volume of the compact
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object. This accretion mechanism is called Roche Lobe overflow. Due to the rotation of the donor
star, the captured material has angular momentum and does not fall directly onto the compact ob-
ject. Instead, an accretion disk is formed, where the matter moves on spiral trajectories in direction
to the central mass. In Figure 7, an artistic impression of such a system is shown. The plasma flows
from the companion star onto the compact object by forming an accretion disk.

Figure 8: Artwork of a compact object that ac-
cretes from the stellar wind of an OB giant com-
panion (source: NASA).

Wind Accretion Since the stellar wind of
normal stars is usually weak, for O- or B-type
stars the mass loss rate due to stellar wind can
be up to Ṁwind = 1 × 10−6 − 1 × 10−4 Mòyr−1.
In a typical binary system, the compact object
is orbiting around its companion star in a dis-
tance of less than a stellar radius and therefore
it is deep embedded in the wind. Due to an an-
gular momentum, an accretion disk or an ac-
cretion stream may be formed. Wind accretion
does not imply a constant accretion rate leading
to a uniform X-ray luminosity. The high-mass
X-ray binary Vela X-1 shows, for example, sig-
nificant flares of more than 3.0 Crab between
20 − 60 keV since the averaged flux is around
250 mCrab. One possible explanation might be the clumps in the wind (Fürst et al., 2010).

Be-accretion In these binaries, the companion star is a Be-star. A Be-star is a B-type star that
exhibits emission lines over its spectrum. This spectral component is attributed to a circumstellar
gaseous environment. Due to the fast rotation of the Be-star, an equatorial disk may be formed (for
a detailed discussion of Be-stars, see, for example, Porter & Rivinius, 2003).

Figure 9: A neutron star orbiting around a Be-star in an eccentric orbit. When the compact object
enters the disk, mass accretion becomes possible and X-ray flares can be observed (priv. com. M.
Kühnel).
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Mass accretion is possible if the compact object passes the circumstellar envelope during its peri-
astron passage. The accretion disk of the neutron star or black hole is filled and an X-ray outburst
can be observed. As a result of the previous supernova explosion, the orbits of most binary systems
are high eccentric. Once the compact object is leaving the periastron, the accretion rate decreases
rapidly due to lack of mass. When an accretion disk was formed, the compact object can main-
tain accretion for a time but shortly after the periastron passage, the X-ray source will become
fainter and by approaching the apastron, the X-ray luminosity decreases in most cases below any
detectable limit. In Figure 9, the orbit of such a system is shown. This kind of X-ray sources are
also called transient sources.

2.2 Interaction between radiation and matter
A photon can be understood as a particle with zero mass and zero charge traveling always with
c, the speed of light. Being electrically neutral, photons do not constantly loose energy due to
Compton interaction as charged particles do, but travel a certain distance before they undergo a
more significant process. Below a photon energy of ∼ 10 keV photo-ionization is the dominant
effect (see Fig. 10).

Figure 10: Photo-ionization cross-section and Klein-Nishina cross-section for Compton scattering
per hydrogen atom. As seen, photo-ionization is the dominant process for photons with energies
up to 10 keV. Elemental abundances are those given by Wilms et al. (2000). For the fit parameters
which are used to calculate the photo-ionization cross-section see Verner & Yakovlev (1995).

In this process the photon is absorbed removing an inner-shell electron from an atom or ion which
takes the photon energy away. The vacancy left by the kicked-out electron may be filled with
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an outer-shell electron by emitting either a photon which has an energy characteristical for this
transition or by ejecting an Auger electron. The further process is called fluorescence.
Above 10 keV the photon is usually Compton scattered. Depending on the electron temperature
the photon either looses energy and heats the medium or it is up-scattered by hot electrons. If the
photon energy is at least 2 mec2, pair production is also possible.

In this chapter, I will give a short overview of the physical background of Compton scattering
(section 2.2.1) and photo-ionization (section 2.2.2) including the related process of fluorescence
(section 2.2.3).

2.2.1 Compton scattering

Compton scattering is a type of inelastic scattering that photons experience in matter. This process
causes a shift in the photon’s energy, which is called Compton effect. It was first observed and
published in 1923 by A. Compton.

This change in energy can only be understood in terms of Quantum Mechanics. In the low
energy limit the scattering process reduces to elastic Thomson scattering which is the low energy
approximation of Compton scattering and can be described classically. Thomson scattering ex-
plains the elastic scattering of radiation by free charged particles using classical electromagnetism
(after Rybicki & Lightman, 1986).

Figure 11: Compton scattering

In this approach the scattered photon does
not change its energy

E = E’

and the differential cross-section for Thomson
scattering is given by

dσvT
dΩ

=
1
2

r2
0(1 + cos2

α) (1)

where r0 = c2/mc2 gives a magnitude scale of
the point charge (for electrons, r0 means the
classical electron radius) and α is the angle between the incident and the scattered photon (see
Fig. 11). The differential cross-section is proportional to m−2, thus scattering with electrons as the
least massive free charged particles is dominating. For example, the cross-section for scattering on
protons is reduced by a factor

(
me/mp

)2
≈ 10−7, therefore scattering on heavier particles is not an

issue. Integrating over the solid angle Ω we get the total Thomson cross-section

σvT =
8π
3

r2
0. (2)

For an electron this expression results in 6.652 × 10−25 cm−2 = 0.665 barn .
For increasing photon energies the classical approach of Thomson scattering is no longer valid.

Is a X-ray or γ-ray photon scattered by an electron, Quantum effects have an influence on the
scattering event in two ways (Rybicki & Lightman, 1986):

• The photon will experience an energy shift due to the recoil of the charge.
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• The classical Thomson cross-section has to be modified

The following derivations mainly refer to Pozdnyakov et al. (1983). Treating the photon with
frequency f as a particle with energy E = h f , it has a well defined momentum p = (h f /c)Ω.
Assume it is scattered by an electron of energy γmc2 and momentum p = γmv with velocity vector
v and γ = (1 − v2/c2)−1/2. Prior to the scattering event, the photon and electron four momenta are
given respectively by

p4 = (p, iγmc), k4 =

(
h fΩ

c
,

ih f
c

)
Considering energy and momentum conservation, the sum of photon and electron four momentum
does not change during the interaction

p4 + k4 = p′4 + k′4

where p′4and k′4 denotes the four momenta after the scattering event. Defining μ = Ωv/c, μ′ =

Ω′v′/c and the scattering angle α = cos−1(Ω · Ω′) (see Fig. 11) and after some conversions, the
comparative frequency shift is given by

f ′

f
=

1 − μvc
1 − μ

′v
c +

h f
γmc2 (1 − cos α)

. (3)

If the target electron is at rest (|v| = 0), Eq. (3) is reduced to

f ′

f
=

1

1 +
h f

mc2 (1 − cos α)
. (4)

This equation can be written as
λ
′
− λ = λC (1 − cos α)

where λ and λ′ are the wavelengths of the photon prior and after the collision, respectively. The
constant λC = h/ (mc) is called Compton wavelength and constitutes 2.42631 × 10−12 m for an
electron.

If, in contrast, the electron traveling at high speed, the relativistic Doppler effect becomes more
important. To get the frequency shift for a photon with frequency f in the observer’s frame, it has
to be considered that from the electron’s point of view, the photon appears redshifted with

f0 = γ f
(
1 −
μv
c

)
. (5)

If h f0 � mc2 in the electron’s reference frame, the low-energy approximation of Thomson scatter-
ing is again valid and the collision is assumed to be elastic f0 ≈ f ′. Back in the observer’s frame,
the frequency of the scattered photon is given by

f ′ =
f ′0

γ

(
1 − μ

′v
c

) ≈ f 0

γ

(
1 − μ

′v
c

) = f

(
1 − μvc

)(
1 − μ

′v
c

) .
For low-frequency photons the relativistic Doppler effect will dominate the energy shift of the
photon.
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Figure 12: Differential Klein-Nishina cross section

In t 1928, O. Klein and Y. Nishina derived the differential quantum mechanic cross-section for
Compton scattering with free electrons at rest:

dσvC
dΩ

=
3

16π
σvT

(
f ′

f

)2 [(
f
f ′

)
+

(
f ′

f

)
− sin2

α

]
. (6)

With x = h f /
(
mec2

)
and considering Eq. 4, Eq. 6 can be written as

dσvC
dΩ

=
3

8π
σvT

(
1 + cos2

α

2

) (
1

1 + x (1 − cos α)

)2 [
1 +

x2 (1 − cos α)2(
1 + cos2 α

)
(1 + x (1 − cos α))

]
. (7)

In Fig. 12, this quantum mechanic differential cross-section is displayed. For comparison, the clas-
sical Thomson cross-section is also shown. As expected, the cross-section approximates Thomson
scattering for low photon energies. In this classical regime, the probability of being scattered in a
certain direction is symmetric around α = 90°. With increasing energy back-scattering occurs more
and more rarely, while the possibility of scattering forward remains constant. This fact plays an
important role in shaping line profiles as discussed in chapter 5.

Integrating Eq. 7 over the solid angle dΩ, we finally get the total quantum mechanical cross-
section

σvC = σvT
3
4

{
1 + x

x3

[
2x (1 + x)

1 + 2x
− ln (1 + 2x)

]
+

1
2x

ln (1 + 2x) −
1 + 3x

(1 + 2x)2

}
. (8)

This equation is called the Klein-Nishina formula.
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2.2.2 Photo-ionization

Photo-ionization describes the process in which a photon removes one or more electrons from the
absorbing atom or ion. This effect is also known as Photo-effect. An incident photon with energy h f
impacts an atom X and depending on whether the photon energy is high enough, a bound electron
may be kicked out leaving an ionized atom and an additional charge (after Kaastra & Mewe, 1993):

h f + X = X+ + e.

The ejected photo-electron carries away an energy Ee equal to the difference between the photon
energy and the binding energy Eion of the removed electron:

Ee =
1
2

mev2 = h f − Eion.

