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Abstract

I investigate the accretion powered High Mass X-ray Binary 4U 1907 + 09. Based on 21
observations with a total exposure time of 34 ks provided by the proportional counter
array (PCA) on board of the Rossi X-ray Timing Explorer (RXTE) it was attempted to
calculate the pulse period evolution in the epoch from 54705.4 MJD and 55387.8 MJD.
In continuation to the results of Inam et al. (2009) also the phase connection method
was used, but failed to find a consistent model. An attempt to compensate the lack of a
proper reference period by variate it also failed. Therefore the conclusion is that there is
a major change in the pulse period evolution, i.e. the real pulse period deviates from
the model and accordingly from the predicted progression of Inam et al. (2009). Also
another torque reversal is possible.
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1 Introduction1

The main objective of this bachelor thesis is to estimate the pulse periods of the X-Ray
binary 4U 1907 + 09 in the period of August 2008 until July 2010 using data from the
Rossi X-ray Timing Explorer (RXTE). To some extent this is the continuation of the
measurements of Inam et al. (2009). In the first section an overview of binary systems
and in particular of 4U 1907 + 09 is given. After presenting the used observation
instrument (RXTE/PCA) in section 2 the data reduction and selection is discussed
(section 3). Afterwards in section 4 the main analysis method (phase connection) will be
explained and applied to 4U 1907 + 09 followed by the attempt to approach a problem
occurring during the analysis. This Thesis closes with a summary of its conclusions in
section 5.

4U 1907 + 09 is a High Mass X-ray Binary (HMXB), which was discovered by the
Uhuru survey (Giacconi et al., 1971), consisting of a neutron star and a main sequence
companion star. It has evolved from a binary star system, in which the more massive
star has undergone the main sequence much faster than its companion and finished its
life in a supernova, leaving today’s neutron star behind.
There are several possible ways for the creation of a neutron star in a binary system,
but the most likely scenario for 4U 1907 + 09 is a supernova of type II, which requires
a progenitor with a mass of at least 8 M� and less then 20 M� (Smartt, 2009). In the
final stages of its evolution the progenitor grows and may exceed its Roche lobe causing
a mass transfer onto the companion star. The size of the Roche lobe depends on the
mass ratio, the distance between the two stars, and the angular velocity. Only if the
core of the progenitor still has a mass of more then 3 M� the supernova explosion can
take place. In this case most of the remaining stellar mass composing the envelope
is blown away during the supernova explosion itself leaving only the collapsed core
mainly consisting of neutrons generated by the inverse β decay. This neutron star
usually has a mass of 1.4 M� inside a radius of 10 km and a mean density of 1014 g
cm−3. Further important characteristics are its magnetic field, which is the conserved
magnetic field of the progenitor shrunk into the neutron star and therefore can be very
strong (up to 1012G), for 4U 1907 + 09 it is 2.1−2.5 ·1012 G (Cusumano 1998). Its angular
momentum is also conserved and accordingly its rotation period lying in broad regime
from milliseconds to a few minutes, which will be discussed later in more detail and is
around 440 s for 4U 1907 + 09. But there are still many open question, e.g. the detailed
structure of neutron stars, which is suggested to consist of a more or less solid crust and
a superfluid core.
4U 1907 + 09 is a persistent accretion-powered X-ray source in an eccentric (e = 0.28)
Orbit of 8.38 days (in ’t Zand et al., 1998) around its companion. To see X-ray emission
there must be a mass transfer onto the neutron star, which is provided by the companion.
This transfer can be due to different ways. As already mentioned it is possible that
the companion can overfill its Roch lobe, i.e. the material of the outer layers are not
gravitationally bound to the star anymore and will fall into the potential trough of the
compact object. This mass transfer happens by forming a material stream over the inner
Lagrangian point. But this material can not be captured directly by the compact object
due to the angular momentum given by the donator star and hence an accretion disk
will be developed. In that disk the angular momentum is dissipated through viscous
1Unless otherwise noted the content of this section is based on Kreykenbohm (2004)
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Figure 1: Double peaked orbital light curve of 4U 1907 + 09 calculated with the period
fold method using an orbital period of 8.3757 d and a zero phase at periastron (Kostka
& Leahy, 2010) based on data from the RXTE All-Sky Monitor (1.0−12.1 keV) in the
epoch from 50088.38 until 55439.53 MJD.

motion, i.e. it is transported outward and radiated away.
Another mass loss process is the stellar wind, which is most intense for massive stars
and is 7 · 10−6 M� yr−1 for the companion of 4U 1907 + 09 (Fritz et al., 2006). As a
first approximation this wind is emitted spherically symmetric, so that only a tiny
fraction can be captured by the compact object, which, however, is enough to explain
the observed luminosities. This factor, usually in order of 0.01 % of the mass loss of the
star, is dependent on the size of the donator star, i.e. for increasing radius the fraction is
decreasing, the mass ratio of the two stars and their binary separation. Not only the
material that directly moves towards the compact object, but also material in a certain
radius around it gets accreted, where its gravitational pull masters the momentum
of the wind. Because there is also angular momentum involved, the formation of an
accretion disk is not unlikely, even though the detailed structure is very complex and
differs from that of the Roche lobe (see Bondi & Hoyle (1944) for detailed description of
this mechanism). Although this process is very inefficient, the small fraction of material,
which gets captured by the compact object exhibits a sufficient amount of energy to
power the X-ray source.
Another way to achieve a sufficient mass transfer is attributed to a so called Be-stars.
Those stars are very fast rotating, which arise from the angular momentum captured
with the material of the progenitor of the compact object during its evolution, in which
it had exceeded the Roche lobe. This fast rotation is believed to cause the formation of
an equatorial decretion torus enlarging the effective radius of the star in the equatorial
plane. Due to an eccentric orbit of the compact object it can transit that torus at its
periastron and therefore accrete material. Additionally it is possible that a combination
or even all three of the processes above are taking place simultaneous.
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The companion of 4U 1907 + 09 was first thought to be a Be-star due to the two orbital
phase locked peaks seen in the light curve in Figure 1. The stable and bright primary
flare is locked to an orbital phase near periastron, the secondary near apastron and varies
from orbit to orbit in a large range and is less significant than the primary. Makishima
et al. (1984) suggested that this is due to a slightly inclination angle of the neutron star
relative to the decretion torus of the companion. Assuming that the binary separation is
less than the distance to the two intercept points of those planes these are two potential
traverse points, which are leading to the observed periodic increase in the light curve.
The eccentric orbit then explains the difference in brightness, i.e. the primary traverse
point is closer to the star than the the second one compared to two identical flares with
a none eccentric orbit. This explanation was supported by the observed strong Hα
emission line typical for Be-stars.
However, Cox et al. (2005) have shown that the companion of 4U 1907 + 09 is more
likely to be a O8-O9 Ia supergiant and determined an effective temperature of 30500 K,
a radius of 26 R� and a luminosity of 5 ·105 L�. They also estimated the distance to
the binary system to be ∼ 5 kpc excluding the possibility of the Be-star scenario, which
would requiring a distance smaller than 1.5 kpc. Furthermore the huge mass loss rate
of the stellar companion is of the order of a magnitude larger than the typical rate for
Be-stars. This theory, however, does not answer the question for the reason for the
double peaked light curve.
Kostka & Leahy (2010) however, came up with another suggestion for such a double
peaked light curve. They considered a stream and wind model, which, in contrast
to wind and disk models, could explain the periodic modulation of the light curve.
Their model was also able to explain the light curve of the HMXB GX 301-2 (Leahy &
Kostka, 2008), which is sufficiently comparable to 4U 1907 + 09. That model describes
a stream, which originates at the closet point to the neutron star on the surface of the
stellar companion (Fig. 2).2

The stream model is calculated by accounting the radial and azimuthal velocity of the
stream, in which the radial velocity is assumed to follow the same profile as the stellar
wind and the azimuthal velocity is given by orbital angular velocity, which varies due to
the eccentric orbit. With respect to the direction of the orbital velocity the stream bends
backwards like the water stream of an unevenly rotating sprinkler. It is also comparable
to a corotating Archimedes spiral. The opening angle of the stream increases as the
stellar wind velocity increases or the orbital angular momentum decreases. The stream
itself spreads with a constant velocity and is assumed to have a Gaussian density profile.
Applying this model to the light curve of 4U 1907 + 09 (Fig. 3), the luminosity dip at
phase ∼ 0.15 is due to the maximal separation of the neutron star and the accretion
stream. Towards phase ∼ 0.3 the stream catches up, but does not pass causing the
extended peak seen between phase 0.3 and 0.7. As the neutron star accelerates towards
periastron traveling down the accretion stream, i.e. increasing stream and wind density,
the luminosity rises again peaking at a phase of 0.95. Also notable is the uneven
influence of the wind and the stream model, which contributes almost all the luminosity.

