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1 Introduction to Black Hole Physics

1.1 Emitted Spectrum

The process of accretion is responsible for the energy release of galactic black holes (GBH) and
active galactic nuclei (AGN). Due to the angular momentum of the matter which falls onto these
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objects, an accretion disk is created. Simulations show that Magento-Hydrodynamic effects seem
to transport angular momentum radially inwards. This heats the disk in return and in the case
of GBHs the temperatures can be as high as kBT ≃ 1 keV in the inner regions of the disk.
The photons emitted by the disk are up-scattered by inverse comptonization in a corona of hot
electrons. These hard X-ray photons are distributed according to a power law E−α. At photon
energies around the temperature of the corona this power law behavior breaks down exponentially,
as the hot gas cannot supply the photons with more energy.

1.2 Fluorescent Emission in Strong Gravity Regime

Some of these hard X-rays can now irradiate the relatively cold accretion disk. Depending on
the ionization of the disk, this leads to a spectrum of several emission lines. Figure 1 shows
the result of a Monte Carlo simulation of a spectrum from a neutral disk which is irradiated by
photons, distributed according to a power law. Higher ionized disks show less emission features

Figure 1: A Monte Carlo simulation of a spectrum from neutral disk which is irradiated by
photons distributed according to a power law (taken from Miller (2007), who adapted
it from Reynolds (1996))

and stronger absorption edges up to no signatures at all for fully ionized disks.
Due to abundances and fluorescent yield the Fe Kα with an energy of 6.4 keV is usually the
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strongest and therefore often the only emission feature present in the X-ray spectrum.

1.3 Measuring the Spin of a Black Hole

In the vicinity of a black hole there a several features which modify the narrow emission line to a
broad and mostly double peaked feature, where the spacetime around the black hole is imprinted.
As the spacetime depends on the spin of the black hole a, it is possible to measure it by fitting a
sophisticated modeled line to the data. Figure 2 shows observations of MCG-6-30-15, which are

Figure 2: Observations of MCG−6−30−15, which is the best observation of a relativistic iron
line in an AGN. Taken from Miller (2007), adapted from Miniutti et al. (2007) and
Reeves et al. (2006).

the best spectra of relativistic iron lines in active galactic nuclei (AGN) up to now.
Nevertheless Dovčiak et al. (2004) come to the conclusion that it is not possible to measure the

spin of MCG-6-30-15 with this method. Their statement is based on the kyrline model. Two
years later, Brenneman & Reynolds (2006) claim that they determined the spin in the long XMM-
Newton observation with their kerrdisk model to 0.989+0.009

−0.002. In contrast to Dovčiak et al. they
take additional constraints into account by neglecting emission from within the innermost stable
circular orbit (ISCO). According to most theoretical considerations this seems to be justified.
Additionally they explicitly rule out a Schwarzschild black hole, as for a = 0 no reasonable model
was found to describe the data, despite even including emission from within the ISCO. This
makes the analysis especially robust and clearly shows that it is possible to measure the spin of
a black hole by modelling the shape of the iron line.

This discrepancy between the results points towards the issue that the models might predict
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different shapes of the relativistic emission line, which might affect the analysis. As the models
are very differently sized because of their precalculated tables and use different interpolation
techniques, some kind of difference could easily arise.

The aim of this work is to compare the existing models in order to see if they predict differences
in the line shapes and whether this has concequences for for the data analysis.

2 Basic Theory on Spinning Black Holes

After having convinced ourselves, that emission lines are present in the spectrum and that this
might be useful for determining the spin of black holes, the next step is to derive a theoretical
model of their shape. This would provide us with the required connection between observed
line and spin. As spacetime around black holes is highly relativistic, it absolutely necessary to
perform all calculations in a fully relativistic way.

In the following all formulas are given in units such that the gravitational constant and the
velocity of light are equal to one (G = c = 1).