Since the bound electron is lifted to an upper state which lies in the continuum, this process is also
called bound-free transition. The transition probability is related to the photo-ionaization cross-
section which depends on the energy of the incident photon and the kind of the target atom. Each
individual electron subshell accounts for the overall cross-section and its contributions change with
ionization stage. Cross-section measurements exist for neutral atoms but are still very scarce for
multiply charged ions (Champeaux et al., 2003). As analytical calculations are possible only for
hydrogen-like ions, it is necessary to resort to numerical methods. Before I outline the method how
the photo-ionization cross-sections are achieved in the simulation, I will first roughly describe the
configuration and denotation of the electron shell and its subshells.

Electron shell An electron shell can be thought as a defined residence space for electrons around
a nucleus. Expressed in simplified terms the shells are arranged from inside to out and the outer
shells are only occupied if the inner ones are already filled with electrons. The basic construction
of the electron shells is, for example, explained by Demtröder (2006):

The electron shell is related to the principal quantum number n ≥ 1 and for each value of it
there are n possible values for the azimuthal quantum number l = 0, 1, 2, ..., n − 1 . This results in

n−1∑
l=0

(2l + 1) = n2

different states per shell and each of them can be occupied with a pair of electrons with opposite
spin. An electron shell with principal quantum number n thus can hold at most 2n2 electrons.

In table 1, the first 4 electron shells and their subshells are shown additionally to their respective
maximal occupation number. In the simulation presented in this thesis, elements are included up to
an atomic number of Z = 30. Therefore, the highest shell we have to consider is the 4s subshell.

Cross-sections The differential cross section of bound-free transitions from a state with principal
quantum number n and subshell l for a photon with energy E is given by (see Rybicki & Lightman,
1986)

σvbf (E) =
512π7mee10Z4

3
√

3ch6n5

g (ω, n, l,Z)
ω3 =

64π4mee10Z4

3
√

3ch3n5

g (E, n, l,Z)
E3 = σvbf,cg (E, n, l,Z) (9)
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n l max. electrons max. electrons
(shell name) (name sub shell) per sub shell per shell
1 (K-shell) 0 (1s) 2 2
2 (L-shell) 0 (2s) 2 8

1 (2p) 6
3 (M-shell) 0 (3s) 2 18

1 (3p) 6
2 (3d) 10

4 (N-shell) 0 (4s) 2 32
1 (4p) 6
2 (4d) 10
3 (4f) 14

Table 1: Notation and number of electrons for each shell up to n = 4

where Z is the atomic number, e = 1.60 × 10−19 C the elementary charge, me = 9.10 × 10−31 kg
the electron mass, h = 6.63 × 10−34 Js Planck’s constant, c = 2.99 × 108 ms−1 the speed of light in
vacuum and ω = 2π f = 2πE/h the angular frequency of the photon.5

Eq. 9 is only valid for a photon energy exceeding the binding energy ETh of subshell nl, other-
wise σvbf = 0 as the photon energy is not enough to eject an electron. The factor g (E, n, l,Z) is called
Gaunt-factor and summarizes the quantum mechanical corrections since σvbf,c is the semi-classical
cross-section for photo-absorption.

Karzas & Latter (1961) calculated the Gaunt factor for atoms which are ionized so far that
they only have a single electron and the computation can be done by considering a pure Coulomb
field. The result of these calculation is that the Gaunt-factor is ∼ 1 for photon energies close to the
binding energy of the particular shell and decreases with increasing photon energy. Therefore the
quantum mechanical cross-section is smaller for high energies than the semi-classical approach.

As the photo-absorption cross-section for a single shell is zero if E < ETh while it is maximal
close to the binding energy, absorption edges are visible where the cross-section increases abruptly
when absorption from the next higher shell becomes possible.

Verner & Yakovlev (1995) present a set of photo-ionization cross-sections for the ground state
shells of all atoms and ions for Z 5 30. The partial cross section σvnl(E) for a subshell nl is described
by the fitting formula

σvnl(E) = σv0F
(

E
E0

)
with

F(y) =
[
(y − 1)2 + y2

w

]
y−Q

(
1 +

√
(y/ya)

)−P

where y = E/E0 and yw,ya, σv0 , E0 and P are the fit parameters and Q = 5.5 + l − 0.5P. By
summarizing the partial cross-sections

σvZ,I(E) =
∑
n,l

σvn,l(E)

5values of physical constants from http://physics.nist.gov/cuu/Constants/
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the overall absorptivity for an atom or ion can be calculated. If the ionization structure and the
elemental abundances of the absorbing material is known, the overall photo-ionization cross-section
is given by

σvtot(E) =
∑
Z,I

aZσvZ,I(E)

where aZ is the number of atoms with proton number Z per hydrogen atom.
In Figure 13, the partial cross-sections for the M-shell (n = 3) of neutral iron calculated after

Verner & Yakovlev (1995) are plotted as an example.

Figure 13: Partial cross-section for the M-shell of neutral iron.

For the innermost subshell 3s the cross-section is the smallest during the ionization energy is the
largest and for E � ETh the cross-section decreases. For the outer shells, interaction with the
field caused by the other shell electrons becomes important. The minima, evident in the plots for
subshell 3p and 3d result from this interaction (see Wilms, 1996, and references therein).

2.2.3 Auger ionization and Fluorescence

Once an inner-shell electron is removed, the vacancy will be filled subsequently by electron cas-
cades from higher shells (Kaastra & Mewe, 1993). The energy difference is compensated either by
a radiative transition called fluorescence or by the emission of an Auger-electron. In Figure 14 the
different processes are sketched.

Various transition rates are possible and the resulting number of photons and electrons emitted
during the cascade is given by a probability distribution. If Auger processes are involved, a single
vacancy can lead to a highly ionized atom. The description of the individual processes below
follows Kaastra & Mewe (1993) and Bambynek et al. (1972).

• Fluorescence
A vacancy in a shell X may be filled by a radiative transition from a higher shell Y . The dif-
ference between the binding energies Ex, Ey of the respective shells is emitted as fluorescence
photon with an energy

Eph = Ex − Ey.
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Figure 14: Skatch of the different options after the absorption of a photon by an inner shell: (a)
fluorescence with emission of a characteristic X-ray photon, (b) Coster-Kronig transition followed
by fluorescence and (c) the emission of an Auger electron (graphic from Wilms, 1996).

As the line energy is specific for a certain transition the absorbing element can be identified
by the fluorescence line. Since the transitions in ions show a slightly different line energy
the ionization state can also be determined. Fluorescence and Auger ionization may occur
both for the same initial vacancy and therefore the probability that during the cascade a
specific line photon is emitted is in general less than one. This probability is expressed in the
fluorescence yield Y which is defined as the number of emitted line photons per ionization
(Kaastra & Mewe, 1993).

• Auger ionization
The alternative option to fill the initial vacancy in shell X is a radiationless Auger transition
XYZ. An electron from shell Y > X takes the place left by the knocked out electron by
ejecting another electron from subshell Z ≥ Y . The energy of the Auger electron is given by

EAuger = EX − EY − EZ.

• Coster-Kronig transition
If shell X and Y have both the same principal quantum number, the transition is called a
Coster-Kronig transition.

In the simulation, the Auger effect is considered by reducing the probability that a photon is re-
emitted after being absorbed as fluorescence photon.

2.3 Absorption of X-rays in the interstellar medium
When a beam of photons passes through matter, various events are possible. As discussed above,
Compton scattering and photo-ionization occur. There is also a certain probability that no inter-
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action occurs and the photon escapes. This probability increases with decreasing density of target
particles. In the following, the general equations that describe the radiative transfer in medium are
outlined. As the absorption is strongly dependent on the elemental composition of the medium, the
abundances used in this simulation are presented.

2.3.1 General equations

The derivations below follows mainly Rybicki & Lightman (1986). When a ray of light travels
a distance ds through absorbing material, the intensity If at frequency f can be described by the
following equation:

dIf = −αf Ifds (10)

where αf in units of cm−1 is the absorption coefficient for a photon with energy E = h f . This
phenomenological law can be written as

dIf = −nσvf Ifds = −
1
λf

Ifds (11)

where n represents the particle density (number of particles per unit volume) and σv f the cross-
section for a photon with frequency f . The parameter λf is called the mean free path and it denotes
the average distance a photon can travel without being scattered or absorbed.
The fraction of photons that is escaping from the medium without interaction is then given by

If(s)
If(s0)

= exp

−
s∫

s0

1
λf (s′)

ds′

 . (12)

Integrated over a distance s we get:
I f

I f ,0
= e−

s
λf = e−τ (13)

where τ is the optical depth.
In astronomy, the amount of matter between source and observer is usually described by the hy-
drogen column density NH which is defined as the number of hydrogen atoms in the line of sight
per unit area. The real number of particles is thus given by considering all elemental abundances
respective to hydrogen.

2.3.2 Abundances

The photo-absorption cross-section σvf and the amount of particles along the line of sight is depen-
dent on the considered elemental mixture of the absorbing medium.

For the main part of the spectra simulated in this thesis, the elemental abundances for interstellar
medium presented by Wilms et al. (2000) were used and I point also to this paper for further details.
Prior calculations were done, for example, by Morrison & McCammon (1983). The abundances
listed in table 2 are normalized to a hydrogen abundance of log AH = 12 (Wilms et al., 2000).
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Element Z 12 + log AZ

H 1 12.00
He 2 10.99
C 6 8.38
N 7 7.88
O 8 6.69
Ne 10 7.94
Na 11 6.16
Mg 12 7.40
Al 13 6.33
Si 14 7.27
P 15 5.42
S 16 7.09
Cl 17 5.12
Ar 18 6.41
Ca 20 6.20
Ti 22 4.81
Cr 24 5.51
Mn 25 5.34
Fe 26 7.43
Co 27 4.92
Ni 28 6.05

Table 2: Elemental abundances for interstellar medium from Wilms et al. (2000) for the abundant
elements

3 Monte-Carlo simulation of radiative transfer
The code presented in this thesis is a Monte Carlo simulation of photon transport in the interstel-
lar medium. The original code was implemented by J. Wilms (1996) and further developed by
L.Barragán. For a general introduction in Monte Carlo methods see, for example, Deak (1990) or,
with special emphasis on the simulation of X-ray spectra, Pozdnyakov et al. (1983).

