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Abstract

The X-ray instrument eROSITA, which is developed by a Germancollabora-
tion under the direction of the Max-Planck Institut für Extraterrestrische Physik,
is one of the two main instruments on board of the Russian spacecraftSpectrum-
Roentgen-Gamma (SRG). It will be launched in 2013 to an L2 orbit. eROSITA will
perform an all-sky survey for four years, followed by a three-year period of pointed
observations. eROSITA will improve the sensitivity of theROSAT All-Sky Sur-
vey (RASS) by a factor of about 30. The main objectives are theobservation of
galaxy clusters to test cosmological models and the probingof dark energy and
dark matter.

The eROSITA survey will be simulated before launch by theSimulation Soft-
ware for X-ray Telescopes (SIXT). In this thesis, a Monte Carlo code programmed
in Python is presented, which generates a source catalogue of galaxy clusters for
the SIXT simulation. The clusters are distributed according to the mass function
by Tinker et al. (2008), which is based onN-body simulations and desribes the
distribution of galaxy clusters up to redshifts ofz ≈ 2.5. The Monte Carlo code
generates the celestial coordinates, the mass, and the redshift of the galaxy clus-
ters. From this, the X-ray flux is calculated with the mass-luminosity relation by
Vikhlinin et al. (2009).

The final output of the simulation is a FITS file. This file is created with aC pro-
gram. Every source entry contains a link to a X-ray image of a galaxy cluster taken
with the X-ray observatoryXMM-Newton. The image is scaled in size according
to the redshift of the object.

With this catalogue, the cosmological studies to be made by eROSITA will be
simulated.
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Zusammenfassung

Das unter Leitung des Max-Planck Instituts für extraterrestrische Physik entwickelte Röntgenin-
strument eROSITA ist eines von zwei Hauptinstrumenten an Bord des russischen Satelliten
Spectrum-Roentgen-Gamma (SRG). Der Start vonSRG in einen Orbit um den Lagrange-Punkt
L2 ist für das Jahr 2013 geplant. Die ersten vier Jahre wird eROSITA eine Durchmusterung des
kompletten Himmels für Energien bis∼ 10 keV durchführen. Dabei wird die Sensitivität des
ROSAT all-sky surveys um den Faktor 30 übertroffen. Nach der Durchmusterung folgt eine
dreijährige Phase, in der einzelne interessante Objekte beobachtet werden.

Eines der wichtigsten wissenschaftlichen Ziele von eROSITA ist die Bestimmung der kosmol-
ogischen Parameter durch die Beobachtung von Galaxienhaufen. Die großräumige Verteilung
jener hängt von der Geometrie des Universums, die hauptsächlich von der Dunklen Energie bes-
timmt wird, ab. Außerdem lassen sich Rückschlüsse auf dieprimordialen Dichtefluktuationen
im Universum ziehen. Entstehung und Entwicklung der Galaxienhaufen werden entscheidend
durch Dunkle Materie beeinflusst. Außerdem soll eROSITA Aktive Galaxienkerne und galak-
tischen Röntgenquellen wie Röntgendoppelsterne oder Supernovaüberreste beobachten.

Vor dem Start von eROSITA wird eine Simulation des Beobachtungsprogramms durchgef”uhrt.
Dazu wird die Simulatonssoftware für RöntgenteleskopeSIXT verwendet. In dieser Arbeit
wird ein inPythonprogrammierter Monte-Carlo Code vorgestellt, der einen Katalog realistisch
verteilter Galaxienhaufen erzeugt. Dieser Katalog dient anschließend als Input für die Sim-
ulation des Beobachtungsprogramms. Als Massefunktion für Galaxienhaufen wurde die von
Tinker et al. (2008) vorgeschlagene Massefunktion verwendet. Diese basiert auf Mehrkörper-
simulationen und beschreibt die Entwicklung der Massefunktion bis zu Rotverschiebungen
von z ≈ 2.5. Die Monte-Carlo-Simulation erzeugt Himmelskoordinaten, Masse und Rotver-
schiebung der Galaxienhaufen. Daraus werden im nächsten Schritt mit der Masse-Leuchtkraft-
Beziehung von Vikhlinin et al. (2009) die Leuchtkraft der Galaxienhaufen und der Röntgenfluss
berechnet. Die so erzeugte Objektliste wird schließlich von einemC-Programm in eine FITS-
Datei geschrieben. Dabei enthält jeder Objekteintrag einen Link zu einem vom Röntgenob-
servatoriumXMM-Newton aufgenommenen Bild eines Galaxienhaufens. Dieses Bild wird
entsprechend der Rotverschiebung des Galxienhaufens skaliert.

Mit der so erzeugten FITS-Datei als Input kann anschließend, zusammen mit anderen Quellkat-
alogen, das Beobachtungsprogramm von eROSITA simuliert werden.
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1. Introduction

Almost a century has passed since Albert Einstein1 presented his General Theory of Relativity
to the Prussian Academy of Science, and thereby laid the theoretical foundations for modern
cosmology. The bulk of scientific community embraced Einstein’s theory, which was regarded
as aesthetically beautiful by some, enthusiastically, butit should still take decades until mankind
could engage the existential questions of origin, evolution, and future of the universe itself,
which were for millenia mainly questions in the realm of philosophy and theology. While in
the 1920s theorists were still sitting in their chambers to find solutions for Einstein’s equations,
some of them as complicated as the equations are simple, the observers were arguing if the
diffuse nebulae on the sky were parts of our own milky way or remotesystems of billions of
stars, like our own.

But the progress gained momentum, and soon the world models allowed by the field equations
were known. The problem was to obtain the parameters determining which model applies to our
universe. Although there had been stunning progress in thisfield of research, especially in the
second half of the 20th century, and up to now the parameters are known relatively precise, the
refinement of the measurements is still an important task of science. Also it is known today that
we live in an expanding universe which had its origin in a singularity which was once derisively
named Big Bang by Fred Hoyle2, who was a fervent advocat of a Steady State universe, there
are still enough unanswered questions. For about ten years it is known that the expansion rate of
the universe is accelerating (Perlmutter & Schmidt, 2003),driven by a mysterious dark energy
whose equation of state is still unknown. Also details of theformation of structures and their
origin are still ununderstood, as well as the nature of dark matter which contributes the main
part to the gravitating matter in our universe.

One important approach to these questions are measurementsof the Cosmic Microwave
Background (CMB), on which basic properties of the universeare imprinted. A complemen-
tary method is the observation of the distribution of galaxyclusters, which is also influenced by
cosmology. While the CMB observations are a domain of radio astronomers, galaxy clusters
can be well observed in X-rays.

To derive precise conclusions about cosmology, it is required to observe statistically complete
samples of galaxy clusters up to high redshifts. A key mission in this area will be eROSITA, an
X-ray telescope whose launch is scheduled for 2013. It will perform a four-year all-sky survey
(Cappelluti et al., 2011), with the main objective of obtaining a statistically complete sample of
galaxy clusters up to high redshifts to perform cosmology. The eROSITA observation program
will be simulated in advance. This thesis presents a Monte-Carlo code for the generation of a
catalogue of galaxy clusters as an input for this simulation, based on the knowledge about their
spatial distribution obtained by former missions and surveys.

1Albert Einstein, 1879-1955
2Fred Hoyle, 1915-2001
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2. Cosmology

An important goal of observing clusters is to constrain the cosmological parameters. Vice
versa, the creation of a realistic mock catalogue of clusters requires some knowledge of the
underlying cosmology. In the following paragraphs, the cosmological basics for this thesis are
introduced. A large chapter is dedicated to distance measurement in cosmology, which is not an
easy task because we live in an expanding universe, which canalso be curved (although recent
measurements speak against the latter). The accent lies on definition and usage of distances,
the complicated task of obtaining distances by observations is not a topic of this thesis. A
more complete treatise about cosmology can be found in e.g. Peacock (1999). The following
considerations are also mainly oriented on this textbook.

In the next chapter, galaxy clusters are discussed. The mostimportant intrinsic feature of a
galaxy cluster is its mass, which determines its luminosityas well as temperature and density
profile, i.e. the information obtained by observations. Thus, a relation between mass and lumi-
nosity calibrated by observations and a theoretical approach to a cluster mass function presented
by Press & Schechter (1974) is discussed. For the simulationdescribed in this thesis, a mass
function from Tinker et al. (2008) based on the Press-Schechter formalism but calibrated by
observations was used.

2.1. Cosmological Principle

Two of the basic assumptions in cosmology are subsumed as theCosmological Principle:

1. space is homogenous, that means it looks the same everywhere (no privileged observer –
Kopernican principle)

2. space is isotropic, meaning it looks the same in every direction

These principles are only valid on large scales greater∼ 50 Mpc (Press & Schechter, 1974). In
our cosmic neighbourhood, for example, the matter is distributed highly inhomogeneously.

Homogenity does not imply isotropy, but isotropy from everyplace in the universe implies
homogenity. (Peacock, 1999)

2.2. Robertson-Walker Metric

2.2.1. Cosmological Time

A fundamental observer in an expanding universe is defined asan observer resting in relation
to the matter in his vicinity. The peculiar motion of the objects is neglected, such that the only
motion results from the expansion of the universe. Such an observer can synchronise a clock
with another fundamental observer by agreeing on setting the clock to a certain time when, e.g.,
the universe is reaching a certain mean density. This time iscalled Cosmological Time, further
denoted ast. (Peacock, 1999)

9



2. Cosmology

2.2.2. Metric

The metric of the universe is obtained as a solution of the Einsteinian field equations (Einstein
(1916); for a comprehensive reading: (Peacock, 1999, p. 19ff)). Space is not necessarily
Euclidean, but can also be curved. The specific shape dependson the density of the universe
compared to the Critical Density (see Sect. 2.3).

In general, a line element can be written as (Peebles, 1993):

ds2 = c2dt2 + gαβdxαdxβ = dt2 − c2dl2 (2.1)

wheregαβ is the metric tensor,c the speed of light in vacuum, anddl the proper spatial separation
between two events at the Cosmological Timet. The Greek indicesα andβ denote the spatial
coordinates.

For a homogeneous and isotropic universe, the most general metric is the Friedman3-Lemaı̂tre4-
Robertson5-Walker6 metric (Robertson, 1935), often simply referred to as Robertson-Walker
metric. It is an exact solution of the Einsteinian field equations under the symmetry constraints
mentioned above.

In our expanding universe, it is usefull to describe distances by a comoving coordinater in
a coordinate system which is fixed to the expanding space and hence time-independent. The
expansion is characterized by the scale factorR (t).

Alternatively, a dimensionless scale-factor can be defined:

a (t) ≡ R (t)
R0

(2.2)

whereR0 is the present scale factor. Becausea (t) describes the size of the universe at the time
t compared to its size today, it is closely related to the cosmological redshift (see Sect. 2.5.1):

a =
1

1+ z
(2.3)

The line element of the Robertson-Walker metric can be written in the following form:

c2dτ2 = c2dt2 − R2 (t)
[

f 2 (r) dr2 + g2 (r) dψ2
]

(2.4)

according to Peacock (1999), wheredψ denotes the transverse part in the spherical polar coor-
dinates:

dψ2 = dθ2 + sin2 θdφ2 (2.5)

Because of the spherical symmetry resulting from isotropy,it is sufficient to decompose the
spherical polar coordinates into a radial and a transverse part. f andg are arbitrary functions of
the radial coordinate.

To define the curvature of spacek and scale factorR (t), there are two ways frequently used in
literature:

3Alexander Alexandrovich Friedman, 1888-1925
4Monsignor Georges Henri Joseph Edouard Lemaı̂tre, 1894-1966
5Howard Percy Robertson, 1903-1961
6Arthur Geoffrey Walker, 1909-2001
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2.3. Friedmann Equations

• k denotes the Gaußian curvature (for a better distinction written as upper case letterK
from now on) at the epoch whenR (t) = 1. In this case, [K] = length−2 and [r] = length.
R (t) is dimensionless.

• k ∈ {−1, 0, 1} for an open, flat respectively closed universe. In this case,r is dimensionless
and [R] = length.R (t) denotes the radius of curvature at timet.