2.1 The Metric

In General Relativity (GR), a spinning black hole can be described by the Kerr metric (Kerr,
1963), as this solves the Einstein equation for a spinning, spherical mass. It is fully determined
by the mass M and the angular momentum J , which will be parameterized by a = J/M . Then
line element reads

ds2 = −
(

1 − 2Mr

Σ

)

dt2 − 4aMr sin2 θ

Σ
dtdϕ (1)

+
Σ

∆
dr2 + Σdθ2 +

(

r2 + a2 2a2Mr sin2 θ

Σ

)

sin2 θdϕ2 ,

where ∆ = r2−2Mr +a2 and Σ = r2 +a2 cos2 θ. This is the Boyer-Lindquist coordinate system.
Here the black hole is spinning in ϕ-direction. In the case of a non-rotating black hole, this
solution can easily be reduced to the Schwarzschild metric by setting a = 0:

ds2 = −
(

1 − 2Mr

Σ

)

dt2 +

(

1 − 2Mr

Σ

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2 (2)

As the Kerr metric is axi-symmetric and stationary, there exist two Killing vectors which
characterize the conserved quantities. As expected from classical mechanics, where the conserved
energy originates from invariance under time translation, the time-like Killing vector Kµ = (∂t)

µ

in GR can be used to define the total energy of stationary system ER (the Komar energy ). It
can be shown straight forward (Carroll, 2004), that this is equal to the mass ER = M given
in Eq. 1. In analogy, the conserved angular momentum JR can be defined using the rotational
Killing vector Rµ = (∂ϕ)µ due to the axis-symmetry. This leads to JR = aM = J and confirms
the above interpretation of J as angular momentum.

As the disk is thought to be stable, it seems reasonable that angular momentum might build
up towards the maximum value of a = 1. But in fact it is never possible to reach this value, as
negative angular momentum orbits are more likely for higher a. Thorne (1974) used the exact
angular distribution of thermal photons originating from an accretion disk and showed that the
limit is a ≃ 0.998.
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2.2 Spacetime in the Kerr Metric

A stationary observer, which sits at a point (r, θ) should not feel any changes of the metric by
definition. This implies for our choice of coordinates implies that he has to rotate with angular
velocity

Ω =
dϕ

dt
=

uϕ

ut
(3)

with respect to an observer which rests at infinity. Here the definition of the four-velocity is
uµ = dxµ/dτ , where τ is the proper time of a comoving observer. The total four velocity of this
observers then becomes

~u = ut∂t + uϕ∂ϕ = ut (∂t + Ω∂ϕ) . (4)

Using that ~u2 = −1 leads to

−1
!
= uµuµ

= (ut)2 [(∂t)
µ(∂t)µ + 2(∂ϕ)µ(∂t)µ + (∂ϕ)µ(∂ϕ)µ]

= (ut)2 (gtt + 2Ωgtϕ + gϕϕ) (5)

which means that we derived an expression for the velocity in t-direction:

ut =
1

√

−gtt − 2Ωgtϕ − gϕϕ

(6)

This equation shows nicely that ut > 0, which means that ~u lies in the future light cone. Moreover,
the expression under the root hast to be positive. This sets an additional condition on the angular
velocity:

Ωmin =
1

gϕϕ

[

−gtϕ −
√

gtϕ − gttgϕϕ

]

< Ω <
1

gϕϕ

[

−gtϕ −
√

gtϕ + gttgϕϕ

]

= Ωmax (7)

For a non spinning black hole, this just restricts particles to move slower than c. Taking a closer
look at Ωmin reveals, that it becomes zero at a radius

r0 = M +
√

M2 − a2 cos2 θ , (8)

called the static limit. This means that static observers (Ω = 0) are forbidden, which are closer
than this radius to the black.