Having discussed the mass transfer mechanisms, the accretion process onto the neutron
star itself will be analyzed. Dealing with plasma and strong magnetic fields as for 4U
1907 + 09 with 2.1−2.5 ·1012 G, it is essential to take it into account. As mentioned the

2A full simulated movie for the HMXB GX 301-2, which is comparable to 4U 1907 + 09 can be found at
www.iras.ucalgary.ca/~leahy/

www.iras.ucalgary.ca/~leahy/
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Figure 2: Binary geometry including the mid-line of the stream (dashed line) and
neutron star (filled circle) on its orbit (dotted line) around the companion star (open
circle) at four orbital phases: 0.15 (top-left), 0.35 (top-right), 0.6 (bottom-left) and 0.95
(bottom-right) (Kostka & Leahy, 2010).

strong magnetic fields arise from the progenitor. In most cases the magnetic field of
solitary neutron stars will not or only slowly decay, due to the lack of external influences.
But in binary systems, like 4U 1907 + 09, it is suggested that a long lasting and strong
accretion can heat up the surface of the neutron star decreasing the conductivity, which
causes a decrease in the strength of the magnetic field. It is also possible that a spin
down due to accretion can cause a weakening of the magnetic field.
The magnetic field is assumed to have a dipole geometry and even though it decreases
with r−3, where r is the distance from the neutron star, it has a great influence on its
vicinity. The magnetic field provides a pressure, which opposes the ram pressure from
the infalling plasma. The distance from the neutron star, at which both are equal is the
so called Alfvén radius or magnetospheric radius rm (Eq. 1).

rm =

(
µ4

8 ·GM ·Ṁ2

)1/7

(1)

It expands with an increasingly magnetic moment µ and a decreasing accretion rate
Ṁ and neutron star mass M. At the Alfvén radius the infalling plasma is forced to
follow the magnetic field lines, no matter where it originates (from a disk, stellar wind
or gas stream). But this can only take place, if the Alfvén radius is smaller then the
co-rotation radius rco, which is the distance from the neutron star at which Keplerian
velocity equals the angular velocity of the magnetosphere and accordingly the angular
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Figure 3: Model fit to the RXTE/ASM light curve (Kostka & Leahy, 2010).

velocity of the neutron star, as they form a solid rotator. The faster the rotation period of
the neutron star the small is the co-rotation radius. In the other case the material had to
move faster then the Keplerian velocity and therefore would not be able to be accreted
leading to the switch-off of the X-ray emission. In the situation of almost equal radii
rco ≈ rm variations in the Ṁ can cause the X-ray emission getting switched on and off. If
the Alfvén radius is much greater then the co-rotation radius this centrifugal barrier
even causes the plasma to be expelled, which is the so called propeller effect. Figure 4
shows the geometry of such a system for the case of the accretion from an accretion disk.
The transition region, in which the material is forced to move along the magnetic field
lines is known as the boundary layer. Here there Alfvén radius describes also the inner
edge of the accretion disk.
The trajectory of the material following the magnetic field lines will end up abruptly on
the surface of the neutron star, where the magnetic field lines submerge (the magnetic
poles). The material is stopped by Coulomb forces and deposit forming the polar caps.
A hollow cylindrical geometry of the accretion column (Fig. 5 right) is more likely then
the simple assumption of a solid accretion column (Fig. 5 left). The hollow cylinder is
due to the coupling of the infalling plasma to magnetic field lines of a specific strength,
leaving no material, which could couple to stronger lines closer to the neutron star. For
weaker magnetic fields there is just no coupling. As the magnetic field is assumed to be
a symmetric dipole the material will hit the surface in a narrow circular region around
the pole.
In contrast to the geometry of the accretion column, the deceleration process is dependent
on the accretion rate Ṁ. A high accretion rate will cause the formation of a shock front
above the point of impact, whose height depends on Ṁ and can reach several neutron
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Figure 4: Geometry of a strongly magnetized neutron star (black circle) accreting from
an accretion disk (shaded area), which is disrupted in the boundary layer (solid gray
area). The plasma then follows the magnetic field lines (Kuster, 2004).

star radii. It is caused by the interaction of emitted photons with the very dense plasma
decelerating the infalling supersonic plasma to subsonic speeds heating up the plasma.
The so heated plasma emits X-ray photons, which only can escape perpendicular to
the accretion column, describing a broad, fan beam like emission geometry (Fig. 6 left)
as the accretion column is opaque. On the other hand, if Ṁ is not high enough to
form a shock front, i.e. the density in the accretion column is to low, the plasma will
be stopped not until it reaches the surface, where X-ray photons will be produced by
thermal bremsstrahlung and Compton cooling, which is radiated parallel to the column
in a narrow pencil beam (Fig. 6 right; see also Becker & Wolff (2005)).
Considering an offset of the magnetic axis relative to the rotational axis, the thereby
performed precession causes the X-ray emission region, the accretion column and
mound at the poles, crossing the line of sight periodically. As that region emits in a
broad angle a double peaked pulse profile can be seen on almost every viewing angle,
since both poles occur during one rotation (also known as the lighthouse effect).

Another major aspect, which comes along with accretion, was not addressed so far,
the transfer of angular momentum from the accreted material onto the neutron star.
As almost all the accreted material has some angular momentum, independent where
it originates, be it from stellar wind, accretion stream or disk. This transfer leads to
changes in the rotation period and accordingly in the pulse period, which is observable
in the X-ray band.
Since the theories about the mechanisms causing these period changes are rather
complex, not well understood, and depend on the accretion process, only a brief



9

Sinking Gas
Column

Magnetic Field

Lines

Magnetic Pole of

the Neutron Star

Shock Wave

Figure 5: Accretion column above the magnetic poles a highly magnetized neutron star.
A simple solid cylindrical column model on the left, on the right a hollow cylindrical
accretion column, in which the width of the wall is small related to its diameter (Kuster,
2004).
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Figure 6: Schematic of the deceleration and radiation process depending on the accretion
rate Ṁ. (Kretschmar, 1996).
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Figure 7: History of the pulse period measurements. For a detailed list of data see
appendix 4. Figure from Inam et al. (2009).

overview will be given for a few of them and only those, which are applicable for 4U
1907 + 09. Figure 7 shows the history of the pulse period for 4U 1907 + 09 between
August 1983 and August 2008. Until the end of 1997 4U 1907 + 09 had a steady spin
down rate of ṖPulse = +0.230 s yr−1, which then got cut in half and ended in a turnover
in 2003. After that first torque reversal a short epoch of spinning up with a rate of
ṖPulse = −0.158 s yr−1 lasting at least until mid of 2005 (Fritz et al., 2006). After a second
torque reversal between mid 2005 and mid 2007, which was not observed directly,
leading again to a spin down rate with a comparable value to that between 1983 and
1997 (Inam et al., 2009). Also remarkable is that the X-ray luminosity of 4U 1907+09 has
not changed significantly especially during the two torque reversals.
But what is the mechanism behind this behavior ?
The traditional model (Ghosh & Lamb (1979) and references therein) is based on a
system, like it is shown in Figure 4, where the net torque transfered from a prograde
accretion disk onto the neutron star is given by

N = n(ωs)Ṁ
√

GMr0 (2)

where M is the mass of the neutron star, r0 the distance to the outer edge of the boundary
layer, ωs the so called fastness parameter defined by the ratio of angular velocity of
the neutron star and the Keplerian velocity at r0. The dimensionless torque n(ωs) is
mainly dependent on the fastness parameter, which is expected to be small (ωs� 1) for
slow rotators like 4U 1907 + 09. Therefore n(ωs) is positive (see Fig. 3 in Ghosh & Lamb
(1979)) and nearly constant for a large range of Ṁ (see Fig. 5 in Ghosh & Lamb (1979)). A
drastic decrease in Ṁ may could cause n(ωs) to become negative, but also a drop of the
X-ray flux and additionally would imply a much smaller distance to 4U 1907 + 09 of the
order of magnitude of 0.5 kpc, which was ruled out by the measurements of the stellar
companion (Cox et al., 2005). Otherwise a significant growth of the magnetosphere
may would lead to negative torques, which is also very unlikely to happen. Hence this
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Figure 8: Accretion model provided by Perna et al. (2006), where Ṁ∗ is the mass inflow
rate provided by the companion star, and Ṁacc, Ṁrec and Ṁeje are, respectively, the
accretion, recycling and ejection rate.

simple model would imply 4U 1907 + 09, as a slow rotator, to mainly spin up or to show
luminosity dips during the torque reversals, which disagrees with the observations.
Furthermore in ’t Zand et al. (1998) estimated the magnetospheric radius to be rm ∼

