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Abstract

The X-ray instrument eROSITA, which is developed by a Gerrmaltabora-
tion under the direction of the Max-Planck Institut fur Eaterrestrische Physik,
is one of the two main instruments on board of the Russianespait Spectrum-
Roentgen-Gamma(SRA) will be launched in 2013 to anjorbit. eROSITA will
perform an all-sky survey for four years, followed by a thyear period of pointed
observations. eROSITA will improve the sensitivity of tROSAT All-Sky Sur-
vey (RASS) by a factor of about 30. The main objectives areotteervation of
galaxy clusters to test cosmological models and the probfndark energy and
dark matter.

The eROSITA survey will be simulated before launch by 8isulation Soft-
ware for X-ray Telescopes (SIXTh this thesis, a Monte Carlo code programmed
in Pythonis presented, which generates a source catalogue of gdiasters for
the SIXT simulation. The clusters are distributed according to tlssrfunction
by Tinker et al. [(ZD_dS), which is based dfrbody simulations and desribes the
distribution of galaxy clusters up to redshifts ot 2.5. The Monte Carlo code
generates the celestial coordinates, the mass, and thaftexfshe galaxy clus-
ters. From this, the X-ray flux is calculated with the magsihosity relation by
Vikhlinin et all (2009).

The final output of the simulation is a FITS file. This file isated with aC pro-
gram. Every source entry contains a link to a X-ray image dlaxy cluster taken
with the X-ray observatorl)MM-Newton. The image is scaled in size according
to the redshift of the object.

With this catalogue, the cosmological studies to be madeRYSATA will be
simulated.







Zusammenfassung

Das unter Leitung des Max-Planck Instituts fur extratamieche Physik entwickelte Rontgenin-
strument eROSITA ist eines von zwei Hauptinstrumenten ard Bies russischen Satelliten

Spectrum-Roentgen-Gamma (SRBg¢r Start vorSRGin einen Orbit um den Lagrange-Punkt
L, ist fur das Jahr 2013 geplant. Die ersten vier Jahre wird&iR®eine Durchmusterung des

kompletten Himmels fur Energien bis 10 keV durchfuhren. Dabei wird die Sensitivitat des
ROSAT all-sky surveys um den Faktor 30 ubeffem. Nach der Durchmusterung folgt eine
dreijahrige Phase, in der einzelne interessante Objadbdrhtet werden.

Eines der wichtigsten wissenschaftlichen Ziele von eR@S¢$T die Bestimmung der kosmol-
ogischen Parameter durch die Beobachtung von Galaxieshalfie grol3raumige Verteilung
jener hangt von der Geometrie des Universums, die hatigish von der Dunklen Energie bes-
timmt wird, ab. AuRerdem lassen sich Ruckschlisse aupudirordialen Dichtefluktuationen
im Universum ziehen. Entstehung und Entwicklung der Galalxaufen werden entscheidend
durch Dunkle Materie beeinflusst. Auf3erdem soll eROSITAVEkGalaxienkerne und galak-
tischen Rontgenquellen wie Rontgendoppelsterne odeer8ovaiberreste beobachten.

Vor dem Start von eROSITA wird eine Simulation des Beobaatpsprogramms durchgef’uhrt.
Dazu wird die Simulatonssoftware fur Rontgentelesk@b&T verwendet. In dieser Arbeit
wird ein in Pythonprogrammierter Monte-Carlo Code vorgestellt, der einetalég realistisch
verteilter Galaxienhaufen erzeugt. Dieser Katalog diersichlieRend als Input fur die Sim-
ulation des Beobachtungsprogramms. Als MassefunktioiGilaxienhaufen wurde die von
Tinker et al. KZD_dS) vorgeschlagene Massefunktion verwenDiese basiert auf Mehrkorper-
simulationen und beschreibt die Entwicklung der Masseionkbis zu Rotverschiebungen
von z ~ 2.5. Die Monte-Carlo-Simulation erzeugt Himmelskoordimat®lasse und Rotver-
schiebung der Galaxienhaufen. Daraus werden im nachsterit$nit der Masse-Leuchtkraft-
Beziehung vohMJshllnin_el_éll_(ZDbQ) die Leuchtkraft derl®@aenhaufen und der Rontgenfluss
berechnet. Die so erzeugte Objektliste wird schlief3lich @memC-Programm in eine FITS-
Datei geschrieben. Dabei enthalt jeder Objekteintragreinnk zu einem vom Rontgenob-
servatoriumXMM-Newton aufgenommenen Bild eines Galaxienhaufens. Dieses Bild wir
entsprechend der Rotverschiebung des Galxienhaufensrskal

Mit der so erzeugten FITS-Datei als Input kann anschlieamsammen mit anderen Quellkat-
alogen, das Beobachtungsprogramm von eROSITA simuliedere
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1. Introduction

Almost a century has passed since Albert Ein@tp'nesented his General Theory of Relativity
to the Prussian Academy of Science, and thereby laid thedtieal foundations for modern
cosmology. The bulk of scientific community embraced Eim&eheory, which was regarded
as aesthetically beautiful by some, enthusiasticallyittainould still take decades until mankind
could engage the existential questions of origin, evolytiand future of the universe itself,
which were for millenia mainly questions in the realm of plibphy and theology. While in
the 1920s theorists were still sitting in their chambersnd 8olutions for Einstein’s equations,
some of them as complicated as the equations are simple bgervers were arguing if the
difftuse nebulae on the sky were parts of our own milky way or rerspsgems of billions of
stars, like our own.

But the progress gained momentum, and soon the world moliiiged by the field equations
were known. The problem was to obtain the parameters deterguhich model applies to our
universe. Although there had been stunning progress irfightsof research, especially in the
second half of the 20th century, and up to now the parametersr@wn relatively precise, the
refinement of the measurements is still an important taskiefise. Also it is known today that
we live in an expanding universe which had its origin in a siagty which was once derisively
named Big Bang by Fred Hoﬁewho was a fervent advocat of a Steady State universe, there
are still enough unanswered gquestions. For about ten yesfgiown that the expansion rate of
the universe is accelerating (Perlmutter & Schmidt, 2088yen by a mysterious dark energy
whose equation of state is still unknown. Also details of fibvenation of structures and their
origin are still ununderstood, as well as the nature of daakten which contributes the main
part to the gravitating matter in our universe.

One important approach to these questions are measuremiethe Cosmic Microwave
Background[[CMB), on which basic properties of the univenseimprinted. A complemen-
tary method is the observation of the distribution of galaksters, which is also influenced by
cosmology. While the_CMB observations are a domain of radicoaomers, galaxy clusters
can be well observed in X-rays.

To derive precise conclusions about cosmology, it is reguio observe statistically complete
samples of galaxy clusters up to high redshifts. A key missidhis area will be eROSITA, an
X-ray telescope whose launch is scheduled for 2013. It veitfgrm a four-year all-sky survey
dQ_a.pp_eJJuli_el_dl .L_ZQil), with the main objective of obtaga statistically complete sample of
galaxy clusters up to high redshifts to perform cosmolodye €ROSITA observation program
will be simulated in advance. This thesis presents a Momtdeode for the generation of a
catalogue of galaxy clusters as an input for this simulati@sed on the knowledge about their
spatial distribution obtained by former missions and sysve

1Albert Einstein, 1879-1955
°Fred Hoyle, 1915-2001
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2. Cosmology

An important goal of observing clusters is to constrain tbeneological parameters. Vice
versa, the creation of a realistic mock catalogue of clgstequires some knowledge of the
underlying cosmology. In the following paragraphs, thengolgical basics for this thesis are
introduced. A large chapter is dedicated to distance measemt in cosmology, which is not an
easy task because we live in an expanding universe, whichlsarbe curved (although recent
measurements speak against the latter). The accent liesfimitidn and usage of distances,
the complicated task of obtaining distances by observatismot a topic of this thesis. A
more complete treatise about cosmology can be found in @gcdek|(1999). The following
considerations are also mainly oriented on this textbook.

In the next chapter, galaxy clusters are discussed. The imstrtant intrinsic feature of a
galaxy cluster is its mass, which determines its luminoagtyvell as temperature and density
profile, i.e. the information obtained by observations. §larelation between mass and lumi-
nosity calibrated by observations and a theoretical agbrt@a cluster mass function presented
by[ELQSS_&_S_QhB_theLﬂQM) is discussed. For the simuldesoribed in this thesis, a mass
function from| Tinker et dl.[(2008) based on the Press-Sdkedhrmalism but calibrated by
observations was used.

2.1. Cosmological Principle

Two of the basic assumptions in cosmology are subsumed &oraological Principle:

1. space is homogenous, that means it looks the same everyioeprivileged observer —
Kopernican principle)

2. space is isotropic, meaning it looks the same in everygtime

These principles are only valid on large scales greatd® Mpc (Press & Schechter, 1974). In
our cosmic neighbourhood, for example, the matter is thsteid highly inhomogeneously.

Homogenity does not imply isotropy, but isotropy from eveigice in the universe implies
homogenity.mc 99)

2.2. Robertson-Walker Metric
2.2.1. Cosmological Time

A fundamental observer in an expanding universe is definehasserver resting in relation

to the matter in his vicinity. The peculiar motion of the atigeis neglected, such that the only
motion results from the expansion of the universe. Such &ermir can synchronise a clock
with another fundamental observer by agreeing on settiegltick to a certain time when, e.g.,
the universe is reaching a certain mean density. This timalied Cosmological Time, further

denoted as. M 9)



2. Cosmology

2.2.2. Metric

The metric of the universe is obtained as a solution of that€&inian field equationmm
M); for a comprehensive reading: (Peacock, 1999, pff)l9Space is not necessarily
Euclidean, but can also be curved. The specific shape depenttte density of the universe
compared to the Critical Density (see Séct] 2.3).

In general, a line element can be Written@b@ 1993):

ds? = C2dt? + gapdx*d¥ = dt? — c?dI? (2.1)

whereg,; is the metric tensog the speed of light in vacuum, axltithe proper spatial separation
between two events at the Cosmological Tim&he Greek indiceg andg denote the spatial
coordinates.

For a homogeneous and isotropic universe, the most genetatns the Friedm4hLemaitré-
Robertsof-Walke metric (Robertsdr, 1935), often simply referred to as RisberWalker
metric. It is an exact solution of the Einsteinian field equag under the symmetry constraints
mentioned above.

In our expanding universe, it is usefull to describe disésnlby a comoving coordinatein
a coordinate system which is fixed to the expanding space endehtime-independent. The
expansion is characterized by the scale faBtj.

Alternatively, a dimensionless scale-factor can be defined

R(t)
Ro
whereR, is the present scale factor. Becaag) describes the size of the universe at the time

t compared to its size today, it is closely related to the cdsgical redshift (see Sedi. 2.5.1):

a(t) = (2.2)

1
The line element of the Robertson-Walker metric can be @niih the following form:
c?dr? = ¢dt® - RE (1) [ £ (r) dr® + g7 (r) dy?| (2.4)

according t99), whetg denotes the transverse part in the spherical polar coor-
dinates:

dy? = d@? + sir? dp? (2.5)
Because of the spherical symmetry resulting from isotratpig suficient to decompose the

spherical polar coordinates into a radial and a transveage fpandg are arbitrary functions of
the radial coordinate.