The simulation is designed to exploring the modification a X-ray spectrum expiriences by pass-
ing through the interstellar medium. A photon emitted by an astronomical source hits a cloud
arranged in a certain geometry and defined by density, temperature and elemental abundances. The
photon may interact with the atoms and ions within the medium. It will change its direction and
energy if it collides with an electron and or it is absorbed by photo-ionization (see Section 2.2.1).
As described in Section 2.2.2 and 2.2.3, a line photon with an energy specific for each element can
be emitted if absorption takes place. In addition, there is a possibility that the photon escapes with-
out any interaction. According to its composition and other characteristics, the medium modifies
the shape of the input spectrum significantly.

Similar simulations are done for example by Matt et al. (1991) to model radiation from an
accretion disk with special emphasis on the Fe Kα-line and the high energy bump at 10 − 50 keV
and by Odaka et al. (2011a) which gives a very detailed overview also about the framework of the
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used Monte Carlo simulation.
To simulate the transport of photons through a medium, the involved probability distributions

have to be identified and defined. Methods are needed to sample values from these distributions by
random numbers. The interactions itself and the associated modification of the photon’s properties
have to be modeled. In addition, the geometry has to be modeled including algorithms to determine
whether a photon can assumed to be still in medium.

In this chapter, I will first give an overview of the general algorithm. Additionally, the method
of weights is explained, a way to improve the statistics by splitting a process in its different prob-
ability branches. Subsequently, the different parts of the program including the used Monte Carlo
techniques are discussed in detail.

This chapter basically refers to the thesis of Wilms (1996) and the corresponding documentation
(Wilms, 2002). Most of the algorithms and derivations are adopted from there. Please refer to this
papers for further details and references.

3.1 General Algorithm and the method of photon splitting
In Figure 15 the basic algorithm used in this thesis is shown (after Wilms, 2002). In the following,
I will go step by step through the individual program sequences and I will explain the main parts
shortly.

1. A photon defined by its position r = (x, y, z), direction d =
(
dx, dy, dz

)
, energy E and weight

w (the meaning of this parameter is explained below) is generated at source’s coordinates and
propagated through the medium.

2. A random path length x is sampled using to the probability distribution I/I0 = exp(−x/λ)
(see Eq. 13). Then the photon is propagated by x.

3. Now we test if the photon is still in the medium. If it is, the photon has interacted with an
electron or atom and we continue with step 4. Elsewise, we bin the escaped photon in a
spectrum and go back to step 1.

4. The type of interaction, absorption or Compton scattering, is calculated by weighting their
respective cross-sections. In the case the photon is absorbed, we continue with step 5, other-
wise with step 6.

5. The photon has removed an inner shell electron. At first, the absorbing element and the shell
have to be figured out. Considering the different fluorescence yields, we determine the shell
from which the vacancy is filled and whether the energy is carried away by an Auger electron
or a line photon. If an Auger electron is ejected, the photon is destroyed. In case of line
emission, we change the photon energy according to the specific line and sample its direction
from an isotropic distribution.

6. The photon is Compton scattered of a quasi-free electron. The scattering angle is sampled
using the differential Klein-Nishina formula eq. 7 and the new direction and energy (see eq.
4) of the scattered photon is calculated .
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Figure 15: General algorithm of radiative transfer simulated by the Monte Carlo method

7. We test, if it makes any sense to continue propagating the photon or if we could consider it
absorbed due to its low energy. When the photon gets absorbed, we go back to step 1, else
wise we continue with step 2.

In step 1, each photon is assigned a weight w . This means, we do not necessarily consider a
single photon (w = 1) but also fractional parts (w < 1) of it as well as photon packets with w > 1.
This method was firstly described by Pozdnyakov et al. (1983) and I refer to this paper for the
mathematical details.

In this way, the energies of the generated photons can be modeled. To simulate the radiation of
a cosmical source, the weights of the input photons are assigned according to teh soruce’s spectral
distribution which is usually described by a powerlaw

N(E) = N0E−α (14)
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where α is the dimensionless photon index and N0 a normalization constant in units of keV−1cm−2s−1.
If the overall input spectrum covers an energy range from Emin to Emax, the generated photon will
have an energy Ex with Emin ≤ Ex ≤ Emax. To ensure that the entire spectrum is power law dis-
tributed, we assign the weight of the photon to

wx =
E-α

x∫ Emax

Emin
N(E)dE

.

A higher weighting corresponds to a higher probability that a photon with energy Ex is emitted from
the source. In the simulation, we generate the same number of photons in each energy interval but
weighten them differently.

As one can easily imagine, a large part of the photons (particularly in the low energy range and
for an optically thick medium) is absorbed and only a few photons escape the medium. This makes
the method inefficient, in the way that many photons are needed to obtain a meaningful spectrum
which in turn leads to a high computational effort.

A method to handle this problem is the introduction of escape-weights also known as “photon
splitting technique”, as described, for example, by Odaka et al. (2011b): first, the fraction of pho-
tons that escape the medium without scattering is calculated. Subsequently that part of the photon
package is propagated outside the medium towards its original direction. The rest of the photon
is scattered considering the equations in Section 2.2.1. We are also no longer forced to make a
decision, but can split the photon and trace the various probability branches.

In Figure 16, a trace of such a such a splitting process is shown for an input photon with an
energy of 100 keV.

The photon emitted at z = 1 is moving downwards and hits the plan, which is infinitely extended
in the minus Z-direction at z = 0 . After entering the cloud the photon is scattered around until
its energy or weight is low enough to satisfy the abortion’s criterion. The solid line represents the
fraction of the photon, that always remains in the medium while the dashed lines symbolize the part
that escapes. The weight decreases the longer the photon is in the medium. By adding a minimum
weight to the abortion’s criterion, we set up to which probability the photon is still propagated. If
the photon moves towards the medium’s edge, there is a probability to escape and the photon will
split. Especially in the semi-infinite slab geometry (described in Sec. 3.4.2), where only the back-
scattered photons are of interest, the technique of photon-splitting is important. As back-scattering
is rare for high photon energies there would be a lot of run-time without escaping weights.

This way, we gain information from each simulated photon path which significantly improves
the statistics. In Figure 17, a Compton shoulder of the Fe Kα-line, simulated with and without using
photon-splitting. Especially the left part of the Compton shoulder is much better resolved.

The method of weights can also be used to model fluorescence, especially if we are only inter-
ested in particular lines. Assuming, for example, the Fe Kα-line is of special interest and we would
like to gain information about it each time a photon is emitted via fluorescence. The probability
that the photon removes an electron from K-shell of neutral iron is given by PFe,K = σvFe,K/σvtot

where σvFe,K is the partial cross-section of the K-shell of neutral iron and σvtotal is the total photo-
absorption cross-section including all shells and elements. First, we stipulate that the photon is
always absorbed by the K-shell of neutral iron and multiply its weight with PFe,K. Subsequently,
we change the photon´s energy to the Fe Kα-line energy and reduce once again its weight by the
total fluorescence yield (see chapter 2.2.3). Since only the weight counts for the output spectrum,
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Figure 16: A photon trace calculated with escape-weights in a semi-infinite flat geometry. The
dashed lines represent the escaping part of the photon.

each fluorescence photon gives statistical informations about the iron lines by conserving the actual
emission probability.

3.2 Random numbers
The basic idea of Monte Carlo simulation is to model events by chance and therefore a good random
number generator is of crucial importance. Random numbers used in a computer simulation should
meet the following requirements (Wilms, 1996):

1. The output of a computer is based on an algorithm and therefore it is of course deterministic.
In hardware random number generators, additional devices like a clock or a γ-ray counter are
used to receive random numbers. Otherwise one needs an algorithm that computes values
which have the same properties as random numbers. The values achieved in this way are also
called pseudo random numbers. Since a periodicity in the used values would lead to wrong
outcomes, the sequences may not be repeated during the simulation.

2. In order to replicate certain random events of interest and for reasons of bug-fixing, the
generated random sequences should be reproducible. Therefore the generators based on any
external randomizing device are not suitable.

3. The random number generator is called many millions times during a simulation and there-
fore it is necessary that the algorithm used is very fast.
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Figure 17: Compton shoulder of the Fe Kα-line for a semi-infinite slab geometry, simulated without
weights (a) and with weights (b) each for N = 1 × 104 input photons.

3.2.1 Uniformly distributed random numbers

To model more complex distributions or events, one uses ordinary random numbers uniformly
distributed on the interval [0, 1]. Most of the algorithms used totay produce such ordinary random
number sequences based on the multiplicative congruential method, also called method of residues
(Wilms, 1996). In this technique, sequences of integers are generated by the relation

xi+1 = kxi + c mod(m)

where i = 0, 1, 2, ... and x0 is the seed value and k, c, m are integers with x0, k, c > m. The modulus
c mod(m) is the remainder left when c is divided by m. If c = 0 the method is called multiplicative,
otherwise mixed. The random number is than given by the sequence {xi/m}. The modulus m is
often given in the form m = 2N . This expression can easily be evaluated on binary systems. By
a suitable choice of the parameters x0, k, c and m a long sequence of random numbers can be
generated without any periodicity (Downham & Roberts, 1967).

Figure 18: Output of two different random gener-
ators: combined generator (1) and a simple mul-
tiplicative congruential generator (2)

An obvious possibility to increase the cycle
of independent numbers is to combine different
generators. This is the case for the algorithm
invented by Wichmann & Hill (1982) which is
used in this simulation: it is a combination of
three simple multiplicative congruential gener-
ators, each with a prime number for the mod-
ulus and a simple root for the multiplier. The
three results are added and the fractional part is
returned.

In Figure 18, the output of Wichmann’s
generator (1) is compared to a simple multi-
plicative congruential generator (2), described
by Pozdnyakov et al. (1983). Hundred thou-
sand random numbers are produced on the in-
terval [0, 1] and collected in a grid with a bin-width of 1/100 . Statistically, the number of random
values in each bin should be ∼ 1000. One can easily see, the output of the combined algorithm
varies less around the mean value.
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3.2.2 Arbitrarily distributed random sequences

Random variables are given through their distribution function (after Deak 1990, p. 13 ff): Consider
a random variable ξ defined on the elementary events ωi. The probability that a particular random
variable ξ = ξ(ωi) falls into the interval [a, b] is given by

P
{
ξ ∈ [a, b]

}
= P

{
∪ωi | ξ(ωi) ∈ [a, b]

}
.