4300 km and a co-rotation radius of rco ∼ 12000 km. Those values are also in contrary to
the model above, as it assume the system to be near equilibrium ( rm ∼ rco) and moving
out rm would require a magnetic field of the order of 1014 G. Nevertheless in ’t Zand et al.
(1998) take the existence of quasi-periodic oscillations occurring in their observations as
a strong evidence for the presence of an accretion disk with a small inner disk radius.
And assuming that disk to be retrograde and transient with an duty cycle of a few
percent could explain the long-term spin down rate. This torquing, however, would
come along with an strong increase in the X-ray luminosity. But it is still difficult to
explain the torque reversals of 4U 1907 + 09, as the different spin up and down rates
would correspond to different duty cycles becoming noticeable in a change of the X-ray
flux contradicting the observations.
As seen there is a need for a model, which reconciles the torque reversals without the
need of changes in the X-ray flux. Such a model is provided by Perna et al. (2006). They
suggest a more realistic scenario in the manner that they consider the magnetic field to
be off axis by an angle χ with respect to the rotation axis. The further assumption of an
equatorial prograde accretion disk makes it possible that the propeller effect is locally at
work in one part of the disk, while in the other part material still gets accreted. This is
due to the dependency of the magnetic field strength of the azimuthal angle leading to
an asymmetric magnetosphere, i.e. that there are regions on a ring on the disk where
rm . rco is fulfilled as well as regions with rm & rco. Additionally only a fraction of the
expelled material possess enough energy to leave the system, the other fraction has not
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and falls back onto the disk getting recycled (Fig. 8).
Therefore the recycling of material can cause variations in the rate of accretion without
any changes in the inflow rate provided by the companion. Furthermore the authors
pointed out that in the case of χ > χcrit, where χcrit is between 25◦ an 45◦, “periodic
variations between spin-up and spin-down states take place without requiring the presence of any
external, periodic, and fine-tuned perturbation“. This model would reconcile the observed
pulse period history of 4U 1907 + 09 with its two torque reversals within a short time, if
there was not the prediction of the model that torque reversals are a rare events. But as
it is stated this model is very simplified as it does not account variations of Ṁ, which
can occur e.g. due to an eccentric orbit, like in 4U 1907 + 09, or other sources of torque,
such as magnetic stress, like Ghosh & Lamb (1979) did in their model. Also a more
realistic accretion disk, which are warping and precessing, should be assumed.
In the end there is no totally satisfying model, which could explain the evolution of
the pulse period. Beyond that all mentioned models relying strictly on the existence of
an accretion disk, but according to the conclusions of Kostka & Leahy (2010) that the
measurements of Rivers et al. (2010) rule out the presence of an accretion disk in 4U
1907 + 09 all of these are scotched. Although their wind and stream accretion model
can nicely reconcile the double humped orbital light curve they still have to provide an
explanation for the pulse period evolution or it has to be shown, that it is consistent
with the existence of an accretion disk. All this requires further investigations.
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2 The Rossi X-ray Timing Explorer (RXTE)

As the aim is to estimate the trend of the pulse period of 4U 1907+09 X-ray measurements
are needed, but as such radiation is not able to reach the Earth the observations can
only be accomplished properly by instruments like balloons, rockets, and satellites, in
the upper layers of the atmosphere. Furthermore the imaging of X-rays is not as easy
as in the optical band, because there is no material with a large enough angle of total
reflection for X-rays. The 1995 launched Rossi X-ray Timing Explorer (RXTE) is based
on the collimator technique to measure X-ray radiation, which is the simplest method
besides the coded mask and the nested paraboloidal/hyperboloidal reflectors used by
e.g., INTEGRAL and XMM-Newton, respectively. The basic composition of a collimator
is simple: on top of a detector there are a bunch of tubes consisting of absorbing material
limiting the field of view.
RXTE (Fig. 9) harbors three different detectors, namely the proportional counter array
(PCA), the high energy X-ray timing experiment (HEXTE) and the all sky monitor (ASM).
The PCA, which is used in this thesis exclusively, consists of five identical coaligned
Xenon proportional counter units (PCUs; Fig. 10) with a field of view of 1 degree and
nominally covers an energy range from 2 to 60 keV (or rather 2 to 100 keV due to voltage
changes to improve detectors lifetime). But as the effective area of the PCA drops down
from ∼ 6000 cm2 between 6 keV and 10 keV to less than 1 cm2 at 34.6 keV, due to the
Xenon edge, the recommended energy range is between 2 keV to ∼ 60 keV. (Fritz (2008),
Kreykenbohm (2004))

ASM

PCA

(1 of 5)

HEXTE

A B

Figure 9: Schematic of RXTE spacecraft
with its two HEXTE clusters at the right,
the PCA consisting of five coaligned
PCUs in the middle and All Sky Monitor
(ASM) attached outside. Figure from
(Wilms, 1998).
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The spacecraft itself is on a low earth orbit (LEO) with an orbital period of 90 minutes.
The orbital altitude is small enough to go below the radiation and particle belts around
the earth (van Allen belts). Therefore RXTE is mainly protected against their influences.
Only in the region of the South Atlantic Anomaly (SAA), where a dent in the earths
magnetic field let particle penetrate closer to the ground, RXTE is endangered (detail
studies of the SAA see Fürst et al. (2009)). While passing this region the instruments on
board are shut off to prevent them being damaged.
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3 Observation and data reduction

The data, which will be analyzed in this work, are provided by the High Energy
Astrophysics Science Archive Research Center (HEASARC). The intention is to continue
the investigations of the evolution of the pulse period exhibited by 4U 1907 + 09 using a
method which was also used by Inam et al. (2009). The observations cover an epoch
from June 2007 (ObsID: 93036-01-01-00) until July 2010 (ObsID: 95350-01-14-00). The
data until August 2008 (ObsID: 93036-01-30-00) were already evaluated by Inam et al.
(2009).3 Nevertheless these data were also included, as they provide the possibility
to verify the correctness of the analysis method, which will be discussed below. An
overview of all observations is given in Table 5 in the appendix. They span a total
exposure time of 128 ks, in which each observation is between 0.73 ks and 2.76 ks long.
In the first step the data got extracted out of the raw data4, in which the energy
channels 0-4 are excluded as they cause conflicts with the GoodXenon extraction modus.
Therefore energy channels 5 corresponding to 1.95 keV (PCU0) and 2.06 keV (PCU1-4)
up to channel 255 corresponding to 126.87 keV (PCU0) and 117.86 keV (PCU1-4) were
extracted, although the accuracy of the higher energy channels is not very good, but as
only the lightcurves are of interest this does not matter.5 The time resolution was set to
1 s even though this is comparatively high with respect to the achievable resolution of
1 µs, but as the expected pulse period is in the order of 441 s it is sufficient and a smaller
resolution would also need much more storage and therefore more calculation time and
would have a worse signal to noise ratio.

Table 1: Binary orbit of 4U 1907 + 09

Parameter Symbol Value

Orbital period Porb 8.3753(1) days
Eccentricity e 0.28(4)
Orbital epoch Tπ/2 MJD 50134.76(6)
Longitude of periastron ω 330(7)◦

Projected semi-major axis length ax sin i/c 83(2) lt-s

Additionally a barycentric correction was directly applied during the extraction. Because
of the orbit of RXTE around the Earth and the Earth’s motion around the sun the precise
measured time has to be corrected for the light-travel difference, which are at maximum
16 minutes (for a time difference of a half year), and also for the Doppler effect. As this
trajectory is well known it can be corrected for. Of course this effect also occurs for the
orbital motion of 4U 1907 + 09. This binary correction was applied using the values
provided by in ’t Zand et al. (1998) and listed in Table 1.
After having extracted the data, of which the lightcurve for every observation can be seen
in Figure 24 in the appendix, the electron excess ratio occurring during each observation
was checked. There was no significant exceed of the recommend 0.1 threshold and

3The ObsIDs format is given by NNNNN-TT-VV-SS, where NNNNN is the proposal number, TT is the
target number, VV is the viewing number tracking the number of scheduled looks, and SS is the sequence
number identifying different pointings included in one viewing, which are all assigned by the Guest
Observer Facility (GOV).

