
Constraint-Based Reverse Engineering
and its Applications

in Astrophysics

Diploma Thesis
by

Johannes Bauer

born December 6th , 1983 in Lichtenfels

Department of Computer Science 4
Distributed Systems and Operating Systems

University of Erlangen-Nuremberg
and

Dr.-Remeis Observatory Bamberg
Erlangen Center of Astroparticle Physics

Advisors:
Prof. Dr. rer. nat. Jörn Wilms

Dr.-Remeis-Sternwarte and Erlangen Center for Astroparticle Physics
Prof. Dr.-Ing. Wolfgang Schröder-Preikschat

Lehrstuhl für Informatik 4

Start: 1st of March 2009
Submission: 31st of August 2009

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

...

Erlangen, den 31. August 2009

1

Abstract

In order to efficiently reverse engineer code tools are necessary which perform signifi-
cantly more than simple disassembly. Such tools should aid the reverse engineer in the
areas in which manual work is known to be tedious and error-prone. The engineer on his
part aids the tool in the areas where automatic disassembly fails due to code obfuscation.
This way the reverse engineer can concentrate on the actual work and can delegate the
tedious parts to the utility at hand. To show how such an utility could look like and of
what it could be capable of, a camera driver for an astronomical CCD camera is reverse
engineered in the process of this work. The second part focuses on the reimplementation
and astrophysical problems which need to be solved in order to create good imaging
results.

Thanks

Ever since my father explained to his 10-year old son the process of code compilation as
a glass which is shattered on the floor I have been fascinated of putting those pieces of
debris back together. And even though the comparison is flawed it still captures well the
picture of how difficult reverse-engineering machine code can be. This holds especially
true when during the compilation process special care was taken to not let anyone know
what really happens behind the looking glass. Even the more reason for me to try to
develop tools and measures to effectively aid anyone interested in what happens when
closed-source applications are run.

I would probably never have had enough endurance in pursuing my goal of becoming
a computer scientist and writing this thesis without the help of many people very dear
to me. Above all, I would like to thank my mother and father for enabling me to
achieve this, who supported me firmly and who let me do my studies at my own pace
– something I did benefit from substantially both socially and scientifically. I am also
deeply indebted to my wife Julia, who greatly aided and encouraged me, who was
always there for me when I needed her and who tolerated my stress-induced moodiness
with a mere sigh and smile. My colleages at the Remeis Observatory also deserve my
thanks – I always had a great and fun time when writing my thesis there.

This work would not be what it is today without the help and assistance of my
advisors: I would like to thank Wolfgang Schröder-Preikschat for giving me the great
opportunity to do an interdisciplinary thesis like this one and for setting the trust in
me that I would achieve a worthwhile goal. Sincere thanks also to Jörn Wilms who
constantly guided me throughout the development of this work, who gave me valuable
advice and with whom I could discuss the ideas, thoughts and solutions presented in the
thesis.

Contents

1 Reverse Engineering 4
1.1 Motivation . 5
1.2 Differences in Assembly Representation 6

1.2.1 Symbolic Names . 7
1.2.2 Function Prototypes . 7
1.2.3 Exceptions . 8
1.2.4 Structure Member Access 8
1.2.5 Concurrent operation . 9
1.2.6 Memory Allocation . 10
1.2.7 Return Values of Functions 10

1.3 From Assembly to Higher-Level Abstraction 11
1.3.1 Goals . 11
1.3.2 Useful Premises for Offline Analysis 12
1.3.3 Control Flow Representation 12

1.4 Pitfalls and Obfuscation . 13
1.4.1 Clarification . 13
1.4.2 Overlapping Instructions . 14
1.4.3 Opaque Constraints . 14
1.4.4 Abstruse Code . 16

1.5 The Constraint-Based Approach . 17
1.5.1 Nomenclature . 17
1.5.2 Principle of Operation . 18

1.6 Possible Extensions . 18
1.6.1 Extending Data-Flow to Arithmetic Expressions 19
1.6.2 Maximal Stack Regions . 21
1.6.3 Extension by Specialized Constraints 22
1.6.4 Determining the Extent of Subroutines 24

2 Astrophysical Premises 25
2.1 Basics and operation . 25

2.1.1 Telescopes . 25
2.2 Imaging Detectors . 27
2.3 Telescope Mountings . 30

2.3.1 Telescope mount . 30
2.3.2 Mount Gear Inaccuracy . 32

1

3 Autoguiding with Astrophysical Imaging Detectors 35
3.1 Reverse Engineering the CCD Camera Driver 35

3.1.1 Getting to Know the Target 35
3.1.2 Intercepting Library Calls 36
3.1.3 A Peek into the SBIG Protocol 37
3.1.4 Understanding the Protocol Semantics 38
3.1.5 Hardware Disassembly . 39
3.1.6 Firmware Disassembly . 40