To define the curvature of spakend scale factoR(t), there are two ways frequently used in
literature:

3Alexander Alexandrovich Friedman, 1888-1925

“Monsignor Georges Henri Joseph Edouard Lemaitre, 1864-19
SHoward Percy Robertson, 1903-1961

SArthur Gedfrey Walker, 1909-2001
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2.3. Friedmann Equations

e k denotes the Gauldian curvature (for a better distinctiottewias upper case lett&r
from now on) at the epoch whdR(t) = 1. In this case,§] = length and [] = length.
R(t) is dimensionless.

e ke {-1,0, 1} for an open, flat respectively closed universe. In this caisejimensionless
and R] = length.R(t) denotes the radius of curvature at titlne

In general, the scale factor can be chosen arbitrarily. rAfie renormalization fronk to k, R
is not arbitrary anymore. The relationship between the Gaon<urvatur& and the curvature

radiusR(t) is given as|(Misner et al., 1973, chapter 27):
k

= 2.6
RO’ (2.6)
wherek = IKI From now on, the second convention is used.
It is often convenient to define a functi@y (r):
sinfr) (k=1)
Sk(r) =4r (k=0) (2.7)

sinh(r) (k=-1)

k = 0O for a flat universe, which implies an Euclidic geomeky= —1 for an open universe
(the angles of a triangle add to less than?}88ndk = 1 for a closed universe (the angles of a
triangle add to more than 180 For a derivation, see e.@d@%%.

A widely used notation of the Robertson-Walker line eIem'eme):

c?dr? = c?dt? - R? (t)

5+ ridy® ] (2.8)

With Eq. [Z.T and defining in such a way that the functioh(r) = 1 in Eq. [Z.4, the line
element of the Robertson-Walker metric can be written inftlewing form (hyperspherical
coordinates):

c?dr? = ¢dt? - R (1) [dr? + SE(r) dy?| (2.9)

In Eq. [Z9 and Eq[_2]8, the whole expansion and with this tme-tlependence lies in the
scale-factoR (t), while the part in the square brackets denotes the comoviogimates.
2.3. Friedmann Equations

The Friedmann equations, which describe the expansiomaigsaof the universe, can be de-
duced from Einstein’s field equations for the Robertsonkéfainetric (Misner et all, 1973).

R2 = —ké? + %pRz (2.10)
. G
R = —?R(pcz +3p) (2.11)

wherep is the pressure caused by the content of the univM). Eq[2.10 shows
a direct relationship between curvatlkrand density of the univerge

11



2. Cosmology

By multiplying Eq.[Z.I0 withR2, it can alternatively be written as:

H? - —p=-—— (2.12)

whereH is the Hubble constant describing the expansion rate oftiherse:

_R®
H(t) = RO (2.13)
Instead ofH, often the dimensionless Hubble paramétes used:
H

h

2.14
100 km s*Mpc? (2.14)

By setting the right-hand side of EQ._2112 to zero, we obtaaQCritical Densityp. for which
the universe is flat:

3H2
= —— 2.15
Pc 871G ( )
It is convenient to write the total density as a fraction @& @ritical Density:
o=£ (2.16)
Pc

There are several components contributin@tanatter, radiation and the vacuum energy.
The cosmological constamt, which was originally introduced by Einstein as a constant t
obtain a static univers@b@l?) and discardest #ft insight of the instability of the
static solution and the discovery of the expansion by Hlﬂabiaeinterpreted as the vacuum

energy today. The vacuum energy density in terms of the clogjival constant is given as
(ﬂ

9): ,
AcC
= — 2.17
PA e ( )
So the density parameters are:
O, = ™ matter (2.18)
Pc
Q = Pt radiation (2.19)
Pc
_ Pa
Q) = — vacuum energy (2.20)
Pc

The total density is the sum of the componels: Q, + Q, + Q\
The present scale factor, which correspondents to the ttuevaadius, can be obtained by
solving Eq.[2Z.IP foR and using quI‘ng). This is the so-calledatune
length:

C k
Comparing the equation above with [Eq.]2.6 one can se¢®hatl| equals the Gaussian curva-
ture in units of inverse squared Hubble Iengﬂpf, whereDy = Hio

"Edwin Powell Hubble, 1889-1953

12



2.4. Cosmological Parameters

In an expanding universe, the matter density decrease® wWiel matter is dispensed into a
larger volume, while, in addition, the radiation is redgddf. It is assumed that the vacuum
energy density stays constant, even though there were stimge involving a non-constant

vacuum energ IEM). Therefore, the evolution efinsities is given as:
pm(@) o« a3 (2.22)
pr(@ o« a* (2.23)
pn = const (2.24)

Hence, with Eq_2.15 one obtains the development of the tenih redshift @9):

8nGp
3

= H3 (Qu + Qna® + Qa™) (2.25)

The evolution of the density parameters is obtained by usiaglefinitionQ = pﬂc and Eq[2.T5:

~ (1+2)°3
Qm (Z) = Qm’OEZ—(Z) (226)
. (1+2°
1
QA (Z) = QAEZ—(Z) (228)

whereE (2) = 52,

To get the dynamic of the Hubble constant with redshift, osesithe Friedmann equation 2.12

together with EG_Z21 and the above equation (Peacock))1999

H2(2) = HE[Qr + Om (1+ 2 + O (1+2)* - (Q - 1) 1+ 2)°| (2.29)

2.4. Cosmological Parameters

Determining the cosmological parameters is the main tasksfology. One of the best tech-
niques for this task is the measurement of anisotropiesediB. Such precision measure-
ments where first performed B§Osmic Background Explordmmllather et a].‘_19_94),
followed by theWilki nsorfl Microwave Anisotropy Probe (WMAP) (Bennett et dl/, 2 )3). The
most recent parameters frodAP are the parameters after seven years of observations

(Komatsu et al., 2011), often referred to as WMAP7-cosmpli@ge tabl§ 2]11). From this re-
sults the mean matter density today, were the critical deissgiven in Eq[2.15:

p0 = Qmpe = 2.7752- 10MQh2 oM Mpc = 3.719- 10" M Mpc 3

2.5. Cosmological Distances
The following considerations are mainly oriente@).

8David Todd Wilkinson, 1935-2002

13



2. Cosmology

Table 2.1: The cosmological parameters as obtained fMMMAP after seven years of observations
(lKQmal:iu_el_dlL_ZQil)]s is the initial spectral index andg the amplitude of the initial density fluctua-
tions.

Qn | 0.2707
Qp | 0.0451
hioo | 0.703
og | 0809
ns | 0.966

2.5.1. Redshift

Up to now, the scale factdr (t) respectivelya (t) was used to describe the universe at a specific
time. The most important observable when measuring cogyiualbdistances is the redshift.

The redshift is defined as

/lobserved_ /lemitted _ M (2.30)
/lemitted A

The cosmological redshift does not result from the Doppfag, but is caused by the expan-

sion of the universe. When light travels through the expagdpace, the wavelengirexpands

together with space. Hence, the redshift is simple given by

z

I:\)observed 1
z2=——-1=--1 2.31
I:\)emitted a ( )

wherea is the normalized scale fact999). In thevioflg, the relation between
distances and redshift is discussed.

2.5.2. Comoving Distance

The comoving distance (which is not the same as the comowaglmate) is measured along
the line of sight to an object. The infinitesimal way elemehthe comoving distance as a
function of redshift can be calculated by the equation ofiamfor a photon withR =

mg): 1+z
cdR  cdR
"R RH®
cRydz
RH (2) (1 + 2)°
C

RAJR = cdt

(2.32)

—dz
H@(1+2
So the infinitesimal radial line element is

Rodr = HL(Z)dz (2.33)

and the comoving distande. is the integral of the above equation:

z

Dc (2) = f H‘(:Z,)dz (2.34)

0

14



2.5. Cosmological Distances

The development of the Hubble const&h(z) depends on the density parameters and is given
by Eq.[2.29:

Rydr = Hi |20+ Qn(1+2°+Q (1+2* - (Q-1) (L + 2)2]_% dz (2.35)
0

For practical purposes$), ~ 0 for z < 1000 @9, p. 84). For a matter-dominated
universe withQQ, = 0 and therefor€ = Q,,, there exists an analytical solution to the integral,
which is called Mattig’s formuldmm%):

oc Qz+(Q-2)| VI+Qz-1]

RoSk() = 1, 21+ 2

The comoving distance as a function of redshift is shown g[Eil.

(2.36)

2.5.3. Angular Diameter Distance

The angular diameter distanBg is related to the apparent angular size of an ob@acock

’ RoSk (1)
k (I
D = 2.37
n@ = (2.37)
And therefore for a flat universe: 5
Da(2) = — 2.
"@=1 (2:38)
Using the angular diameter distance, an object of thedsigeseen with an angular size:
d
= — 2.
0 D- (2.39)

For the WMAP7-cosmology, the angular distance reaches a maximum=at2, for higher
redshifts it is decreasing. Therefore, high-redshifteggctis are appear larger objects closer to
us. The angular diameter distance as a function of redstsfiown in Fig[ ZJ1.

2.5.4. Luminosity Distance

For the calculation of the flux received from an distant objgmalogous to the commak-law,
the luminosity distanc®, is defined a@@%)

DL (2) = RySk (r) (1 + 2) = Da (1 + 2)? (2.40)
Which is for a flat univers@m%):
DL(2=Dc(1+2 (2.41)

Therefore for the flux from an object with luminosityat distanced the following equation

holds:
L

47rDE
There is one caveat concerning EQ. 2.42: It can only be apfgi¢he bolometric flux, which is
very difficult to obtain in reality. To calculate the flux in a specifiedacorrections have to be
applied. There is also aftierence between photon flux and energy, which has to be tai@n in
account if dealing with limited energy ban@%g
The D, increases monotonously with redshaftThe luminosity distance as a function of red-
shift is shown in Fig[ZJ1.

(2.42)

15



2. Cosmology

2.5.5. Comoving Volume Element

The infinitesimal comoving volume element describes thawa per steradian as a function of

the redshiﬂmm%).
dVe = [RySk ()]? - RodrdQ (2.43)
for a flat universe using Eq. 2.133:

c

dVc = DZ - Rydr = D&——dzdQ 2.44

c C RO CH (Z) ( )

In an isotropic universe, the integration over the solidlasgnply contributes a factor# so
the equation above becomm@w%):

dV¢ = 4nD3 (2.45)

c
H—(Z)dz
In this volume element, a number density stays constant iexpanding universck,
). Since Ed._Z.43 contains t8g(r)-term, it is possible to determine the geometry of space
by observing a population of objects with known number dgredi different redshifts.

Because the comoving volume element is related to the andidmeter distance, it reaches
a peak atz ~ 2 (for aWMAP7 cosmology) and decreases for higher redshifts. The corgovin
volume element as a function of redshift is shown in Eigl 2.1.
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Figure 2.1:Comoving Distance (top left), Angular Diameter Distana(tight), Luminosity Distance
(bottom left) and Comoving Volume Element (bottom right) WMAP7-cosmology)
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2dF Galaxy Redshift Survey
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Figure 3.1:Spatial distribution of galaxies from the 2dF suw@l@b). On dticiently large
scales, the matter is distributed homogeneously, but otl@ansaales structures are conspicious. Be-
tween supermassive clusters, which are connected by laigscof galaxies, the so-called filaments, are
almost empty bubbles, the voids.