Moving nearer to the black hole, the event horizon is finally reached where there is only one
possible value, with Ωmin = Ωmax. Following Carroll (2004), the event horizon at a radius rH is
uniquely characterized by the condition grr(rH) = 0. In the case of the kerr metric this means

∆
!
= 0, which results in a radius of

r± = M ±
√

M2 − a2 . (9)

The region between the event horizon and the static limit is called the ergosphere. As explained
above, an observer in this region has no choice but to rotate in the direction of the black hole.
This phenomena is called dragging of inertial frames and leads to strange consequences such that
it is ideed possible to dive into this zone and extract energy from the black hole. For further
details on that see Carroll (2004).
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2.3 Equations of Motion

Determining the motion of particles and photons means calculating the evolution of xµ(λ). This
is described by the Geodesic Equation:

d2xµ

dλ2
+ Λµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 (10)

Equivalent to classical mechanics, it is possible achieve the same relations more elegantly by using
the Lagrangian or Hamiltonian formalism. As Krolik (1999) shows, the relativistic generalization
can be done by redefining the action

S =

∫ Bµ

Aµ

L dλ =

∫ Bµ

Aµ

dλ

[

gµν
dxµ

dλ

dxν

dλ

]−
1

2

. (11)

Minimizing it along the path by means of variation leads to the geodesic equation, which confirms
that th Lagrangian describes the same movement. For massive particles one can set λ = τ and
easily sees that the Lagrangian is constant along the path, which is a crucial requirement. This
can not be done for a photon, as its proper time is zero. Following Krolik (1999), choosing τ = λµ
and an effective Lagrangian

Leff =
1

2
gµν ẋµẋν , (12)

solves this problem and leads to the same dynamical equations. As λ is an arbitrary parameter,
we now can describe photons by µ = 0 and massive particles by µ = 1.

As we reduced our problem to a known formalism, calculating the Hamiltonian H = pµẋµ−Leff

and the momentum pµ = ∂L
∂xµ = gµν ẋν is now straight forward:

H =
1

2Σ

(

∆p2
r + p2

θ −
(r2 + a2)2 − a2∆ sin2 θ

∆
p2

t +
∆ − a2 sin2 θ

∆ sin2 θ
p2

ϕ − 4Mar

∆
ptPϕ

)

pt = −
(

1 − 2Mr

Σ

)

ṫ − 2Mar
sin2 θ

Σ
ϕ̇

pr =
Σ

∆
ṙ

pθ =Σθ̇

pϕ =

(

r2 + a2 + 2Ma2r
sin2 θ

Σ

)

sin2 θϕ̇ − 2Mar
sin2 θ

Σ
ṫ (13)

The derivations of the Hamiltonian ∂µH = −ṗµ with respect to t and ϕ are zero, which im-
mediately lead to the conserved energy pt = −E and angular momentum pϕ = L. Addition-
ally the constancy of the Hamiltonian describes the conservation of the test particles rest mass
H = −1/2µ2. A last conserved quantity Q = p2

θ + cos2 θ[a2(µ2 − p2
t ) + p2

ϕ/ sin2 θ] was found
by Carter (1968), which can be shown be making a separation ansatz in the Hamilton-Jacobi
formalism with respect to θ and r. Now the equations of motion are fully determined and length
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algebraic calculations (see Bardeen et al. (1972)) lead to

Σṫ = −a(aE sin2 θ − L) + (r2 + a2)
T

∆

Σṙ = ±
√

Vr

Σθ̇ = ±
√

Vθ

Σϕ̇ = −
(

aE − L

sin2 θ

)

+ a
T

∆
, (14)

for which we defined

T = E(r2 + a2) − aL

Vr = T 2 − ∆
(

µ2 + r2 + (L − aE)2 + Q
)

Vθ = Q− cos2 θ

(

L2

sin2 θ
+ a2(µ2 − E2)

)

. (15)

The upper sign in front of ±√
Vr describes the movement towards the black hole in r-direction

and respectivly the lower sign has to be taken for the orbits away from it. For the θ-direction
this definition is similar.

2.3.1 The Accretion Disk

Having developed the general equations of motion in the Kerr metric, we now want to apply
them to describe a thin accretion disk, which lies in the equator plane of the black hole. This
implies that

θ = π/2 and θ̇ = 0 (16)

and therefore Q = 0. The accretion disk itself is most easily modeled by particles which move on
infinitely many circular orbits of different radii. This means that the velocity and the acceleration
in r-direction has to vanish:

ṙ = 0
Eq. 14−→ Vr(r) = 0 and r̈ = 0

Eq. 14−→ dVr(r)

dr
= 0 (17)

Additionally we want the accretion disk to be stationary, because the equations we calculated
before are only valid in this case. These informations are enough to fully determine the trajectories
of the particles, which has been done in detail by Bardeen et al. (1972). The results will be
motivated in the following.