In general, the scale factor can be chosen arbitrarily. After the renormalization fromK to k, R
is not arbitrary anymore. The relationship between the Gaussian curvatureK and the curvature
radiusR (t) is given as (Misner et al., 1973, chapter 27):

K =
k

R (t)2
(2.6)

wherek = K
|K| . From now on, the second convention is used.

It is often convenient to define a functionS k (r):

S k (r) ≡



























sin(r) (k = 1)

r (k = 0)

sinh(r) (k = −1)

(2.7)

k = 0 for a flat universe, which implies an Euclidic geometry,k = −1 for an open universe
(the angles of a triangle add to less than 180◦), andk = 1 for a closed universe (the angles of a
triangle add to more than 180◦). For a derivation, see e.g. Peacock (1999).

A widely used notation of the Robertson-Walker line elementis (Peacock, 1999):

c2dτ2 = c2dt2 − R2 (t)

[

dr2

1− kr2
+ r2dψ2

]

(2.8)

With Eq. 2.7 and definingr in such a way that the functionf (r) = 1 in Eq. 2.4, the line
element of the Robertson-Walker metric can be written in thefollowing form (hyperspherical
coordinates):

c2dτ2 = c2dt2 − R2 (t)
[

dr2 + S 2
k (r) dψ2

]

(2.9)

In Eq. 2.9 and Eq. 2.8, the whole expansion and with this the time-dependence lies in the
scale-factorR (t), while the part in the square brackets denotes the comoving coordinates.

2.3. Friedmann Equations

The Friedmann equations, which describe the expansion dynamics of the universe, can be de-
duced from Einstein’s field equations for the Robertson-Walker metric (Misner et al., 1973).

Ṙ2 = −kc2 +
8πG

3
ρR2 (2.10)

R̈ = −4πG
3c2

R
(

ρc2 + 3p
)

(2.11)

wherep is the pressure caused by the content of the universe (Peacock, 1999). Eq. 2.10 shows
a direct relationship between curvaturek and density of the universeρ.

11



2. Cosmology

By multiplying Eq. 2.10 withR−2, it can alternatively be written as:

H2 − 8πG
3
ρ = −kc2

R2
(2.12)

whereH is the Hubble constant describing the expansion rate of the universe:

H (t) ≡ Ṙ (t)
R (t)

(2.13)

Instead ofH, often the dimensionless Hubble parameterh is used:

h ≡ H

100 km s−1 Mpc−1
(2.14)

By setting the right-hand side of Eq. 2.12 to zero, we obtain the Critical Densityρc for which
the universe is flat:

ρc =
3H2

8πG
(2.15)

It is convenient to write the total density as a fraction of the Critical Density:

Ω =
ρ

ρc
(2.16)

There are several components contributing toΩ: matter, radiation and the vacuum energy.
The cosmological constantΛ, which was originally introduced by Einstein as a constant to
obtain a static universe (Einstein, 1917) and discarded after the insight of the instability of the
static solution and the discovery of the expansion by Hubble7, is interpreted as the vacuum
energy today. The vacuum energy density in terms of the cosmological constant is given as
(Peacock, 1999):

ρΛ =
Λc2

8πG
(2.17)

So the density parameters are:

Ωm ≡
ρm

ρc
matter (2.18)

Ωr ≡
ρr

ρc
radiation (2.19)

ΩΛ ≡
ρΛ

ρc
vacuum energy (2.20)

The total density is the sum of the components:Ω = Ωm + Ωr + ΩΛ

The present scale factor, which correspondents to the curvature radius, can be obtained by
solving Eq. 2.12 forR and using Eq. 2.15 (Peacock, 1999). This is the so-called curvature
length:

R0 =
c

H0

√

k
Ω − 1

(2.21)

Comparing the equation above with Eq. 2.6 one can see that|Ω − 1| equals the Gaussian curva-
ture in units of inverse squared Hubble length’D−2

H , whereDH =
c

H0
.

7Edwin Powell Hubble, 1889-1953
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2.4. Cosmological Parameters

In an expanding universe, the matter density decreases while the matter is dispensed into a
larger volume, while, in addition, the radiation is redshifted. It is assumed that the vacuum
energy density stays constant, even though there were suggestions involving a non-constant
vacuum energy (Solà, 2011). Therefore, the evolution of the densities is given as:

ρm (a) ∝ a−3 (2.22)

ρr (a) ∝ a−4 (2.23)

ρΛ = const. (2.24)

Hence, with Eq. 2.15 one obtains the development of the density with redshift (Peacock, 1999):

8πGρ
3
= H2

0

(

ΩΛ + Ωma−3 + Ωra
−4

)

(2.25)

The evolution of the density parameters is obtained by usingthe definitionΩ = ρ

ρc
and Eq. 2.15:

Ωm (z) = Ωm,0
(1+ z)3

E2 (z)
(2.26)

Ωr (z) = Ωr,0
(1+ z)4

E2 (z)
(2.27)

ΩΛ (z) = ΩΛ
1

E2 (z)
(2.28)

whereE (z) = H(z)
H0

.

To get the dynamic of the Hubble constant with redshift, one uses the Friedmann equation 2.12
together with Eq. 2.21 and the above equation (Peacock, 1999):

H2 (z) = H2
0

[

ΩΛ + Ωm (1+ z)3 + Ωr (1+ z)4 − (Ω − 1) (1+ z)2
]

(2.29)

2.4. Cosmological Parameters

Determining the cosmological parameters is the main task ofcosmology. One of the best tech-
niques for this task is the measurement of anisotropies of the CMB. Such precision measure-
ments where first performed byCOsmic Background Explorer (COBE)(Mather et al., 1994),
followed by theWilkinson8 Microwave Anisotropy Probe (WMAP) (Bennett et al., 2003). The
most recent parameters fromWMAP are the parameters after seven years of observations
(Komatsu et al., 2011), often referred to as WMAP7-cosmology (see table 2.1). From this re-
sults the mean matter density today, were the critical density is given in Eq. 2.15:

ρ0 = Ωmρc = 2.7752· 1011Ωmh2
100M⊙Mpc−3 = 3.719· 1010 M⊙Mpc−3

2.5. Cosmological Distances

The following considerations are mainly oriented on Peacock (1999).

8David Todd Wilkinson, 1935-2002
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2. Cosmology

Table 2.1: The cosmological parameters as obtained fromWMAP after seven years of observations
(Komatsu et al., 2011).ns is the initial spectral index andσ8 the amplitude of the initial density fluctua-
tions.

Ωm 0.2707
Ωb 0.0451

h100 0.703
σ8 0.809
ns 0.966

2.5.1. Redshift

Up to now, the scale factorR (t) respectivelya (t) was used to describe the universe at a specific
time. The most important observable when measuring cosmological distances is the redshift.
The redshift is defined as

z ≡
λobserved− λemitted

λemitted
=
∆λ

λ
(2.30)

The cosmological redshift does not result from the Doppler effect, but is caused by the expan-
sion of the universe. When light travels through the expanding space, the wavelengthλ expands
together with space. Hence, the redshift is simple given by

z =
Robserved

Remitted
− 1 =

1
a
− 1 (2.31)

wherea is the normalized scale factor (Peacock, 1999). In the following, the relation between
distances and redshift is discussed.

2.5.2. Comoving Distance

The comoving distance (which is not the same as the comoving coordinate) is measured along
the line of sight to an object. The infinitesimal way element of the comoving distance as a
function of redshift can be calculated by the equation of motion for a photon withR = R0

1+z
(Peacock, 1999):

RdR = cdt =
cdR

Ṙ
=

cdR
RH (z)

(2.32)

=
cR0dz

RH (z) (1+ z)2

=
c

H (z) (1+ z)
dz

So the infinitesimal radial line element is

R0dr =
c

H (z)
dz (2.33)

and the comoving distanceDC is the integral of the above equation:

DC (z) =

z
∫

0

c
H (z′)

dz′ (2.34)
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2.5. Cosmological Distances

The development of the Hubble constantH (z) depends on the density parameters and is given
by Eq. 2.29:

R0dr =
c

H0

[

ΩΛ + Ωm (1+ z)3 + Ωr (1+ z)4 − (Ω − 1) (1+ z)2
]− 1

2 dz (2.35)

For practical purposes,Ωr ≈ 0 for z ≤ 1000 (Peacock, 1999, p. 84). For a matter-dominated
universe withΩΛ = 0 and thereforeΩ = Ωm, there exists an analytical solution to the integral,
which is called Mattig’s formula (Mattig, 1958):

R0S k (r) =
2c
H0

Ωz + (Ω − 2)
[√

1+ Ωz − 1
]

Ω2 (1+ z)
(2.36)

The comoving distance as a function of redshift is shown in Fig. 2.1.

2.5.3. Angular Diameter Distance

The angular diameter distanceDA is related to the apparent angular size of an object (Peacock,
1999).

DA (z) =
R0S k (r)

1+ z
(2.37)

And therefore for a flat universe:

DA (z) =
DC

1+ z
(2.38)

Using the angular diameter distance, an object of the sized is seen with an angular size:

θ =
d

DA
(2.39)

For theWMAP7-cosmology, the angular distance reaches a maximum atz ≈ 2, for higher
redshifts it is decreasing. Therefore, high-redshifted objects are appear larger objects closer to
us. The angular diameter distance as a function of redshift is shown in Fig. 2.1.

2.5.4. Luminosity Distance

For the calculation of the flux received from an distant object analogous to the common1r2 -law,
the luminosity distanceDL is defined as (Peacock, 1999)

DL (z) = R0S k (r) (1+ z) = DA (1+ z)2 (2.40)

Which is for a flat universe (Peacock, 1999):

DL (z) = DC (1+ z) (2.41)

Therefore for the flux from an object with luminosityL at distanced the following equation
holds:

F =
L

4πD2
L

(2.42)

There is one caveat concerning Eq. 2.42: It can only be applied to the bolometric flux, which is
very difficult to obtain in reality. To calculate the flux in a specific band, corrections have to be
applied. There is also a difference between photon flux and energy, which has to be taken into
account if dealing with limited energy bands (Peacock, 1999).
TheDL increases monotonously with redshiftz. The luminosity distance as a function of red-
shift is shown in Fig. 2.1.
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2. Cosmology

2.5.5. Comoving Volume Element

The infinitesimal comoving volume element describes the volume per steradian as a function of
the redshift (Peacock, 1999).

dVC = [R0S k (r)]2 · R0drdΩ (2.43)

for a flat universe using Eq. 2.33:

dVC = D2
C · R0dr = D2

C

c
H (z)

dzdΩ (2.44)

In an isotropic universe, the integration over the solid angle simply contributes a factor 4π, so
the equation above becomes (Peacock, 1999):

dVC = 4πD2
C

c
H (z)

dz (2.45)

In this volume element, a number density stays constant in anexpanding universe (Peacock,
1999). Since Eq. 2.43 contains theS k (r)-term, it is possible to determine the geometry of space
by observing a population of objects with known number density at different redshifts.

Because the comoving volume element is related to the angular diameter distance, it reaches
a peak atz ≈ 2 (for aWMAP7 cosmology) and decreases for higher redshifts. The comoving
volume element as a function of redshift is shown in Fig. 2.1.
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Figure 2.1:Comoving Distance (top left), Angular Diameter Distance (top right), Luminosity Distance
(bottom left) and Comoving Volume Element (bottom right) for WMAP7-cosmology)
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Figure 3.1:Spatial distribution of galaxies from the 2dF survey (Colless, 1999). On sufficiently large
scales, the matter is distributed homogeneously, but on smaller scales structures are conspicious. Be-
tween supermassive clusters, which are connected by long chains of galaxies, the so-called filaments, are
almost empty bubbles, the voids.