3. Galaxy Clusters

After having dealt with the universe as whole in Séc¢t. 2, tmu$ is now shifted to the largest
coherent structures in the universe, the galaxy clusteosn Ehe point of homogenity, one does
not expect to see any distinct features at all. But since fysmity applies only on scales larger
~ 50 Mpc tELess_&_S_QhethéLﬂM), there are lots of strustdirem stars up to galaxy clus-
ters. The galaxy distribution on large scales can be reddsleleep surveys like the 2dF survey
9), from which the galaxy distribution showifrig.[3.1 was obtained. The largest
gravitational bound, virialized structures in the uninefsund by such surveys are the galaxy
clusters. Typically, they contain some hundred ab@,ﬁ@. With a luminosity in
the range 1-10*°erg s (Tri ' 8), they are the brightest X-rayrses
next to quasarslﬁgak 86). After an introduction toa)X-observations and especially
mass determination of galaxy clusters in Séct] 3.1 followdésaussion of the importance of
clusters for cosmology in Sedt.B.4. Then, in Seci] 3.5 tlsemiaion of inhomogeneous mat-
ter distributions as density fields is introduced. This isded for the understanding of cluster

identification. Afterwards the formation and mass functadrclusters are discussed in Sect.
[3.8{3.10.

3.1. Galaxy clusters in X-rays

The following description is mainly based on Trilmper & Hagir (2008), chap. 23. While in
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3. Galaxy Clusters

Figure 3.2: Composite of X-ray and optical image of the galaxy clusteelh&689 at a distance of
2.3 billion light years. The optical Hubble Space Telescopage is colored yellow, the intraclus-
ter medium observed by Chandra’s Advanced CCD Imaging 8peeter (ACIS) is purple. [X-ray:
NASA/CXC/MIT/E.-H Peng et al; Optical: NAS/STSc]

the optical the galaxies forming the cluster are seen, Xelaervations reveal aftlise emis-
sion over the whole cluster (Fig._8.2). Thidfdse emission extends on scales of about 1 Mpc
(Mo et al. | 2010). It is caused by hot intracluster gas, wisciiso called intra cluster medium
(ICM), with temperatures of several ten million degreesjolcorrespondents to X-ray en-
ergies ofkT ~ 2 — 15keV (Triimper & Hasinget, 2008). The force forming thitréacluster
gas is mainly gravitation; therefore measurement of thelgasbution allows inferences about
the gravitational potential of the cluster. If one approates that the ICM is in hydrostatic
equilibrium, the ICM in the cluster potential can be desedlas|(Trimper & Hasindér, 2d08)
}VP _GM (r)
P r2
wherep is the density of the ICMP is the pressureG is the gravitational constant, ari
is the mass enclosed in a sphere with radiuBy adding an assumption about the cluster
geometry, which can in most cases be presumed as sphdrisagquation can be reformulated

inger, 2008):

M (r) =

(3.1)

KT (r)r(dlogp+ dIong) (3.2)

“Gum, \dlogr = dlogr

This equation gives the important insight that the massosed by a sphere of radiuslepends
on the gas density and the temperature at this radius. Hemeasurement of the temperature
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3.2. X-ray Spectrum of Clusters

and density profile is needed to calculate the mass profilefranad this the total mass of a
cluster.

3.2. X-ray Spectrum of Clusters

The X-ray emission of the intracluster medium is mainly du¢hiiermal bremsstrahlung, with

contributions from line emission and recombination radia(Triimper & Hasinger, 2008). Ac-
cording tr{_(1—9_i36), Eq. 5.11, the emissi¥itf thermal bremsstrahlung is given as:

¢ dL ne® [ 2n
6 _

% -1 hy
T dvdy  3mc® 3mek] Znemor (Z.To-v) TgZEXp(——) (3.3)

KT

whereng is the electron densityy the ion density angs a Gaunt factor correcting for quantum
mechanical fects. If the Gaunt factor is assumed as constant, the spectran exponential
function of the energy. Because the gas temperalyns a parameter in the exponent, the
spectral shape is mainly determined by the temperature chiémical composition influences
the spectral shape, too. Under the assumption of an iontglgmsiportional to the electron
density, the normalization of the spectrum depends on tbarsd gas density. There is also
line emission observed in cluster spectra, especially from@ﬂi@@. This leads to the
conclusion that the ICM, or parts of it, have already beerg@seed in stars.

Because there are shells witlfdrent density and temperature along the line of sight, the ob
servated spectrum is obtained as a convolution of threekional density and temperature
profile. The real observable is a so-called ‘emission meagighted temperature’. There-
fore, the mass profile can be obtained by measuring the tetyper and mass profile and

deprojecting it along the line of sight, which is not a triviask (Trumper & Hasinger, 2008).

3.3. Dark Matter in Galaxy Clusters

If the density and temperature profiles are calculated asrithesl above, the total gravitat-
ing mass of the galaxy cluster can be obtained. This incltisesion-radiating dark matter,
therefore indirect dark matter observations are possipl&-bay observations of galaxy clus-
ters. According tbﬂu’mp_er_&ﬁasmédi@%), mass estsabtained by cluster observations
suggest a composition of about 87 % dark matter, while 11 %etdatal mass are contributed
by the ICM and only 2 % are found in the galaxies. Because ths@ls consist mainly of a halo
of dark matter, often the term dark matter halo or simply heased if referring to clusters.

3.4. Cosmology with Clusters

While the observation of single clusters provides us witbrimation about dark matter in the
cluster itself, the cosmological parameters can be canstthy means of accurate measure-
ment of the the large-scale structures in the universe eQjalaxy clusters form from overdense
regions, they trace the overall matter distribution, whidmstitutes the large scale structures
(Trumper & Hasinger, 2008). Therefore a statistically pete sample of galaxy clusters pro-
vides us with complementary information about the cosrriohjgparameterém al.,
). The mass function of clusters, which describes theben density as a function of
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3. Galaxy Clusters

mass and redshift, depends on the density paranigteand the amplitude of the primordial
power spectrunarg. The evolution of the mass function as well as of amplitude simape of
the power spectrur (k), are strongly influenced by dark matter and dark energy. angamic
acoustic oscillations, which allow the measurement of theature of space atfierent epochs
(Predehl et &ll, 2006), are imprinted on the large-scaletre.

Galaxy clusters can be used as standard candles (Predéhi2806), thus a high-precision
measurement of their spatial distribution is possible. Gtwestraints on the cosmological pa-
rameters obtained by cluster observations are complenyetot@ther methods like measure-
ments of the Cosmic Microwave Background, and degenerdatgeen parameters can be
broken by combining observatiorhs_(M_o_ei hLJOlO).

3.5. Density Fields

Generally, the non-uniformity of the matter distributicaincbe described at each positioas
over- oder underdensitywith respect to the mean density of the univeﬁM@g):

§(X) = "M (3.4)
0

After recombination, these density perturbations inadasearly with time: 6 (x,t) « D (t),
whereD () is the linear growth factor. Closely related to the denséidfis the power spectrum
of the density fluctuationB (k).

If the initial perturbation power spectrum is known, its dlpment in time can be calculated.
Before recombination, the shape and amplitude of the popetteum change. This evolution
is described by the linear transfer functidr{k). After recombination, the power spectrum at

timet can be written as (Mo et al., 2010):

P (k,t) = P; (K) T2 (k) D?(t) (3.5)

whereP; (K) is the initial power spectrum. In inflationary models, thiiah density perturba-
tions arise from quantum fluctuations of the inflation sctédd, thus the power spectruf(k)

of the perturbations is Gaussian (Mo et lal., 2010).

3.6. Correlation Function

The characteristic scales of the clustering can be obtdgete autocorrelation functiofof
the density field, which is defined as:
EM) =X (x+r)) (3.6)

where the angle brackets stand for the averaging over thealization volumeVv k,

). Since is independent of its direction due to isotropy, the cotrefafunction depends
only on the distance between objects. It is also shown byd®kad 999) that the correlation
function is the Fourier transform of the power spectriifk). [Davis & Peebles (1983) give an
empirical correlation function for galaxies described lposver law:

0 =) @7)

with y = 1.77 andry = 5.4 + 0.3h™* Mpc.
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3.7. Halo Identification

3.7. Halo Identification

Halos are identified as overdense regions relative to thenicodensity field. These overden-
sities can be identified by smoothing the density field on ther@priate scale with a filter

functionW of a characteristic radiuR (Mo et al., 2010):
§(x,R) = f&(x’)W(x + X', R) d*x’ (3.8)

For a top-hat filter function, an overdensiyontaining the maskl in a sphere with radiuR
is defined as

M R
5= # (3.9)
§7TR3p
Halos can be identified by setting a overdensity threshaaid expanding the radid&around
peaks in the overdensity field until the threshold is reacdmi%l. 8):
F=A= (3.10)
3TM\P

The halo identified this way has the madg enclosed by the radiug,.

3.8. Halo Formation

In this section, the formation of the dark matter halos, \wtgontribute a significant part to the

total cluster mass (Triimper & Hasinger, 2008) is discussed

3.8.1. Gravitational Collapse

The established theory explains the halo formation by petadue to gravitational instability.
Initial density perturbations grow linearly until a CriéicDensity is reached. At this point,
gravitation is strong enough to cause a collapse decoupetdthe expansion and followed by
the virialization of the overdense region. The overdeng®reincreases its matter content by
accreting material from the underdense regions ardund_tmd,&ﬂlb). Diterent halos can
merge to larger halos, such that successively larger edlstructures are formed.

In a flat universe with cosmological constant> 0, the critical overdensity, for a collapse is

given b%_MD_el_a].L(ZQJIO)

Gelto) = 5[ | (2™~ 1686 ()l CEED

whereQ (t.o) is the density parameter at the time of the collapse. Forailddtdiscussion of
the evolution of the density perturbations see (e.g. Mo.g2alL0, chapter 4).
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3. Galaxy Clusters

3.8.2. Press-Schechter Approach

The formation of structures from a gas of self-gravitatiagtigles is a problem which requires
N-body simulations. Such calculations where done, e.d. ingel et al. [(2005) with 2603
particles. Because of the limitations in available caltalatime, such simulations can only
be done for a limited number of particles in a limited volumk develope a global theory
not restricted by these limitations, other approaches angathded. One of the first theoretical
approaches to structure formation and a cluster mass fumetas done by Press & Schechter
dl£9pﬂl). This formalism is also known as PRsshechtdfl formalism. Since the derivation
of the Press-Schechter mass function is not mathematiggtlyous, it has to be tested with

numericalN-body-simulations and observations (Press & Schecht@e;1do et al.| 2010).

The Press-Schechter formalism (PS) presents a methodtitbgpea continuous linear density
field in disjoint regions which form the collapsed obje¢tso(kt al.| 2010). Most generally, it
describes a collisionless gas of self-gravitating patich an expanding universe.

lBr_ess_&_S_Qhthjle[L(lQM) suggest a successive formatiargef$tructures due to nonlinear in-
teraction of smaller particles. If the particle lumps aréisiently bound, they are identified as
single particles. The randomness in position of thesegestitself acts as initial perturbation

for the condensation on larger scales. It is not necessdrgwe additional initial perturbations.

Press & Schechter (1974) show that it can be assumed thai¢btrism and statistical distribu-

tion of the initial perturbations have only a very weak inflae on the spectrum at late times.
One of the important insights of the PS approach is that asgmifar state is reached where the
functional form of halo mass distributions is reproducetheger scales.

The Press-Schechter formalism can be applied to an exgaodiverse, where the character-

istic particle densityn, is large enough that the mean distance between the patticles />

is much smaller than the light horizdn, so that the dynamics can be threated Newtonian (as

long as the particles do not collapse to a relativistic dijke a black hole, Press & Schechter
)). There are two processes acting against each oilmer:expansion of the universe

dragging the particles away from each other and gravitatioich attracts the particles.