If the intersection of any elementary events is empty which implies that only a single event can
occure at the same time, than

P

 ∞⋃
i=1

ωi

 =

∞∑
i=1

P (ωi)

and it is sufficient to characterize the variable ξ by probabilities in the form P
{
ξ∈ [−∞, x]

}
. That

can also be expressed as
P

{
ξ < x

}
= F(x).

F(x) is called the distribution function of the random variable ξ. If

F(x) =

x∫
−∞

f (z)dz

is valid for all x ,the random variable is called absolutely continuous and f (x) is its density function.
The methods presented below will show how one can generate arbitrarily distributed random

variables from ordinary random variables ξn ∈ [0, 1] .

The method of inverse functions This method, here described after Pozdnyakov et al. (1983),
can be considered as the standard procedure to obtain specially distributed random variables: As-
suming the required values have a distribution function y = F(x) and we can determinate its inverse
function to x = G(y). Than the function η = G(ξ) will return random variables with distribution
function F(x):

P
{
η ≤ x

}
= P

{
G(ξ) ≤ x

}
= P

{
ξ ≤ F(x)

}
= F(x)

This technique is used to model a random path length (step 2 in Fig. 15). Once in the mdium, the
photon will travel a certain distance before it is stopped. The free path l is a random variable with
the distribution function

P {l ≤ x} = exp (−x/λ)

where λ denotes the mean free path (see Section 2.3). The inverse function of ξ = exp (−l/λ) is
easily calculated to l = −λ ln

(
1 − ξ

)
. This last expression can be simplified to

l = −λ ln
(
ξ
)

since ξ and
(
1 − ξ

)
are equally distributed. Suppose the photon is still located a distance L away

from the medium’s edge with respect to its moving direction. We consider only the part of the
photon that remains in medium. Thus, we want to generate a path length l < L. The escape
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probability is given by Pesc = exp (−L/λ) since the photon is stopped with probability Pin = 1−Pesc.
In this case, the required path length is calculated with

l = −λ ln
(
ξPin

)
.

With the method of inverse functions, also random variables can be modeled which distribution
is descrete (see Pozdnyakov et al., 1983). Suppose a random variable η can take any of a finite or
infinite set of values x1, ..., xm, ... each with a respective probability pm = P

{
η = xm

}
and

∑
m pm = 1.

Thus, the relation η = G(ξ) will lead to

η = x1 if ξ < p1 (15)
η = x2 if ξ < p1 + p2

η = x3 if p1 + p2 ≤ ξ < p1 + p2 + p3

...

To simulate photo-absorption (step 5 in Fig. 15), the absorbing element is chosen by this
technique. The overall photo-absorption cross-section σvtot is given by the sum over all partial
cross-sections of the individual elements Z, weighted by their respective abundance aZ . Therefore
the equation

∑
Z aZσvZ/σvtot = 1 is hold and the absorbing element is selected after 15.

Rejection technique This method is a very general technique and it enable us to generate random
variables from any distribution. The inverse function has not to be identified, only the probability
density is needed as Pozdnyakov et al. (1983) described:

Considering we require a random variable η calculated from a m-dimensional function

η = g(ξ1, ξ2, ..., ξm) if (ξ1, ξ2, ..., ξm) ∈ A (16)

where A is a specific area in the m-dimensional space. To achieve such a value η, we generate a set
of ordinary random numbers (ξ1, ξ2, ..., ξm) and test, if any ξ lies outside region A. If so, we choose
another set, otherwise we compute η from Eq. 16. The probability that a set of ξ falls into A

ε = P
{
(ξ1, ξ2, ..., ξm)

}
∈ A

is called the efficiency of the technique.
In Figure 19, any one dimensional probability distribution is plotted from which we want draw

random numbers. A density function f (x) is defined on the interval [a, b] and as the function is
normalized, f (x) will take a maximal value c within its domain of definition. We generate a set
of two random numbers (α1, α2) with α1 = a + ξ1 (b − a) and α2 = ξ2c. As ξ1, ξ2 ∈ [0, 1] implies
α1 ∈ [a, b] and α1 ∈ [0, c]. This is repeated until α1 satisfies the condition f (α1) > α2. The values
α1 and α2 can be considered as uniformly distributed points in the rectangle [a, b] × [0, c]. The test
criterion accepts only such a pair of (α1, α2) that lies also in the area of the integral of f (x) . The
efficiency of this method is than given by the ratio of the integral to the area of the rectangle

ε = P {α2 < f (α2)} =

∫ b

a
f (x)dx

c (b − a)
(17)
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Figure 19: An illustration of rejection techniques

If f (x) is normalized on [a, b], Eq. 17 is re-
duced to ε = 1/c(b−a).

Another application of rejection technique
is the generation of randomly distributed unit
vectors on a sphere.

Algorithm 1: Points in a sphere (implemented
by Wilms, 1996)

do {
x =2.0* random ( ) − 1 . 0 ;
y =2.0* random ( ) − 1 . 0 ;
z =2.0* random ( ) − 1 . 0 ;
d2 = x*x + y*y +z * z ;

} w h i l e ( d2 > 1 . 0 ) ;
d= s q r t ( d2 ) ;
a=x / d ;
b=y / d ;
c=z / d ;

A point with coordinates x, y, z in three dimen-
sional space is generated within a cube C de-
fined by [−1,+1] × [−1,+1] × [−1,+1]. Sub-
sequently we test, whether the point lies in a
sphere with radius R = 1. If so, we accept the
values and normalize the vector

[
x, y, z

]
. The

efficiency is then given by

ε = P {(x, y, z) ∈ C} =

4
3πR

3

(2R)3 =
π

6
≈ 50%

Therefore, the algorithm has to be called twice in the average to get an unit vector. A more obvious
possibility to obtain such a random direction may be to generate two random angles φ ∈ [0, 2π]
and θ ∈ [0, π] by calculating φ = 2πξ1 and θ = πξ2 with ξ1, ξ2 ∈ [0, 1]. The vector is than
given by x =

[
cos

(
φ
)

sin (θ) , sin
(
φ
)

sin (θ) , cos (θ)
]
. The evaluation of the trigonometric functions

requires some computationally effort since on binary systems the multiplication by 2 in algorithm
1 is simply managed by the addition of 1 to the exponent of the binary number. Therefore the
rejection technique is computationally preferable for this problem.

Method of superposition The presented version of this method follows the description from
Pozdnyakov et al. (1983), for a more general derivation, see Deak (1990). Suppose, we require
random variables η whose distribution function F(x) can be written as

F(x) =
∑

m

cmFm(x)

with constants cm > 0 and
∑

cm = 1. The inverse function of y = Fm(x) is denoted by x =

Gm(y). Now we define a new random variable α which can take the values γ = 1, 2, ... each with
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probability P
{
γ = m

}
= cm. To obtain a random number η, we draw two ordinary random numbers

ξ1, ξ2 ∈ [0, 1]. Using ξ1, we select a number α. From ξ2 we get finally the value η = Gγ(ξ2), whose
distribution function will be F(x):

P
{
η < x

}
=

∑
m

P
{
η < x|γ = m

}
P

{
γ = m

}
=

∑
m

cmFm(x) = F(x).

Figure 20: Scattering angles α,φ. The red arrows
denotes the direction of rhe photon before and af-
ter the scattering.

With this technique, the Compton scatter-
ing angles α and φ (defined in Fig. 20) can
be selected as described by Pozdnyakov et al.
(1983):

The angular distribution is given by

f (α,φ) =

 1∮
4π

(dσv/dΩ) dΩ

 dσv
dΩ

(
α,φ

)
.

Since the differential cross-section (dσv/dΩ) is
independent of φ, f (α,φ) can be written as
product of the individual probabilities. For low
photon energies, the differential cross-section
for Compton scattering is reduced to the Thom-
son cross-section (Eq. 1). The probability den-
sity of the angle φ is 1/ (2π) as scattering in this
direction is uniformly. By defining μ = cos (α),
the distribution for the second angle α is given
by

f (μ) =
3
8

(
1 + μ2

)
(18)

for −1 < μ < +1. As Pozdnyakov et al. (1983) noticed, the inverse method would lead to that the
equation μ3 + 3μ + 4 = 8ξ has to be solved for each required value μ. According to the method
of superposition, we set f1(μ) = 1/2 , f2(μ) = (3/2) μ2 and c1 = 3/4, c2 = 1/4. Thus, we obtain the
expression

μ =

2ξ2 − 1 if ξ1 <
3/4(

2ξ2 − 1
) 1

3 if ξ1 ≥
3/4
.

For higher photon energies, Eq. 18 is no longer valid and the distribution for the scattering angle
α has to be derived from the differential Klein-Nishina cross-section (Eq. 7). As a more efficient
method is not available, a rejection method is applied in this simulation (Wilms, 1996).

3.3 Simulation of interaction
In this Section, the formulas are presented which are used to simulate the scattering events. First,
the scattering in Cartesian coordiantes is explained. To model scattering by hot electrons, a random
velocity has to be drawn according to the relativistic Maxwell distribution. The derivation of the
following equations in Section 3.3.1 and 3.3.2 are taken from Wilms (1996) and are listed here
again anly for the sake of completeness.
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Figure 21: The sampled scattering angle α. For comparison, the differential Klein-Nishina cross-
section is also plotted.

3.3.1 Scattering in Cartesian coordinates

If a photon is scattered by an electron, it will change its direction and energy. The change of
direction is completely described by the azimuth direction angle φ and by the scattering angle α
(see Fig. 20). The angle φ is uniformly distributed and can be modeled by using algorithm 1 (p.
34) in two dimensions. The scattering angle α is obtained from Eq. 7 with a rejection method (see
Fig. 21).