3. Galaxy Clusters

After having dealt with the universe as whole in Sect. 2, the focus is now shifted to the largest
coherent structures in the universe, the galaxy clusters. From the point of homogenity, one does
not expect to see any distinct features at all. But since homogenity applies only on scales larger
∼ 50 Mpc (Press & Schechter, 1974), there are lots of structures, from stars up to galaxy clus-
ters. The galaxy distribution on large scales can be revealed by deep surveys like the 2dF survey
(Colless, 1999), from which the galaxy distribution shown in Fig. 3.1 was obtained. The largest
gravitational bound, virialized structures in the universe found by such surveys are the galaxy
clusters. Typically, they contain some hundred galaxies (Sarazin, 1986). With a luminosity in
the range 1043–1046 erg s−1 (Trümper & Hasinger, 2008), they are the brightest X-ray sources
next to quasars (Sarazin, 1986). After an introduction to X-ray observations and especially
mass determination of galaxy clusters in Sect. 3.1 follows adiscussion of the importance of
clusters for cosmology in Sect. 3.4. Then, in Sect. 3.5 the description of inhomogeneous mat-
ter distributions as density fields is introduced. This is needed for the understanding of cluster
identification. Afterwards the formation and mass functionof clusters are discussed in Sect.
3.8-3.10.

3.1. Galaxy clusters in X-rays

The following description is mainly based on Trümper & Hasinger (2008), chap. 23. While in
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3. Galaxy Clusters

Figure 3.2:Composite of X-ray and optical image of the galaxy cluster Abell 1689 at a distance of
2.3 billion light years. The optical Hubble Space Telescopeimage is colored yellow, the intraclus-
ter medium observed by Chandra’s Advanced CCD Imaging Spectrometer (ACIS) is purple. [X-ray:
NASA/CXC/MIT /E.-H Peng et al; Optical: NASA/STScI]

the optical the galaxies forming the cluster are seen, X-rayobservations reveal a diffuse emis-
sion over the whole cluster (Fig. 3.2). This diffuse emission extends on scales of about 1 Mpc
(Mo et al., 2010). It is caused by hot intracluster gas, whichis also called intra cluster medium
(ICM), with temperatures of several ten million degrees, which correspondents to X-ray en-
ergies ofkT ≈ 2 − 15 keV (Trümper & Hasinger, 2008). The force forming this intracluster
gas is mainly gravitation; therefore measurement of the gasdistribution allows inferences about
the gravitational potential of the cluster. If one approximates that the ICM is in hydrostatic
equilibrium, the ICM in the cluster potential can be described as (Trümper & Hasinger, 2008)

1
ρ
∇P − GM (r)

r2
(3.1)

whereρ is the density of the ICM,P is the pressure,G is the gravitational constant, andM
is the mass enclosed in a sphere with radiusr. By adding an assumption about the cluster
geometry, which can in most cases be presumed as spherical, this equation can be reformulated
(Trümper & Hasinger, 2008):

M (r) = −
kT (r)
Gµmp

r

(

d logρ
d logr

+
d logTX

d logr

)

(3.2)

This equation gives the important insight that the mass enclosed by a sphere of radiusr depends
on the gas density and the temperature at this radius. Hence ameasurement of the temperature
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3.2. X-ray Spectrum of Clusters

and density profile is needed to calculate the mass profile andfrom this the total mass of a
cluster.

3.2. X-ray Spectrum of Clusters

The X-ray emission of the intracluster medium is mainly due to thermal bremsstrahlung, with
contributions from line emission and recombination radiation (Trümper & Hasinger, 2008). Ac-
cording to Sarazin (1986), Eq. 5.11, the emissivityǫ of thermal bremsstrahlung is given as:

ǫff =
dL

dVdν
=

25πe6

3mec3

[

2π
3mek

]
1
2

Z2nemigff
(

Z, Tg, ν
)

T
− 1

2
g exp

(

− hν
kTg

)

(3.3)

wherene is the electron density,ni the ion density andgff a Gaunt factor correcting for quantum
mechanical effects. If the Gaunt factor is assumed as constant, the spectrum is an exponential
function of the energy. Because the gas temperatureTg is a parameter in the exponent, the
spectral shape is mainly determined by the temperature. Thechemical composition influences
the spectral shape, too. Under the assumption of an ion density proportional to the electron
density, the normalization of the spectrum depends on the squared gas density. There is also
line emission observed in cluster spectra, especially fromiron (Sarazin, 1986). This leads to the
conclusion that the ICM, or parts of it, have already been processed in stars.

Because there are shells with different density and temperature along the line of sight, the ob-
servated spectrum is obtained as a convolution of three-dimensional density and temperature
profile. The real observable is a so-called ‘emission measure weighted temperature’. There-
fore, the mass profile can be obtained by measuring the temperature- and mass profile and
deprojecting it along the line of sight, which is not a trivial task (Trümper & Hasinger, 2008).

3.3. Dark Matter in Galaxy Clusters

If the density and temperature profiles are calculated as described above, the total gravitat-
ing mass of the galaxy cluster can be obtained. This includesthe non-radiating dark matter,
therefore indirect dark matter observations are possible by X-ray observations of galaxy clus-
ters. According to Trümper & Hasinger (2008), mass estimates obtained by cluster observations
suggest a composition of about 87 % dark matter, while 11 % of the total mass are contributed
by the ICM and only 2 % are found in the galaxies. Because the clusters consist mainly of a halo
of dark matter, often the term dark matter halo or simply halois used if referring to clusters.

3.4. Cosmology with Clusters

While the observation of single clusters provides us with information about dark matter in the
cluster itself, the cosmological parameters can be constrainedby means of accurate measure-
ment of the the large-scale structures in the universe. Since galaxy clusters form from overdense
regions, they trace the overall matter distribution, whichconstitutes the large scale structures
(Trümper & Hasinger, 2008). Therefore a statistically complete sample of galaxy clusters pro-
vides us with complementary information about the cosmological parameters (Predehl et al.,
2006). The mass function of clusters, which describes the number density as a function of
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3. Galaxy Clusters

mass and redshift, depends on the density parameterΩm and the amplitude of the primordial
power spectrumσ8. The evolution of the mass function as well as of amplitude and shape of
the power spectrumP (k), are strongly influenced by dark matter and dark energy. The baryonic
acoustic oscillations, which allow the measurement of the curvature of space at different epochs
(Predehl et al., 2006), are imprinted on the large-scale structure.
Galaxy clusters can be used as standard candles (Predehl et al., 2006), thus a high-precision
measurement of their spatial distribution is possible. Theconstraints on the cosmological pa-
rameters obtained by cluster observations are complementary to other methods like measure-
ments of the Cosmic Microwave Background, and degeneraciesbetween parameters can be
broken by combining observations (Mo et al., 2010).

3.5. Density Fields

Generally, the non-uniformity of the matter distribution can be described at each positionx as
over- oder underdensityδ with respect to the mean density of the universeρ (Peacock, 1999):

δ (x) =
ρ (x) − ρ

ρ
(3.4)

After recombination, these density perturbations increase linearly with time: δ (x, t) ∝ D (t),
whereD (t) is the linear growth factor. Closely related to the density field is the power spectrum
of the density fluctuationsP (k).
If the initial perturbation power spectrum is known, its development in time can be calculated.
Before recombination, the shape and amplitude of the power spectrum change. This evolution
is described by the linear transfer functionT (k). After recombination, the power spectrum at
time t can be written as (Mo et al., 2010):

P (k, t) = Pi (k) T 2 (k) D2 (t) (3.5)

wherePi (k) is the initial power spectrum. In inflationary models, the initial density perturba-
tions arise from quantum fluctuations of the inflation scalarfield, thus the power spectrumP (k)
of the perturbations is Gaussian (Mo et al., 2010).

3.6. Correlation Function

The characteristic scales of the clustering can be obtainedby the autocorrelation functionξ of
the density field, which is defined as:

ξ (r) ≡ 〈δ (x) δ (x + r)〉 (3.6)

where the angle brackets stand for the averaging over the normalization volumeV (Peacock,
1999). Sincer is independent of its direction due to isotropy, the correlation function depends
only on the distance between objects. It is also shown by Peacock (1999) that the correlation
function is the Fourier transform of the power spectrumP (k). Davis & Peebles (1983) give an
empirical correlation function for galaxies described by apower law:

ξ (r) =
(r0

r

)γ

(3.7)

with γ = 1.77 andr0 = 5.4± 0.3h−1 Mpc.
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3.7. Halo Identification

3.7. Halo Identification

Halos are identified as overdense regions relative to the cosmic density field. These overden-
sities can be identified by smoothing the density field on the appropriate scale with a filter
functionW of a characteristic radiusR (Mo et al., 2010):

δ (x,R) ≡
∫

δ
(

x′
)

W
(

x + x′,R
)

d2x′ (3.8)

For a top-hat filter function, an overdensityδ containing the massM in a sphere with radiusR
is defined as

δ =
M (r < R)

4
3πR3ρ

(3.9)

Halos can be identified by setting a overdensity threshold∆ and expanding the radiusR around
peaks in the overdensity field until the threshold is reached(Tinker et al., 2008):

δ = ∆ =
M∆

4
3πR3

∆
ρ

(3.10)

The halo identified this way has the massM∆ enclosed by the radiusR∆.

3.8. Halo Formation

In this section, the formation of the dark matter halos, which contribute a significant part to the
total cluster mass (Trümper & Hasinger, 2008) is discussed.

3.8.1. Gravitational Collapse

The established theory explains the halo formation by collapse due to gravitational instability.
Initial density perturbations grow linearly until a Critical Density is reached. At this point,
gravitation is strong enough to cause a collapse decoupled from the expansion and followed by
the virialization of the overdense region. The overdense region increases its matter content by
accreting material from the underdense regions around (Mo et al., 2010). Different halos can
merge to larger halos, such that successively larger virialized structures are formed.

In a flat universe with cosmological constantΛ > 0, the critical overdensityδc for a collapse is
given by Mo et al. (2010)

δc (tcol) =
3
5

(

3π
2

)
2
3

− [Ω (tcol)]
0.0055≈ 1.686 [Ω (tcol)]

0.0055 (3.11)

whereΩ (tcol) is the density parameter at the time of the collapse. For a detailed discussion of
the evolution of the density perturbations see (e.g. Mo et al., 2010, chapter 4).
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3. Galaxy Clusters

3.8.2. Press-Schechter Approach

The formation of structures from a gas of self-gravitating particles is a problem which requires
N-body simulations. Such calculations where done, e.g. by Springel et al. (2005) with 2,1603

particles. Because of the limitations in available calculation time, such simulations can only
be done for a limited number of particles in a limited volume.To develope a global theory
not restricted by these limitations, other approaches are demanded. One of the first theoretical
approaches to structure formation and a cluster mass function was done by Press & Schechter
(1974). This formalism is also known as Press9-Schechter10 formalism. Since the derivation
of the Press-Schechter mass function is not mathematicallyrigorous, it has to be tested with
numericalN-body-simulations and observations (Press & Schechter, 1974; Mo et al., 2010).

The Press-Schechter formalism (PS) presents a method to partition a continuous linear density
field in disjoint regions which form the collapsed objects (Mo et al., 2010). Most generally, it
describes a collisionless gas of self-gravitating particles in an expanding universe.

Press & Schechter (1974) suggest a successive formation of large structures due to nonlinear in-
teraction of smaller particles. If the particle lumps are sufficiently bound, they are identified as
single particles. The randomness in position of these particles itself acts as initial perturbation
for the condensation on larger scales. It is not necessary tohave additional initial perturbations.
Press & Schechter (1974) show that it can be assumed that the spectrum and statistical distribu-
tion of the initial perturbations have only a very weak influence on the spectrum at late times.
One of the important insights of the PS approach is that a self-similar state is reached where the
functional form of halo mass distributions is reproduced atlarger scales.

The Press-Schechter formalism can be applied to an expanding universe, where the character-
istic particle densityn∗ is large enough that the mean distance between the particlesl ≈ n−1/3

∗
is much smaller than the light horizonLh, so that the dynamics can be threated Newtonian (as
long as the particles do not collapse to a relativistic object like a black hole, Press & Schechter
(1974)). There are two processes acting against each other:The expansion of the universe
dragging the particles away from each other and gravitationwhich attracts the particles.