The parameters characterising the behaviour of the pastarie their peculiar velociiyrelative

to the Hubble flow (analogous to the gas temperature), theactaistic density introduced
above, the characteristic particle massand the Hubble parametedescribing the expansion
of the universe (Eq._2.14. These parameters can be comluned dimensionless quantities:

q = ﬂnn*m* (3.12)

3 h2
v\3
N, = n, (—) (3.13)
h
g is a deceleration parameter which describes the abilith@tkpansion to impede condensa-
tion, while N; is related to the particle number inside a Jeans mass arefdahequantifies the
tendency to local condensation. For systems with singjland N; a similar behaviour is ex-

pected regardless the scale of the parameters. ThugafwdN; constant in time a self-similar
condensation can be expected.

SWilliam H. Press, *1947
10paul Schechter, *1948
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3.9. Mass-Luminosity-Relation

The only parameter in the Press-Schechter formalism is hlaeacteristic mass of the initial
condensations. Press & Schechter (1974) derive the furattiorm of the halo mass function:

Ml—a 2
Nk (M) o« M~ exp[—const-( = )] (3.14)
where! < @ < I andRiis the scale facton._Mo et al. (2010) give the Press-Schechéess
function as
(2P & oz dlno-’
n(M,t)dM = \/;Mza exp( 52 |l din v dM (3.15)

Time enters only iy (t), while the mass enters in (M) and its derivative as well as in the
M-2-factor.

Up to a characteristic mass, the distribution varies as aptaw, for higher masses it decreases
exponentially. A significant number of clusters exists uptgM) > & (t), or a corresponding
massM < M*, whereM* is a time-dependent characteristic mass:

Oc
D (1)

o (M*) = ¢ (t) = (3.16)

whereD (t) is the linear growth factor discussed in Sdctl] 3.5. Presst&e&uter|(1974) show
that the self-similarity is obtained for perturbationslwihaximal variance, i.e. an Gaussian
distribution, as well as for the case with minimal varianice, each particle belonging to a
regular lattice site in the beginning, and all the cases éetwThe only influence of this initial
distribution lies in the dependency of a ‘typical mass’ aaraction of the expansion scale, that
means the mass value around which the cluster masses arentated L(_ELQ_S_S_&_S_C_h_e_C_H!ter,
1974).

To apply the Press-Schechter formalism to galaxy clustendition, it is not compulsory to
assume that all structures were formed by this processingtavith the smallest possible par-
ticles as seeds. It is also possible that large objects ssigalaxies were formed by other
processes. Due to the self-similarity of the function, tbsult is the same after ficient time

(Press & Schechter, 1974).

3.9. Mass-Luminosity-Relation

The mass of an galaxy cluster can be obtained by measuridgntsty and temperature profile,
as described above. The relation between mass and totgl Kirmanosity can be calibrated by
fitting a sample which contains aficient number of clusters to a model.

Such a mass-luminosity-relation was published_by Vikhligi al. (2009). Its is based on a
mass-limited sample of clusterszat 0.05 from theROSAT PSPC survey and a subsample of
36 clusters at = 0.35- 0.9 from theROSAT 400 d survey with a mean redshift o 0.5. The
subsample was chosen so that it is quasi-mass-limited lisikret all,[2009). The mass- and
temperature profiles of the clusters were obtaine@€bgndraobservations.

Vikhlinin et all (2009) define the masses in peaks with a osesityA relative to the Critical
Density at redshift:

4
My=M(r <Ry = ApcéRin (3.17)
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3. Galaxy Clusters

The mass-luminosity-relation is obtained by fitting the extvations to a model which is de-
scribed in_Vikhlinin et al. [(2009). For the overdensity au@bfA = 500 was chosen. The
resulting relation is:

InLy = (47.392+ 0.085) + (1.61+ 0.14) In Msgo + (1.850+ 0.42) In E (2) (3.18)
—~0.39In(h/0.72) + (0.396+ 0.039)

The last term on the right-hand site describes the scattbeinbservations for a fixeld.

3.10. Cluster Mass Function

As mentioned above, the Press-Schechter formalism hastestezl on numerical simulations
and observations. A function based on the PS mass functiscriieng halo masses up to
redshifts ofz < 2.5 was presented dy Tinker et all. (2b08). The function wascked by
N-body simulations calculated for volumes up to 1280Mpc edge length. The simulations
were performed with the threeftBrent codes GADGET2 (Springel ef al., 2005), the hashed

oct-tree (HOT) code (Warren & Salnian, 1993), and the Adad&efinement Technique (ART)

(Kravtsov et al., 1997). The mass function is valid for halasses ranging from bh1 M,

upto 1605h 1M, (Tinker et al.| 2008).
dn Pmding?
av = TN am
wheren = g—\'\'/ is the number density of halgs,, is the mean matter density of the universe and

o is the root mean square of the linear matter power spectruedahiftz.
The functionf (o) is parameterized as

(3.19)

f (o) = A[(%)_a+ 1] e (3.20)

In|Tinker et al.|(2008) values fa¥, a, b andc as well as their redshift evolution are given, which
were fitted by simulations. The root mean square of the linestter power spectrum is, based

on the equation foz = 0 given by Reiprich & Bohringer (2002), where the lineangtio factor

in the numerator was inserted to account for the redshifiuéem of the power spectrum

[ dkkZ*™D? (2) T (K)°W (kR (M))?
o?(M,2) = o} Om > (3.21)
J dkkZsT (k)? W (k8hy 2, Mpc)
0

whereW (kR(M)) is the Fourier transform of the spherical top-hat functiahjch smoothes
the power spectrum on a SCﬂ@Q):

N 3
W (kR(M)) = ————[sin(kR(z, M)) — kR(z, M) cos(kR (z, M))] (3.22)
(kR(z M))°
Ris the radius of the sphere enclosing the overdensity:
%
R= (ﬂ) (3.23)
Arpo

24



3.10. Cluster Mass Function

The shape of the power spectrum today is obtained by mulkiglhe primordial power spec-
trum with the transfer functiof (k). Here, the fitting function by Bardeen et al. (1986) for a
cold dark matter model was used:

In (1 + 2.34q (K))
2.34q (k)

with q (k) = =£—, whererl is the shape parameter:

Ihio’
27K\ [h1oo Q5
I'=0Q.,h —Qp — | —— 2
m 100( T ) EXP( b 05 O, (3.25)

The form of the mass function from Tinker et al. (2b08) is veipilar to the Press-Schechter
mass function (Eq._3.15). The exponential from the PS fonds included in the fit function
f (o), and taking the absolute of derivative in the PS-functicevsided by the-1 exponent of
the o, which guarantees a positive derivative becaus® decreasing with increasing mass.

T (k) _ )—0.25

(1 +3.89q (K) + (16.1q (K))? + (5.46q (K))® + (6.71q (k))*
(3.24)

An approximation formular for the linear growth factor, whican be used for all world models

(Mo et all.[201D), is given by Carroll etlal. (1992):

D@ = %Z)Z (3.26)

whereg (2) is given as:

9@~ 300 @] 0 - 0.0+

Qm(Z) QA(Z)
1+ > H1+ 0 ]} (3.27)

According to Tinker et al. (2008), the mass function can kedusr redshifts up ta < 2 and
for a halo mass in the range#6 < 10h™1 M.

The mass function from Tinker et/al. (2d)08) is given in terfew@rdensities with respect to the
mean density of the universe, while the mass-luminosilgtian from|Vikhlinin et al. (2009)
refers to overdensities relative with respect to the Giitldensity. Hence, the overdensity to
the critical mas®\. has to be converted to the corresponding mean-density ensitgiA:

Acpc (2)
Pm (2
- A pc(2)
pc (2 Qm (2)
Eq228 E (2)2
01+ 2)°
Qn + Qo (1+2°
Qmo(1+ 2?3

AQ2)

- C

Q
Al

1-Qn
N [—Qm e 1] (3.28)
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3. Galaxy Clusters

whereG is the gravitational constant. F&(2), Eq. [2.29 was used, as well & ~ 0 for

z < 1000 KP_QacpiIL(lQPQ) p. 84) atd= 1 = Q, = 1 - Q. Because larger overdensities
result in less clusters to be found, this correction dea®#dse number of clusters, especially
for small redshifts.

Fig.[3.3 shows the mass function for the redshifts0, z = 1 andz = 2.5. Because the range of
the mass function spans over several orders of magnitud@rthinate is plotted with a factor
of M?/p,,. As expected from the Press-Schechter approach (see [S8&) the number of
clusters decreases with increasing redshift, which is mqirssing since galaxy clusters evolve
with time from gravitational collapse of overdense regions

1
107 . .
i : z=0.0 ——
— z=1.0 -
_______________ ‘ Z=2.5 e

107 |

(M?/p,) dn/dM
= = =
(@] (@] (@]

[4)] » w

O 10™°
M[MSur]

Figure 3.3:Halo mass function foA = 500 (overdensity with respect to the mean density) and three
different redshifts. The redshift evolution of the mass fumcigcevident. Foe = 2.5, the number density
of masses is about one order of magnitude smaller than=db.
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4. eROSITA

4.1. Overview

The objective of the simulation presented in this thesi®iganerate a list of galaxy clusters
for the simulation of the all-sky survey which will be conded with the instrument extended
ROentgen Survey with an Imaging Telescope Arfay (eEROSIEROSITA is one of the two
main instruments on board of tEERGspacecraft. The following sections give a short introduc-
tion to[SRGwith a focus ol eROSITA .

The first all-sky survey in X-rays was performed wROSAT in the 19904%@3). Be-
causeROSAT was only sensitive in soft X-rays, the missioABRIXAS I@Q) and
ROSITA (extended ROentgen Survey with an Imaging Telescope ARmdehl et &l) (2003))
were planned to extend tHiROSAT all-sky survey to higher energies, with the main goal of
observing Active Galactic Nucleus_(AGN) which are mainlysobred by gas and dust if ob-
served in soft X-ray< (Predehl et al., 2D008)BRIXAS failed shortly after the launch due to a
malfunction in the power systerin_LELed_ehJ_dt[aL_i006), evRDentgen Survey with an Imag-
ing Telescope Array (ROSITA), which was designed to be htddo the International Space
Station[IS$), was never realized because the schedulecHalate was 2011, one year after the
planned end of the Space Shuttle progrbm (Predehl bl_aE)ZBOrthermore the 1SS turned out
to be unsuitable for X-ray optics because of its dirty envin@nt I5). After
these two failed missions, it will he’eROSIITA which contisdlee work ofROSAT.[eROSITA is
based on the design 8BRIXAS but with a significantly largerféective area to allow dark en-
ergy studies, which is now the central objective of the misgPredehl et al., 2010)._ eROSITA
is funded by the German Space Agency Deutsches Zentrumufith ind Raumfahrt{DLR)
and the Max-Planck-Society.

4.2. Spectrum-Roentgen-Gamma

Spectrum-Roentgen-Gamriéig.[4.1) is a German-Russian project. The basis strucsithee
‘Navigator'-platform developed by Lavochkin Associati(®avlinsky et al., 2009). The main
instruments are two X-ray telescope arrdys: eROSITA, wisidontributed by Germany under
direction of the Max-Planck Institut fur extraterresthe Physik[(MPE), and the Russian hard
X-ray instrumenfART-XC, developed by IKI.

ART-XC consists, like_ eROSITA, of seven X-ray telescopegredd parallel. The telescopes
are conical approximations of the Wolter-l1 design and areipgpd with CdTe-detectors

(Predehl et &ll, 2010). The instrument is sensitive for diginergies thah eROSITA and ex-
tends the energy band up t011 keV for the survey and 30keV for pointed observations

(Pavlinsky et al/, 2009).