To derive the new direction of the scattered photon, we assume that it was moving in a direction
a = (a, b, c) with |a| = 1 before the collision (c.f. Fig. 20). As the vectors {a,w, t} form a right-
handed orthonormal basis, w is given by

w =
1

√
a2 + b2

 b
−a
0

 .
The third basis vector can be calculated from

t = a × w =

 a
b
c

 × 1
√

a2 + b2

 b
−a
0

 =
1

√
a2 + b2


ac
bc

−
(
a2 + b2

)
 .

The new direction of the photon in this coordinate system is

a′ =

 a′

b′

c′

 =

 cosφ sin α
sinφ sin α

cos α

 (19)
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With cos α = μ, sin α =
√

1 − μ2 and considering the definitions of a,w, t, the new direction is
calculated to

a′ = μ

 a
b
c

 +

√
1 − μ2

a2 + b2

cosφ

 b
−a
0

 + sinφ


ac
bc

−
(
a2 + b2

)



which can be also written as

a′ = aμ +
(
b cosφ + ac sinφ

) √
1 − μ2

a2 + b2

b′ = bμ +
(
−a cosφ + bc sinφ

) √
1 − μ2

a2 + b2

c′ = cμ −
√

a2 + b2
√

1 − μ2 sinφ.

As the term
√

1 − μ2 is very susceptible for rounding errors if μ ≈ 1, it is replaced in the program
by the expression

√
1 − μ2 =

√(
1 + μ2) (1 − μ2). In case a2 +b2 ≈ 0, meaning the photon is moving

almost into Z-direction or rather a ‖ ẑ, the new direction is simply given by Eq. 19.

3.3.2 Generating hot electrons

To model radiative transfer through matter with a temperature T , 0, a Maxwell distributed random
velocity for the target electron must be drawn every time a scattering event is simulated. Since the
plasma around X-ray sources can reach very high temperatures, the relativistic Maxwell distribution
is needed. The original algorithm was implemented by Wilms (1996) written in FORTRAN and the
following derivation is taken from there. A C-version of this algorithm was written and added to
the simulation by Nekovar (2012).

In the following, the convention me = c = k = 1 is used. The distribution function of free
particles with energy ε(p, q) is given by:

n(p) ∝
N
V

exp (−ε(p)/T) . (20)

In the relativistic regime is ε2 = 1 + p2 , we get from Eq. 20

n(p)d3 p = 4π
N
V

exp
(
−β

√
1 + p2

)
p2dp

with β = T−1. To normalize the distribution, it is integrated over the entire momentum space

∞∫
0

exp
(
−β

√
1 + p2

)
p2dp =

∞∫
0

exp
(
−β cosh (t)

)
sinh2(t) cosh (t) dt.

The McDonald function is defined by

K1(z)
z

=

∞∫
0

exp (−z cosh (t)) sinh2(t)dt
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d
dz

(
K1(z)

z

)
=

∞∫
0

exp (−z cosh (t)) sinh2(t) cosh (t) dt.

With the relations

dK1(z)
dz

= −
K1(z)

z
− K0(z)

d
dz

(
K1(z)

z

)
= −

2K1(z)
z2 −

K0(z)
z

the relativistic Maxwell distribution is given by:

n(p) = 4π
N
V

exp
(
− 1

T

√
1 + p2

)
p2dp

2T 2K1
1
T + T K0

1
T

. (21)

.

3.4 Geometry
The shape of the resulting spectrum depends much on the geometry of the absorbing material. The
extension of the cloud and its position relative to the source decides how many particles are located
actually along the line of sight. In this thesis, two different geometries are used: the spherical
geometry where the source is embedded in a cloud and the slab geometry in which the source may
be located above or onto a infinitely extended plain. In the last case, only the reflected radiation is
of interest.

For each geometry, algorithms are needed that propagate the photon through the medium and
determine whether it is escaped. Since this routines are called many times during a simulation, the
methods should be programmed very efficiently. The current position of a photon is denoted by
x0 = (x0, y0, z0) and its direction by a = (a, b, c) =

(
cosφ sinθ, sinφ sinθ, cosθ

)
with |a| = 1. The

path of the photon is than given by
x = x0 + ta (22)

with t > 0.
For simplicity, the units of this lengths are calculated in Thomson optical depths τT. For a

medium with the extension R, the relation between R and the cloud’s τT is given by

τT = σv TneR (23)

where σvT is the Thomson cross-section and ne the electron number density. By setting ne = 1/σvT,
one optical depth is equal to one unit of lenght. The density of the medium can than be varied by
changing R. The hydrogen column density is obtained by

NH =
ne(
ne
nH

)R

with the hydrogen density nH. The ratio ne/nH gives the number of electrons per hydrogen atom
and depends on the elemental mixture of the cloud.
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3.4.1 Spherical cloud

Figure 22: Skatch to the path computation in a
sphere geometry.

The geometry of a spherical cloud is used to
obtain transmitted spectra. As a sphere is sym-
metric in each direction, all out-coming pho-
tons can be considered as equivalent regardless
of where or under which angle they were es-
caping. To draw a random pathlength (compare
with 15, step 2) for a photon located at position
x0 and traveling in direction a, the distance L to
the medium’s edge has to be known.

In Figure 22, a skatch of this situation is
shown. We have to compute the point x where
the photon leaves the sphere. Thus, the distance
can be calculated to L = |x − x0|. Considering
that the intersection point will lie on the surface
of the sphere which means |x| = R and with Eq.
22, we get

R2 = x2 = (x0 + ta)2 = (x0 + ta)2 + (y0 + tb)2 + (z0 + tc)2

which can be written as
At2 + 2Bt + C = 0 (24)

with

A = a2 + b2 + c2 = 1
B = ax0 + by0 + cz0

C = x2
0 + y2

0 + z2
0 − R2.

The solution of Eq. 24 is than given by

t1,2 = −B ±
√

B2 −C

and we will assume t1 > t2. For a more general deviation in the case the photon source is located
outside the sphere, see the manual belonging to the simulation from Wilms (1996).

In Figure 23, a three dimensional plot of one hundred photon pathes simulated for a spherical
cloud with radius τ = 10 is shown.

A source located in the center of the cloud emits isotropically monochromatic photons with
E = 100 keV. As the cloud is very opaque with a Thomson optical depth of 10, only few photons,
that are down-scattered to low energies can escape.

3.4.2 Slab

The reflected spectra presented in this thesis are simulated in a semi-infinite slab geometry. A
photon source is located above an infinitely extended plane which has an optical depth of ∞ . By
irradiating slabs, the spectra of radiation that is reflected, for example, by accretion disks can be
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Figure 23: Hundred photon paths simulated in a spherical cloud with radius τ = 10

modeled. In this geometry, the angle between the normal of the slab and the direction of the out-
coming photons is of interest. Since only the distance to the surface in photon’s moving direction
decides about the current optical depth, the photon has to be propagated just in two dimensions.
Assuming the slab is extended in the x-y plane and infinite in -z direction. A photon is located at
position x0 and has a direction a. We test first whether the photon is moving upwards in direction
of the edge or downwards. If it is traveling downwards, we just draw a τ and propagate the photon.
In the other case, the distance to the medium’s edge is given by L = |z0/c|.

In Figure 24, thousand photon pathes are plotted.

The source is located at τ = 20 above the plane and marked by a blue circle. The emitted
photons have all an energy of 100keV and a direction ~a = (0, 0,−1). How one can see, the primary
beam can be followed up to an optical depth of ∼ −5 until it is completely split up. The escaping
photons seemed to be reflected just beneath the surface during the mainly part that gets deeper in
the medium is scattered around until it can be absorbed. To avoid senseless computation time all
photons with z-coordinate < −5 are considered as absorbed.
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Figure 24: Illustration of a semi-infinite slab geometry with a photon source located at τ = 20
above the plane.

4 X-ray absorption in cold matter
The presence of a large amount of cold matter is well established around Active Galactic Nu-
clei (Matt et al., 1999). In the spiral galaxy NGC 4945 for example, the column density is about
∼ 1024.7 cm−2 (Iwasawa et al., 1993) and the flat spectra of Seyfert II galaxies indicate column
densities exceeding 1025 cm−2 (Maiolino et al., 1998). X-ray absorption by cold matter in mean-
ing of not much ionized and substantially opaque is a common phenomenon also in X-ray binary
systems, especially in wind-fed systems (see Section 2.1.3) with column densities in the range
∼ 1023 − 1024 cm−2 (White et al. (1995), p. 43).

The eclipsing high mass X-ray binary Vela X-1 is an example of such a system. Vela X-1
consists of a neutron star and a super-giant B-type star with an orbital period of 8.964 days. The
companion star has a mass of ∼ 25 Mò and a radius of ∼ 30 Rò (see Kreykenbohm (2004) and
references therein) . The neutron star is deep embedded in the super-giants stellar wind resulting
in strongly absorption of the X-ray spectra. The degree of absorption is thereby dependent on
the orbital phase and increases at the eclipse when the neutron star is moving through the dense
inner region of the stellar wind (Haberl & White, 1990). In Figure 25, the pulsed averaged spectra
calculated by Sato et al. (1986) for different phases around the eclipse are shown.

At phase Φ = 0.0 the eclipse takes place and from I to VI, the neutron star is emerging from the
innermost regions into less dense stellar wind. The spectrum I at Φ = 0.049 − 0.099 has a strong
iron K absorption edge and emission line around 6 − 7 keV which is typical for highly absorbed
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Figure 25: The pulse averaged spectra of Vela X-1 observed throughout the eclipse: Φ = 0.049 −
0.099 (I), Φ = 0.106 (II), Φ = 0.114 (III), Φ = 0.121 (IV), Φ = 0.127 (V), Φ = 0.179 (VI) (from
Sato et al. (1986)).

spectra while spectrum V observed at Φ = 0.179 is already almost featureless.
The shape of the measured spectrum depends strongly on the geometry of the absorbing ma-

terial. When the matter is located along the line of sight, we substantially observe a transmitted
spectrum but often with a reflected component that may indicate the presence of an accretion disk.

In this section, I will present the transmitted and reflected spectra as obtained from the Monte
Carlo simulation. The transmitted spectra were produced using a spherical geometry and are cal-
culated for different column densities. In the reflected case, a point source is located upon a semi-
infinite slab and emitts photons isotropcally. Thus, the observed spectra are angle-dependent. The
spectra for both geometries were compared to established models within the X-ray data analysis
package XSPEC (Arnaud, 1996).