They first calculated the explicit expressions of E and L. Using this, the angular velocity of
the stationary accretion disk becomes

Ω =
dϕ

dt
= ±

√
M

r
√

r ± a
√

M
, (18)

where the upper sign refers to corotating particles and the lower to retrograde orbits. Assuming
stable orbits of the particles in order to form an accretion disk imposes additionally that
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Figure 3: This plot shows the evolution of all important surfaces around Kerr Black Holes with
respect to their angular momentum a. It is plotted for θ = π/2, as this is the plane of
the accretion disk.

d2Vr(r)

dr2
≤ 0 , (19)

which is sufficient for stability as Vr(r) ≥ 0. Solving this system of equations reveals that only
radii r ≥ rms are stable, with

rms = M
(

3 + Z2 ∓
√

(3 − Z1)(3 + Z1 + 2Z2)
)

(20)

Z1 = 1 + (1 − a2)1/3
[

(1 + a)1/3 + (1 − a)1/3
]

Z2 =
√

3a2 + Z2
1 . (21)

This means that the accretion disk only extends down to a certain radius of marginal stability,
which for example gives

rms =











1.237M for a = 0.998

6M for a = 0

8.994M for a = −0.998

(22)

Fig. 3 shows a summary of the evolution of all important radii mentioned above with respect to
a. Using Eq. 4, the four-velocity of the particles building the accretion disk can be derived as

~u = ut (∂t + Ω∂ϕ) , with ut =
r
√

r ± a
√

M
√

r

√

r2 − 3Mr ± 2a
√

M
√

r
. (23)
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Clearly it is also possible to extract the trajectories for r ≤ rms from the equations above. As
the orbits are not stable, the particles fall towards the event horizon with the energy E(rms) and
angular momentum L(rms) they have at the radius of marginal stability. This implies that the
particles might have a non-zero velocity and acceleration in r-direction and therefore their total
four-velocity is given by ~u = ut∂t + ur∂e + uϕ∂ϕ. As we will not need this trajectories in the
following and the equations are rather lengthy they are not written here. Interested readers can
find them at Speith et al. (1995).

2.3.2 Photon Trajectories

Having described the location and frame where the photons are emitted, we now want to follow
their way to the observer. Due to the large distance to the black hole system, we will only see
photons which fly exactly in our direction. This means by looking at the system under different
angles we will clearly measure different photons and obtain different results for the line shape.
Thus it is only important to consider photons, which travel at infinity in the same direction. This
chapter follows the detailed descriptions of Chandrasekhar (1983).

The photons originate from the stationary and axi-symmetric accretion disk, which implies
that we only have to consider the (r, θ) plane simply because of the symmetrical reasons. This
leaves us with only two equations of motion from Eq. 14. Integrating over the path from the
point of emission at the accretion disk (re, π/2) to the observer at infinity (∞, θ0) leads to

∞
∫

re

dr√
Vr

=

θ0
∫

π/2

dθ√
Vθ

. (24)

Additionally one has to take into account, that the photons might have turning points in r and
θ-direction. This means that the integration has to be split into different parts. The final solution
will be a combination of them, which accounts for the different paths the photon can take to
reach the distant observer.