3.2 Forms of Object Tracking . 43
3.2.1 Off-Axis Guiding . 43
3.2.2 Auxiliary Telescope Guiding 44
3.2.3 Software Virtual Guiding . 44

3.3 Guiding Accuracy . 44
3.4 Cross Correlation . 46

3.4.1 Efficient Implementation . 46
3.4.2 Avoiding False Positive Detection by Normalization 47
3.4.3 Subpixel Accuracy . 50

3.5 Determining the movement field . 52
3.6 Design of a Distributed System . 54
3.7 Imaging Examples . 55

4 Conclusion and Outlook 58

A Notation and Examples 60
A.1 Mathematical Notation . 60
A.2 Notation of MBBs . 61
A.3 CRC-8 Listing . 62
A.4 Maximal Stack Regions . 63
A.5 Exception Handling . 65

B SBIG Camera Protocol 66
B.1 General Notes . 66
B.2 Command Reference . 66

B.2.1 Establish Link . 66
B.2.2 Temperature Regulation . 67
B.2.3 I2C Access . 67
B.2.4 Shutter Control . 68
B.2.5 Exposure Control . 68
B.2.6 Command Status . 69
B.2.7 CCD Readout Control . 69

B.3 Camera Parameters . 71
B.4 Typical Imaging Process . 72

C Device Server Protocol 73
C.1 Identifiers . 73
C.2 Commands . 73

C.2.1 Requests . 73
C.2.2 Responses . 74

C.3 Line format . 74
C.4 Command Format . 74

2

C.5 Protocol States . 74
C.6 Commands . 75

C.6.1 RQAUTH . 75
C.6.2 AUTH . 76
C.6.3 LIST . 77
C.6.4 LOCK . 77
C.6.5 UNLOCK . 77
C.6.6 QUIT . 78
C.6.7 LISTPARAMS . 78
C.6.8 SETPARAM . 79
C.6.9 LISTCAPABILITIES . 79
C.6.10 EXECUTE . 80
C.6.11 LISTRESULTS . 80
C.6.12 FETCH . 81
C.6.13 LISTEN . 81

C.7 Error Codes . 81

3

Chapter 1

Reverse Engineering

Today, every home computer runs vast amounts of binary code, be it the operating
system or user applications. This code usually has been compiled from some language
which has a higher abstraction level than machine code does. Compilation is far from
trivial, but the other way around – reverse engineering binary code and trying to fully
understand its meaning – is even more difficult. Sometimes for various reasons, as will
be discussed in Sect. 1.1, it can be very important to have deep insight into the code
which is run. Code analysis can be performed in multiple ways. The most conventional
method and the method this work will focus on is static disassembly. This means a
binary executable is analyzed while it is not run. In contrast to static disassembly,
dynamic disassembly analyzes an executable during its runtime – this is what a debugger
does. The two methods have both their own advantages and disadvantages. When using
a static approach it is, for example, most difficult to analyze executables which are
self-modifying such as compressed binaries. While a dynamic disassembler has access
to all the register and memory values at each executed instruction, static disassemblers
must rely on generalizations and assumptions. Extracting information statically is on
the other way completely stealth for the application: An application has no way of
defending itself against static disassembly, while in contrast there are various approaches
for an application to detect a running debugger and take evasive action.

A concrete example is a CCD camera driver which is closed-source, as is the case
with drivers of the Santa Barbara Instrument Group (SBIG). They produce highly
efficient CCD cameras which are perfectly suited for use in astronomical applications
– however, only having a Software Developers Kit (SDK) can be undesirable for a
developer in terms of maintenance, as discussed in Sect. 1.1. Should the vendor decide
to abandon driver support for a specific piece of hardware, the hardware becomes
virtually unusable. From the customer’s point of view, vendor independence in this
aspect is preferable. The first step before reimplementation of a driver has to be some
form of reverse engineering in order to find out what the driver does and how it operates.

Such a driver will be used as an example for reverse engineering work – it will be
dissected with special utilities which were created in the process of this work. The field
in which the acquired knowledge will be applied is the field of astrophysics. Specifically,
this work focuses on utilities and algorithms which can be used to use CCD cameras
effectively for stellar observations and caveats and workarounds employed to minimize
the disturbing effects of Earth’s rotation.