4.1 Transmitted spectra
The shape of the spectra described above can be understood by considering the different involved
interaction mechanisms between radiation and matter. Photoabsorption is the dominating process
for a photon energy below ∼ 10 keV and therefore a large fraction of the photons is absorbed in
this range. The absorptivity is ∝ E−3 for X-rays (see Eq. 9) and for photon energy above 10 keV ,
the opacity is mainly determined by Compton scattering with electrons (Figure 10).

If the medium is dense enough to allow frequently interactions, scattering will influence also
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the shape of the spectrum, particularly in the high energy range. Equation 4 can be written as

ΔE
E

= 1 −
1

1 + E
mc2 (1 − cos α)

(25)

where ΔE = E − E′ is the difference between the energy E of the incident photon and the scat-
tered one. Considering Eq. 25, the relative energy loss ΔE/E after one scattering increases with
increasing energy E and therefore a high energetic photon will suffer a larger energy loss than a
low energetic one. If the former collides with a an electron, it is easily down-scattered to energies
where absorption becomes possible.

For these reasons we expect a spectrum with little photons on the low energy end and a signif-
icant modification of the input spectrum in the high energy range due to Compton scattering only
for highly obscured sources. In addition, the fluorescence lines should become more intensive for
higher degrees of absorption, since more line photons can be emitted along the line of sight.

4.1.1 General shape

In Figure 26, the transmitted spectra for different column densities are plotted together with the
incident spectrum. Only Kα-lines are emitted in this example (compare with method of weights on
page 29), other line emission is suppressed.
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Figure 26: Transmitted spectra for various column densities.

The spectra are simulated for an incident powerlaw with photoindex Γ = 2.0 using the spherical
geometry explained in Section 3.4.1. The photo-ionization cross-sections are those from Verner &
Yakovlev (1995) and the elemental abundances from Wilms et al. (2000) are adopted. The electron
temperature is set to 0 K.

The red curve (NH = 1021 cm−2) shows a transmitted spectrum when only a small amount of
matter is located in line of sight. Due to the low density the majority of photons escapes unhindered
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and only for energies below ∼ 1 keV the spectrum is significantly absorbed. In this case no
emission lines are seen since the few line photons are completely covered by the photons escaping
without a check (primary emission). At ∼ 0.5 keV the O K-absorption edge (E = 0.533 keV)
becomes visible. For energies above ∼ 2 keV there is no absorption recognizable and the shape
of the spectrum is determined by the incident spectrum. This is because Compton scattering is not
important for such low densities and only few photons are scattered overall.

The next higher absorbed spectrum (green curve) is simulated for NH = 1022 cm−2. Here
significantly more photons are already absorbed up to ∼ 2.5 keV. The O K-edge is now very
pronounced and more absorption edges emerge from the primary emission like the Ne K-edge at
0.876 keV and the Mg K-edge at 1.309 keV. The fluorescence lines are still mainly overlapped by
the continuum, but single weak lines like the Na Kα -line (E = 1.041 keV) and also the Fe Kα -line
(E = 6.404 keV) are visible. For energies above ∼ 3 keV the shape of spectrum is basically given
by the input spectrum due to scattering events are still rare.

This changes for the blue spectrum simulated with a column density NH = 1023 cm−2. No
photon with an energy below ∼ 1 keV is able to escape from the medium and the spectrum shows
absorption features up to 10 keV. The Fe K-edge is observable at E = 7.112 keV together with
some strong fluorescence lines particularly Na, Mg and Fe. Around ∼ 10 keV more and more
high energetic photons are down scattered and the transmitted spectrum starts to slip below the
incident one. It is now likely that a high energetic photon is scattered at least once before escaping
the medium and multiple scatterings becomes more important. For this reason, the contours of the
spectrum appears more smeared out than the ones described before.
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Figure 27: Same as Figure 26 with more detailed view on the iron band.

This effect is evident by viewing at the last spectrum (magenta curve, simulated for NH =

1024 cm−2). Additionally, the simulated spectrum lies clearly below the input spectrum above
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∼ 70 keV due to effective down scattering from high energetic photons. In the lower energy range
between ∼ 1 keV and ∼ 3 keV only line photons are visible because the primary emission is almost
completely absorbed in this energy range. s

The strong iron line shows a clearly visible Compton shoulder as shown in detail in Figure 27.
The Compton shoulder is a feature formed by line photons, that are scattered at least once before
escaping. The Compton shoulder exists also for column densities below ∼ 1024 cm−2 (compare
with Fig. 39), but it is completely covered by the primary emission. Only when the medium is so
dense that a significant fraction of the input photons are absorbed in the energy range around the
iron line, the Compton shoulder becomes visible.

4.1.2 Comparison with the absorption model tbabs

To comparison and code verification, the simulated data was compared to the absorption model
tbabs implemented by Wilms et al. (2000). The fits in Figure 28 were performed by fixing the
powerlaw index to the value for which the data was simulated (Γ = 2.0) leaving the column density
NH as free fit parameter. Since in the model tbabs no fluorescence lines are taken into account,
the line emission was suppressed in this simulations for better comparison. The best fits are shown
for NH between 1021 cm−2 and 5× 1024 cm−2 . Additional to the spectra, the variation rate from the
model is also plotted. The green label is the value of NH used in the simulation while the red one
denotes the best fit value. The deviations above ∼ 1 keV as well as those around the pronounced
iron K-edge are discussed in more detail below. The model adaption around the absorption edges
is more successful when a smaller grid is used. But the use of a smaller grid leads to a high noise
rate especially in the high energy range where the spectrum is modified significantly by Compton
scattering. To represent this important range well, the model is rather fitted in a wider energy grid.
To illustrate the differences between the Monte Carlo model and tbabs, the same spectra were
fitted again by fixing NH at the simulation parameter. The results are shown in Figure 29.

For column densities . 1022 cm−2 the data agrees well with the model above ∼ 1 keV as seen
on the first two plots in Figure 28 but the best-fit value of NH underestimates the actual simulation
parameter for NH . 1022 cm−2 and this effect is more significant for lower column densities. For
NH = 1021 cm−2, the calculated value deviates from the parameter set by almost ∼ 20% since
between NH = 1022 − 1023 cm−2 the deviation is only 1 − 4%. The spectrum for NH = 1023 cm−2

shows an additional deviation from the model for high energies: the count rate is significantly
below the model for energies & 80 keV. The reason for this is the influence of Compton scattering
as explained in the section before: high energetic photons loose a bigger fraction of its energy via
collisions with electrons then low energetic ones and are scattered down to lower energies. This
effect is more evident for the higher absorbed spectra as seen in the plots for NH = 5 × 1023 − 5 ×
1024 cm−2. Particularly the spectrum simulated for NH = 5 × 1024 cm−2 shows an obvious lack of
photons above ∼ 50 keV and a bump formed by the down-scattered photons at ∼ 15 − 50 keV.
Due to the lower count rate in the high energy range, the column density is overestimated for a
simulation parameter NH > 1023 cm−2.

The differences between the simulated data and the model particularly in the high energy range
exists because tbabs does not include the absorption by Compton scattering. Within the model,
the absorption by gas-phase interstellar medium is calculated by summing over the photo-ionization
cross-section of the different elements whereas Compton scattering is not considered.
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Figure 28: Comparison between the simulated spectra and the absorption model tbabs for column
densities 1 × 1021 − 5 × 1024 cm−2. The green label denotes the simulation parameter and the red
one is the best-fit parameter. NH is let as free parameter.
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Figure 29: Same as Figure 28, but with fixed NH.
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Figure 30: Same as Figure 28 but the spectra are simulated by considering photo-absorption alone
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At energy E and for a hydrogen number density NH along line of sight, the intensity is computed
as

Iout(E) = exp {−σvISM(E)NH} Iin(E)

where σvISM is the photoabsorption cross-section and Iin the intensity of the incident spectrum (see
Wilms et al., 2000). If Compton scattering is also taken into account, the transmitted spectrum is
instead obtained by calculating

Iout(E) = exp {−σvISM(E)NH − σvC(E)NE} Iin(E)

with the Klein-Nishina cross-section σvC and the electron number density NE.
To make sure that the neglegect of scattering actually leads to the deviations in the high energy

range, several spectra were simulated by considering Compton-scattering alone and were fitted
again with tbabs. The results are shown in Figure 30. It is not hard to see that the model fits the
data perfectly in the high energy range.

To estimate the error that is made when NH is calculated without considering Compton scat-
tering, several spectra for different column densities between 1022 cm−2 − 9 × 1024 cm−2 were
produced and fitted by leaving NH as free fit parameter. In figure 31 the deviations between the
values NH,Model calculated as best fit parameters by tbabs and that ones actually used as simulation
parameters NH,Sim are plotted as a function of NH,Sim. As one can see, neglecting Compton scat-
tering leads to an overestimation of the column density for NH,sim between 1023 cm−2 and a few
times of 1024 cm−2. The fitted values exceed clearly (> 10%) those for which the spectra were
simulated at NH ≈ 1024 cm−2. Approximately in this range, multiple scatterings becomes impor-
tant. For column densities &2 × 1024 cm−2 the deviator seems to become smaller, but as the plot
for NH = 5 × 1024 cm−2 in Figure 28 shows, the model can not fit the data for these degrees of
absorption.
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Figure 31: Comparison between simulation and the absorption model tabs. The green symbols
refer to the case when Compton scattering and photo-absorption is taken into account and the blue
ones are for photo-absorption alone.