The parameters characterising the behaviour of the particles are their peculiar velocityv relative
to the Hubble flow (analogous to the gas temperature), the characteristic density introduced
above, the characteristic particle massm∗, and the Hubble parameterh describing the expansion
of the universe (Eq. 2.14. These parameters can be combined to two dimensionless quantities:

q =
4
3
πn∗m∗

G
h2

(3.12)

NJ = n∗
(

v

h

)3

(3.13)

q is a deceleration parameter which describes the ability of the expansion to impede condensa-
tion, while NJ is related to the particle number inside a Jeans mass and therefore quantifies the
tendency to local condensation. For systems with similarq andNJ a similar behaviour is ex-
pected regardless the scale of the parameters. Thus, forq andNJ constant in time a self-similar
condensation can be expected.

9William H. Press, *1947
10Paul Schechter, *1948
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3.9. Mass-Luminosity-Relation

The only parameter in the Press-Schechter formalism is the characteristic mass of the initial
condensations. Press & Schechter (1974) derive the functional form of the halo mass function:

nR (M) ∝ M−1−α exp















−const·
(

M1−α

R

)2












(3.14)

where 1
3 ≤ α ≤ 1

2 andR is the scale factor. Mo et al. (2010) give the Press-Schechter mass
function as

n (M, t) dM =

√

2
π

ρ

M2

δc

σ
exp

(

−
δ2

c

2σ2

)
∣

∣

∣

∣

∣

d lnσ
d ln M

∣

∣

∣

∣

∣

dM (3.15)

Time enters only inδc (t), while the mass enters inσ (M) and its derivative as well as in the
M−2-factor.

Up to a characteristic mass, the distribution varies as a power law, for higher masses it decreases
exponentially. A significant number of clusters exists up toσ (M) & δc (t), or a corresponding
massM . M∗, whereM∗ is a time-dependent characteristic mass:

σ (M∗) = δc (t) =
δc

D (t)
(3.16)

whereD (t) is the linear growth factor discussed in Sect. 3.5. Press & Schechter (1974) show
that the self-similarity is obtained for perturbations with maximal variance, i.e. an Gaussian
distribution, as well as for the case with minimal variance,i.e. each particle belonging to a
regular lattice site in the beginning, and all the cases between. The only influence of this initial
distribution lies in the dependency of a ‘typical mass’ as a function of the expansion scale, that
means the mass value around which the cluster masses are concentrated (Press & Schechter,
1974).

To apply the Press-Schechter formalism to galaxy cluster formation, it is not compulsory to
assume that all structures were formed by this process, starting with the smallest possible par-
ticles as seeds. It is also possible that large objects such as galaxies were formed by other
processes. Due to the self-similarity of the function, the result is the same after sufficient time
(Press & Schechter, 1974).

3.9. Mass-Luminosity-Relation

The mass of an galaxy cluster can be obtained by measuring itsdensity and temperature profile,
as described above. The relation between mass and total X-ray luminosity can be calibrated by
fitting a sample which contains a sufficient number of clusters to a model.

Such a mass-luminosity-relation was published by Vikhlinin et al. (2009). Its is based on a
mass-limited sample of clusters atz = 0.05 from theROSAT PSPC survey and a subsample of
36 clusters atz = 0.35−0.9 from theROSAT 400 d survey with a mean redshift ofz = 0.5. The
subsample was chosen so that it is quasi-mass-limited (Vikhlinin et al., 2009). The mass- and
temperature profiles of the clusters were obtained byChandraobservations.

Vikhlinin et al. (2009) define the masses in peaks with a overdensity∆ relative to the Critical
Density at redshiftz:

M∆ = M (r ≤ R∆) = ∆ρc
4
3

R3
∆π (3.17)
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3. Galaxy Clusters

The mass-luminosity-relation is obtained by fitting the observations to a model which is de-
scribed in Vikhlinin et al. (2009). For the overdensity a value of∆ = 500 was chosen. The
resulting relation is:

ln LX = (47.392± 0.085) + (1.61± 0.14) ln M500+ (1.850± 0.42) ln E (z) (3.18)

− 0.39 ln(h/0.72) ± (0.396± 0.039)

The last term on the right-hand site describes the scatter inthe observations for a fixedM.

3.10. Cluster Mass Function

As mentioned above, the Press-Schechter formalism has to betested on numerical simulations
and observations. A function based on the PS mass function describing halo masses up to
redshifts ofz . 2.5 was presented by Tinker et al. (2008). The function was calibrated by
N-body simulations calculated for volumes up to 1280h−1 Mpc edge length. The simulations
were performed with the three different codes GADGET2 (Springel et al., 2005), the hashed
oct-tree (HOT) code (Warren & Salmon, 1993), and the Adaptive Refinement Technique (ART)
(Kravtsov et al., 1997). The mass function is valid for halo masses ranging from 1011 h−1 M⊙
up to 1015 h−1 M⊙ (Tinker et al., 2008).

dn
dM
= f (σ)

ρm

M
d lnσ−1

dM
(3.19)

wheren = dN
dV is the number density of halos,ρm is the mean matter density of the universe and

σ is the root mean square of the linear matter power spectrum atredshiftz.
The functionf (σ) is parameterized as

f (σ) = A
[(

σ

b

)−a

+ 1
]

e−
c
σ2 (3.20)

In Tinker et al. (2008) values forA, a, b andc as well as their redshift evolution are given, which
were fitted by simulations. The root mean square of the linearmatter power spectrum is, based
on the equation forz = 0 given by Reiprich & Böhringer (2002), where the linear growth factor
in the numerator was inserted to account for the redshift evolution of the power spectrum

σ2 (M, z) = σ2
8
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(3.21)

whereŴ (kR (M)) is the Fourier transform of the spherical top-hat function,which smoothes
the power spectrum on a scaleR (Peacock, 1999):

Ŵ (kR (M)) =
3

(kR (z, M))3
[sin(kR (z, M)) − kR (z, M) cos(kR (z, M))] (3.22)

R is the radius of the sphere enclosing the overdensity:

R =

(

3M
4πρ0

)
1
3

(3.23)
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3.10. Cluster Mass Function

The shape of the power spectrum today is obtained by multiplying the primordial power spec-
trum with the transfer functionT (k). Here, the fitting function by Bardeen et al. (1986) for a
cold dark matter model was used:

T (k) =
ln (1+ 2.34q (k))

2.34q (k)

(

1+ 3.89q (k) + (16.1q (k))2 + (5.46q (k))3 + (6.71q (k))4
)−0.25

(3.24)
with q (k) = k

Γ·h100
, whereΓ is the shape parameter:

Γ = Ωmh100

(

2.7 K
T0

)2

exp















−Ωb −
√

h100

0.5
Ωb

Ωm















(3.25)

The form of the mass function from Tinker et al. (2008) is verysimilar to the Press-Schechter
mass function (Eq. 3.15). The exponential from the PS function is included in the fit function
f (σ), and taking the absolute of derivative in the PS-function isavoided by the−1 exponent of
theσ, which guarantees a positive derivative becauseσ is decreasing with increasing mass.

An approximation formular for the linear growth factor, which can be used for all world models
(Mo et al., 2010), is given by Carroll et al. (1992):

D (z) =
g (z)
1+ z

(3.26)

whereg (z) is given as:

g (z) ≈ 5
2
Ωm (z)

{

Ωm
4
7

(z) −ΩΛ (z) +

[

1+
Ωm (z)

2

] [

1+
ΩΛ (z)

70

]}

(3.27)

According to Tinker et al. (2008), the mass function can be used for redshifts up toz ≤ 2 and
for a halo mass in the range 1011h−1 ≤ 1015h−1 M⊙.

The mass function from Tinker et al. (2008) is given in terms of overdensities with respect to the
mean density of the universe, while the mass-luminosity-relation from Vikhlinin et al. (2009)
refers to overdensities relative with respect to the Critical Density. Hence, the overdensity to
the critical mass∆c has to be converted to the corresponding mean-density overdensity∆:

∆ (z) =
∆cρc (z)
ρm (z)

= ∆c
ρc (z)

ρc (z)Ωm (z)

Eq.2.26
= ∆c

E (z)2

Ωm,0 (1+ z)3

= ∆c
ΩΛ + Ωm,0 (1+ z)3

Ωm,0 (1+ z)3

= ∆c

[

ΩΛ

Ωm,0 (1+ z)3
+ 1

]

= ∆c

[

1− Ωm

Ωm (1+ z)3
+ 1

]

(3.28)
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3. Galaxy Clusters

whereG is the gravitational constant. ForE (z), Eq. 2.29 was used, as well asΩr ≈ 0 for
z ≤ 1000 (Peacock (1999) p. 84) andΩ = 1 ⇒ ΩΛ = 1 − Ωm. Because larger overdensities
result in less clusters to be found, this correction decreases the number of clusters, especially
for small redshifts.

Fig. 3.3 shows the mass function for the redshiftsz = 0, z = 1 andz = 2.5. Because the range of
the mass function spans over several orders of magnitude, the ordinate is plotted with a factor
of M2/ρm. As expected from the Press-Schechter approach (see Sect. 3.8.2) the number of
clusters decreases with increasing redshift, which is not surprising since galaxy clusters evolve
with time from gravitational collapse of overdense regions.
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Figure 3.3:Halo mass function for∆ = 500 (overdensity with respect to the mean density) and three
different redshifts. The redshift evolution of the mass function is evident. Forz = 2.5, the number density
of masses is about one order of magnitude smaller than forz = 0.

26



4. eROSITA

4.1. Overview

The objective of the simulation presented in this thesis is to generate a list of galaxy clusters
for the simulation of the all-sky survey which will be conducted with the instrument extended
ROentgen Survey with an Imaging Telescope Array (eROSITA).eROSITA is one of the two
main instruments on board of theSRGspacecraft. The following sections give a short introduc-
tion to SRGwith a focus on eROSITA .

The first all-sky survey in X-rays was performed withROSAT in the 1990s (Voges, 1993). Be-
causeROSAT was only sensitive in soft X-rays, the missionsABRIXAS (Predehl, 1999) and
ROSITA (extended ROentgen Survey with an Imaging Telescope Array,Predehl et al. (2003))
were planned to extend theROSAT all-sky survey to higher energies, with the main goal of
observing Active Galactic Nucleus (AGN) which are mainly obscured by gas and dust if ob-
served in soft X-rays (Predehl et al., 2006).ABRIXAS failed shortly after the launch due to a
malfunction in the power system (Predehl et al., 2006), while ROentgen Survey with an Imag-
ing Telescope Array (ROSITA), which was designed to be attached to the International Space
Station (ISS), was never realized because the scheduled launch date was 2011, one year after the
planned end of the Space Shuttle program (Predehl et al., 2006). Furthermore the ISS turned out
to be unsuitable for X-ray optics because of its dirty environment (Friedrich et al., 2005). After
these two failed missions, it will be eROSITA which continues the work ofROSAT. eROSITA is
based on the design ofABRIXAS, but with a significantly larger effective area to allow dark en-
ergy studies, which is now the central objective of the mission (Predehl et al., 2010). eROSITA
is funded by the German Space Agency Deutsches Zentrum für Luft- und Raumfahrt (DLR)
and the Max-Planck-Society.

4.2. Spectrum-Roentgen-Gamma

Spectrum-Roentgen-Gamma(Fig. 4.1) is a German-Russian project. The basis structureis the
‘Navigator’-platform developed by Lavochkin Association(Pavlinsky et al., 2009). The main
instruments are two X-ray telescope arrays: eROSITA, whichis contributed by Germany under
direction of the Max-Planck Institut für extraterrestrische Physik (MPE), and the Russian hard
X-ray instrument ART-XC, developed by IKI.

ART-XC consists, like eROSITA, of seven X-ray telescopes aligned parallel. The telescopes
are conical approximations of the Wolter-I design and are equipped with CdTe-detectors
(Predehl et al., 2010). The instrument is sensitive for higher energies than eROSITA and ex-
tends the energy band up to∼ 11 keV for the survey and∼ 30 keV for pointed observations
(Pavlinsky et al., 2009).