Examining the possible parameter space of Eq. 24 quickly leads to the conclusion that the
roots require

Vr(r) ≥ 0 and Vθ(θ) ≥ 0 (25)

for a real solution. The limits determined by there conditions can be identified with the turning
points rt and ηt (see Chandrasekhar (1983) for details). Taking into account that the sign changes
at the turning point, the trajectories of the photons can be given. Without any turning points
the integration of 24 can now be performed

∞
∫

re

dr√
Vr

= −
η0

∫

0

dη
√

Vη

, (26)

where we defined Vη := sin2 θVθ and substituted η = cos θ. Considering a turning point in
θ-direction splits the integration over η in two parts:

∞
∫

re

dr√
Vr

= −

√
η2
t

∫

0

dη
√

Vη

+

η0
∫

√
η2
t

dη
√

Vη

. (27)
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Looking at the case of the r-integration in a rough geometrical picture reveals, that the turning
point can only occur if the black hole is between the point of emission and the observer. Otherwise
the turning point of the photon would be closer to the black hole than the location where it was
emitted, which can be considered as highly unlikely. Moreover a photon emitted behind the black
hole requires in this picture a turning point in θ-direction in order to be seen by the observer.
Thus we only need one last equation with a turning point for each direction:

−
rt

∫

re

dr√
Vr

+

∞
∫

rt

dr√
Vr

= −

√
η2
t

∫

0

dη
√

Vη

+

η0
∫

√
η2
t

dη
√

Vη

(28)

Solving these equations for a specific E and L now fully determines the movement of the photon.
For means of easier calculation it is convenient to choose new integrals of motion

λ =
L

E
and q2 =

Q
E2

, (29)

and multiply the Vr, η with E−2. This leads to

Vr = r4 + (a2 − λ2 − q2)r2 + 2M
(

(a − λ)2 + q2
)

r − a2q2

Vη = −a2η4 + (a2 − λ2 − q2)η2 + q2 . (30)

The momentum of the photon expressed in the most easiest way then reads

pt = −E

pr = ± E

∆
√

Vr

pθ = ±E
√

Vθ

pϕ = Eλ . (31)

2.4 Transfer Function

So far, we described single photons that are emitted at the disk and selected the ones which we
see under a view angle θ0. In this section we will consider emission from the whole accretion
disk, based on the model of a thin disk described in section 2.3.1. In its rest frame, the specific
intensity at a certain energy IEe

emitted at the surface depends only on the radius re and the
emission angle ne.

2.4.1 Radiation Transport

For an observer far away, the black hole is a point source. This means he can only see the whole
disk at once and thus measures an integrated specific luminosity

LEo
= 4πd2

∫

IEo
(re, ne)dΩ , (32)
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Figure 4: A drawing of volumes of the phase space VxVP , for the momentum space Vp and the
normal space Vx, necessary to calculate the number density of trajectories N in curved
space. (adapted from Misner et al., 1973)

where d is the distance to the system. The specific intensity of photons with energies between E
and E + dE is defined by

IE =
EdN

dAdEdΩdt
, (33)

where dN is the number of photons in the solid angle dΩ with energy E, which flow through the
area dA in the time dt . As these variables are clearly not Lorentz invariant, IE is not a good
quantity and will vary depending on the chosen frame of reference. Nevertheless we need to find
a way to convert the emitted intensity IEe

at the accretion disk to the measured intensity IEo
,

as they will not be equal in general. Following Misner et al. (1973), it can be shown that the
number density N = δN/(VxVp) is an invariant, as

dN/dλ = 0 . (34)

Here VxVp is the phase space volume of N identical particles. Eq. 34 is the collisionless Boltzman
equation in curved space, which can be easily derived from the general Liouville theorem. Explicit
considerations (see Fig. 4) lead to Vx = Adt and Vp = dΩE2dE. As we required all particles
to be the same, the relation ~p2 = m2 stays constant and dictates the four momenta to lie on a
hyperboloid. Now we can identify the specific intensity with the conserved number density and
we get

IE

E3
= N = const. (35)

Now we finally obtained a connection between the observed and the locally emitted luminosity,
reading

LEo
= 4πd2

∫
(

Eo

Ee

)3

IEe
(re, ne)dΩ . (36)
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The ratio Eo/Ee between the observed and the emitted energy is exactly the definition of the
redshift. Taking into account that the observer measures in a flat Minkowski space and using the
expressions for the four-momentum of the photon, the redshift becomes

g =
Eo

Ee
= − E

pµ
e uµ

=

√
re

√

r2
e − 3Mre + 2a

√
Mre

re
√

re + a
√

M −
√

Mλ
. (37)