The reason for this overstimation becomes clear by comparing the fits for NH = 1 × 1024 cm−2

in Figure 28 and Figure 29. If NH is fixed on the simulation parameter, one can see that the count
rate lies below the model for photon energies < 10 keV. This comes from the additional absorption
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Figure 32: Comparison with tbabswith detailed view on the iron K-edge. On the left side, the spe-
tra were simulated by including Compton scattering and those ones one the right side by ignoring
it.

due to Compton scattering. Is on contrast NH left as free fit parameter, the model adaption in this
energy range leads to the calculation of a higher degree of absorption as is indeed the case.
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As mentioned before and seen in the fits for column densities of 1 × 1023cm−2, 5 × 1023cm−2,
and 1 × 1024cm−2 (see Figure 28), the model does not agree well with the data around the iron K-
edge. This feature is also seen in the spectra which were produced by considering photo-absorption
alone (Fig. 30). Therefore, the deviation is not from Compton scattering alone. To consider this
deviation in more detail, the model tbabs is evaluated on a smaller energy grid and the results are
shown in detail in Figure 32 for this energy range. The spectra on the left side were produced by
considering Compton scattering and those on the right by ignoring this process. The simulation´s
parameters are the same as for the spectra in Figure 28. Compton scattering has an influence on the
shape of the absorption edge as seen in the plots on the left side. The top spectrum simulated for
NH = 1 × 1023cm−2 agrees still quiet well with the model. This is not the case for greater column
densities. Particularly the left side of the iron K-edge is reduced with respect to the model as seen
in the spectrum for NH = 5 × 1023cm−2. This effect becomes more significant in the last spectrum
for NH = 1 × 1024cm−2. As seen in the plots on the right side, the data agrees almost perfectly with
the model below and above the absorption edge. The data deviates only exactly at the sharp edge.
Since the spectral shape changes abruptly at the iron K-edge energy, the binning in this energy
raneg is difficult and may lead to this unwanted feature. Therefore, the peak-like deviation around
the absorption edge as seen in Figure 28 has mostly no physical meaning.

As denoted earlier, tbabs underestimates the value of NH slightly for column density< 1023 cm−2.
This is also the case when Compton scattering is excluded as seen in Figure 31. Considering the
plots in Figure 29, in particular the fit for NH = 1 × 1021 keV, the data deviates from the model
especially in the low energy range. One possible explanation for this deviation would be that either
sligthly different photo-absorption cross-section are used.

4.2 Reflected spectra
In the transmitted case, the absorbing matter is located between source and observer in the line
of sight. In contrast, Compton reflected spectra originates from radiation that is back scattered by
material sourounding the compact object. In this picture, the X-ray source is located upon a slab,
usually the accretion disk, and the reflected primary spectrum is modified by Compton-scattering
and bound-free absorption (Magdziarz & Zdziarski, 1995). In such a system which could be a
AGN or a X-ray binary, cold matter coexists very close to hot matter near the center of the compact
object and the observed spectrum is a composition of the primary radiation emitted directly by the
source and a reflected part of it.

In Figure 33, the typical spectral components of an unobscured AGN is shown as described
by Fabian (2006). In addition to the underlying power-law and the soft excees that originates
from thermal blackbody emission, a reflected component is fitted together with a strong iron line.
The reflected part is limited in the lower energy range by photo-absorption and the upper limit is
determined by electron scattering (Lightman & White, 1988). Since the relative energy loss in a
scattering process is larger for high energy photons as still discussed in Section 4.1, a bump of
down-scattered photons above ∼ 10 keV appears.

If the slab is illuminated with photons between 100 keV and 1 MeV, about 10% of the radiation
is reflected (Wilms, 1996), dependent on the viewing angle.

As Wilms (1996) described in his diploma thesis, the reprocessed spectrum frefl is usually con-
sidered as an additional fit component to the primary emission fprim. The entire observed spectrum
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Figure 33: Modeled X-ray spectrum of an AGN (from Fabian, 2006). The hump at 10 − 100 keV
in the entire spectrum (black curve) comes from Compton reflection (blue curve).

is than given by
fobs = fprim + A fre f l (26)

where A is called the covering factor. This factor describes the ratio between the reflected and the
non-reflected emission. As Wilms (1996) remarks, A can be greater than one due to its stonf math-
ematical definition and has no geometrical meaning in Eq. 26. In addition, frefl is not necessarily
generated by fprim. If we assume a slab with angular expansion Ω located below a point source
emitting a spectrum finc(E) isotropcally, the observed spectrum can be written as

fobs = finc(E) +
Ω

2π
fre f l( finc, E). (27)

Only if fprim = finc and A < 1, a geometrical interpretation is justified.

4.2.1 Angle averaged spectrum

In Figure 34 the reflected spectrum averaged over all inclination angles is shown for different input
photon-powerlaws. As described above, the reflection is assumed as an additional spectral com-
ponent to the primary emission. Therefore, the sum of input and reprocessed spectrum is also
plotted.
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Figure 34: Reflected spectrum averaged over all inclination angles for different incident powerlaws
with photoindex Γ. The input spectrum (dotted line) as well as the sum of primary emission and
reflection are also plotted.
The hump at 10 − 100 keV which is typically for Compton reflection is well seen, especially for
small Γ. Considering Eq. 14, a smaller photoindex means that more photons are emitted at higher
energies. Since the hump mainly consists of down-scattered high energy photons, it grows with
decreasing Γ. Depending on which fractional part of the primary emission is reflected, the hump
emerges significantly from the primary emission. The sharp kink around ∼ 200 keV comes from
the input powerlaw being brocken off at 500 keV and has no physical meaning. Since below
∼ 10 keV the photo-absorption cross-section is high with respect to Compton scattering, only few
continuum photons are reflected in this range. Therefore, the fluoresence lines are very strong in
the reflected spectra, especially those from iron.

The iron band simulated for Γ = 2 is shown in detail in Figure 35.
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Figure 35: The iron band of the reflected spectrum shown in detail.
In the transmitted case the Compton shoulder is nearly covered by the continuum emission and is
visible only for a high degree of absorption as seen in Figure 27. In contrast, the pure reflected
spectrum exhibits a very pronounced Compton shoulder.

4.2.2 Angular dependence
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Figure 36: Reflected spectrum seen under different inclination angles.
In Figure 36, the reflected spectrum as seen under different viewing angles is plotted. The

parameter μ denotes the cosine of the inclination angle. The spectrum is generated for an input

54



power-law between 0.1 − 500 keV with photoindex Γ = 2 . As seen, the spectra are not the same
for each viewing angle. If the slab is seen nearly edge-on, less photons escape than perpendicular to
the slab. For large μ, the hump above ∼ 10 keV is more significant and the spectrum decays steeper
at high energies. All this features can be understood by considering the pear-shaped Klein-Nishina
cross-section (see Fig. 12). Thus, backwards scattering is more probably than a scattering around
90°. In addition, the photon looses more energy with increasing scattering angle. Assuming an
isotropcally illuminated slab, the photons escaping nearly edge-on are scattered on average under
a smaller angle (∼ 90° ) than that ones seen face-on which have scattering angles around ∼ 180° .
Therefore, more photons emerge at large μ and the spectra hardens.
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Figure 37: Comparison with the reflection model from Magdziarz & Zdziarski (1995)
For comparison, the angular dependent spectra were fitted with the reflection model from

Magdziarz & Zdziarski (1995). The spectra were produced for an incident powerlaw with Γ = 1.7
expanded from 0.1 to 500 keV and is angular averaged in steps of Δμ = 0.1. The fits were per-
formed by fixing the abundances and the powerlawer index since μ is let as free fit parameter. In
Figure 37 the results for two different inclination angle are shown. The blue label denotes the co-
sine range on which the spectrum is averaged and the red one is the best fit value. A feature around
10 keV can be seen in all fits and its significant in the plot on the right side. Whithin this model,
the Green’s function of Compton reflection is obtained via Monte Carlo calculations. Magdziarz
& Zdziarski consider both scattering and photo-absorption, but not over the entire energy range.
Photo-absorption is extrapolated with ∝ E−3 for photon energies above 10 keV. This results in knik
around 10 keV as seen in the residues.

Especially for high μ, the fit does not return well the actual values as seen in Figure 38. μmod
denotes the best fit value and μsim is the actual inclination angle. The respective deviation is plotted
as a function of μsim. Except for μsim = 0.05, the inclination angle is significantly underestimated
for all μsim. As mentioned above, Magdziarz & Zdziarski do not consider photo-absorption over the
full energy range. In addition, different photo-absorption cross-sections and elemental abundances
are used in their calculations. The determine where this deviation exactly comes from, additional
tests have to be done.
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Figure 38: The deviator from the model as a function of μ

5 Shape of iron Kα line and Compton shoulder
Fluorescence lines and other spectral features from low ionized iron have been observed in the
spectra of many X-ray sources. Nandra & Pounds (1994) found for example evidence for an iron
Kαemission line in the X-Ray spectra of Seyfert galaxies. As the mean energy of the line is around
6.4 keV, it is assumed to originate in near-neutral matter. Iron lines are also observed from X-
ray binaries in which the cold dense gas is located very close to the compact object (George &
Fabian, 1991). Since the shape and the intensity of the iron line strongly depend on the distribution
of the absorbing matter in relation to the source and the quantity of the material, fluorescence
lines offer an important diagnostic tool to determine the geometry, elemental abundances and other
characteristics of the environment around compact objects.

Iron Kα fluorescence lines emitted in cold and neutral matter consist of the line photons itself
forming a narrow core and several Compton shoulders built by line photons that are scattered one
or more times (Matt, 2002). The first Compton shoulder (hereinafter CS1) , containing the once-
scattered line photons is limited sharply in the lower energy by the maximal energy loss after a
single scattering which corresponds to a scattering angle of α = 180° (cf. figure 11). By solving
eq. 25 to the photon energy after the event

E′ = E −ΔE =
1

1 + E
mc2 (1 − cos α)

(28)

the minimal energy a line photon with initial energy 6404.7 eV can reach is calculated to 6248.1 eV.

To give an imagination, how the line features change with changing environment parameters, in fig-
ure 39 the iron band is shown in detail for different column densities simulated by using a spherical
geometry. As the spectra are calculated for a small energy grid with a bin width of 1 eV, both iron
lines the KαI -line at 6.404 keV and the KαII -line at 6.391 keV can be seen separately. In addition
to the total spectrum (red curve), the first three Compton shoulders of the iron KαI -line are also
plotted.
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Figure 39: The iron band shown in detail simulated for different column densities.