4Raw data in the sense as they are provided by HEASARC.
5Values according to http://heasarc.gsfc.nasa.gov/docs/xte/e-c_table.html

http://heasarc.gsfc.nasa.gov/docs/xte/e-c_table.html
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Figure 11: Top: Combination of all lightcurves. Bottom: Combination of the mean
luminosity of every observation. Squares mark observations, which show a well defined
peak in the epoch fold, crosses mark the rest. Data until the vertical dashed gray line
were already evaluated by Inam et al. (2009). Both graphs are normalized respectively
the number of PCUs.

therefore no data had to be sorted out due to electron noise, which monitors possible
contaminations of the data with unintentional events.
A combination of all lightcurves is shown in Figure 11. The top graph is the simple
sequence of all observations, while in the bottom graph for clarity the mean luminosity
of every observation is shown. Note that every lightcurve was normalized to the number
of PCUs, which were active during the measurement.
It is obvious, that not all lightcurves (see appendix Fig. 24) are suited for the pulse period
estimation, as many do not show any periodic pulsation of the requested timescale.
Therefore another selection, besides the electron excess ratio, was applied as it is
described in the following.
For all lightcurves an epoch folding with a fold period between 380 s and 500 s was
carried out. Simple spoken the epoch fold technique cuts the given lightcurve into
intervals with a length of the chosen fold period and sums them up. The output is the
deviation (χ2) from a linear fit. The larger that output value is, the more probably is
it that the related fold period is the real pulse period. For more information on the
epoch fold method see Schwarzenberg-Czerny (1989), Leahy et al. (1983), Larsson (1996)
and Davies (1990). Those lightcurves, whose epoch fold possess a well defined peak
around the expected pulse period were taken into account for further calculations. This
selection was achieved by setting a threshold of 600 for the χ2 value of the epoch fold.
This value was adjusted manually by looking through all epoch folds and lowering the
threshold to a value, which would include all data with a well defined peak (see Fig. 12).
As it is shown in Figure 11 the selected data (squares) are mostly during bright phases
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Figure 12: Epoch fold and data selection example. Solid line corresponds to observation
#5, dashed line to observation #36 and dotted line to ObsID: 94036-01-08-00.

of 4U 1907 + 09, but also some data of less bright phases were selected, which would be
sorted out by a luminosity threshold even if those also exhibit a sufficient pulse period.
In Table 2 the selected observations, now spanning an exposure time of 64 ksec, are
listed with assigned observation numbers, which will be used for further references and
additionally in Figure 13 the epoch folds of these data are shown in a color-coded map.
On closer examination of Figure 13 it is obvious that a simply epoch fold is not able to
provide an acceptable pulse period as the peak is very broad and therefore it is afflicted
with a huge error in the order of magnitude of several seconds. The reason for this issue
is the short duration of each observation as they only include between 1.7 and 6.3 pulses.
But an improvement by combining observations is questionable as well due to the mean
separation of two weeks between each observation and a predicted change of almost
0.01 s in the pulse period during this time. Nevertheless an attempt was carried out
combining two adjacent observations ([1,2], [2,3] , . . . ).6 Contrary to the expectations
this attempt resulted in even worse epoch folds. Hence the observations were treated
individually.
Further it is notable that Inam et al. (2009) had the advantage of having 3 observations
within a week (see Tab. 5 first 3 observations), which they could use to achieve a good
pulse period. This is not the case for the new data set. Anyhow the duration and
separation of the observations were chosen, founded on the pulse period history of 4U
1907 + 09, such that the determination of the pulse period evolution should be possible
with the method explained in the next section.

6That kind of observation combination was probably used by Inam et al. (2009) for their evaluations, but
this was recognized lately so it was not applied in this thesis.
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Table 2: Observations meeting the selection criteria (see text).

# ObsID Date Duration #PCU
[DD.MM.YYYY] [MJD] [ks]

0 93036-01-01-00 29.06.2007 54280.6 1.90 3
1 93036-01-04-00 18.07.2007 54299.6 1.76 3
2 93036-01-07-00 03.09.2007 54346.2 2.06 2
3 93036-01-08-00 17.09.2007 54360.4 1.55 3
4 93036-01-10-00 15.10.2007 54388.5 1.77 3
5 93036-01-11-00 30.10.2007 54403.9 2.76 3
6 93036-01-12-00 13.11.2007 54418.0 1.79 3
7 93036-01-15-00 28.12.2007 54462.1 1.66 3
8 93036-01-16-00 13.01.2008 54478.7 2.00 2
9 93036-01-17-00 28.01.2008 54493.8 1.42 2

10 93036-01-19-00 28.02.2008 54525.0 1.65 3
11 93036-01-21-00 29.03.2008 54554.0 1.20 2
12 93036-01-22-00 13.04.2008 54569.1 1.36 2
13 93036-01-24-00 13.05.2008 54599.5 1.84 2
14 93036-01-27-00 27.06.2008 54644.4 2.35 2
15 93036-01-29-00 27.07.2008 54674.6 1.57 2
16 93036-01-30-00 11.08.2008 54689.5 1.88 2
17 93036-01-31-00 27.08.2008 54705.4 1.77 3
18 93036-01-35-00 25.10.2008 54764.4 1.54 2
19 93036-01-37-00 25.11.2008 54795.1 1.95 2
20 93036-01-38-00 09.12.2008 54809.2 2.23 2
21 93036-01-39-00 25.12.2008 54825.1 1.66 2
22 94036-01-02-00 23.01.2009 54854.2 1.37 2
23 94036-01-04-00 23.02.2009 54885.7 1.90 2
24 94036-01-06-00 24.03.2009 54914.3 0.94 1
25 94036-01-09-00 09.05.2009 54961.0 1.50 2
26 94036-01-11-00 07.06.2009 54989.5 1.80 1
27 94036-01-15-00 06.08.2009 55049.5 1.64 2
28 94036-01-16-00 21.08.2009 55064.3 1.81 2
29 94036-01-20-00 20.10.2009 55124.7 1.13 2
30 94036-01-21-00 04.11.2009 55139.3 1.61 2
31 94036-01-22-00 20.11.2009 55155.4 1.39 2
32 94036-01-24-00 19.12.2009 55184.1 1.92 2
33 95350-01-01-00 12.01.2010 55208.2 1.95 1
34 95350-01-03-00 09.02.2010 55237.0 1.84 2
35 95350-01-04-00 23.02.2010 55250.7 1.92 2
36 95350-01-06-00 22.03.2010 55277.3 1.12 2
37 95350-01-14-00 10.07.2010 55387.8 0.86 2
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Figure 13: Epoch folds of selected data presented in a color-coded map. The maximum
of each epoch fold is marked with a black bar. The chi square of the epoch fold output
was normalized respectively each maximum. In the top two panels above the white
panel show the sum of all epoch folds below (panel 0-37).
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4 Data analysis

As it was shown in the last section a simple epoch fold of a single observation or a
combination of observations is not useful. Therefore another method is required, which
is able to deal with the given data. The trick is not to measure each single pulse period,
but phase differences of the pulse profiles with respect to a fixed reference pulse profile.

4.1 Phase connection

The idea behind the phase connection is as follows. First consider a lightcurve with
a constant (Ṗ = 0) periodical peak represented by a dash-dotted line in Figure 14.
Additionally consider a signal with the same period, but which changes with time (Ṗ, 0)
illustrated by the dotted plus solid line with Ṗ = +0.015 (top) and Ṗ = −0.015 (bottom)
per period, while the first shown peak is taken as reference point. The further away
from the reference point the larger is the gap between the peak of the constant signal
and the corresponding Ṗ afflicted peak (in this case it is increasing quadratically) and
therefore it is more useful to set the reference point to a peak in the middle. The trick
now is to determine the value of this gap, which allows to reconstruct the non-constant
signal without knowing about the value of Ṗ.
Applying this basic idea to real observations, the first step is to choose one observation
out of the set, preferably in the middle of the covered epoch. For this observation,
however, an accurate pulse period is needed, which is used for a period fold for all
observations. A period fold simple cuts a lightcurve into pieces, whose length is the
given period and sums them up. In this way a pulse profile is created. Folding all
observation onto the same period Pref and onto the same reference time t0, which is
normally the point of time at which the reference observation started, leads to pulse
profiles with different phase offset ∆Φ. To a certain extent ∆Φ coincides with the gap
described above and therefore needs to be determined accurately, which can be achieved
for example with an one dimensional cross correlation, which was also used in this
work. But this comparison or any other method of course can only provide values in an
interval of the length of only one pulse, but the wanted gap can exceed this length.
This issue is also illustrated in Figure 14, in which peak I or accordingly pulse I overlaps
with the given constant signal per definition. Peak II, however, already visibly deviates
from the main period, but an attribution to the corresponding reference peak is still
possible even if only phase [4,5[ is observed. In contrast peak III drifted into the
next/previous phase interval and therefore an exact attribution is not possible without
knowing how many pulses had elapsed.
Nevertheless it is possible to correct for this miscounting by manually adding or
subtracting an integer to ∆Φ. The question whether adding or subtracting depends on
the way ∆Φ is counted. The most intuitive method for further calculations would be
to define ∆Φ as the smallest difference between the phase position of the peak of the
constant pulse signal and the peak of the Ṗ afflicted pulse. This definition permits to
differentiate between the case of Ṗ< 0 for ∆Φ> 0 and Ṗ> 0 for ∆Φ< 0, if and only if there
is no miscount for the first observed peak. The only other alternative to differentiate
between Ṗ < 0 and Ṗ > 0 necessitates two sufficient accurate pulse periods or to get this
information from former measurements and the sureness there is no change of sign in Ṗ
afterwards. In the first place it is only relevant to obtain proper ∆Φs regardless how
it is defined exactly. In this work ∆Φ ∈ [0,1[ as this is the natural output range of the
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Figure 14: Illustration of the theoretical background of the phase connection analysis
method. The dash-dotted line represents a periodical pulse with a period of one chosen
observation, which acts as reference period Pref, and Ṗ = 0. The x-axis is normalized to
this pulse period. The dotted line with a smaller amplitude has the same period, but
additionally change in period of +0.015 with each pulse in the top graph and -0.015 in
the bottom one. Black solid lines mark observed pulses.