Keep in mind that E, the energy of the photon at infinity, is the very same as the conserved
quantity, which describes the geodesic of the photon. Moreover this means if we know at which
energy the photon is emitted from the disk and know its redshift, we can calculate the energy at
which we should observe it. For easier calculation, we create an homogenius parameter space by
redefining the redshift. Using the maximal and minimal redshift we define for each gas ring and
incination angle the parameter

g∗ :=
g − gmin

gmax − gmin
, 0 ≤ g∗ ≤ 1 . (38)

There can be up to two solutions for a specific g∗ and a certain radius due to symmetric reasons.
This can be easily visualized, as you clearly have two possibilities on a circle to get from the
minimum to the maximum value of the redshift. As the redshift is a steady function, each value
in between the extreme values appears twice.

The only unknown quantity left is the emission angle ne. Due to the effects of strong gravity
in the vicinity of the black hole, the photons do not travel on a straight path and are likely to
be observed under a different angle. But the emission angle is already totally defined by the
four-momentum of the emitted photon. With the normal vector to the disk ~n and the energy of
the photon −pµ

e uµ, these quantities are related by

cos(ne) =
~pe⊥

|~pe|
= −pµ

e nµ

pµ
e uµ

= −pµ
e nµ

E
g , (39)

where we used Eq. 37 for the last equality. Furthermore the normal vector can be expressed by

~n =
1

Σ
∂θ

∣

∣

∣

∣

θ=π/2

, (40)

as it is defined as a spatial vector perpendicular to the accretion disk. Using the the four mometum
of the photon from Eq. 31, the fact that η2|π/2 = 0 and the expression for Vη (Eq. 30), the angle
becomes

cos(ne) =
qg

re
. (41)

2.4.2 Transfer Function of Cunningham

For means of calculation, Cunningham (1975) defined the Transferfunction f

f(g∗, re, θ0) =
d2

πre
g
√

g∗(1 − g)

∣

∣

∣

∣

∂Ω

∂(g∗, re)

∣

∣

∣

∣

. (42)
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Using the relations calculated in this section, the total observed luminosity becomes

LEo
=

∞
∫

r+

1
∫

0

4π2re
g2

g∗(1 − g∗)
f(g∗, re, θ0)IEe

(re, ne)dredg∗ (43)

Here we parametrized the accretion disk in (re, g∗) space. Because this leads to the conserved
quantities λ and q the motion is still defined properly. Additionally we see, that a model describing
the specific intensity is required. As we want to compare this to existent models, we make the
same assumptions being

IEe
∝ r−α

e · f(ne) . (44)

Thus the radial dependence is described by a power law characterized by the emissivity α. Usually
values of α = 2 - 3.5 are observed. Furthermore the intensity might depend on the emission angle.
Here we chose the limb darkening model

f(ne) = 1 + 2.06 cos ne (45)

invented by Laor (1991), as the laor and the kerrdisk model use it. In contrast to that, recent
theoretical considerations by Svoboda et al. (2009) show that limb brightening is more likely to
occure. Moreover they explain that this would lower the emissivity index systematically, which
is usually observed to be too high by using the limb darkening models.

2.4.3 Numerical Calculation

For the numerical evaluation of the transfer function we use a FORTRAN 77 code, developed by
Speith et al. (1995). Therein the emission from the accretion disk is modeled by a grid in the
(re, g∗)-space. As explained above, this is sufficient to describe the motion of the photons.