4.3. Scientific Objectives

The scientific objectives df eROSITA are described in, eRredehl et dl. (2010). While
ABRIXAS and[ROSITA were mainly designed for the observation of ActBalactic Nuclei,
the design driving science for eROSITA is the testing of colegical models through large-
scale structure observatiorhs_(Er_eﬂﬂllLéLalu_lZOlO). Iays;rgalaxy clusters are good tracers
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4. eROSITA

eROSITA

ART-XC

Navigator

Figure 4.1:[SRGin orbit configuration|(Pavlinsky et al., 2009). The maintingent eROSITA and
[ART=XCl are mounted on the ‘Navigator’-platform.

for these large scale structures (see Secit. SiTAlect clusters up to redshifts of
z ~ 2.5 with a precision oAz ~ 0.2 1/, 2009). Furthermdfe EROSITA will help
to understand dark matter and accretion physics (Pavliesj, 2009).

4.4. The eROSITA-instrument

4.4.1. Wolter Telescopes

A detailed description of eROSITA can be found in, elg., Gdipti etal. (2011) and
Predehl et &l (2010). The X-ray optics of the instrumeniséstrof seven identical, co-aligned
Wolter-I X-ray telescopes. To achieve the objectives desdrabove, fiective area and angular
resolution had to be increased with respeABRIXAS . Thus the number of mirror shells was
doubled. Every telescope consists of 54 gold coated, nestedrs, where the 27 inner shells
are identical to those used ABRIXAS dBLeﬂﬂhLel_dlL_ZQiO). By increasing the number of
mirrors, the &ective area could be enhanced by a factor five for energiee up5tkeV. For
higher energies the outer shells do not contribute to ffex#ve area because of the relatively
large grazing angles (Predehl et al., 2006). The angulatutisn improves that oABRIXAS

by a factor of two [(Predehl et al., 2010). These improved ciépss needed for dark energy
studies. Additional, the telescopes are co-aligned inreshto those o ABRIXAS . A com-
prehensive display of the propertied of eROSITA can be fonnable[4.1. Each telescope has
a focal length of 1600 mm_(Predehl et al., 2010) andféecéve area of 1500 cnf at 15 keV
(Cappelluti et al), 2011). This is about a factor of two betian XMM-Newton in this energy
band (for a comparison of thdfective areas oKMM-Newton, ROSAT PSPC, an@ eROSITA
see Fig.[413). Photons from out of view reaching the detedfter a single reflection on the
paraboloid or hyperboloid surface are suppressed by ary Xatéle in front of the telescopes.

28



4.4. The eROSITA-instrument

Cover

7 (X-ray) Baffles

Sunshield

7 Mirror Modules — 3@ i
(2) Startrackers

Mirror Platform

Telescope Structure
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7 (CCD-) Cameras - Camera Platform

Figure 4.2:The[EROSITA telescopes assembled on the carrier strufiirenétz et dl., 2008).

Table 4.1:Properties of the eROSITA X-ray telescopes (Cappellutl.efa1l)

Telescope design Wolter-I
Number of telescopes seven
Shells per telescope 54
Effective area at.b keV ~ 1500 cn?
On-axis PSF HEW 157
Effective Angular Resolution 25— 30"

The drawback of this design is additional vignetting, so adgoompromise has to be found

(Predehl et all, 2010). The mirrors have to be stabilizeddat 2°C to avoid degradation of
the imaging quality due to thermal deformations. This dizdtion is reached by a system of
heatpipes in combination with a heating system (Predehl,&G10).

4.4.2. pnCCD Detectors

Each of the seven Wolter telescopes is equipped with anicd@mnCCD camera developed

vices (CCDs), are advanced versions of the pnCCDs flyingKbi-Newton (

by the MPI Halbleiterlabor. The pnCCDs, which are backsildeninated Charge Coupled De-
éimaél; etal.,

@) and have 384384 pixels. In the energy range fronB&keV to 10 keV, an energy resolu-
tion close to the theoretical limit determined by Fano nissechieved (Meidinger et al., 2009).

The quantum fiiciency is about 90 % (Meidinger etlal., 2009). A comprehansivmmary of
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Figure 4.3: On-axis d@fective area fol_eROSTTAXMM-Newton and ROSAT-PSPC I.,
)

the properties of the pnCCDs is given in tablel 4.2. The casnea@e an imaging area and a
framestore area where the image can be shifted to in lessl@ys (BLeﬂﬂhLel_élL_ZQllO) to

minimize the probability of out-of-time events, i.e. phogsorecorded during readout. All 384
channels are read out simultaneoulsly (Meidinger eLaI_.Q)Z(]E)or calibration purposes, every

Table 4.2:Properties of the eROSITA pnCCD-cametas (Meidinger €2aD9).

Pixels 384x 384

Chip size 288 mmx 288 mm

Pixel size 75um x 75um

Readout all 384 channels parallel
Time for shifting integrateg

image to framestore < 100us

Readout time 5ms

Working temperature -80°C

pnCCD is equipped with a radioactive¥source with an aluminium target. The source can be
moved in and out of the field of view. The pnCCDs have to be keahaperation temperature
of —-80+ 0.5°C. This is achieved by passive elements, that is variabldwtance heatpipes

and radiators (Predehl et al., 2010).
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Figure 4.4:Left image: One of thd eROSITA pnCCDs. On the bottom side the frame st@a can be
seen, which is smaller than the imaging area of the chi .]_ZD_dB)Right image: Schematic

view of an eROSITA pnCCD._(Meidinger et/al., 2009)

\ solar radiation

e

Figure 4.5:The earth-sun system with its five equilibrium (LagrangentsoL;-Ls (Fig. from Wille,
private communication). Earth ist blue, the sun is yellowl #me Lagrange points are red._eROSITA

will orbit around Ly in an elliptical orbit with a semi-major axis of -310° km, a semi-minor axis of
2.5-10°km, and an inclination of 35with respect to the ecliptic.
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4.5. Orbit

Launch is scheduled for 2013 with a Soyuz-Fregat from Baikokazakhstan (Pavlinsky et/al.,
). After a 110 day flighESRGwill reach its orbit around Lagrange poin bf the earth-
sun-system (Fig[_415),.3 million kilometres from earth_(Firmetz et/al., 2010). Ip, the
joint gravitational force of earth and sun equals the ctugél force on a much smaller object
orbiting the sun with the same velocity as earth. Becaysis b saddle point of thefiective
gravitational potential and therefore dynamically unktatihe spacecraft has to perform course
correctionsL(Em_tz_e_t_bL,Ldm). SRG will be placed ireHiptical orbit around L with a
semi-major axis of 310° km, a semi-minor axis of .8 - 10°km and an inclination of 35with
respect to the ecliptic.

4.6. Observing Program

The first four years of the mission, eROSITA will conduct aRsily survey. During this time

it will rotate constantly, where the rotation axis alwaysp®to earth, so readjustements of the
antenna position are not necessary. This constraint tegefith the orbit around L results in

a smearing of the scan poles to an area of a few hundred SCFB@!TEEGL(.E&Lm_e_[Z_e_[JdL._ZfMO).
An exposure map is shown in Fig. #.6.

The ROSAT-survey lasted only half a year, so together with the ina@dafective area, the
all-sky survey will improve ofROSAT all Sky Survey by a factor of about 30 in
sensitivity (Cappelluti et all, 2011). The mean exposuretivill be ~ 3ks, while at the two
scanning poles exposure times of 280 ks are reached. In thesD- 2 keV band, a flux limit
for clusters of 3 10 *ergsicm2 - 4. 10 B5ergsicm2 is expected. (Predehl et/al., 2010).
According tol Predehl et all_(2010), the eROSITA survey welieal about 5000 — 100,000
galaxy clusters and-310- 1(° AGN will be observed, including all clusters with masses\abo
3.5-10%h! M, up to redshifts ofz = 2. After the four-year survey phase, a three-year phase
for pointed observations of interesting objects is planned

Figure 4.6:Exposure map for the EROSITA survey (Filrmetz et al., 20Tb brighter areas are the
scanning poles.
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5. SIXT Simulation Software

In this chapter, th&Simulation of X-ray Telescopes (SIX Tchmid et al., 2010) software and
the Simulation Input[{SIMPUT) forma al.), whiishalso the final format of the

cluster catalogue, are introduced. The cluster catalogeeissed in this thesis was generated
as an input catalogue for the simulation offhe eROSITA surWéth increasingly complex and

read-out mode

detector RSP

split events
effective area PSF, vignetting ggizgound
attitude attitude bad pixel map

* + impact list + event list

X-ray source list . photon list 5
spectrum »-| photon time p Photon | o time y Photon p readout time
position/image generation energy Iimaging energy detection measured energy

brightness/light curve position (ra,dec) position (x,y) pixel

Figure 5.1:Flow chart of théSIXTl pipeline (Schmid, 2011)

expensive missions, simulations become more and more targdor planning and designing
missions. Th&IXT program for X-ray instruments was developed by Schmid patL0). It

is based on a Monte-Carlo algorithm and generates evenk¥ifay sources stored in an input
catalogue. For every photon, the propagation throughdefessand the response of the detector
is simulated using existing calibration data like the P&ptead Function (P$F). The software
is designed modularly, so it can easily be adaptedfferint instrumentis_(_S_thjd_eﬂ é.L..ZblO).
The output of the simulation is an event list as obtained lay observations. This list can
be processed further to analyze properties of the instrurbefiore the latter one is actually
constructed.

Fig.[5.1 shows the dlierent steps of tHEIXTl pipeline. The input is a source catalogue with the
corresponding spectra and optional image and light curvéh gard to pointing andfiective
are of the instrument, photons are generated by a Monte @atbod. This photon list is
processed together with the intrinsic properties of th&umsent, liked. PSF and vignetting as a
function of attitude. From this, an impact list of the phatdntting the detector is generated. In
the last step it is accounted for the detector properties tla@ event list as obtained from real
observations is returned (Schmid et lal., 2010).

An universal format for source catalogues to be used as fiopwimulations was defined by
'Schmid et al. with th€ SIMPUT format. It is a Flexible Imageafisport Systeni(EITS) file

(Hanisch et dll, 2001; Pence et al., 2010) with a sourceagial extension containing one or

more sources. Further extension can contain images, apautk light curves. Alternatively,
these can be stored in otlier FITS files, in this case the sewteasion contains links to those
files.
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6. Generating the Cluster Catalogue

In the last chapters, the theoretical background aboukgalasters, their importance for cos-
mology and eROSITA was introduced. In this chapter, the obthis thesis will be discussed:
the sampling of a cluster catalogue via a Monte Carlo sinariaBefore describing the code in
detail in Sect[6J4[-6.10, some basics of the Monte Carlontigete are introduced in Se€f. 6.1
without a focus on mathematical rigorousity. The code fitsehsists of severaPythonscripts.
After a short introduction to th&ythonprogramming language in Sedt. 6.2, the general ap-
proach to the problem is presented in Séct] 6.3. An overviesv the simulation pipeline is
given in Sect[ 64, before the single scripts are describeidiail in Sect6]6[=6.10, followed
by a discussion of the results in Sect. 6.11. The simulatoipts would be relatively useless
without having tested the plausibility of the results. Thas done in Sec{_6.112 by compar-
ing the calculated mass function with the results of Tinkexle(2008) and a grid calculated
independently. Finally, improvements which could be impdated in the future are discussed.