maximum of the one dimensional cross correlation of the two pulse profiles, whose
x-axes are normalized to the reference pulse period. As long as ∆Φ ∈ [0,0.5[ for the first
phase shift is fulfilled, which corresponds to Ṗ > 0, as it is implied by the results of Inam
et al. (2009) (see also Fig. 7) there is no difference to the method above.
But to do a proper phase correction a model is needed, which describes the time
dependent change of the period. It is common to use a polynomial function with degree
two or three (Eq.3)

δΦ(t) = Φ0 +δν(t− t0) +
1
2
ν̇(t− t0)2 +

1
6
ν̈(t− t0)3 (3)

where δΦ is the corrected pulse phase offset, t0 is the start-time of the observation, Φ0 is
the phase offset at t0, δν is the deviation from the reference pulse frequency including the
additive phase correction, ν̇ and ν̈ are the first and second pulse frequency derivatives of
the source. This formula is motivated by a Taylor expansion and includes an additional
degree of freedom compared to the scenario stated above.
With this model it is possible to find the phase correction Φcor by fitting it to the estimated
∆Φs, which are primarily all within the interval [0,1[. Starting at the reference point
going outwards to each of those ∆Φs integer has to be added until the resulting Φ
contribution fits the model best. A constructed simple example for this procedure is
shown in Figure 15, in which the triangles represent the ∆Φs and the squares the phase
corrected values δΦ, while the gray horizontal lines show the correction value. Values
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Figure 15: Constructed example for the phase correction procedure. Triangles represent
the ∆Φs, squares the phase corrected values δΦ and gray horizontal lines show the
correction value. The model fit is given by the dashed line.

close to the reference point at t = t0 have not to be corrected. This proceeding of course
is not exact, but there is no other way to do so yet.
Based on this formula ν(t) can be obtained by differentiation and adding the reference
pulse frequency/period (νref = 1/Pref) of the reference observation:

ν(t) = νref +δν+ ν̇(t− t0) +
1
2
ν̈(t− t0)2

P(t) =
[
νref +δν+ ν̇(t− t0) +

1
2
ν̈(t− t0)2

]−1 (4)

But this phase connection method associated with the assumed model has its limits and
requirements:

1. Carrying out a period fold for all observations with the same period, although
Ṗ , 0 and P̈ , 0 is not naturally as a period fold onto a wrong period causes poor
pulse profiles, which prevent to get a proper value for ∆Φ. Therefore both values,
Ṗ and P̈, need to be sufficiently small or in other words the pulse profile must not
significantly change. But as it is shown in Figure 13 all epoch folds are consistent
with one fold period due to the width of the peaks, i.e. the sum of all epoch folds
shows only one peak with a width comparable of each single epoch fold.

2. The accuracy of the additive correction Φcor decreases rapidly with the distance to
the reference point dependent on the magnitude of Ṗ, i.e. the greater the correction
the less accurate it is.

⇒ There is a limited time window in which this method is applicable. The determi-
nation of the exact dimension of this window is not trivial and would go beyond
the scope of this work.

3. If Ṗ changes with time to rapidly or there is even a change of sign in Ṗ the determi-
nation of the right correction is almost impossible using only two observations,
meaning all higher derivatives of P have to be sufficient small. Hence this method
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is only expediently applicable for phases in which Ṗ ≈ const. and especially no
torque reversals can be modeled.

4. A good coverage with observations, especially close to the reference point, where
no correction is needed, is beneficial as this constrains the parameter of the model.

5. A reliable determination of the reference period is a basic requirement, which is
a problem in this work as the epoch folds show (Fig. 13) and will be discussed
below.

A further major problem is to estimate a proper error in ∆Φ and for the phase correction
and therefore also in equation (3) and (4). To provide a statistical significant error is
also beyond the scope of this work, but can be achieved with Monte Carlo simulations.
Nevertheless an attempt to provide at least an error for the comparability among each
values was done. As ∆Φ is calculated by an one dimensional cross correlations of the
reference pulse profile and a pulse profile of another observation, which were derived
from period folds with a given binning, the output of the cross correlation underlies
the same binning. The maximum of the cross correlation was taken to be ∆Φ and
therefore the probability is higher to pick the right bin the wider its width, which is
given by wbin = 1/#bins. But an increase in the bin width also means a decrease in the
accuracy. By manually looking through the cross correlations with different binning a
hand made function was derived (first two factors in Eq.(5)), which seems to reconcile
with those issues. This means that those two factors were constructed to describe an
error which is for a low count of bins of the size of one bin, but the narrower the bins
get the larger becomes their error. Also the correlation strength CS was taken into
account, as this value indicates how likely it is that the compared pulse profiles are
correlating and therefore give a hint if there is a major change in them. Per definition CS
lies between -1 and 1, but for the chosen data its maximum typically has values within
[0.6,1]. Eventually the error in ∆Φ was calculated with the following function:

∆(∆Φ) = log(#bins · log(#bins))2
·
log(#bins)
50 ·#bins

·
1

CS4
(5)

The errors of δΦ, ν(t) and accordingly of P(t) are calculated by error propagations
including the fit parameters errors. But as they all include ∆(∆Φ) these errors are not
statistically significant!

Having discussed the analysis proceedings, it will now be applied to the observations
given in Table 2. As this is close to what Inam et al. (2009) did and due to the lack of the
possibility to obtain an accurate reference pulse period from that data, this method first
is tested with the data set Inam et al. (2009) has used, too. The best approach for Pref is to
use equation (4) with the fitting parameters provided by Inam et al. (2009) (see Table 3).
In Figure 16 only data were taken into account with observation numbers between 0
and 16, which were also used by Inam et al. (2009) and additionally the same reference
point (obs. number 7) was chosen. In the left upper corner this configuration can also
be seen, while the first number is the observation number of the used reference point
and the interval shows, which data were included. From now on this nomenclature will
be used. Only the three parameter δν, ν̇ and ν̈ of Eq.(3) were used as free parameter for
the model fit, while Φ0 and t0 were fixed to the values of the reference point. The top
graph of Figure 16 shows the fitted model (solid line) to the corrected ∆Φs (squares),
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Table 3: Fit parameters according the model in Eq.(3) provided by Inam et al. (2009).
Thereby ν = νref +δν.

Parameter Value

Epoch t0 MJD 54467.6(1) Days
Spin Frequency ν 2.266460(2) ·10−3 Hz
Spin Frequency Derivative ν̇ −3.59(2) ·10−14 Hz s−1