4

1.1 Motivation
Apart from the motivation of maintenance, there are further reasons why somebody
would like to disassemble or reverse engineer binary code. These include:

1. Compatibility: This is probably the most obvious reason why someone would
reverse engineer code – and probably the most important reason for people
reversing code for the Open Source community. A vendor may choose to support
one piece of hardware on a single platform, without publicizing details on how to
communicate or interact with that hardware. For the user it might be desirable to
actually use the device without having to rely on the vendor’s support. The point
to start is usually to reverse engineer the existing driver or control program on the
proprietary platform in order to reimplement it for the desired target.

2. Maintenance: When drivers are released in closed-source form, the release is
obviously closely bound to strict conditions. Those may be, for example, other
libraries that are linked against. If a vendor decides to abandon a certain piece
of hardware and will discontinue releasing new drivers for the product, the old
drivers may not work on more recent systems anymore. The problem is extremely
prominent when special library versions are used: A driver library which requires
libstdc++ in version 5 will not work on a recent system which has only version
6 installed. Reverse engineering is a lot easier for the user if he is aware of this
fact beforehand: A dynamic, live approach is then possible without the need to
install outdated, possibly deprecated files.

3. Arbitrary Restrictions: Some vendors choose to employ arbitrary restrictions
on the software they sell, usually in the form of copy-protection. These do not
add at all to the value of the software and are beneficial for the vendor alone.
The reason for those restrictions are obviously to prevent users from violating
copyright laws. While this is possibly true, the honest buyers of software are also
affected by those restrictions. There are many good reasons to circumvent such
protection, be it for performance improvement or convenience. An substantiated
reason to circumvent copy protection could be, for example, the much higher
speed of hard disks compared to optical media or the sheer convenience of not
having to change DVDs constantly in order to run different applications.

4. Documentation: Poor API documentation is more common than not – either
deliberately to prevent users to use an API, or because of a lack of time of the
original developer. Sometimes it is therefore necessary to take a look at the
interiors of what happens when a certain library call is made. This is especially
interesting when it has to be determined if there are certain side effects to a call
or maybe to see if a call is thread-safe. Such things can hardly be evaluated by
trying out code, but must be verified by disassembly.

5. Threat-Assessment and Auditing: Most commercially available software is
closed-source. Not all companies however deserve the trust that naïve users often
put into them: Spying on its users, offering backdoors, and stealing sensitive
information are popular among producers of commercial software for various
reasons. These range from Digital Rights Management (DRM) over mechanisms
to enforce copyright laws up to spyware. The threats that users of closed-source
software have to face are manifold [Gra02]. If it is unavoidable and there are

5

concerns for security, it should be possible for the user to inspect the code to
ensure it really is only doing what it is supposed to do.

6. Performance profiling: For any programmer the ideal programming language
would be one in which he could express his thoughts and ideas in the most
abstract way possible and the compiler would still create highly performant
low-level code from that. As nice as this would be, reality looks different:
Programming languages in many cases force the programmer to compromise
between flexible, extensible, portable and highly problem-specific, machine-
dependent programming. The assembly generated from high-level code is usually
slower compared to code generated from the latter. As a rule of thumb, lower
abstraction usually results in higher performance. For evaluation just how big of
a performance hit a certain kind of abstraction level is, disassemblers are a viable
solution. The programmer can use them to determine what the compiler actually
does in order to translate the source code into binary form.

7. Debugging: While most high-level programmers deem it unnecessary to use a
disassembler for doing their debugging work, they are generally making a mistake.
Especially in the most high-level languages like C++ a disassembler can be the
only option for tracking bugs in code efficiently. A certain error may manifest
only under high optimization or when certain special language keywords (like
const) are used. Without debugging the binary, it is virtually impossible to trace
such programming errors. When templates are used which are inlined at compile
time, an adequate tool becomes even more important, as the binary code tends
to become highly unreadable without the appropriate means to aid the reverse
engineer.

8. Teaching and Research: Comparing the binary output of the compiler helps
to gain a greater understanding of what the machine does and how it does it –
interesting questions like how is a system call actually invoked, how does the
loader work together with dynamic libraries, and how does compilation work in
general are most easily answered when taking a look on the generated binary and
understanding what it does.

1.2 Differences in Assembly Representation
It is necessary to clarify exactly on what kind of reverse engineering work this thesis
will focus on: It is mainly the reversing of assembly code written for the x86 or x86-64
architecture. While many things pointed out in this work will be almost identical on
many architectures as the ARM, MIPS, PPC, AVR or 8051, there are subtle differences.
These differences become apparent when comparing the assembly generated for those
architectures to bytecode assembled by a Java compiler, for instance. In order to see
just how far those will go, in this section a short comparison will be drawn between x86
assembly generated from C source code and Java bytecode. The assembly generated by
the x86 compiler will be called low-level assembly in contrast to Java bytecode, which
will be called high-level assembly code in the following sections. A brief comparison
between Java bytecode and compiled x86 machine code will be given in order to explain
just how different the difficulty of disassembly can be depending on the complexity of
the underlying architecture.