6.1. Monte Carlo Methods

Monte Carlo methods describe a class of computationaligihgoes working with repeated sam-
pling of random variables. Applications are, for examphe integration of multidimensional
functions with complicated boundary conditions, the sitioh of complex systems with many
coupled degrees of freedom like fluids or economic system#heosampling of values dis-
tributed according to a given probability distribution @lion. The latter case shall be discussed
now. For conciseness, the case with only one random varnslieeated without loss of gen-
erality. Letf (x) be a Probabilty Density Function (PDF) of the variablex € [a, b] andF (x)

the Cumulative Distribution Functiof (CIDF) a&f

The PDF describes the probability of finding the random Vdeian the infinitesimal interval

[Xo0, X0 + dX]:
P (Xo, Xo + dX) = f (Xg) dx (6.1)

The CDF describes the probability of the random variablaritaa value smaller than a given
y:
Fly)=P(x<y) (6.2)
Since dPDF is normalized arfdx) > 0 ¥ x € D, the corresponding CDF is monotonically
increasing and IianF (y) = 1. The CDF is related to the PDF as follows:
y—)

F(y):ff(x)dx (6.3)

In the following, the most important techniques for genegt sample of random variables
distributed according to a given PDF are discussed. For & cmmplete and rigorous treatise,
see e.glEéI{_(TQbO). Most random generators generagblegidistributed uniformly in the
unit interval. Such a variable, be it calledcan be projected any other interva) p] simply by

a linear functiond (u) = a+ (b — a) u, where the uniform distribution is preserved. Therefore,
from now on all considerations start with a sample of vagallistributed uniformly in the unit
interval.
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6. Generating the Cluster Catalogue

6.1.1. Inversion Method

If the CDF is a bijective function, there exists an inversediion F~*. It can be proved that
for a variableu distributed uniformly in the unit interval, the variablewith x « F~*(u) is
distributed according t& (-< :égb) This is called inversion meth@@wgo

For practical purpose this technique is especially applecid F~* can be calculated analytically,
so the variables sampled accordingft(x) can easily be generated. This techniqueiisative
because the variables can be calculated directly, but ipodnbe applied to a limited set of
functions.

6.1.2. Rejection Sampling

The inversion method described above can only be used fertlble functions. A more gener-
ally applicable method is the rejection sampling describedeak (1990). Leff (x) be & PDF
which is bounded above by sof(X) < cV x € [ab]. Now, the random variables can be

ampled-

1. createu; dlstrlbuted uniformly in &, b] and a random variabhe, distributed uniformly in
[0, c].
2. if up; < f (uy) acceptuy, else go back to step 1.

Because a random variable is either accepted or rejeciedtiom sampling is also referred to
as acceptance-rejection method. If the value$ span over a wide range, this method can be
very expensive because a large part of the generated valugscted.

Rejection sampling, as described above, can be improvecbgrglizing the method for an
arbitrary function as upper bound. BgXx) a function withf (x) < g(x) = ch(x), where
c > 1is a constant (Deak, 1990). In practical one selects aifumh (x) which is numerically
easier to handle than tHe(x), which is the case if the boundlng functigiix) can be inverted
analytically. Now, the random variable is sampl

1. createu, distributed uniformly in the unit interval. Generatgdistributed according tb
in [a, b] via the inversion method.

i fuy) _ f(u)
2. ifu, < g(ui) = Ch(ull), accepluy, else go back to step 1.

By selecting a convenient functi¢mthe numerical costs can be reduced significantly, espgcial
if the values off span over a wide range. Théieiencyn of the rejection sampling technique
can simply be expressed by the fraction of the accepted value

r‘accepted

7] =
naccepted"‘ nrejected

6.2. Python

PythorE Is an interpreted high-level programming language deezlap 1991 by Guido van

RossumL(Em_esll_&_Kaisl 08). It is platform independemd supports imperative, object-
oriented, and functional programming paradigms (Ernedfiatser, 2008). The language at-
taches great importance to code readability. A charatiteasPythonis the use of intendations

1The namePythonis a hommage to the British comedy group Monty Python (EigeKaiser, 2008).
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6.3. General Approach

as block delimiters. Besides a vast standard library, teeist some libraries for scientific pur-

poses, the most important of them &eientific Python PyWNumerical Python (NumPRy)
(Jones et all, 2001), and the plotting Iibrmtplotlibdﬁ% ). ThESciPyandNumPy

libraries dfer a powerful array object, which does not exist in ba3ython and a variety of
further functions.

In the descriptions below, where technical details of thgtcare discussed, one has to keep
in mind that in programming languages indices mostly statth @, which is adopted here, if
algorithms are described. It should be discernible froncthrgext which convention is used.

6.3. General Approach

The purpose of the simulation is to generate a list of galdxsters with the following observ-
ables:

celestial coordinates (right ascensigrdeclinations)

redshiftz

flux (calculated as a function of the cluster total misand the redshift)
angular diameter

The latter two observables are not sampled by the simuldiigrare derived from the mass and
redshift. Hence the Monte Carlo code generates the paresnete

e celestial coordinates (right ascenstgdeclinations)
e redshiftz
e massM

The direct calculation of the mass function is very expessmainly due to the numerical
integration needed to obtain (root mean square of the linear matter power spectrum, see Eq
[3.21 on p[2W). Therefore, the script generating the clastses a grid with the mass function
values, which has to be calculated before. Since betwee® andz = 2.5 about 23 million
clusters are found for a minimal mass of3M, and, due to the usage of the rejection sampling
technique, still more values have to be calculated it is maohe economic to calculate a grid
with some hundred thousand nodes.

Next, the number of objects in a given redshift interval ikgkated. An option is simply to
integrate over the whole interval, but there are some drakgbaf this solution: if the catalogue
is calculated in one rush, the output file is relatively laage therefore impractically to handle
compared to smaller files. Further, if the program is extdrnidehe future to take the spatial
correlation of clusters into account, it saves significatwalation time if only clustersin a small
redshift interval have to be included for the calculationhef correlation (under the assumption
that there is no correllation for larger distances, whioknse reasonable since the correlation
function can be described as a power law of the cluster distas was discussed in Séctl 3.6).
This can be easily achieved by only considering the clustettee neighbouring redshift shells.
This possible extension of the code is discussed in Sed. BHus, instead of integrating over
the whole domain, the redshift interval is subdivided in ertspecified number of intervals (see
Sect[6.T).

When the file containing the number of objects per shell iddéok a Poisson distribution with
the read-in number as expectation value is applied randothig cluster number. Now the
sampling of the objects starts.
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6. Generating the Cluster Catalogue

parameterfile calc_massfunction_grid

grid

A

1N

integrate_shells

shells

A

sample_catalogue

»/ rawcatalogue

!

convert_observables

>, catalogue

;

simput_converter
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!!,HQ
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f SIMPUT ;

Figure 6.1: Flow chart of the pipeline for the generation of a clustermlayue. ThePythonscripts
sampling the catalogue are filled yellow, t@eprogram to create tHEIMPUTHiles is orange. In and
output files are blue, the points where the script has to becteed manually are green.

For the sampling of the celestial coordinates, the spaialildution which is described by the
correlation function is neglected (see Sdctl 3.6), suchth®aright ascension and declination
can be sampled independently. The right ascension islaigéd uniformly and can be gener-
ated by using the random number generator fromRjaonstandard library. The declination
Is obtained with rejection sampling, where the vaiuer the declination is accepted if an aux-
iliary variable distributed uniformly in [0L] is less or equal cdg). For the mass and redshift
the situation is more complicated, because these parasratei) correlated and ii) the mass
function, which is th& PDF, if normalized, cannot be invdramalytically. Hence the variables
have to be generated together via rejection sampling (setel&G&.2). Because the function val-
ues range over several orders of magnitude, rejection sagnplth a constant as upper bound
would be too inffective, because only a insignificantly small part of the gateel values would
be accepted. Thus a applicable function has to found as ugmuerd. Up to the exponential
cutaf, the mass function (E@._3.19) can be well approximated byweptaw of the form

h(M) = a - M# (6.4)

Since the mass function decreases with increasing resi$bifall masses, a functidmwhich
depends on the mass as a power law and is independent offtegdshiupper bound to the

38



6.4. Pipeline

massfunction, as long ds(M) > dM 2/ M € [Mnin, Mmay] @t z = 0. The exponential cufb

is located well oveM = 10 M,, therefore the values of the minimal mads,,, which was
selected for the simulation, amd = 10'* M, where used to define the power law. The exponent
[ can be calculated from

B = [Iog((;jM (1014 M@)) - Iog((;j—l\r;I (Mmin))

and factora is obtained by

X [Iog (1014 MO) —log (Mmin)]_l (6.5)

AN (Mmin) (6-6)

The power law from Eq[_614 is the PDF multiplied with a constactor, which will later be
eliminated by normalization. The CDF needed for the acoeptéjection method with a func-
tion as upper bound, as described in Sect. 6.1.2, is the eefimiégral of thé¢_ PDF multiplied
with a constant, i.e. itis 1 for the right side of the definition interval. To discernstfunction
from the[PDF, it is denoted a4’ here

%ﬁ (MP* - M) 6.7)

Now H’ is normalized for the mass interva¥f,i,, Mmax] in which the cluster masses will be
generated:

M
H’(M)=f a-MPdM’ =

H" (M)
H” (Mimay)
as one can see from the two equations abéi/é\) equals zero foMpi, and one forMpax.
That function can easily be inverted:

H (M) = (6.8)

(6.9)

1 1/(B+1)
H L (y) = [ + M Jlr:]

This is the equation used as upper bound for the rejectiopléagn As well as the exponent of
the power law, the factaris determined anew for the minimal redshift of the intervialeaishift

in which the clusters are sampled. As a constant factsee Secf._6.11.2) a value of(d + zy;n)

was used, so it is ensured that the mass function is stilllsenthlan the bounding function for
small deviations from the power law. Thedependence results from the experience that for
larger redshifts a higher factor is needed to hold the meatiacondition. Nevertheless, the
simulation code checks if < ch for every value it samples. Now the primary four parameters
described above are sampled.

Finally, the observables are calculated. The flux is obthiwgh the Ly — M relation from

Mkhlmm_el_aﬂ (2009) and EJ_Z2.42 on p.115. The angular diten distance is calculated with
Eq.[Z38 on pl_I5. At last the catalogue is convertet intg IMPSI THormat (Schmid et al.).

6.4. Pipeline

While above the course of action was depicted without a focuhe technical details, now the
function of the single scripts is explained. The completewation consist of four individual
Python scripts, and &C-program writing the findlSIMPUTHile. This modular approach was
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6. Generating the Cluster Catalogue

Table 6.1:Description of the parameters which have to be given in thampater file

variable name | datatype | description

cat_path string path to the catalogue file

cat_name string name of the catalogue file

grid_path string path to the grid file

grid_name string name of the grid file without thenpy file extension

shells path | string path to the file containing the number of objects per shell file
shells name | string name of the file containing the number of objects per shell file
nodes_x int nodes of the grid on thg-axis (redshift)

nodes_y int nodes of the grid on thg-axis (redshift)

rho_0 float mean matter density of the universe

cvak float speed of light in vacuum

Omega float total density paramete

Omega_r float radiation density parameteX,

Omega_m float matter density parameteéx,

Omega_b float baryon density parametey,

h100 float Hubble parametdn, oo

TO float [CMBltemperature

sigma_8 float amplitude of the primordial power spectrum (Peacock, 1999)
n.s float primordial spectral index (Peacock, 1999)

mass min float minimal cluster masin

mass_max float maximal cluster mashlax

z_min float minimal redshift

Z_max float maximal redshift

overdensity | float overdensity for clusters with respect to the Critical Dgnat z

chosen to achieve maximal flexibility and to preserve thesiagy to inspect or manipulate
the in- and output of every step. The output is stored in a fittr@ad in in the next step. The
variables specifying the cosmological parameters, filexgaic. are stored in a parameter file
which is read in by the scripts. The pipeline is shown in Eidl. 6

The grid is saved in thenpy binary format provided byNumPy (Jones et all, 2001). The

‘shell’-file (described below) and the catalogues are sageASCIlI-files and can be inspected
with every editor or used as an input for plot programs. Thal fiutput is & FITS file in the
BSIMPUT-format (Schmid et al.) described in Sddt. 5. In thiofeing sections, the parameter-
file and thePythonscripts are desribed.