ν̈ −5.3(4) ·10−22 Hz s−2

while the circle marks the reference point. The middle graph shows the residuals, i.e.
the difference between each data points and the fitted model. In the bottom graph
the resulting periods according to equation (4) are shown (squares) together with the
periods Inam et al. (2009) had estimated (triangles). The dash-dotted line is the period
evolution calculated with the fit values shown in Table 3 together with the given errors
(dotted lines). This test analysis shows the correctness of the procedure described above
insofar that it reproduces the results of Inam et al. (2009) very good.
In the next Figure 17 all selected data were fitted. But now there is a big gap visible
with respect to the predicted period evolution increasing with time. More precisely
the estimated periods are not consistent with the prediction, as they do not overlap
within their errors. But the needed phase corrections are very high and as stated above
the higher this value is the more inaccurate is it and hence the periods, which arise
from data afflicted with a high Φcor are not reliable. Therefore it is questionable if those
periods are appropriate. Nevertheless the fitted model results in pulse periods, which
are at least consistent with the pulse periods of Inam et al. (2009) until 54682 MJD.
An obvious solution would be to move the reference point to later observations. But
by doing so the data were harder to fit to the model and were furthermore mostly
inconsistent with the model of Inam et al. (2009) and their estimated periods even
though the reference point was still within the Inam data set. Although a few budding
fits were among them, they were discarded too, because using the same set of data and
only moving the reference point should not result in different models! This situation
got even worse with only accounting new data. This problem is most likely due to the
way the reference period Pref is calculated (using Eq. 4 and Inam model fit values from
Table 3) as it is not sure, if the Inam model provides values for the pulse period, which
are accurate enough. Furthermore the period evolution must not be as predicted as it
is also indicated by the fitted model in Figure 17. And as the whole phase connection
procedure relies on that value, even small deviations from the real value can cause totally
wrong models. Additionally there are no proper indications that the used reference
period is suitable, i.e. it is hard to recognize whether it is right or wrong. For great
deviations, however, this can be checked by looking at the scatter of the ∆Φ close to
the reference point, which are too large if Pref is wrong. For example this is the case if
those values of ∆Φ next to the reference point, which do not need a correction, on the
left strongly deviates from the according ones on the right assuming equal distances
from the reference point for each corresponding point. In Figure 18 some examples are
shown for this issue.
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Figure 16: Model fit to the data configuration 7 in [0,16].Top: Model fit (solid line) to the
corrected ∆Φs (squares), the circle marks the reference point. Bottom: Resulting periods
(squares) together with the periods calculated by Inam et al. (2009) (triangles) and the
period evolution according the parameters shown in Tab.3. Detailed list of all values
and fit parameter see appendix Table 9 and 10.
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Figure 17: Model fit to the data configuration 7 in [0,37].Top: Model fit (solid line) to the
corrected ∆Φs (squares), the circle marks the reference point. Bottom: Resulting periods
(squares) together with the periods calculated by Inam et al. (2009) (triangles) and the
period evolution according the parameters shown in Tab.3. Detailed list of all values
and fit parameter see appendix Table 7 and 8.
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Figure 18: In all three graphs the attempt of fitting the model to a small data set of 7
data points each is shown. The solid line represents the model fit to the corrected ∆Φs
(squares), the circle marks the reference point.
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4.2 Automated phase correction

As the manual phase correction is very time-consuming it would not be possible to try
several data configurations. Therefore an attempt to create a routine, which does that
correction automatically, was done. As there are no references, which could help to fit a
model to variable data points, each step of this routine was designed after the manual
correction steps. In the followings a sketch of those steps is given:

1. The routine is given the wanted data configuration (reference point and data
range), in which the two data points next to the reference are assumed to need no
correction, which is a necessary criterion as with these three data points a fit is
carried out. This also requires to have maximal 3 free parameter, which is fulfilled
here as Φ0 and t0 are frozen. The resulting reduced chi square (χ2

red) value is saved
for further comparisons.

2. From there in every run through one new data point (uncorrected ∆Φ) alternating
left and right with respect to the reference point is added. Afterwards an integer
to this ∆Φ is added until χ2

red is minimized again. This new χ2
red value overwrites

the old value.

3. To check for a better correction and to correct mistakes, the point next to this last
added data point is varied around its current position within [−1,0,1] with respect
to its current position. The restriction of the variation of this point to this interval
was set as this phase correction value should be calculated accurate within this
range due to step 2. For each of this variation the actual data point is varied (open
range) until the minimal χ2 value is found.

4. Then the routine goes back to the 2. step until all data points are added.

As it turned out it is advantageous to freeze ν̈ = 0 at the beginning and when χ2
red reaches

a certain value or a certain amount of data points with respect to the reference point
is exceeded or all data points are added to unfreeze it. This proceeding prevents the
routine to fit unlikely models with improper ν̈ values, as it is supposed to be vanishing
small. This routine is an imitation of the steps, which are done manually to find suitable
phase corrections and therefore its results are not reliable just like that. Also it is not
technically mature, but it provides good results in most cases, especially if the ∆Φ values
are suitable and not like those examples shown in Figure 18.
This fitting routine was optimized to the model fits, which were done manually. That
means this routine could reproduce those model fits, which were carried out with a
manual phase correction.

4.3 Variation of the reference pulse period

Having the opportunity to fit an arbitrary amount of data configurations is the basic
requirement for the approach to the reference period dependency problem. The idea of
varying the reference period arise from the apparently condition that fitting the model
to a data set based on an inaccurate reference period leads to poor models insofar that
χ2

red increases the more Pref deviates from the real value. Therefore the idea came up
to variate Pref around the first approximation calculated with the Inam fit parameter.
The implementation of the variation of the reference pulse period is simple, Pref is
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Figure 19: Variation of the reference pulse period using the data configuration with ref
7 in [0,16] and a variation interval [−0.5,0.5]. In the top graph both selection criteria
shown separately, χ2

red as black line and the additional criterion as gray line. Bottom
graph shows the whole selection criterion together with the located reference pulse
period and its error.

stepwise changed in a given interval. In every step a model fit with the automated
phase correction algorithm is done. In the end the model with the lowest χ2

red value and
the corresponding reference period is chosen.
This procedure, however, needs much cpu time as in each step several fits have to
be calculated. Therefore the step size was calculated dynamically insofar that it was
decreased if the current χ2

red value is smaller then all previous ones and increased if
it is higher then the actual minimum of all previous χ2

red. Furthermore an additional
selection criterion was implemented. This criterion depends on the phase correction
values of the four data points closest to the reference point. More precisely the phase
correction value Φcor of the two data point next to the reference point is double added
to χ2

red and the next Φcor after those added once. The whole selection criterion is
then: χ2

red + 2[Φcor(ref−1) +Φcor(ref + 1)] + Φcor(ref− 2) + Φcor(ref + 2). The reason for
this additional criterion is that χ2

red sometimes can be low even though the related model
seems to be wrong. The assumption, that the closest phases (∆Φ) do not need a phase
correction or are preferably low, is also connected to the requirements of the phase
connection method stated above.
In Figure 19 an example is shown for the Inam data set (ref 7 in [0,16]). The top panel
shows the separated selection criteria and the bottom one shows their sum.
As the the region, in which the criterion is minimal with only little fluctuations, has a
certain width, this width is taken as the error of the located reference pulse period, which
is the middle of that region. Additional the step size is added to this error. This means
that not the period with the minimal criterion value was taken itself, but that also values,
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Figure 20: Variation of the reference pulse period using the data configuration with
ref 26 in [17,35] and a variation interval [−1,1]. In the top graph both selection criteria
shown separately, χ2

red as black line and the additional criterion as gray line. Bottom
graph shows the whole selection criterion together with the located reference pulse
period and its error.

which slightly deviate from the minimum, were included. In this example the reference
pulse period variation method worked well and also in other data configurations with
the same reference point (obs. number 7). But there were also failures as shown in
20, in which no clear selection was possible. The huge estimated error is due to the
many regions, which are within the allowed margin for the deviation from the minimal
criterion value. Hence those huge errors indicate that the procedure failed. Interesting
is that there was no model within the whole scanned interval with an low χ2

red value,
although the automated fit routine seems to work for this data set, i.e. no unlikely
values for the fit parameters were calculated.

Nevertheless this method was applied on a bunch of different data configurations
with reference points within [2,35] and a varying amount of data points within [5,25]
resulting in 374 different configurations, which also provides a better basement for
statements. In Figure 22 all reference pulse periods, located with this method, are shown
(diamonds). Also the pulse periods estimated by Inam et al. (2009) presented as triangles
together with their period evolution (dashed and dotted lines) are shown. The solid
line marks the range of the variation interval. At first glance it is a total disorder with
no clear trend, especially within the epoch of the new observations. But removing the
huge error afflicted points and having a closer look to the epoch of the old observations
reveals a slightly different picture (Fig. 23). Out of the 374 points 125 are within this
epoch, out of which 71 points (squares) are very close (within a window of ±0.01) to
the Inam model. That means more then 56% of the estimated reference pulse periods
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are consistent with the measurements of Inam et al. (2009). On closer inspection it is
conspicuous that many of the points deviate with the same value of ∼ ±0.15 s from the
expected pulse period for several MJDs. It almost looks like parallel lines to the Inam
model. In most reference pulse period variations there are several secondary minima for
χ2

red, occurring periodically with this value. In some cases one of this secondary minima
seems to have a better χ2

red value, then that minimum, which actually corresponds to the
real reference pulse period (example shown in Fig. 21). Hence it is a selection problem,
which may can be solved by defining a better selection criterion.
Although this method is only a first attempt the results are an indicator that it is worthy
for further investigations, especially as it provides a self-consistent test. This method
primarily calculates only the best fitting reference pulse period for each data point, but
additionally the corresponding fitted models are available. Therefore for several data
points the result for the reference pulse period can be compared with their models,
which should all overlap. The main problem is to provide a proper algorithm to fit the
model to the data with an automated phase correction, which is the foundation of the
reference pulse period variation. Also the selection criteria for the best reference period
could be improved. Unfortunately this would go beyond the scope of this work.
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Figure 21: Variation of the reference pulse period using the data configuration with
ref 13 in [8,18] and a variation interval [−1,1]. In the top graph both selection criteria
shown separately, χ2

red as black line and the additional criterion as gray line. Bottom
graph shows the whole selection criterion together with the located reference pulse
period and its error.
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Figure 22: Overview of the results of the reference pulse period variation applied to
different data configurations (diamonds). Inam pulse periods (triangles) and Inam
model (dashed and dotted lines) are also shown for comparison. The solid line marks
the variation interval.
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Figure 23: Out of the data points presented in 22 only those are shown, which are
between 54682.1 MJD and 54281.5 MJD and have an error less then 0.05. Squares mark
those points, which are within a range of ±0.01 around the Inam model.
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5 Conclusions