4.3. Scientific Objectives

The scientific objectives of eROSITA are described in, e.g.,Predehl et al. (2010). While
ABRIXAS and ROSITA were mainly designed for the observation of Active Galactic Nuclei,
the design driving science for eROSITA is the testing of cosmological models through large-
scale structure observations (Predehl et al., 2010). In X-rays, galaxy clusters are good tracers
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4. eROSITA

Figure 4.1:SRG in orbit configuration (Pavlinsky et al., 2009). The main instruments eROSITA and
ART-XC are mounted on the ‘Navigator’-platform.

for these large scale structures (see Sect. 3.4). eROSITA can detect clusters up to redshifts of
z ≈ 2.5 with a precision of∆z ≈ 0.2 (Pavlinsky et al., 2009). Furthermore eROSITA will help
to understand dark matter and accretion physics (Pavlinskyet al., 2009).

4.4. The eROSITA-instrument

4.4.1. Wolter Telescopes

A detailed description of eROSITA can be found in, e.g., Cappelluti et al. (2011) and
Predehl et al. (2010). The X-ray optics of the instrument consist of seven identical, co-aligned
Wolter-I X-ray telescopes. To achieve the objectives described above, effective area and angular
resolution had to be increased with respect toABRIXAS . Thus the number of mirror shells was
doubled. Every telescope consists of 54 gold coated, nestedmirrors, where the 27 inner shells
are identical to those used byABRIXAS (Predehl et al., 2010). By increasing the number of
mirrors, the effective area could be enhanced by a factor five for energies up to ∼ 5 keV. For
higher energies the outer shells do not contribute to the effective area because of the relatively
large grazing angles (Predehl et al., 2006). The angular resolution improves that ofABRIXAS
by a factor of two (Predehl et al., 2010). These improved capacity is needed for dark energy
studies. Additional, the telescopes are co-aligned in contrast to those ofABRIXAS . A com-
prehensive display of the properties of eROSITA can be foundin table 4.1. Each telescope has
a focal length of 1600 mm (Predehl et al., 2010) and an effective area of∼ 1500 cm2 at 1.5 keV
(Cappelluti et al., 2011). This is about a factor of two better thanXMM-Newton in this energy
band (for a comparison of the effective areas ofXMM-Newton, ROSAT PSPC, and eROSITA
see Fig. 4.3). Photons from out of view reaching the detectorafter a single reflection on the
paraboloid or hyperboloid surface are suppressed by an X-ray baffle in front of the telescopes.
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Figure 4.2:The eROSITA telescopes assembled on the carrier structure (Fürmetz et al., 2008).

Table 4.1:Properties of the eROSITA X-ray telescopes (Cappelluti et al., 2011)

Telescope design Wolter-I
Number of telescopes seven
Shells per telescope 54
Effective area at 1.5 keV ∼ 1500 cm2

On-axis PSF HEW 15′′

Effective Angular Resolution 25− 30′′

The drawback of this design is additional vignetting, so a good compromise has to be found
(Predehl et al., 2010). The mirrors have to be stabilized at 20 ± 2 ◦C to avoid degradation of
the imaging quality due to thermal deformations. This stabilization is reached by a system of
heatpipes in combination with a heating system (Predehl et al., 2010).

4.4.2. pnCCD Detectors

Each of the seven Wolter telescopes is equipped with an identical pnCCD camera developed
by the MPI Halbleiterlabor. The pnCCDs, which are backside-illuminated Charge Coupled De-
vices (CCDs), are advanced versions of the pnCCDs flying onXMM-Newton (Strüder et al.,
2001) and have 384×384 pixels. In the energy range from 0.3 keV to 10 keV, an energy resolu-
tion close to the theoretical limit determined by Fano noiseis achieved (Meidinger et al., 2009).
The quantum efficiency is about 90 % (Meidinger et al., 2009). A comprehensive summary of
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Figure 4.3: On-axis effective area for eROSITA,XMM-Newton and ROSAT-PSPC (Predehl et al.,
2006)

the properties of the pnCCDs is given in table 4.2. The cameras have an imaging area and a
framestore area where the image can be shifted to in less than100µs (Predehl et al., 2010) to
minimize the probability of out-of-time events, i.e. photons recorded during readout. All 384
channels are read out simultaneously (Meidinger et al., 2009). For calibration purposes, every

Table 4.2:Properties of the eROSITA pnCCD-cameras (Meidinger et al.,2009).

Pixels 384× 384
Chip size 28.8 mm× 28.8 mm
Pixel size 75µm× 75µm
Readout all 384 channels parallel
Time for shifting integrated
image to framestore . 100µs
Readout time 5 ms
Working temperature −80◦C

pnCCD is equipped with a radioactive Fe55 source with an aluminium target. The source can be
moved in and out of the field of view. The pnCCDs have to be kept at an operation temperature
of −80± 0.5 ◦C. This is achieved by passive elements, that is variable conductance heatpipes
and radiators (Predehl et al., 2010).
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Figure 4.4:Left image: One of the eROSITA pnCCDs. On the bottom side the frame storearea can be
seen, which is smaller than the imaging area of the chip (Predehl et al., 2006).Right image: Schematic
view of an eROSITA pnCCD (Meidinger et al., 2009)

Figure 4.5:The earth-sun system with its five equilibrium (Lagrange) points L1-L5 (Fig. from Wille,
private communication). Earth ist blue, the sun is yellow and the Lagrange points are red. eROSITA
will orbit around L2 in an elliptical orbit with a semi-major axis of 3· 105 km, a semi-minor axis of
2.5 · 105 km, and an inclination of 35◦ with respect to the ecliptic.
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4.5. Orbit

Launch is scheduled for 2013 with a Soyuz-Fregat from Baikonur, Kazakhstan (Pavlinsky et al.,
2009). After a 110 day flight,SRGwill reach its orbit around Lagrange point L2 of the earth-
sun-system (Fig. 4.5), 1.5 million kilometres from earth (Fürmetz et al., 2010). In L2, the
joint gravitational force of earth and sun equals the centrifugal force on a much smaller object
orbiting the sun with the same velocity as earth. Because L2 is a saddle point of the effective
gravitational potential and therefore dynamically unstable, the spacecraft has to perform course
corrections (Fürmetz et al., 2010). SRG will be placed in anelliptical orbit around L2 with a
semi-major axis of 3· 105 km, a semi-minor axis of 2.5 · 105 km and an inclination of 35◦ with
respect to the ecliptic.

4.6. Observing Program

The first four years of the mission, eROSITA will conduct an all-sky survey. During this time
it will rotate constantly, where the rotation axis always points to earth, so readjustements of the
antenna position are not necessary. This constraint together with the orbit around L2 results in
a smearing of the scan poles to an area of a few hundred square degrees (Fürmetz et al., 2010).
An exposure map is shown in Fig. 4.6.

The ROSAT-survey lasted only half a year, so together with the increased effective area, the
eROSITA all-sky survey will improve onROSAT all Sky Survey by a factor of about 30 in
sensitivity (Cappelluti et al., 2011). The mean exposure time will be∼ 3 ks, while at the two
scanning poles exposure times of 20− 40 ks are reached. In the 0.5− 2 keV band, a flux limit
for clusters of 3· 10−14 erg s−1cm−2 - 4 · 10−15 erg s−1cm−2 is expected (Predehl et al., 2010).
According to Predehl et al. (2010), the eROSITA survey will reveal about 50,000− 100,000
galaxy clusters and 3− 10·106 AGN will be observed, including all clusters with masses above
3.5 · 1014h−1 M⊙ up to redshifts ofz = 2. After the four-year survey phase, a three-year phase
for pointed observations of interesting objects is planned.

Figure 4.6:Exposure map for the eROSITA survey (Fürmetz et al., 2010).The brighter areas are the
scanning poles.
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5. SIXT Simulation Software

In this chapter, theSimulation of X-ray Telescopes (SIXT)(Schmid et al., 2010) software and
the Simulation Input (SIMPUT) format (Schmid et al.), whichis also the final format of the
cluster catalogue, are introduced. The cluster catalogue discussed in this thesis was generated
as an input catalogue for the simulation of the eROSITA survey. With increasingly complex and

Figure 5.1:Flow chart of theSIXT pipeline (Schmid, 2011)

expensive missions, simulations become more and more important for planning and designing
missions. TheSIXT program for X-ray instruments was developed by Schmid et al.(2010). It
is based on a Monte-Carlo algorithm and generates events forX-ray sources stored in an input
catalogue. For every photon, the propagation through telescope and the response of the detector
is simulated using existing calibration data like the PointSpread Function (PSF). The software
is designed modularly, so it can easily be adapted to different instruments (Schmid et al., 2010).
The output of the simulation is an event list as obtained by real observations. This list can
be processed further to analyze properties of the instrument, before the latter one is actually
constructed.

Fig. 5.1 shows the different steps of theSIXT pipeline. The input is a source catalogue with the
corresponding spectra and optional image and light curve. With regard to pointing and effective
are of the instrument, photons are generated by a Monte Carlomethod. This photon list is
processed together with the intrinsic properties of the instrument, like PSF and vignetting as a
function of attitude. From this, an impact list of the photons hitting the detector is generated. In
the last step it is accounted for the detector properties, and the event list as obtained from real
observations is returned (Schmid et al., 2010).

An universal format for source catalogues to be used as inputfor simulations was defined by
Schmid et al. with the SIMPUT format. It is a Flexible Image Transport System (FITS) file
(Hanisch et al., 2001; Pence et al., 2010) with a source catalogue extension containing one or
more sources. Further extension can contain images, spectra and light curves. Alternatively,
these can be stored in other FITS files, in this case the sourceextension contains links to those
files.
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6. Generating the Cluster Catalogue

In the last chapters, the theoretical background about galaxy clusters, their importance for cos-
mology and eROSITA was introduced. In this chapter, the coreof this thesis will be discussed:
the sampling of a cluster catalogue via a Monte Carlo simulation. Before describing the code in
detail in Sect. 6.4 - 6.10, some basics of the Monte Carlo technique are introduced in Sect. 6.1
without a focus on mathematical rigorousity. The code itself consists of severalPython-scripts.
After a short introduction to thePythonprogramming language in Sect. 6.2, the general ap-
proach to the problem is presented in Sect. 6.3. An overview over the simulation pipeline is
given in Sect. 6.4, before the single scripts are described in detail in Sect. 6.6 - 6.10, followed
by a discussion of the results in Sect. 6.11. The simulation scripts would be relatively useless
without having tested the plausibility of the results. Thiswas done in Sect. 6.12 by compar-
ing the calculated mass function with the results of Tinker et al. (2008) and a grid calculated
independently. Finally, improvements which could be implemented in the future are discussed.

6.1. Monte Carlo Methods

Monte Carlo methods describe a class of computational algorithms working with repeated sam-
pling of random variables. Applications are, for example, the integration of multidimensional
functions with complicated boundary conditions, the simulation of complex systems with many
coupled degrees of freedom like fluids or economic systems, or the sampling of values dis-
tributed according to a given probability distribution function. The latter case shall be discussed
now. For conciseness, the case with only one random variableis threated without loss of gen-
erality. Let f (x) be a Probabilty Density Function (PDF) of the variablex | x ∈ [a, b] andF (x)
the Cumulative Distribution Function (CDF) ofx.

The PDF describes the probability of finding the random variable in the infinitesimal interval
[x0, x0 + dx]:

P (x0, x0 + dx) = f (x0) dx (6.1)

The CDF describes the probability of the random variable having a value smaller than a given
y:

F (y) = P (x ≤ y) (6.2)

Since a PDF is normalized andf (x) > 0 ∀ x ∈ D, the corresponding CDF is monotonically
increasing and lim

y→b
F (y) = 1. The CDF is related to the PDF as follows:

F (y) =

y
∫

−∞

f (x) dx (6.3)

In the following, the most important techniques for generating a sample of random variables
distributed according to a given PDF are discussed. For a more complete and rigorous treatise,
see e.g. Deák (1990). Most random generators generate variables distributed uniformly in the
unit interval. Such a variable, be it calledu, can be projected any other interval [a, b] simply by
a linear functionΦ (u) = a + (b − a) u, where the uniform distribution is preserved. Therefore,
from now on all considerations start with a sample of variables distributed uniformly in the unit
interval.
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6.1.1. Inversion Method

If the CDF is a bijective function, there exists an inverse function F−1. It can be proved that
for a variableu distributed uniformly in the unit interval, the variablex with x ← F−1 (u) is
distributed according toF (Deák, 1990). This is called inversion method (Deák, 1990).