6.5. Parameterfile

All parameters relevant for the simulation are stored inrapeterfile, which is read in by the
scripts. The file has to contain the variables listed in t@ble Blanks, empty lines and lines
beginning with ‘# are ignored. The order of the parametearsioe arbitrary. The only condition
is that the variable name and value have to be separatediywith the variable name on the
left hand side and the value on the right hand side. An exapgoi@meter file is shown in Fig.
6.2.

40



6.6. Script calanassfctgrid

# 1/0:

cat_path ./catalogues/
catname = cat_wmap7/
grid.path = ./grids
grid_name = grid_wmap?7
shells path = ./shelltables
shells name = shells_wmap7

# simulation:
massmin = lel3
massmax = lel7
zmin = 0

zmax = 2.5
overdensity = 500

# grid:
nodes_x = 100
nodes_.y = 1500

# cosmology:
rho ® = 3.719el0
cvak = 2.99792e8
Omega = 1.
Omegar = 0.0
Omegam = 0.2707
Omega_b = 0.0451
h100 = 0.703

TO = 2.726
sigma 8 = 0.809
ns = 0.966

Figure 6.2:Example for the ASCII-file containing the parameters forghmeulation

6.6. Script calc_massfct _grid

This function calculates the mass function (Eq. B.19) onctargyular, semilogarithmic grid.
Because the mass goes over several orders of magnitudeeanth#is function can be roughly
described by a power law, the nodes along the mass axis arecsjzayarithmically.

The function is called with the limits of redshift and massaadl as the number of noddd
andN in redshift respectively mass. It returns three arrays dithension 2:

e Xn: contains the value for the redshift on the ndahen). Because the grid is rectangular,
Xp = Xmg VP, < N;p,geN

e Y. contains the value for the mass on the n@aen). Because the grid is rectangular,
Yon =YV P,q<M;p,ge N

e Z: contains the function value on the na@e n): Z, = f (X, Xin)
On every node of the grid, the mass function is calculatedhbyunctionmassfct.
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6. Generating the Cluster Catalogue

6.6.1. Function massfct

This function calculates the mass function from Tinker e{2008) directly. At first the func-
tion calc_sigma (see sectioh 6.6.2) is called to obtain the root mean squafé¢he linear matter
power spectrum.

Now the transformation from a overdensity relative to thi€al Density to one relative to the
mean matter density is accomplished via [Eq.13.28.

In the next step, the fit functioh (o) is calculated for the- andA obtained above. The redshift-
dependent parametefs a, b andc are obtained via the functions giveri in Tinker et Ial._(2008),
Eq. 5-8:

A = A(l+2%H (6.10)
a = a(1+27°% (6.11)
b = bo(l+2)™ (6.12)
C = G (6.13)
1.2
oga = _[ 0.75]
log (%)

The parameters for = 0, Ag, a, by andcy are functions of the overdensity and can be
calculated from the interpolation formulalin Tinker et £1008), appendix B, Eq. B 1-B 3:

A {0.1 logA — 0.05 A < 1600 (6.14)
0.26 A > 1600

a = 143+ (logA-23)"° (6.15)

bo = 1+ (logA-1.6)"° (6.16)

o = 1.2+ (logA —2.35"° (6.17)

The authors warn about an error upttd 0 % of this interpolation formula, which is acceptable
for the purpose of this simulation.

Next, the derivative in Eq_3.19 is calculated:

dinc™*(M) Inc™*(M+6M)—Inc™* (M - 6M)
dM B 26M

(6.18)

For sM, a dynamical stepsize of 1M was selected. Here, some fine-tuning or the imple-
mentation of a more sophisticated algorithm could be camnsil Like abovey is calculated
with the subroutinealc_sigma. Now the value of the mass function (Egq._3.19) is obtained by
multiplying the factors calculated above.

To ensure that no negative values of the mass function wéagnelol due to numerical problems
or false parameters, it is tested if the result of the fumcisgpositive. If not, a warning is raised.

6.6.2. Function calc _sigma

The functioncalc_sigma returns the root mean square of the linear matter power spect
smoothed by a top-hat function with a radius dependent oenictosed total mass (EG._3122
on p.[23).

42



6.7. Script integratehells

At first, the shape parametErfor the transfer function of the power spectrum is calcuatéh
Eq.[3.25. The transfer functioh(k) and the smoothing radius corresponding to the given halo
mass and redshift, given through Eq. 3.24 respectively B8, &re defined as subfunctions.

Eq. [3.19 is splitted into integrals for the numerator anddbeominator. In the denominator,
the top-hat function is calculated for a constRnt 8h;;,Mpc.

For the integration, the integrands in numerator and denator of the mass function are de-
fined as functions to be integrated numerically with thegragéorquad from thdSciPypackage,
which is based on thEortran library QUADPACK (Piessens et al., 1983). A critical point here
is the upper limit of subdivisions for the integrator: egpélg at high overdensities, which is
here corresponding to low redshifts due to Eq. B.28, an uppérsignificantly higher than the
default value has to be selected to achieve convergence oftdgral.

To avoid potential problems with the integral at the first aadond root of the integrand in the
counter, the integration is splitted in three intervalB:kp], [ki; ko], and [ky; o] wherek, is the
nth root of the integrand. The roots are calculated via thargamethod, which is implemented
in the newton-function of the[SciPyoptimize-package. After the integratiom,is obtained
from the terms which where calculated separately aboveaBght most expensive part of this
function is the integration. Hence, here some fine tunindccbe done.

6.7. Script integrate _shells

This function divides the rectangular, two-dimensiona gdong thez-axis z denotes the red-
shift and not a Cartesian coordinate herepimectangular domains and integrates over those
stripes.

Z

[ [ izt @MV @ (6.19)
20 Mhalo

wherezy andz, are the minimal respectively maximal redshift of the domaihe tangential
part of the integration is already contained in the volunemant, because it yields simply a
factor of 47 in an isotropic universe. There are some constraints: tttamgular domains have
to be delimited by nodes of the grid. This has two consequgence

e the number of domaind cannot be greater than the numib&of nodes along the-axis
minus one M denotes still the number of nodes along the redshift-axdsrent a mass in
this section! The mass, where needed, will be dendgg). If a numberD greater than
the allowed maximum is selecteld,is automatically adapted td — 1.

¢ the size of the domains is not necessarily constant. If theisg of the nodes imis not
constant, the size of the domains will vary, too. Also, if thenber of nodes iz minus
one is not a multiple of the number of domaidsthe function will automatically adapt
the boundaries of the domains to the nodes, such that it isaoeissary to use interpolated
values at the boundaries of the domains.

integrate shellsreads the cosmological parameters, input- and output filesaetc., from the
parameterfile. After this, a vectbrontaining the limiting indices of all the domains is crehte
At first, an auxiliary vectot’ is defined:

o M-1 .
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6. Generating the Cluster Catalogue

The adaption to the nodes is achieved by simply rounding doverinteger.
lj=|r].0<j<DijeN

The arrayl contains the indices for the nodes on thaxis defining the redshift-limits of the
integration domains. In the next step, it is iterated oviethal domains < i < dim(l) - 1 = D.

For every node in the domain, tiM,,-axis is integrated using the composite trapezoidal rule
provided by the integratotrapz from [SCiPyintegrate (Jones et all, 2001). The integrator is
called with a vector, = Z,, containing the function values and= Y, for the spacing of the
values inZ. For every domain, the values of the integrals alongNhg-axis are stored in a
vectork with the dimensioni,; — |; + 1. In the second step the integration along #fais is
done with therapzintegrator. For the redshifts corresponding to the intisgrex, a vector¢ is
generated for every domain.

& = Xgspm 0] < (lisa = 1)

To obtain the integrands is multiplied elementwise with the filerential comoving volume
element‘(’,—‘z’ (g,-) (Eq.[2.45). Now the integrator is called with the veat@ontaining the function
values and for the stepsize in the-axis, along which the integration is done. Because the
number of clusters has to be an in integer, the integral insded. The results are written to
the file, specified in the parameterfilesis®e11s_path/shells_name. For an example see Fig.

B.3.

zmin z_max number

0.0 0.0727272727273 13406.0
0.0727272727273 0.169696969697 138541.0
0.169696969697 0.266666666667 378502.0
0.266666666667 0.363636363636  674839.0
2.03548387097 2.15161290323 411325.0
2.15161290323 2.26774193548 315030.0
2.26774193548 2.38387096774 237849.0
2.38387096774 2.5 177128.0

Figure 6.3:Example for an ASCII-file containing the number of objects qealhift interval

6.8. Script sample _catalogue

The program flow of this script is shown in Fig.6.4. At firsteticript reads the file with the
redshifts intervals and number of clusters contained iwltich was generated by the script
integrateshells To randomize the number of clusters per redshift intetved,read-in values
are seen as expectation values of a Poisson-distributiath té functionpoisson from the
numpyrandom library, a number according to this distribution is cald¢athfor every redshift
interval. Now the scriptiterates over the redshift shelld samples the right ascension using the
random number generator from tRythonstandard library and the declination with a simple
rejection sampling technique described in Secil 6.3. Madsedshift are generated with the
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6.9. Script converbbservables

?

read parameter
v
read shells
v
poisson distribution

shell=0

calculate bounding function
for z_min (shell)

shell +=1

object=0

object +=1
sample celestial coordinates

A 4

sample mass and redshift W

Figure 6.4:Flow chart of the scripsamplecatalogue

rejection sampling technique with a function as upper baswescribed for this specific task in
Sect[6.B, and from a general point of view in Séct. 6.1.2. Gdending function is calculated
anew for every new redshift interval, so it is always well piga to the mass function. The
objects are written to the filrkaw_catalogue. An example for a raw catalogue is shown in Fig.
6.5.

6.9. Script convert _observables

This script reads a raw catalogue and calculates the bolanfle (Eq. [2.42) from the mass
and the redshift, and the angular diameter distance as adoraf redshift. The results are
written to a new file with the same filename as the raw catalogbere ‘final’ is appended to
the filenamé&613.
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6. Generating the Cluster Catalogue

# RA DE z M

91.0367 -31.0818 0.4747 1.515e+13
41.8705 -24.2324 0.4922 3.528e+14
65.9683 -34.0029 0.5226 1.539e+13
174.6393 -53.8424 0.5394 1.387e+13
173.1282 -5.0177 0.4937 2.127e+14
204.7508 57.4937 0.5517 1.955e+13
67.0025 44.8450 0.5285 1.249e+13
16.8363 13.5617 0.4644 1.018e+13
281.6464 76.9146 0.4896 1.007e+13
53.1876 -47.3649 0.4957 1.645e+13

Figure 6.5:Example for an ASCII-file containing the raw catalogue. Th& ffolumn contains the right
ascension, the second the declination, the third the riedsid the fourth the mass.