Unfortunately no reliable period evolution corresponding to the new observations can
be provided. It is questionable if that evolution shown in Figure 17 is correct as the phase
corrections are very high. No proper model, which is consistent with the measurements
of Inam et al. (2009), could be found by using a reference pulse period within the newer
observations. As there was no other possibility to calculate an accurate reference pulse
period, it was estimated by using the Inam fit parameter. Therefore it is most likely that
the predicted pulse period evolution of Inam and accordingly their model is not right
for the time after 54682 MJD. That means that P, Ṗ and also P̈ have changed significantly.
Also it is possible that one of those values increased and exceeded a critical point, which
is beyond the limits of the phase connection method. It is likely that the changes occur at
the transition to the new observation as already in this epoch no proper and consistent
model was found.
The further attempts to find a reliable model by variating the reference pulse period
support this conclusion as it provides to a certain degree consistent results to the Inam
pulse periods, but only for the older observations. The reference pulse period variation
method totally failed for the new observations. Drawing conclusions based on results of
this method is not reliable as it is only a first attempt. But the presented results, however,
would imply that there is either a huge jump in the pulse period, so that it is not within
the set variation interval or the occurrence of major changes on short timescales as even
for small data sets no suitable model was found. Looking at the pulse period history of
4U 1907 + 09 both scenarios would be untypical. Another torque reversal also could
cause this results as the presented algorithm assumes that Ṗ > 0.
In summary there must be a change in the binary system. The first thought may is, that
there is a change in the mass accretion, which is one major reason for variations in the
pulse period. But changes in the mass accretion would be connected to changes in the
brightness visible in the lightcurve, which is note the case. Therefore the question for
the reason of this changes cannot be answered, especially as it is not clear to date, which
of the discussed accretion models applies to 4U 1907 + 09. Further investigations would
help to determine the right accretion model, especially if there is really another torque
reversal.
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Table 4: Pulse period measurements of 4U 1907+09. Table from Inam et al. (2009).

Epoch Pulse Period Reference Epoch Pulse Period Reference
(MJD) (s) (MJD) (s)
45576 437.483±0.004 Makishima et al. (1984) 53121.1 441.274±0.005 Fritz et al. (2006)
45850 437.649±0.019 Cook & Page (1987) 53133.4 441.297±0.005 Fritz et al. (2006)

48156.6 439.19±0.02 Mihara (1995) 53253.6 441.224±0.010 Fritz et al. (2006)
50134 440.341±0.014 in ’t Zand et al. (1998) 53291.3 441.201±0.005 Fritz et al. (2006)

50424.3 440.4854±0.0109 Baykal et al. (2006) 53314.0 441.188±0.005 Fritz et al. (2006)
50440.4 440.4877±0.0085 Baykal et al. (2001) 53324.7 441.183±0.005 Fritz et al. (2006)
50460.9 440.5116±0.0075 Baykal et al. (2006) 53443.4 441.154±0.005 Fritz et al. (2006)
50502.1 440.5518±0.0053 Baykal et al. (2006) 53473.3 441.139±0.005 Fritz et al. (2006)
50547.1 440.5681±0.0064 Baykal et al. (2006) 53503.8 441.124±0.005 Fritz et al. (2006)
50581.1 440.5794±0.0097 Baykal et al. (2006) 54281.5 441.1030±0.0372 Inam et al. (2009)
50606.0 440.6003±0.0115 Baykal et al. (2006) 54291.0 441.1213±0.0038 Inam et al. (2009)
50631.9 440.6189±0.0089 Baykal et al. (2006) 54315.0 441.1367±0.0021 Inam et al. (2009)
50665.5 440.6323±0.0069 Baykal et al. (2006) 54338.2 441.1545±0.0041 Inam et al. (2009)
50699.4 440.6460±0.0087 Baykal et al. (2006) 54353.3 441.1509±0.0046 Inam et al. (2009)
50726.8 440.6595±0.0105 Baykal et al. (2006) 54367.3 441.1543±0.0047 Inam et al. (2009)
50754.1 440.6785±0.0088 Baykal et al. (2006) 54381.3 441.1623±0.0046 Inam et al. (2009)
50782.5 440.6910±0.0097 Baykal et al. (2006) 54396.2 441.1750±0.0042 Inam et al. (2009)
51021.9 440.7045±0.0032 Baykal et al. (2001) 54410.9 441.1761±0.0047 Inam et al. (2009)
51080.9 440.7598±0.0010 Baykal et al. (2001) 54426.0 441.1862±0.0041 Inam et al. (2009)
51993.8 441.0484±0.0072 Baykal et al. (2006) 54442.1 441.1992±0.0040 Inam et al. (2009)
52016.8 441.0583±0.0071 Baykal et al. (2006) 54456.1 441.2245±0.0056 Inam et al. (2009)
52061.5 441.0595±0.0063 Baykal et al. (2006) 54470.4 441.2185±0.0039 Inam et al. (2009)
52088.0 441.0650±0.0063 Baykal et al. (2006) 54486.3 441.2284±0.0043 Inam et al. (2009)
52117.4 441.0821±0.0062 Baykal et al. (2006) 54509.4 441.2472±0.0021 Inam et al. (2009)
52141.2 441.0853±0.0082 Baykal et al. (2006) 54532.3 441.2537±0.0044 Inam et al. (2009)
52191.4 441.1067±0.0046 Baykal et al. (2006) 54546.8 441.2756±0.0046 Inam et al. (2009)
52217.2 441.1072±0.0077 Baykal et al. (2006) 54561.6 441.2657±0.0043 Inam et al. (2009)
52254.3 441.1259±0.0074 Baykal et al. (2006) 54584.3 441.2855±0.0022 Inam et al. (2009)
52292.0 441.1468±0.0065 Baykal et al. (2006) 54607.1 441.3195±0.0043 Inam et al. (2009)
52328.8 441.1353±0.0090 Baykal et al. (2006) 54629.6 441.3301±0.0022 Inam et al. (2009)
52739.3 441.253±0.005 Fritz et al. (2006) 54652.1 441.3307±0.0043 Inam et al. (2009)
52767.1 441.253±0.005 Fritz et al. (2006) 54667.2 441.3549±0.0044 Inam et al. (2009)
53083.9 441.283±0.005 Fritz et al. (2006) 54682.1 441.3596±0.0044 Inam et al. (2009)
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Table 5: Overview of all available Observations. In the first column only for those
observations numbers are given, which are selected to be good.

# ObsID Date Duration #PCU
[DD.MM.YYYY] [MJD] [ks]

0 93036-01-01-00 29.06.2007 54280.6 1.90 3
93036-01-02-00 01.07.2007 54282.4 1.92 3
93036-01-03-00 03.07.2007 54284.4 1.74 3

1 93036-01-04-00 18.07.2007 54299.6 1.76 3
93036-01-05-00 02.08.2007 54314.3 1.74 1
93036-01-06-00 18.08.2007 54330.4 1.69 2

2 93036-01-07-00 03.09.2007 54346.2 2.06 2
3 93036-01-08-00 17.09.2007 54360.4 1.55 3

93036-01-09-00 01.10.2007 54374.2 1.68 2
4 93036-01-10-00 15.10.2007 54388.5 1.77 3
5 93036-01-11-00 30.10.2007 54403.9 2.76 3
6 93036-01-12-00 13.11.2007 54418.0 1.79 3

93036-01-13-00 30.11.2007 54434.1 1.97 3
93036-01-14-00 16.12.2007 54450.2 1.95 2

7 93036-01-15-00 28.12.2007 54462.1 1.66 3
8 93036-01-16-00 13.01.2008 54478.7 2.00 2
9 93036-01-17-00 28.01.2008 54493.8 1.42 2

93036-01-18-00 13.02.2008 54509.3 1.34 2
10 93036-01-19-00 28.02.2008 54525.0 1.65 3

93036-01-20-00 14.03.2008 54539.7 1.63 2
11 93036-01-21-00 29.03.2008 54554.0 1.20 2
12 93036-01-22-00 13.04.2008 54569.1 1.36 2

93036-01-23-00 28.04.2008 54584.4 1.52 2
13 93036-01-24-00 13.05.2008 54599.5 1.84 2

93036-01-25-00 28.05.2008 54614.7 1.58 2
93036-01-26-00 12.06.2008 54629.3 1.92 2

14 93036-01-27-00 27.06.2008 54644.4 2.35 2
93036-01-28-00 12.07.2008 54659.8 1.50 2

15 93036-01-29-00 27.07.2008 54674.6 1.57 2
16 93036-01-30-00 11.08.2008 54689.5 1.88 2
17 93036-01-31-00 27.08.2008 54705.4 1.77 3

93036-01-32-00 10.09.2008 54719.8 0.73 1
93036-01-33-00 25.09.2008 54734.0 1.76 1
93036-01-34-00 10.10.2008 54749.1 1.92 2

18 93036-01-35-00 25.10.2008 54764.4 1.54 2
93036-01-36-00 09.11.2008 54779.3 1.68 2

19 93036-01-37-00 25.11.2008 54795.1 1.95 2
20 93036-01-38-00 09.12.2008 54809.2 2.23 2
21 93036-01-39-00 25.12.2008 54825.1 1.66 2
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Table 6: Continuation of Table 5.