In order to evaluate the derivation of the solid angle and get rid of the d2 dependence in Eq. 42
we use the impact parameters α and β, which were first defined by Cunningham & Bardeen
(1973). They describe the how a distant observer sees the black hole, by projection of the
photons on a plane perpendicular to the line of sight. This is drawn in Fig. 5. Now we express
the impact parameters by the four momentum using simple geometric considerations as

α = −d
p(ϕ)

|p(µ)| = −d
pµ

[

e(ϕ)
]µ

pµ

[

e(t)
]µ and β = d

p(θ)

|p(µ)| = d
pµ

[

e(θ)
]µ

pµ

[

e(t)
]µ . (46)

The coordinates written in brackets, to show that they are the coordinates of the observer living
in a flat Minkowski space. Following Misner et al. (1973), the he aligns his tetrads according to

~e(t) = ~u , ~e(i) = ~eµ
(i)∂µ and ~eµ

(i)~e
ν
(i)gµν = η(i)(j) , (47)

where ηµν is the Minkowski metric. Applying these conditions, the tetrads of an observer at rest
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Figure 5: A drawing to clarify the definition of the impact parameters α and β. They describe
how a distant observer would see the photons emitted around the black hole, which are
projected perpendicular to his line of sight.

can be constructed. In spherical coordinates they read:

~e(t) =

√

Σ

Σ − 2Mr
∂t

~e(r) =

√

∆

Σ
∂r

~e(θ) =
1√
Σ

∂θ

~e(ϕ) = −2Mra√
Σ∆

√

sin2 θ

Σ − 2Mr
∂r +

√

Σ − 2Mr

Σ∆ sin2 θ
∂ϕ (48)

Combining the coordinate system of the observer with the four momentum of the emitted photon
(Eq. 31), we can now derive the impact parameters with Eq. 46. As the observer is far away, we
let d go to infinity and thus obtain

α = − λ

sin θ0
and β = ±

√

Vθ . (49)

Furthermore the impact parameters are defined such that

d2 · dΩ = dαdβ =

∣

∣

∣

∣

∂(α, β)

∂(λ, q)

∣

∣

∣

∣

dλdq =
q

sin θ0β
dλdq . (50)

In this way we get rid of the apparent d2 dependence and are able to calculate the partial
derivative of the solid angle, which appears in the Transferfunction (Eq. 42). This leads to

d2

∣

∣

∣

∣

∂Ω

∂(g∗, re)

∣

∣

∣

∣

=
q(gmax − gmin)

sin θ0β
∣

∣

∣

∂(g∗,re)
∂(λ,q)

∣

∣

∣

. (51)
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The exact description of the numerical details can be found in Speith et al. (1995). Nevertheless
a short summary will be given in the following. At the beginning a certain gas ring with radius
re is chosen, which makes it possible to calculate the mininimal and maximal redshift. For each
single redshift on this ring, λ can be calculated by transforming Eq. 37. This is inserted in the
integral equations (Eq. 26 - 28), where the only unknown quantity is q. Solving this numerically
for each case, we filter the photons with a certain (g∗, re), which actually hit the observer. Now
the motions are fully determined and we can derive the derivative of Eq. 51 numerically in order
to calculate the Transferfunction. As we built the accretion disk out of many gas rings, we have
to repeat this procedure for their different re.

3 Different Models

In the following section, the different models and their approximations are presented. They are
all designed to fit spectra, which sets the upper limit of the duration of one line calculation to a
few seconds. This is compared to exact simulations of the line shape, which usually last around
three magnitudes longer. All models are normalized, such that the area below each the curves
for a specific inclination angle is the same.

All models are calculated for a maximum rotating black hole (a = 0.998) and a fixed emissivity
β =

√
r. Furthermore photons from the radius of marginal stability rms = 1.235GMc−2 down to

r = 50GMc−2 are used for integrating the line profile. Additionally the exact simulation uses a
Gaussian emission line at E0 = 6.4 keV with a narrow width of σ0 = 0.01E0 in the rest frame of
the disk.

3.1 laor

The majority of publications use the Laor model, which was the first model for a spinning black
hole and was calculated by Laor (1991) for a fixed a = 0.998. This clearly limits the possibilities
and does not allow any determination of the black hole spin. Moreover only a small grid of
transfer functions and no interpolation techniques are integrated in the model. Figure 6 shows
a comparison for different viewing angles θ (measured with respect to the accretion disk) to the
exact calculation.