6.10. C-program simput _converter

The[SIMPUT-Converter generate§ a FITS-flle (Hanisch e8Q1) in the SIMPUT -format
I.) from the ASCII catalogue file. As was desdatibeSect.[b, in the_ SIMPUT
file every object entry contains a link to an image. Eaaputconvertedinks the object to a
XMM-Newton image of a cluster and to a cluster spectrum. Because thehwmlogy of the
clusters diters from object to object, therefore the image linked to y\waject is randomly
selected from a list of clusters. The size of the cluster fsndd via theIMGSCAL entry in the
[EITS-table. This entry denotes a linear scaling factor efithage. Since the apparent diameter
of an object with diameted is given by Eq.[2.39 a8 = DiA, under the assumption that the

clusters on the images have all the same diandgtand appear at an angle = do/Da (zimg),
the IMGSCAL factor is given as

Hobject _ Da (Zo)
fo Da (Zobject)

IMGSCAL = (6.20)

where the index O denotes the values of ¥ldM-Newton images and ‘object’ those of the
object from the simulated catalogue. The bolometric fluxrfrthe catalogue is given as an
entry in thd SIMPUT -objectlist.

6.11. Results

For the catalogues presented in this section WIWAP seven-year parameters were used (see
Sect.[Z4). Additionally, = 0, Q = 1 (PeacodK, 1999) arity = 2.726 (Mather et dll, 1994)
were used. A minimal cluster mass of'3®, was assumed. If the cluster is too small, the flux
is too weak fof eROSITA to detect the cluster.

As grid size, 98 nodes for the redshift and 1500 logarithityicgpaced nodes for the mass were
selected. This is a $ficient size, as is discussedin 6.12.

To compare the object list with the mass function, a norredlizistogram of the object masses
was plotted against the normalized mass function in[Eid. B@ histogram was generated for
0.36 < z < 0.46, while the mass function was calculated4er 0.41.

46



6.12. Discussion

# RA DE z F DA
91.0367 -31.0818 0.4747 1.15234088498e-11 1230.9224
41.8705 -24.2324 0.4922 1.70808941847e-09 1255.8621
65.9683 -34.0029 0.5226 9.8414356384e-12 1296.937
174.6393 -53.8424 0.5394 7.84400427855e-12 1318.4666
173.1282 -5.0177 0.4937 7.51921988729%e-10 1257.9549
204.7508 57.4937 0.5517 1.30697583118e-11 1333.7232
67.0025  44.845 0.5285 6.88479071884e-12 1304.5904
16.8363 13.5617 0.4644 6.33792738882e-12 1215.7827
281.6464 76.9146 0.4896 5.6267973834e-12 1252.218
53.1876  -47.3649 0.4957 1.21100307566e-11 1260.7344

Figure 6.6:Example for an ASCII-file containing the final catalogue Th&imns contain from the left
to the right: Right ascension, declination, redshift, flaxerg slem?, Angular diameter distance in
Mpc.

Figure 6.7:XMM-Newton image of the cluster ACO 85, as it is used in the object catedoGIMBAD
gives a redshift o = 0.0521 for this cluster.

6.12. Discussion

Before using the Monte Carlo code for the simulation of (h€&RA survey it is required
to validate the code. This was done by comparing it with tisellts from Tinker et &l. (2008)
for z = 0 and by comparing it with a grid of the mass function provitdsgdThomas Reiprich
(private communication). For a comparison with Tinker e(2008), the calculation was per-
formed with an overdensity relative to the mean density efuthiverse. Apart from this single
case, the overdensity is denoted with respect to the Arieasity. Fig.[6.9 shows the plot
from|Tinker et al. [(2008) fon = 200, 800, and 3200 at= 0. [Tinker et al.[(2008) define the
overdensityA with respect to the mean matter density and use/MwAP1 cosmological pa-
rameters. These parameters were adopted for the calawdgierformed for the comparison.
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6. Generating the Cluster Catalogue

2=0.41

1012

— calculated mass function
[ simulation data

100 F

0%

108

10" |

108 1

]
107

1013 10‘14 = 1(-)15
M/M,

Figure 6.8: Normalized mass histogram for all objects witl8® < z < 0.46, plotted against the
normalized cluster mass function

The line in blue represents the calculations performed thighcode presented in this thesis.
The agreement is excellent.

Because of the redshift evolution of the mass function itas suficient to test the code for

z = 0. To test the function up te= 2.5, a comparison to a grid of the mass function provided
by Thomas Reiprich was performed (Fig._8.10). There areatievis up to~ 30%, which can
probably be explained by the use of another transfer fun¢ban calculations; Bardeen ef al.
@) Reiprich:_Eisenstein & Hu (1998)), and ny use of tygreximation formulae for the fit
parameter in the mass function as shown in Sect. 6.3 instead splines given by Tinker et al.

) as an alternative way to calculate the redshift éviuThe systematics in the deviations
speak for this explanation, too. However, for the first téisésdeviations are acceptable, even
if improvements are desirable. Another test was perfornoecheck the quality of the grid.
For random values for the redshift in the intervakQz < 2.5 and for the mass in the interval
10 M, < z < 10, the mass function was as well calculated directly as infatpd from a
grid with 98 x 1500 nodes. For high masses, the deviation between thesvahiained from
interpolating the grid and the actual value increases,usecthe distance of the nodes increases
(as mentioned above, they are spaced logarithmically)levdimultaneously the dynamic of
the mass function increases because the function is wetltbeeexponential cutd. So all
values With(g—,\NA < 1(Tgmax(3—,\'\',|) in the interval 1M, < M < 10" M,,0 < z < 2.5 where
discarded for the evaluation of the grid quality. This iss@@able, because for values of the
mass function this small compared to the maximal value &ilguno clusters exist. The result
of the comparison is shown in Fig. 6111. For almost all valolesined by interpolation, the
relative deviation to the values calculated directly is Benghan 1%. FoM > 2- 10" M, alll
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6.12. Discussion

log(1/0)
-0.64 -052 -0.38 -0.21 -0.01 024 0.55

-1+ —

log[(M?/p,,) dn/dM]

10 11 12 13 14 15 16
log[M/(h-! Mo)]

Figure 6.9: Mass function from_Tinker et all (2008) for the overdensitie = 200, A = 800, and

A = 3200 (top to bottom). The calculations performedA£ct 800 with the code presented in this thesis
are shown in blue. The overdenity was defined with respettaartean matter density, and tWa1AP1
cosmological parameters were used as by Tinker et al. (200&) calculations agree excellently.

values are discarded by the mechanism described above.
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6. Generating the Cluster Catalogue
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Figure 6.10:Comparison between mass function values obtained by lineapolation of the reference

grid obtained by Thomas Reiprich (private communicatiom) &he grid calculated with the own code.

The deviations go up te 30%, which is probably due to the use of another transfertiomand the

polation formulae for the fit parameteks (Tinker é,t[aD_O_$) instead of the splinem al.,
008).
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Figure 6.11:.Comparison between mass function values obtained by lineapolation of the grid and

the values calculated directly. For almost all of the raniyogenerated points the deviation is smaller
than 1% (marked by the blue line).
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7. Summary and Conclusion

In this thesis, a Monte Carlo algorithm for the generatioa nfock catalogue of galaxy clusters
was presented. For this purpose, the halo mass functioriTioker et al. 8) was used. The
function reproduces the data obtainedN®pody simulations up to redshifts af< 2 and for
halo masses in the range!#9M, < M < 10°h~ M,, (Tinker et al., 2008). The simulation
presented here started at a lower limit of3l6l,. The mass function can be well described by
a power law up to a cutbmass at roughly 0 M,. The exact cutff position depends on the
redshift. Because for higher masses no clusters exist iregerded as permissible to extend
the mass range in our simulation over thé*ho* M, for testing purposes. Up to a redshift of
2.5, the integration of the mass function gives about 23 nmilhalos with masses 10*3 M.
With a Monte Carlo algorithm, the celestial coordinatedsteft and mass were sampled. From
these variables the observables required to créate a SIMB|&€t list were derived: the cluster
luminosity with the mass-luminosity relation fram Vikhimet al. (2009) and a linear scaling
factor for theXMM-Newton images. Each object was written t@ a SIMBUT file together with
the link to anXMM-Newton image of a galaxy cluster scaled in size according to thehitds
This[SIMPUT catalogue is used as an input catalogue folSB&] simulation software pre-
sented in Seck]5. An examination of the simulation reshitsved that the reproduction of the
mass function was successfull.

8. Outlook

Up to now, thé SIMPUT catalogue was not yet used to run a simoulaT his will be done soon,
and the results will be compared with the estimates gd@G0- 100000 observed clusters by,
e.g.| Predehl et al. (2010). Further, itis important to iempént the correlation function, because
it contains important cosmological information, as wasvain Sect[3.6. Because obtaining
this information is a main objective 6f eROSIITA, it is impant to include this aspect in the
simulation. Up to now the correlation was neglected bec@ussuires a lot of calculation
time, because the distance to each object which was alreadgled has to be calculated and
inserted into the correlation function. As mentioned ab@&vay out of this would be only
to account for the objects in neighbouring redshift intésyavhere the size of the interval has
to be selected in such a way that there is virtually no coticeigfor the objects not taken into
account. The numericaftert could be further decreased by partitioning the sphksitalls, so
that not all objects in one shell have to be used for cortati

Another point which should be reviewed is the scaling of XAéM-Newton images: Because
the images show clusters withfidirent masses, the intrinsic diameter of the clusters is-vary
ing and Eqg.[[6.20 does not hold strictly. It is easily posstblémplement a mass-dependent
correction factor, because the radius scalell 3 according to Eq._3]7.

Since sources weaker than the flux limitlof eROSITA are noenled, the total number of
objects can be reduced by selecting only the objects ovex #rfiit for the catalogue. For this,
a redshift-dependent mass limit has to be deduced and inepleah in the code.

Small improvements in precision of the mass function co@dlbne by using the splines from
Tinker et al. [(2008) for the calculation of the parameterthimmmass function, and by using, as
was suggested by Thomas Reiprich, the mass function/froengisin & Hu (1998) instead of
BaLdB_en_el_él.L(l%G). Summing up, a suitable basis existghbre is still enough room for
improvements.
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A. List of Acronyms

A. List of Acronyms

AGN Active Galactic Nucleus

ART-XC Astronomical Roentgen Telescope — X-ray Concentrator
CCD Charge Coupled Device

CDF Cumulative Distribution Function

CMB Cosmic Microwave Background

COBE COsmic Background Explorer

DLR Deutsches Zentrum fur Luft- und Raumfahrt

eROSITA extended ROentgen Survey with an Imaging Telescope Array
FITS Flexible Image Transport System

HEW Half Energy Width

IKI Space Research Institute of the Russian Academy of Sci¢ogmally: IKI RAN)
ICM Intra Cluster Medium

ISS International Space Station

MPE Max-Planck Institut fur extraterrestrische Physik

NumPy Numerical Python

PDF Probabilty Density Function

PSF Point Spread Function

ROSITA ROentgen Survey with an Imaging Telescope Array
SciPy Scientific Python

SIMPUT Simulation Input

SIXT Simulation of X-ray Telescopes

SRG Spectrum-Roentgen-Gamma

WMAP Wilkinson Microwave Anisotropy Probe

XMM X-ray Multi-Mirror Mission
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B. Typographic Conventions

The following typographic conventions were used in thistbe

e Names of satellites and satellite missions are typesafanted font(e.g., Spectrum-
Roentgen-Gamma

e Names of programs and software libraries are typesgftaimted fonie.g.,SIXT)
e Function names are typesetitalic font (e.g.,sample_catalogue)
e Parameters and corresponding values are typesgpikwriter font (e.g.,Omega m)
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