# ObsID Date Duration #PCU
[DD.MM.YYYY] [MJD] [ks]

94036-01-01-00 08.01.2009 54839.0 1.87 2
22 94036-01-02-00 23.01.2009 54854.2 1.37 2

94036-01-03-00 07.02.2009 54869.4 1.06 2
23 94036-01-04-00 23.02.2009 54885.7 1.90 2

94036-01-05-00 09.03.2009 54899.7 1.92 2
24 94036-01-06-00 24.03.2009 54914.3 0.94 1

94036-01-07-00 08.04.2009 54929.0 1.10 1
94036-01-08-00 23.04.2009 54944.6 2.05 2

25 94036-01-09-00 09.05.2009 54961.0 1.50 2
94036-01-10-00 26.05.2009 54977.2 1.66 2

26 94036-01-11-00 07.06.2009 54989.5 1.80 1
94036-01-12-00 21.06.2009 55003.5 2.16 2
94036-01-13-00 05.07.2009 55018.0 1.15 2
94036-01-14-00 21.07.2009 55033.1 1.95 2

27 94036-01-15-00 06.08.2009 55049.5 1.64 2
28 94036-01-16-00 21.08.2009 55064.3 1.81 2

94036-01-17-00 06.09.2009 55080.2 1.75 1
94036-01-18-00 20.09.2009 55094.3 1.92 1
94036-01-19-00 05.10.2009 55109.6 1.45 2

29 94036-01-20-00 20.10.2009 55124.7 1.13 2
30 94036-01-21-00 04.11.2009 55139.3 1.61 2
31 94036-01-22-00 20.11.2009 55155.4 1.39 2

94036-01-23-00 04.12.2009 55169.5 1.31 2
32 94036-01-24-00 19.12.2009 55184.1 1.92 2
33 95350-01-01-00 12.01.2010 55208.2 1.95 1

95350-01-02-00 26.01.2010 55222.4 1.14 1
34 95350-01-03-00 09.02.2010 55237.0 1.84 2
35 95350-01-04-00 23.02.2010 55250.7 1.92 2

95350-01-05-00 09.03.2010 55264.2 1.38 2
36 95350-01-06-00 22.03.2010 55277.3 1.12 2

95350-01-07-00 03.04.2010 55289.7 1.93 2
95350-01-08-00 20.04.2010 55306.1 1.26 2
95350-01-09-00 02.05.2010 55319.0 1.35 2
95350-01-10-00 15.05.2010 55331.4 1.92 2
95350-01-11-00 31.05.2010 55347.5 1.90 1
95350-01-12-00 12.06.2010 55359.8 2.06 1
95350-01-13-00 26.06.2010 55373.0 1.12 2

37 95350-01-14-00 10.07.2010 55387.8 0.86 2
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Figure 24: Light curves of all available Observations with binary and barycenter
correction. Observation IDs are shown in the upper right corner. A number introduced
with a ’#’ on the right of the graph indicates selected data.
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Figure 25: Continuation of Figure 24.
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Figure 26: Continuation of Figure 24.
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Table 7: List of the values shown in Figure 17.

# MJD ∆Φ ∆(∆Φ) Φcor P [s] ∆P [s]

0 54280.65 0.082 0.0296 4 441.108 0.0015
1 54299.63 0.278 0.0478 3 441.119 0.0013
2 54346.22 0.822 0.0439 1 441.145 0.0009
3 54360.36 0.428 0.0385 1 441.154 0.0009
4 54388.51 0.758 0.0349 0 441.170 0.0007
5 54403.94 0.485 0.0270 0 441.179 0.0007
6 54417.96 0.242 0.0326 0 441.188 0.0007
7 54462.06 0.002 0.0211 0 441.215 0.0006
8 54478.75 0.048 0.0296 0 441.225 0.0006
9 54493.80 0.145 0.0444 0 441.234 0.0006

10 54524.97 0.618 0.0290 0 441.254 0.0007
11 54554.02 0.275 0.0414 1 441.273 0.0008
12 54569.14 0.612 0.0319 1 441.283 0.0008
13 54599.49 0.595 0.0444 2 441.303 0.0010
14 54644.44 0.835 0.0360 4 441.334 0.0014
15 54674.61 0.585 0.0305 6 441.354 0.0017
16 54689.52 0.552 0.0514 7 441.365 0.0019
17 54705.44 0.788 0.0314 8 441.376 0.0021
18 54764.38 0.145 0.0306 13 441.418 0.0030
19 54795.06 0.295 0.0302 16 441.441 0.0036
20 54809.18 0.722 0.0364 17 441.451 0.0039
21 54825.15 0.435 0.0345 19 441.463 0.0042
22 54854.21 0.902 0.0293 22 441.485 0.0048
23 54885.66 0.158 0.0513 27 441.509 0.0056
24 54914.28 0.495 0.0429 30 441.532 0.0063
25 54960.98 0.855 0.0315 37 441.569 0.0076
26 54989.49 0.808 0.0359 42 441.592 0.0084
27 55049.55 0.328 0.0313 53 441.641 0.0104
28 55064.33 0.058 0.0322 56 441.653 0.0109
29 55124.70 0.648 0.0363 68 441.705 0.0131
30 55139.33 0.712 0.0324 71 441.717 0.0137
31 55155.44 0.042 0.0506 75 441.731 0.0144
32 55184.06 0.072 0.0389 82 441.756 0.0156
33 55208.20 0.138 0.0348 88 441.778 0.0166
34 55236.99 0.982 0.0326 94 441.804 0.0179
35 55250.70 0.812 0.0306 98 441.816 0.0185
36 55277.28 0.378 0.0338 106 441.840 0.0198
37 55387.77 0.485 0.0490 139 441.944 0.0254
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Table 8: Result of the fitted model shown in Figure 17.

Parameter Value Error

Φ0 1.667e-03 2.1076e-02
t0 [MJD] 54462.06 0.01
δν [Hz] 6.5743e-09 2.42185e-09
ν̇ [Hz s−1] 3.6770e-14 2.01506e-16
ν̈ [HZ s−2] 2.4968e-22 6.46815e-24

Table 9: List of the values shown in Figure 16.

# MJD ∆Φ ∆(∆Φ) Φcor P [s] ∆P [s]

0 54280.65 0.082 0.0296 4 441.116 0.0045
1 54299.63 0.278 0.0478 3 441.125 0.0038
2 54346.22 0.822 0.0439 1 441.148 0.0023
3 54360.36 0.428 0.0385 1 441.155 0.0020
4 54388.51 0.758 0.0349 0 441.171 0.0016
5 54403.94 0.485 0.0270 0 441.179 0.0015
6 54417.96 0.242 0.0326 0 441.187 0.0014
7 54462.06 0.002 0.0211 0 441.213 0.0013
8 54478.75 0.048 0.0296 0 441.223 0.0013
9 54493.80 0.145 0.0444 0 441.233 0.0014

10 54524.97 0.618 0.0290 0 441.253 0.0015
11 54554.02 0.275 0.0414 1 441.272 0.0018
12 54569.14 0.612 0.0319 1 441.282 0.0021
13 54599.49 0.595 0.0444 2 441.304 0.0029
14 54644.44 0.835 0.0360 4 441.336 0.0045
15 54674.61 0.585 0.0305 6 441.359 0.0060
16 54689.52 0.552 0.0514 7 441.371 0.0068

Table 10: Result of the fitted model shown in Figure 16.

Parameter Value Error

Φ0 1.667e-03 2.1076e-02
t0 [MJD] 54462.06 0.01
δν [Hz] -1.1139e-09 6.52772e-09
ν̇ [Hz s−1] 3.6018e-14 4.27841e-16
ν̈ [HZ s−2] 5.2135e-22 1.65232e-22
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