While for NH = 1022 cm−2 only the CS1 is formed because the line photons will be no more
scattered than once before they escape. For a higher absorption degree, the second and third CS
are growing in comparison to the CS1 as multiple scattering becomes possible. As one can see, the
Compton shoulder does not emerge from the continuum until a column density of ∼ 1024 cm−2 and
is only significant above that limit. In the last spectrum for NH = 5 × 1024 cm−2, the lower edge of
the CS1 of the KαII -line becomes also visible.

For comparison, the CS1 in the reflection case is shown in figure 40.

To illustrate especially the effect on line photons, the spectra are generated by irradiating the slab
isotropically with monochromatic with E = 6.404 keV. It is immediately apparent that the CS1
shifts to smaller energies for a larger inclination angle μ=cos (α) . That is what we expect as a
photon that escapes almost perpendicular to the slab is on average back-scattered at a greater angle
than it is the case for small μ and the energy loss increases with increasing scattering angle. The
small peak in the CS1 for μ=0.95 (red curve) comes from photons that have beam almost parallel
to the slab and then were scattered forwards.

In the following, the equivalent width of the NC of the iron KαI -line, the centroid energy of
the first CS as well as the relative amount of photons in CS1 to the number of line photons are
calculated for both transmitted and reflected spectra. In the former case, the values are computed
for column densities between 1 × 1022 − 5 × 1024 cm−2. For the reflected spectra, each value is
determined as a function of the inclination angle μ = cos (α), where α is the angle between the
surfaces normal and the line of sight. To allow comparison with the results from Matt (2002), the
elemental abundances from Morrison & McCammon (1983) are adopted for these simulations. To
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Figure 40: The first Compton shoulder in the reflection case for different inclination angle μ

show the dependence of the line parameters on the iron abundance AFe, the values are additionally
calculated for the half and the twice amount of iron with respect to the cosmic value.

5.1 Equivalent width

Figure 41: Definition of the equivalent width of a
spectral line

The equivalent width (hereinafter EW) of the
NC is a measure of the area of a spectral line
on a plot of intensity versus energy in relation
to the continuum. It is calculated by forming a
rectangle with the same area as the line is tak-
ing and the same height as the continuum emis-
sion (cf. fig. 41). The width of the resulting
rectangle is the EW. To determine which pho-
ton is a iron KαI -line photon and which belongs
to the continuum, the line photons generated
are marked in the simulation and counted sepa-
rately. In this way, the number of line photons
NL and that of the continuum NC in each energy
bin is clear. The EW is than given by

EW =
NL ×ΔE

NC

where ΔE is the bin width.

Transmitted spectra In figure 42 on the left plot, the results for three different iron abundances
are shown . On the right one, the curve for AFe = 1 is compared with the results from Matt (2002).
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Figure 42: Equivalent width of the KαI -line for transmitted spectra.

As one can see on the left plot, the EW of the iron KαI -line increases with the column density
and the increase is significantly larger for NH & 1024 cm−2. At a Thomson optical depth τT > 1
corresponding to a column density greater than 1.5 × 1024 cm−2 the size of the medium exceeds
the mean distance a photon can travel without a check (see eqs. 11 and 23) and multiple scattering
becomes important. This has the consequence that the continuum is dramatically more absorbed
for τT > 1 resulting in an increasing EW.
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Figure 43: Number of escaping iron KαI -line photons for AFe = 1 versus column density (red
curve). The EW as it is defined by Matt (2002) is also plotted.

The number of line photons NL also decreases for NH & 4 × 1023 cm−2 as the blue curve of
figure 43 shows, but not in this dimension as the continuum does. The reason for this is that the
continuum is continuously absorbed on the whole way from the center to the edge of the cloud. The
line photons in contrast can be regenerated via fluorescence in each place of the medium. Therefore
the line is also visible for highly obscured sources where the escaping line photons mainly come
from the mediums outer borders. From NH ∼ 1024 cm−2 also the dependence of the iron abundance
AFe changes: Below this limit, the EW grows linear with NH as it is also found by Matt. Above
∼ 1024 cm−2, this is no longer valid.
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The results are consistent with those from Matt (2002) only for NH . 1023 cm−2 as the direct
comparison for AFe = 1 shows on the right plot of fig. 42. To avoid a covering of the iron band by
down-scattered photons, Matt uses in his calculations only primary photons with a minimal energy
around the iron K-edge energy, but the exact energy remains unclear as well as on which continuum
the EW is referred to. In addition to the number of iron KαI -line photons, the values from Matt are
plotted again in fig. 43 (orange curve). The agreement with the data for NL gives evidence for an
unusual definition of the EW used by Matt.
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Figure 44: Equivalent width of the KαI -line for reflected spectra.

Reflected spectra As a reflected X-ray spectrum is usually observed together with the primary
radiation of the X-ray source (see fig. 34), the EW is calculated with respect to the input photon
spectrum. In figure 44, both the results for different iron abundances as a function of μ and the
comparison with Matt are shown. The EW of the NC increases with μ as it is also found by Matt
(2002). As it can be seen in fig. 12 the Compton scattering cross-section has a local minimum
at a scattering angle of 90° meaning that more photons are back scattered than sidewards. For
this reason less photons are available for fluorescence perpendicular to the beam direction of the
incident photons. In this way, the EW grows with μ although a line photon is emitted isotropically.
The dependence on the iron abundances is again almost linear.

The values for the EW are significantly smaller than those presented by Matt as the comparison
on the right plot shows. Again, it is unclear on which continuum Matt refers to as well as the exact
definition of the EW he used.

5.2 Centroid energy of the first Compton shoulder
The shape of the CS1 change with changing column density as it is shown in Figure 39. For low
column density, the CS1 is approximately symmetric while its low energetic edge decreases with
respect to the high energetic one for a higher absorption degree. This asymmetry can be expressed
in the centroid energy EC of the CS1 which is defined as

EC =

∫ EL

ERec
EN(E)dE∫ EL

ERec
N(E)dE

(29)
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where EL is the iron KαI -line energy and ERec the minimal energy a line photon can reach after a
single scattering (see eq. 28) . To identify those photons which actually belongs to the CS1 and not
to the continuum, the line photons those escape after one scattering are binned separately.

Transmitted spectra In figure 45, the results are shown together with the values calculated by
Matt. The EC increases up to a column density of NH ≈ 1 × 1024 cm−2 and than decreases again.
The rise comes from the fact that Compton scattering is not isotropically but forward-scattering is
preferred still at energies around the iron line. As this means a lower energy loss than backward-
scattering, more photons can be found in the right edge of the CS1. In addition, the cross-section
for scattering grows with decreasing photon energy and for this reason, more photons are scattered
down from the left edge of the CS1. The following decrease is because multiple scattering becomes
important in this regime and a large part of the CS1 photons are down scattered. The results are
nearly independent of the iron abundance.

Matt found a similar behavior but the whole curve is shifted to a smaller EC. This is because
Matt has been used as line energy EL = 6.4 keV rather than the more exact value EL = 6404.7 eV
as it is done in this calculations. This results in a shift of EC to lower energies.
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Figure 45: Centroid energy of the first Compton shoulder for the transmitted case

Reflected spectra The EC of the CS1 decreases for increasing μ as the plot in figure 46 shows. By
considering the shape of the reflected CS1 on figure 44 and the related declarations this is exactly
what we expect. Again, the iron abundance does not affect much the results. As it was for the
transmitted case, Matt found also lower values for the reflected CS due to he assumed a lower line
energy.

5.3 Ratio between the intensity of the line and the first Compton shoulder
Finally, the ratio between the total amount of photons in the CS1 (NCS1) to that in the NC is calcu-
lated by computing

f =
NCS1

NL
.
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Figure 46: Centroid energy of the reflected Compton shoulder

Transmitted spectra As it can be seen in figure 47, f increases with the column density and
has a maximum around NH ≈ 2 × 1024 cm−2. Up to this value, line photons are continuously
scattered down in the CS1 and remaining there as multiple scattering is rare at this absorption
degree. Above this limit, the photons are scattered in average more than once and f decreases
again. The dependence on the iron abundances is almost negligible.

The results agree well with those from Matt considering that he assumed a slightly different
energy range for the CS1 leading to a shift of the whole curve.
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Figure 47: Ratio of photons in the CS1 to that in the NC for transmission

Reflected spectra As more line photons are emitted perpendicular to the slab, f increases with
increasing μ (see fig. 48). The ratio f is naturally slightly smaller for higher iron abundances. The
values agree again well with those found by Matt. He additionally noticed, that for the same iron
abundance f is lower in reflected than in transmitted spectra provided that the column densities is
a few times of 1023 cm−2. Line photons originates from the outer layers of the absorbing medium
especially for high column densities. In the slab geometry, the effective surface in the line of sight
is larger as in a spherical cloud and therefore more line photons can escape than in the transmitted
case.
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Figure 48: Ratio of photons in the CS1 to that in the NC for reflection

6 Summary and Outlook
The spectra of almost all astrophysical X-ray sources are modified by absorption or reflection from
the interstellar medium. To understand the spectra of the sources, the knownledge of this modifi-
cation is from crucial importance. In addition, the altered spectrum contains information about the
interstellar medium itself and provides an important diagnostic tool to explore the environement of
compact objects.

The parameters of interest like the degree of absorption in transmitted spectra or the viewing
angle in the reflected case as well as the elemental abundances are usually determined by com-
paring the observational data with existing models. The range of validity strongly depends on the
considered physical processes. This shows the comparison of the Monte Carlo calculated spectra
with the absorption model tbabs and the reflection model from Magdziarz & Zdziarski.

A set of parameters that describe the intensity and shape of the important iron Kα-line is also
presented in this thesis. The caculated values, especially the equivalent width, differs from prior
results done by Matt. The values presented here may descibed observational data better as discussed
in chapter 5.

The next step would be to provide this simulation also as a fit model and to compare it with the
spectra from natural sources. Until now, there is no absorption model available which fully include
both Compton scattering and photo-absorption. A model of line emission doesn’t exists either and
therefore each single fluoresence line has to be modeled separately in the observational spectra,
usually by fitting a Gaussian profile. As the lines exhibits a pronounced Compton shoulder for high
column densities or in the reflected case, this is not always true. Within the Monte Carlo simulation,
the exact shape of the fluoresence lines can be calculated together with the corresponding Compton
shoulder for each set of input parameters.
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