Although the line shape seems crude, it fits the exact calculation well for higher inclination
angles as the line shape is smooth. For lower angles, where the peaks become more narrow
and stronger the Laor model lacks to describe the dynamic features. Despite strong differences
between θ = 5o and θ = 10o in the exact model, there is hardly any difference in the model
besides a slightly different normalization.

3.2 kyrline

Dovčiak et al. (2004) designed the kyrline model, which uses a huge table of transfer functions.
This serves to calculate the line shape fast and without interpolation like Laor, but with a much
higher resolution. Additionally a is variable for fitting the spin of a black hole. The comparison
can be seen in Figure 7.

The model fits the exact calculation for all inclination angles and even at the narrow peaks.
Although not really smooth, the line shape in a spectrum can be modeled with sufficient accuracy.
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Figure 6: Comparison of the laor model (steps) to the exact calculation (grey) for different
viewing angles θ measured with respect to the accretion disk.

3.3 kerrdisk

Stating that the model of Dovčiak et al. (2004) is too large and still not smooth, Brenneman &
Reynolds (2006) invented a model which uses a comparably small sized table and interpolation
techniques. The fact that the transfer function is very smooth, allows them to interpolate several
points between two data points. The kerrdisk model is plotted in Figure 8.

The line profiles do not look as smooth as kyrline, but exhbit spikes, which can be seen best
for lower incliniation angle. In contrast to the laor model the overall shape of the emission line
fits better. Not only more values are calculated, but also the peaks are more pronounced.

similar to the laor model described in section 3.1: At high inclination angles kerrdisk fits
the exact calculations pretty well whereas for low angles the shape deviates more.
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Figure 7: Comparison of the kyrline model (steps) to the exact calculation (grey) for different
viewing angles θ measured with respect to the accretion disk.

4 Conclusion

4.1 Comparing the Different Models

The models in the section above were all calculated with the highest possible resolution of the
single model. In order to compare them better, they are rebinned to the same grid with an energy
resolution of ≃ 3%. Moreover this describes the real situation better, which consists of a detector
with fixed bins onto which the models are evaluated. Figure 9 shows this for a typical inclination
angle of θ = 40° and emissivity of α = 3.0. Looking at the figure, the differences ∆F clearly
reveal, that the laor model predicts a different flux in almost every bin. Thus although the
single deviations are not much, the whole line shape is calculated wrong. In contrast to that, the
kerrdisk model describes the total line shape better, but gives a different flux almost randomly
for a few bins. In the right plot for a = 0.998, these deviations could almost be interpreted as
second peaks. By shifting the resolution, the wrong peaks shift in energy or disappear. Fitting
with such a model might lead to higher χ2 values. But the determined parameters should not
deviate, as the overall shape fits. In contrast to that, the shape that the laor model predicts
is not modeled correctly, which might lead to slightly different parameters. The kyrline model
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Figure 8: Comparison of the kerrdisk model to the exact calculation (grey) for different viewing
angles θ measured with respect to the accretion disk.

follows the exact calculation almost perfect, except at some bins around the peak. This clearly
leads to the conclusion that the kyrline model is best suited for fitting and that its huge sized
precalculated tables are really necessary for providing the correct line shape.

4.2 Measuring the Spin

In order to state if it is possible to measure the spin of a black hole, an important indicator
clearly is how much the shape of the line changes with respect to a. For this analysis, a typical
inclination angle θ = 40° and a emissivity α = 3 were chosen. As Figure 10 clearly shows, the
blue peak does not change very much, but the red peak and the red tail get significantly brighter
for increasing spin. Moreover this plot reveals that the line of a fast spinning black hole can be
several keV in width, which makes it hard to distinguish the emission line from the continuum.
Therefore the crucial issue for determining the spin correctly, is to understand the continuum
spectrum as best as possible. Neglecting in Fig. 10 the spectrum below 3keV and adding some
noise, one can easily imagine that after renormalizing it can even become hard to distinguish
between a maximally and non rotating black hole. Therefore it is really important to model the
shape of the relativistic iron line with a high presission in order to draw conclusions about the
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spin of the black hole.
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