For practical purpose this technique is especially applicable if F−1 can be calculated analytically,
so the variables sampled according tof (x) can easily be generated. This technique is effective
because the variables can be calculated directly, but it canonly be applied to a limited set of
functions.

6.1.2. Rejection Sampling

The inversion method described above can only be used for invertible functions. A more gener-
ally applicable method is the rejection sampling describedin Deák (1990). Letf (x) be a PDF
which is bounded above byc, so f (x) ≤ c ∀ x ∈ [a, b]. Now, the random variables can be
sampled (Deák, 1990):

1. createu1 distributed uniformly in [a, b] and a random variableu2 distributed uniformly in
[0, c].

2. if u2 ≤ f (u1) acceptu1, else go back to step 1.

Because a random variable is either accepted or rejected, rejection sampling is also referred to
as acceptance-rejection method. If the values off span over a wide range, this method can be
very expensive because a large part of the generated values is rejected.

Rejection sampling, as described above, can be improved by generalizing the method for an
arbitrary function as upper bound. Beg (x) a function with f (x) ≤ g (x) = ch (x), where
c ≥ 1 is a constant (Deák, 1990). In practical one selects a function h (x) which is numerically
easier to handle than thef (x), which is the case if the bounding functiong (x) can be inverted
analytically. Now, the random variable is sampled (Deák, 1990):

1. createu2 distributed uniformly in the unit interval. Generateu1 distributed according toh
in [a, b] via the inversion method.

2. if u2 ≤ f (u1)
g(u1) =

f (u1)
ch(u1) , acceptu1, else go back to step 1.

By selecting a convenient functionh, the numerical costs can be reduced significantly, especially
if the values off span over a wide range. The efficiencyη of the rejection sampling technique
can simply be expressed by the fraction of the accepted values:

η =
naccepted

naccepted+ nrejected

6.2. Python

Python11 is an interpreted high-level programming language developed in 1991 by Guido van
Rossum (Ernesti & Kaiser, 2008). It is platform independentand supports imperative, object-
oriented, and functional programming paradigms (Ernesti &Kaiser, 2008). The language at-
taches great importance to code readability. A characteristic of Pythonis the use of intendations

11The namePythonis a hommage to the British comedy group Monty Python (Ernesti & Kaiser, 2008).

36



6.3. General Approach

as block delimiters. Besides a vast standard library, thereexist some libraries for scientific pur-
poses, the most important of them areScientific Python (SciPy), Numerical Python (NumPy)
(Jones et al., 2001), and the plotting librarymatplotlib (Hunter, 2007). TheSciPyandNumPy
libraries offer a powerful array object, which does not exist in basicPython, and a variety of
further functions.

In the descriptions below, where technical details of the scripts are discussed, one has to keep
in mind that in programming languages indices mostly start with 0, which is adopted here, if
algorithms are described. It should be discernible from thecontext which convention is used.

6.3. General Approach

The purpose of the simulation is to generate a list of galaxy clusters with the following observ-
ables:

• celestial coordinates (right ascensionα, declinationδ)
• redshiftz
• flux (calculated as a function of the cluster total massM and the redshift)
• angular diameter

The latter two observables are not sampled by the simulation, but are derived from the mass and
redshift. Hence the Monte Carlo code generates the parameters

• celestial coordinates (right ascensionα, declinationδ)
• redshiftz
• massM

The direct calculation of the mass function is very expensive, mainly due to the numerical
integration needed to obtainσ (root mean square of the linear matter power spectrum, see Eq.
3.21 on p. 24). Therefore, the script generating the clusters uses a grid with the mass function
values, which has to be calculated before. Since betweenz = 0 andz = 2.5 about 23 million
clusters are found for a minimal mass of 1013 M⊙ and, due to the usage of the rejection sampling
technique, still more values have to be calculated it is muchmore economic to calculate a grid
with some hundred thousand nodes.

Next, the number of objects in a given redshift interval is calculated. An option is simply to
integrate over the whole interval, but there are some drawbacks of this solution: if the catalogue
is calculated in one rush, the output file is relatively largeand therefore impractically to handle
compared to smaller files. Further, if the program is extended in the future to take the spatial
correlation of clusters into account, it saves significant calculation time if only clusters in a small
redshift interval have to be included for the calculation ofthe correlation (under the assumption
that there is no correllation for larger distances, which seems reasonable since the correlation
function can be described as a power law of the cluster distance, as was discussed in Sect. 3.6).
This can be easily achieved by only considering the clustersin the neighbouring redshift shells.
This possible extension of the code is discussed in Sect. 6.12. Thus, instead of integrating over
the whole domain, the redshift interval is subdivided in a user-specified number of intervals (see
Sect. 6.7).

When the file containing the number of objects per shell is loaded, a Poisson distribution with
the read-in number as expectation value is applied randomize the cluster number. Now the
sampling of the objects starts.
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Figure 6.1: Flow chart of the pipeline for the generation of a cluster catalogue. ThePython-scripts
sampling the catalogue are filled yellow, theC-program to create theSIMPUT-files is orange. In and
output files are blue, the points where the script has to be launched manually are green.

For the sampling of the celestial coordinates, the spatial distribution which is described by the
correlation function is neglected (see Sect. 3.6), such that the right ascension and declination
can be sampled independently. The right ascension is distributed uniformly and can be gener-
ated by using the random number generator from thePythonstandard library. The declination
is obtained with rejection sampling, where the valueδ for the declination is accepted if an aux-
iliary variable distributed uniformly in [0, 1] is less or equal cos(δ). For the mass and redshift
the situation is more complicated, because these parameters are i) correlated and ii) the mass
function, which is the PDF, if normalized, cannot be inverted analytically. Hence the variables
have to be generated together via rejection sampling (see Sect. 6.1.2). Because the function val-
ues range over several orders of magnitude, rejection sampling with a constant as upper bound
would be too ineffective, because only a insignificantly small part of the generated values would
be accepted. Thus a applicable function has to found as upperbound. Up to the exponential
cutoff, the mass function (Eq. 3.19) can be well approximated by a power law of the form

h (M) = α · Mβ (6.4)

Since the mass function decreases with increasing redshifts for all masses, a functionh which
depends on the mass as a power law and is independent of redshift is a upper bound to the
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massfunction, as long ash (M) > dn
dM ∀M ∈ [Mmin, Mmax] at z = 0. The exponential cutoff

is located well overM = 1014 M⊙, therefore the values of the minimal massMmin, which was
selected for the simulation, andM = 1014 M⊙ where used to define the power law. The exponent
β can be calculated from

β =

[

log

(

dn
dM

(

1014 M⊙
)

)

− log

(

dn
dM

(Mmin)

)]

×
[

log
(

1014 M⊙
)

− log(Mmin)
]−1

(6.5)

and factorα is obtained by

α = M−β
min

dn
dM

(Mmin) (6.6)

The power law from Eq. 6.4 is the PDF multiplied with a constant factor, which will later be
eliminated by normalization. The CDF needed for the acception-rejection method with a func-
tion as upper bound, as described in Sect. 6.1.2, is the definite integral of the PDF multiplied
with a constant, i.e. it is> 1 for the right side of the definition interval. To discern this function
from the PDF, it is denoted asH′ here

H′ (M) =
∫ M

Mmin

α · M′β dM′ =
α

1+ β

(

Mβ+1 − Mβ+1
min

)

(6.7)

Now H′ is normalized for the mass interval [Mmin, Mmax] in which the cluster masses will be
generated:

H (M) =
H′ (M)

H′ (Mmax)
(6.8)

as one can see from the two equations above,H (M) equals zero forMmin and one forMmax.
That function can easily be inverted:

H−1 (y) =

[

y (β + 1)
α

+ Mβ+1
min

]1/(β+1)

(6.9)

This is the equation used as upper bound for the rejection sampling. As well as the exponent of
the power law, the factorc is determined anew for the minimal redshift of the interval of redshift
in which the clusters are sampled. As a constant factorc (see Sect. 6.1.2) a value of 2· (1+ zmin)
was used, so it is ensured that the mass function is still smaller than the bounding function for
small deviations from the power law. Thez-dependence results from the experience that for
larger redshifts a higher factor is needed to hold the mentioned condition. Nevertheless, the
simulation code checks iff < ch for every value it samples. Now the primary four parameters
described above are sampled.

Finally, the observables are calculated. The flux is obtained with the LX − M relation from
Vikhlinin et al. (2009) and Eq. 2.42 on p. 15. The angular diameter distance is calculated with
Eq. 2.38 on p. 15. At last the catalogue is convertet into the SIMPUT-format (Schmid et al.).

6.4. Pipeline

While above the course of action was depicted without a focuson the technical details, now the
function of the single scripts is explained. The complete simulation consist of four individual
Python scripts, and aC-program writing the finalSIMPUT-file. This modular approach was
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Table 6.1:Description of the parameters which have to be given in the parameter file

variable name data type description
cat path string path to the catalogue file
cat name string name of the catalogue file
grid path string path to the grid file
grid name string name of the grid file without the.npy file extension
shells path string path to the file containing the number of objects per shell file
shells name string name of the file containing the number of objects per shell file
nodes x int nodes of the grid on thex-axis (redshift)
nodes y int nodes of the grid on they-axis (redshift)
rho 0 float mean matter density of the universe
cvak float speed of light in vacuum
Omega float total density parameterΩ
Omega r float radiation density parameterΩr

Omega m float matter density parameterΩm

Omega b float baryon density parameterΩb

h100 float Hubble parameterh100

T0 float CMB temperature
sigma 8 float amplitude of the primordial power spectrum (Peacock, 1999)
n s float primordial spectral index (Peacock, 1999)
mass min float minimal cluster massMmin

mass max float maximal cluster massMmax

z min float minimal redshift
z max float maximal redshift
overdensity float overdensity for clusters with respect to the Critical Density at z

chosen to achieve maximal flexibility and to preserve the possibility to inspect or manipulate
the in- and output of every step. The output is stored in a file and read in in the next step. The
variables specifying the cosmological parameters, filenames etc. are stored in a parameter file
which is read in by the scripts. The pipeline is shown in Fig. 6.1.

The grid is saved in the.npy binary format provided byNumPy (Jones et al., 2001). The
‘shell’-file (described below) and the catalogues are savedas ASCII-files and can be inspected
with every editor or used as an input for plot programs. The final output is a FITS file in the
SIMPUT-format (Schmid et al.) described in Sect. 5. In the following sections, the parameter-
file and thePython-scripts are desribed.

6.5. Parameterfile

All parameters relevant for the simulation are stored in a parameterfile, which is read in by the
scripts. The file has to contain the variables listed in table6.1. Blanks, empty lines and lines
beginning with ‘#’ are ignored. The order of the parameters can be arbitrary. The only condition
is that the variable name and value have to be separated by a ‘=’, with the variable name on the
left hand side and the value on the right hand side. An exampleparameter file is shown in Fig.
6.2.
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6.6. Script calcmassfctgrid

# I/O:

cat path = ./catalogues/

cat name = cat wmap7

grid path = ./grids

grid name = grid wmap7

shells path = ./shelltables

shells name = shells wmap7

# simulation:

mass min = 1e13

mass max = 1e17

z min = 0

z max = 2.5

overdensity = 500

# grid:

nodes x = 100

nodes y = 1500

# cosmology:

rho 0 = 3.719e10

cvak = 2.99792e8

Omega = 1.

Omega r = 0.0

Omega m = 0.2707

Omega b = 0.0451

h100 = 0.703

T0 = 2.726

sigma 8 = 0.809

n s = 0.966

Figure 6.2:Example for the ASCII-file containing the parameters for thesimulation

6.6. Script calc massfct grid

This function calculates the mass function (Eq. 3.19) on a rectangular, semilogarithmic grid.
Because the mass goes over several orders of magnitude and the mass function can be roughly
described by a power law, the nodes along the mass axis are spaced logarithmically.

The function is called with the limits of redshift and mass aswell as the number of nodesM
andN in redshift respectively mass. It returns three arrays withdimension 2:

• Xmn: contains the value for the redshift on the node(m, n). Because the grid is rectangular,
Xmp = Xmq ∀ p, q ≤ N; p, q ∈ N

• Ymn: contains the value for the mass on the node(m, n). Because the grid is rectangular,
Ypn = Yqn ∀ p, q ≤ M; p, q ∈ N

• Zmn: contains the function value on the node(m, n): Zmn = f (Xmn, Xmn)

On every node of the grid, the mass function is calculated by the functionmassfct.
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6. Generating the Cluster Catalogue

6.6.1. Function massfct

This function calculates the mass function from Tinker et al. (2008) directly. At first the func-
tion calc sigma (see section 6.6.2) is called to obtain the root mean squareσ of the linear matter
power spectrum.
Now the transformation from a overdensity relative to the Critical Density to one relative to the
mean matter density is accomplished via Eq. 3.28.
In the next step, the fit functionf (σ) is calculated for theσ and∆ obtained above. The redshift-
dependent parametersA, a, b andc are obtained via the functions given in Tinker et al. (2008),
Eq. 5-8:

A = A0 (1+ z)−0.14 (6.10)

a = a0 (1+ z)−0.06 (6.11)

b = b0 (1+ z)−α (6.12)

c = c0 (6.13)

logα = −
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1.2

The parameters forz = 0, A0, a0, b0 and c0 are functions of the overdensity∆ and can be
calculated from the interpolation formula in Tinker et al. (2008), appendix B, Eq. B 1-B 3:

A0 =















0.1 log∆ − 0.05 ∆ ≤ 1600

0.26 ∆ > 1600
(6.14)

a0 = 1.43+
(

log∆ − 2.3
)1.5 (6.15)

b0 = 1+
(

log∆ − 1.6
)−1.5 (6.16)

c0 = 1.2+
(

log∆ − 2.35
)1.6 (6.17)

The authors warn about an error up to≈ 10 % of this interpolation formula, which is acceptable
for the purpose of this simulation.
Next, the derivative in Eq. 3.19 is calculated:

d lnσ−1 (M)
dM

=
lnσ−1 (M + δM) − lnσ−1 (M − δM)

2δM
(6.18)

For δM, a dynamical stepsize of 10−4M was selected. Here, some fine-tuning or the imple-
mentation of a more sophisticated algorithm could be considered. Like above,σ is calculated
with the subroutinecalc sigma. Now the value of the mass function (Eq. 3.19) is obtained by
multiplying the factors calculated above.
To ensure that no negative values of the mass function were obtained due to numerical problems
or false parameters, it is tested if the result of the function is positive. If not, a warning is raised.

6.6.2. Function calc sigma

The functioncalc sigma returns the root mean square of the linear matter power spectrum,
smoothed by a top-hat function with a radius dependent on theenclosed total mass (Eq. 3.22
on p. 24).
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6.7. Script integrateshells

At first, the shape parameterΓ for the transfer function of the power spectrum is calculated with
Eq. 3.25. The transfer functionT (k) and the smoothing radius corresponding to the given halo
mass and redshift, given through Eq. 3.24 respectively Eq. 3.23, are defined as subfunctions.

Eq. 3.19 is splitted into integrals for the numerator and thedenominator. In the denominator,
the top-hat function is calculated for a constantR = 8h−1

100Mpc.

For the integration, the integrands in numerator and denominator of the mass function are de-
fined as functions to be integrated numerically with the integratorquad from theSciPy-package,
which is based on theFortran library QUADPACK (Piessens et al., 1983). A critical point here
is the upper limit of subdivisions for the integrator: especially at high overdensities, which is
here corresponding to low redshifts due to Eq. 3.28, an upperlimit significantly higher than the
default value has to be selected to achieve convergence of the integral.

To avoid potential problems with the integral at the first andsecond root of the integrand in the
counter, the integration is splitted in three intervalls: [0;k0], [k1; k2], and [k1;∞] wherekn is the
nth root of the integrand. The roots are calculated via the secant method, which is implemented
in the newton-function of theSciPy.optimize-package. After the integration,σ is obtained
from the terms which where calculated separately above. By far the most expensive part of this
function is the integration. Hence, here some fine tuning could be done.

6.7. Script integrate shells

This function divides the rectangular, two-dimensional grid along thez-axis (z denotes the red-
shift and not a Cartesian coordinate here) inD rectangular domains and integrates over those
stripes.

z1
∫

z0

∫

Mhalo

dM′
halodz f

(

z, M′
halo

)

V (z) (6.19)

wherez0 andz1 are the minimal respectively maximal redshift of the domain. The tangential
part of the integration is already contained in the volume element, because it yields simply a
factor of 4π in an isotropic universe. There are some constraints: the rectangular domains have
to be delimited by nodes of the grid. This has two consequences:

• the number of domainsD cannot be greater than the numberM of nodes along thez-axis
minus one (M denotes still the number of nodes along the redshift-axis and not a mass in
this section! The mass, where needed, will be denotedMhalo). If a numberD greater than
the allowed maximum is selected,D is automatically adapted toM − 1.

• the size of the domains is not necessarily constant. If the spacing of the nodes inz is not
constant, the size of the domains will vary, too. Also, if thenumber of nodes inz minus
one is not a multiple of the number of domainsD, the function will automatically adapt
the boundaries of the domains to the nodes, such that it is notnecessary to use interpolated
values at the boundaries of the domains.

integrate shellsreads the cosmological parameters, input- and output filenames, etc., from the
parameterfile. After this, a vectorl containing the limiting indices of all the domains is created.
At first, an auxiliary vectorl′ is defined:

l′j = j · M − 1
D

, 0 ≤ j ≤ D; j ∈ N
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6. Generating the Cluster Catalogue

The adaption to the nodes is achieved by simply rounding downto a integer.

l j =
⌊

l′j
⌋

, 0 ≤ j ≤ D; j ∈ N

The arrayl contains the indices for the nodes on thez-axis defining the redshift-limits of the
integration domains. In the next step, it is iterated over all the domains 0≤ i < dim(l)− 1 = D.
For every node in the domain, theMHalo-axis is integrated using the composite trapezoidal rule
provided by the integratortrapz from SciPy.integrate (Jones et al., 2001). The integrator is
called with a vectorζn = Zlin containing the function values andυ = Ylin for the spacing of the
values inζ. For every domain, the values of the integrals along theMHalo-axis are stored in a
vectorκ with the dimensionli+1 − li + 1. In the second step the integration along thez-axis is
done with thetrapz integrator. For the redshifts corresponding to the integrals in κ, a vectorξ is
generated for every domain.

ξ j = X(li+ j),n, 0 ≤ j ≤ (li+1 − li)

To obtain the integrand,κ is multiplied elementwise with the differential comoving volume
elementdV

dz

(

ξ j

)

(Eq. 2.45). Now the integrator is called with the vectorκ containing the function
values andξ for the stepsize in thez-axis, along which the integration is done. Because the
number of clusters has to be an in integer, the integral is rounded. The results are written to
the file, specified in the parameterfile asshells path/shells name. For an example see Fig.
6.3.

z min z max number

0.0 0.0727272727273 13406.0

0.0727272727273 0.169696969697 138541.0

0.169696969697 0.266666666667 378502.0

0.266666666667 0.363636363636 674839.0
...

...
...

2.03548387097 2.15161290323 411325.0

2.15161290323 2.26774193548 315030.0

2.26774193548 2.38387096774 237849.0

2.38387096774 2.5 177128.0

Figure 6.3:Example for an ASCII-file containing the number of objects per redhift interval

6.8. Script sample catalogue

The program flow of this script is shown in Fig. 6.4. At first, the script reads the file with the
redshifts intervals and number of clusters contained in it,which was generated by the script
integrateshells. To randomize the number of clusters per redshift interval,the read-in values
are seen as expectation values of a Poisson-distribution. With the functionpoisson from the
numpy.random library, a number according to this distribution is calculated for every redshift
interval. Now the script iterates over the redshift shells and samples the right ascension using the
random number generator from thePythonstandard library and the declination with a simple
rejection sampling technique described in Sect. 6.3. Mass and redshift are generated with the
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6.9. Script convertobservables

Figure 6.4:Flow chart of the scriptsamplecatalogue

rejection sampling technique with a function as upper boundas described for this specific task in
Sect. 6.3, and from a general point of view in Sect. 6.1.2. Thebounding function is calculated
anew for every new redshift interval, so it is always well adapted to the mass function. The
objects are written to the fileraw catalogue. An example for a raw catalogue is shown in Fig.
6.5.

6.9. Script convert observables

This script reads a raw catalogue and calculates the bolometric flux (Eq. 2.42) from the mass
and the redshift, and the angular diameter distance as a function of redshift. The results are
written to a new file with the same filename as the raw catalogue, where ‘ final’ is appended to
the filename 6.3.
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6. Generating the Cluster Catalogue

# RA DE z M

91.0367 -31.0818 0.4747 1.515e+13

41.8705 -24.2324 0.4922 3.528e+14

65.9683 -34.0029 0.5226 1.539e+13

174.6393 -53.8424 0.5394 1.387e+13

173.1282 -5.0177 0.4937 2.127e+14

204.7508 57.4937 0.5517 1.955e+13

67.0025 44.8450 0.5285 1.249e+13

16.8363 13.5617 0.4644 1.018e+13

281.6464 76.9146 0.4896 1.007e+13

53.1876 -47.3649 0.4957 1.645e+13
...

...
...

...

Figure 6.5:Example for an ASCII-file containing the raw catalogue. The first column contains the right
ascension, the second the declination, the third the redshift and the fourth the mass.

6.10. C-program simput converter

The SIMPUT-Converter generates a FITS-file (Hanisch et al.,2001) in the SIMPUT-format
(Schmid et al.) from the ASCII catalogue file. As was described in Sect. 5, in the SIMPUT
file every object entry contains a link to an image. Thesimputconverterlinks the object to a
XMM-Newton image of a cluster and to a cluster spectrum. Because the morphology of the
clusters differs from object to object, therefore the image linked to every object is randomly
selected from a list of clusters. The size of the cluster is defined via theIMGSCAL entry in the
FITS-table. This entry denotes a linear scaling factor of the image. Since the apparent diameter
of an object with diameterd is given by Eq. 2.39 asθ = d

DA
, under the assumption that the

clusters on the images have all the same diameterd0 and appear at an angleθ0 = d0/DA

(

zimg

)

,
theIMGSCAL factor is given as

IMGSCAL =
θobject

θ0
=

DA (z0)

DA

(

zobject

) (6.20)

where the index 0 denotes the values of theXMM-Newton images and ‘object’ those of the
object from the simulated catalogue. The bolometric flux from the catalogue is given as an
entry in the SIMPUT-objectlist.

6.11. Results

For the catalogues presented in this section, theWMAP seven-year parameters were used (see
Sect. 2.4). Additionally,Ωr = 0,Ω = 1 (Peacock, 1999) andT0 = 2.726 (Mather et al., 1994)
were used. A minimal cluster mass of 1013 M⊙ was assumed. If the cluster is too small, the flux
is too weak for eROSITA to detect the cluster.
As grid size, 98 nodes for the redshift and 1500 logarithmically spaced nodes for the mass were
selected. This is a sufficient size, as is discussed in 6.12.
To compare the object list with the mass function, a normalized histogram of the object masses
was plotted against the normalized mass function in Fig. 6.8. The histogram was generated for
0.36≤ z ≤ 0.46, while the mass function was calculated forz = 0.41.
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6.12. Discussion

# RA DE z F DA

91.0367 -31.0818 0.4747 1.15234088498e-11 1230.9224

41.8705 -24.2324 0.4922 1.70808941847e-09 1255.8621

65.9683 -34.0029 0.5226 9.8414356384e-12 1296.937

174.6393 -53.8424 0.5394 7.84400427855e-12 1318.4666

173.1282 -5.0177 0.4937 7.51921988729e-10 1257.9549

204.7508 57.4937 0.5517 1.30697583118e-11 1333.7232

67.0025 44.845 0.5285 6.88479071884e-12 1304.5904

16.8363 13.5617 0.4644 6.33792738882e-12 1215.7827

281.6464 76.9146 0.4896 5.6267973834e-12 1252.218

53.1876 -47.3649 0.4957 1.21100307566e-11 1260.7344
...

...
...

...
...

Figure 6.6:Example for an ASCII-file containing the final catalogue The columns contain from the left
to the right: Right ascension, declination, redshift, flux in erg s−1 cm−2, Angular diameter distance in
Mpc.

Figure 6.7:XMM-Newton image of the cluster ACO 85, as it is used in the object catalogue. SIMBAD
gives a redshift ofz = 0.0521 for this cluster.

6.12. Discussion

Before using the Monte Carlo code for the simulation of the eROSITA survey it is required
to validate the code. This was done by comparing it with the results from Tinker et al. (2008)
for z = 0 and by comparing it with a grid of the mass function providedby Thomas Reiprich
(private communication). For a comparison with Tinker et al. (2008), the calculation was per-
formed with an overdensity relative to the mean density of the universe. Apart from this single
case, the overdensity is denoted with respect to the Critical Density. Fig. 6.9 shows the plot
from Tinker et al. (2008) for∆ = 200, 800, and 3200 atz = 0. Tinker et al. (2008) define the
overdensity∆ with respect to the mean matter density and use theWMAP1 cosmological pa-
rameters. These parameters were adopted for the calculations performed for the comparison.
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6. Generating the Cluster Catalogue

1013 1014 1015

M/M
�

10-19

10-18

10-17

10-16

10-15

10-14

10-13

10-12

�dn

d
M

�normalized

calculated mass function
simulation data

z=0.41

Figure 6.8: Normalized mass histogram for all objects with 0.36 ≤ z ≤ 0.46, plotted against the
normalized cluster mass function

The line in blue represents the calculations performed withthe code presented in this thesis.
The agreement is excellent.
Because of the redshift evolution of the mass function it is not sufficient to test the code for
z = 0. To test the function up toz = 2.5, a comparison to a grid of the mass function provided
by Thomas Reiprich was performed (Fig. 6.10). There are deviations up to∼ 30%, which can
probably be explained by the use of another transfer function (own calculations: Bardeen et al.
(1986), Reiprich: Eisenstein & Hu (1998)), and ny use of the approximation formulae for the fit
parameter in the mass function as shown in Sect. 6.3 instead of the splines given by Tinker et al.
(2008) as an alternative way to calculate the redshift evolution. The systematics in the deviations
speak for this explanation, too. However, for the first teststhe deviations are acceptable, even
if improvements are desirable. Another test was performed to check the quality of the grid.
For random values for the redshift in the interval 0≤ z ≤ 2.5 and for the mass in the interval
1013 M⊙ ≤ z ≤ 1017, the mass function was as well calculated directly as interpolated from a
grid with 98× 1500 nodes. For high masses, the deviation between the values obtained from
interpolating the grid and the actual value increases, because the distance of the nodes increases
(as mentioned above, they are spaced logarithmically), while simultaneously the dynamic of
the mass function increases because the function is well over the exponential cutoff. So all
values with

(

dN
dM

)

< 10−8max
(

dN
dM

)

in the interval 1013 M⊙ ≤ M ≤ 1017 M⊙, 0 ≤ z ≤ 2.5 where
discarded for the evaluation of the grid quality. This is reasonable, because for values of the
mass function this small compared to the maximal value virtually no clusters exist. The result
of the comparison is shown in Fig. 6.11. For almost all valuesobtained by interpolation, the
relative deviation to the values calculated directly is smaller than 1%. ForM & 2 · 1015 M⊙ all
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6.12. Discussion

Figure 6.9: Mass function from Tinker et al. (2008) for the overdensities ∆ = 200, ∆ = 800, and
∆ = 3200 (top to bottom). The calculations performed for∆ = 800 with the code presented in this thesis
are shown in blue. The overdenity was defined with respect to the mean matter density, and theWMAP1
cosmological parameters were used as by Tinker et al. (2008). The calculations agree excellently.

values are discarded by the mechanism described above.
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6. Generating the Cluster Catalogue
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Figure 6.10:Comparison between mass function values obtained by linearinterpolation of the reference
grid obtained by Thomas Reiprich (private communication) and the grid calculated with the own code.
The deviations go up to∼ 30%, which is probably due to the use of another transfer function and the
interpolation formulae for the fit parameters (Tinker et al., 2008) instead of the splines (Tinker et al.,
2008).
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Figure 6.11:Comparison between mass function values obtained by linearinterpolation of the grid and
the values calculated directly. For almost all of the randomly generated points the deviation is smaller
than 1% (marked by the blue line).
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7. Summary and Conclusion

In this thesis, a Monte Carlo algorithm for the generation ofa mock catalogue of galaxy clusters
was presented. For this purpose, the halo mass function fromTinker et al. (2008) was used. The
function reproduces the data obtained byN-body simulations up to redshifts ofz ≤ 2 and for
halo masses in the range 1011h−1M⊙ ≤ M ≤ 1015h−1 M⊙ (Tinker et al., 2008). The simulation
presented here started at a lower limit of 1013 M⊙. The mass function can be well described by
a power law up to a cutoff mass at roughly 1015 M⊙. The exact cutoff position depends on the
redshift. Because for higher masses no clusters exist it wasregarded as permissible to extend
the mass range in our simulation over the 1015h−1 M⊙ for testing purposes. Up to a redshift of
2.5, the integration of the mass function gives about 23 million halos with masses≤ 1013 M⊙.
With a Monte Carlo algorithm, the celestial coordinates, redshift and mass were sampled. From
these variables the observables required to create a SIMPUTobject list were derived: the cluster
luminosity with the mass-luminosity relation from Vikhlinin et al. (2009) and a linear scaling
factor for theXMM-Newton images. Each object was written to a SIMPUT file together with
the link to anXMM-Newton image of a galaxy cluster scaled in size according to the redshift.
This SIMPUT catalogue is used as an input catalogue for theSIXT simulation software pre-
sented in Sect. 5. An examination of the simulation results showed that the reproduction of the
mass function was successfull.

8. Outlook

Up to now, the SIMPUT catalogue was not yet used to run a simulation. This will be done soon,
and the results will be compared with the estimates of 50,000− 100,000 observed clusters by,
e.g., Predehl et al. (2010). Further, it is important to implement the correlation function, because
it contains important cosmological information, as was shown in Sect. 3.6. Because obtaining
this information is a main objective of eROSITA, it is important to include this aspect in the
simulation. Up to now the correlation was neglected becauseit requires a lot of calculation
time, because the distance to each object which was already sampled has to be calculated and
inserted into the correlation function. As mentioned above, a way out of this would be only
to account for the objects in neighbouring redshift intervals, where the size of the interval has
to be selected in such a way that there is virtually no correlation for the objects not taken into
account. The numerical effort could be further decreased by partitioning the spherical shells, so
that not all objects in one shell have to be used for correlation.
Another point which should be reviewed is the scaling of theXMM-Newton images: Because
the images show clusters with different masses, the intrinsic diameter of the clusters is vary-
ing and Eq. 6.20 does not hold strictly. It is easily possibleto implement a mass-dependent
correction factor, because the radius scales asM1/3 according to Eq. 3.7.
Since sources weaker than the flux limit of eROSITA are not observed, the total number of
objects can be reduced by selecting only the objects over a flux limit for the catalogue. For this,
a redshift-dependent mass limit has to be deduced and implemented in the code.
Small improvements in precision of the mass function could be done by using the splines from
Tinker et al. (2008) for the calculation of the parameters inthe mass function, and by using, as
was suggested by Thomas Reiprich, the mass function from Eisenstein & Hu (1998) instead of
Bardeen et al. (1986). Summing up, a suitable basis exists, but there is still enough room for
improvements.
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Fürmetz M., Predehl P., Eder J., Tiedemann L., 2010, In: Space Telescopes and Instrumentation
2010: Ultraviolet to Gamma Ray. Proc. SPIE 7732

Hanisch R.J., Farris A., Greisen E.W., et al., 2001, Astron.Astrophys. 376, 359

Hunter J.D., 2007, Matplotlib: A 2D Graphics Environment

Jones E., Oliphant T., Peterson P., et al., 2001, SciPy: Opensource scientific tools for Python

Komatsu E., Smith K.M., Dunkley J., et al., 2011, Astrophys.J., Suppl. Ser. 192, 18

Kravtsov A.V., Klypin A.A., Khokhlov A.M., 1997, Astrophys. J., Suppl. Ser. 111, 73

Mather J.C., Cheng E.S., Cottingham D.A., et al., 1994, Astrophys. J. 420, 439

Mattig W., 1958, Astron. Nachr. 284, 109

Meidinger N., Andritschke R., Ebermayer S., et al., 2009, In: UV, X-Ray, and Gamma-Ray
Space Instrumentation for Astronomy XVI. Proc. SPIE 7435

Misner C.W., Thorne K.S., Wheeler J.A., 1973, Gravitation (Physics Series), W. H. Freeman

55



REFERENCES

Mo H., van den Bosch F., White S., 2010, Galaxy Formation and Evolution, Cambridge
University Press, Cambridge

Pavlinsky M., Sunyaev R., Churazov E., et al., 2009, In: Optics for EUV, X-Ray, and Gamma-
Ray Astronomy IV. Proc. SPIE 7437

Peacock J.A., 1999, Cosmological Physics, Cambridge University Press, Cambridge

Peebles P.J.E., 1993, Principles of Physical Cosmology, Princeton University Press, Princeton

Pence W.D., Chiappetti L., Page C.G., et al., 2010, Astron. Astrophys. 524, A42+

Perlmutter S., Schmidt B.P., 2003, In: Supernovae and Gamma-Ray Bursters. Lecture Notes in
Physics, Springer

Piessens R., de Doncker-Kapenga E., überhuber C., KahanerD., 1983, QUADPACK: A Sub-
routine Package for Automatic Integration, Springer Series in Computational Mathematics,
Springer, Berlin

Predehl P., 1999, In: O. H. Siegmund & K. A. Flanagan (ed.) EUV, X-Ray, and Gamma-Ray
Instrumentation for Astronomy X. Proc. SPIE 3765, p.172
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A. List of Acronyms

A. List of Acronyms

AGN Active Galactic Nucleus

ART-XC Astronomical Roentgen Telescope – X-ray Concentrator

CCD Charge Coupled Device

CDF Cumulative Distribution Function

CMB Cosmic Microwave Background

COBE COsmic Background Explorer

DLR Deutsches Zentrum für Luft- und Raumfahrt

eROSITA extended ROentgen Survey with an Imaging Telescope Array

FITS Flexible Image Transport System

HEW Half Energy Width

IKI Space Research Institute of the Russian Academy of Sciences(originally: IKI RAN)

ICM Intra Cluster Medium

ISS International Space Station

MPE Max-Planck Institut für extraterrestrische Physik

NumPy Numerical Python

PDF Probabilty Density Function

PSF Point Spread Function

ROSITA ROentgen Survey with an Imaging Telescope Array

SciPy Scientific Python

SIMPUT Simulation Input

SIXT Simulation of X-ray Telescopes

SRG Spectrum-Roentgen-Gamma

WMAP Wilkinson Microwave Anisotropy Probe

XMM X-ray Multi-Mirror Mission
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B. Typographic Conventions

The following typographic conventions were used in this thesis:

• Names of satellites and satellite missions are typeset inslanted font(e.g., Spectrum-
Roentgen-Gamma)

• Names of programs and software libraries are typeset inslanted font(e.g.,SIXT)

• Function names are typeset initalic font (e.g.,sample catalogue)

• Parameters and corresponding values are typeset intypewriter font (e.g.,Omega m)
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