6

1.2.1 Symbolic Names
As humans are far better dealing with names than with numbers, in high-level code
functions are called by their name instead of the address of the function’s location. To
finally execute the code, the compiler must break those names down to function pointers
(i.e., resolve them). These names of functions or variables are called symbols and some
of them are embedded in the final executable, while others are not [Com95].

In low-level assembly code, symbol names can be completely stripped unless
necessary for interface access. This means in a program compiled from C there must
be a reference to the location of the main() function contained in the metadata of the
executable. It is, however, not necessary for the compiler to actually include the main()
symbol, i.e., the name “main” into the ELF file. The reference to main() will be used
by the loader to jump to the entry point after the program has been loaded into memory
in order to start its execution. Code compiled from C also needs to contain symbol
information when functions are exported as a library: Programs linking against the
library need to resolve the function pointers from the given name. For static libraries
this will be done at compiletime by the linker while for dynamic libraries it will be
performed during runtime by the loader.

Either way, assembled code originating from C needs to contain very little symbol
information – all symbol names for subroutines which are only used within the program
can be stripped. As a result they are not part of the actual assembly representation and
only contained in the executable metadata (e.g., the ELF header for Linux executables).
Also, calling convention is purely up to the compiler for languages like C. Obeying
the established standards [St08] is optional as long as it is consistent. Someone trying
to disguise the true purpose of code may therefore have interest in breaking such
conventions in order to defend against someone trying to figure out what the code
actually does.

In Java, things are different: Symbol names and type information are retained
completely unless they are explicitly renamed [LY99]. Even when obfuscations are
applied as Batchelder et al. describe them [BH07], this will not change the fact that
function prototypes are preserved and so is the class structure. Also, Java is type safe
on machine level, meaning that anybody reverse engineering Java bytecode has a huge
advantage over reverse engineering, for example, code compiled from C.

1.2.2 Function Prototypes
As stated before, function prototypes are completely eliminated in the process of
compiling low-level assembly code. Every instruction may be the start of a subroutine –
subroutines can only be identified by the targets of call opcodes in the program. This
may prove to be difficult if indirect call instructions are used. Even if it is known
that common calling conventions are obeyed, it is next to impossible to determine the
number of parameters which are passed to a subroutine for a general case. However,
it is very well possible that an obfuscating compiler uses different calling conventions
for various functions in order to complicate automatic disassembly. In contrast, Java
bytecode preserves the whole prototype of every assembled method in its bytecode by
mangling all types of formal parameters into the names of the methods. For the reverse
engineer this is yet another hint on what operation the method may perform which not
present in low-level assembly code.

7

1.2.3 Exceptions
In low-level assembly code, exception handling is a quite complicated matter. Consider
the piece of C++ code presented in List. 1.1 and its assembly equivalent (which, due to
its length, is only presented in the Appendix on page 65).

Listing 1.1: Exception thrown in C++
1 class moo {
2 private:
3 int val;
4 public:
5 moo(int val) : val(val) { }
6 int get() const { return val; }
7 };
8 int main() {
9 try {

10 throw moo(0x1234);
11 } catch (moo &e) {
12 return e.get();
13 }
14 }

Low-level assembly code requires extensive measures to be taken in order to ensure
that all memory is properly cleaned up after the exception object has been constructed –
even in the case the constructor of the exception object itself throws further exceptions.
The code generated by the compiler is hard to understand without substantial knowledge
about the process of stack unwinding and how exception handler tables are organized
(i.e., in the .eh_frame_hdr section of the ELF binary) [Boo05].

In contrast to that, Java bytecode provides exception support as part of the JVM:
There is an exception table stored in every class file which contains information about
which handlers apply for code regions protected by try clauses, e.g.:

from to target type
0 51 74 Class java/lang/RuntimeException
0 60 91 any

An exception is thrown through creation of an exception object and afterwards execution
of the special athrow opcode. The JVM looks up the table, matches class types and
performs a jump to the given address if a match is found. Otherwise the JVM handles
the stack unwinding in (emulated) hardware.

1.2.4 Structure Member Access
Structures are virtually invisible in low-level assembly which has been compiled from
C source code. Consider the following example:

Listing 1.2: Structure access in C
1 struct strukt {
2 int a; int b; int c; int d;
3 };
4 int main() {
5 struct strukt bar;
6 bar.b = bar.d;
7 return 0;
8 }

Listing 1.3: Structure access in low-
level assembly

1 mov -0x4(%rbp), %eax
2 mov %eax, -0xc(%rbp)

8

The access of the members bar.b and bar.d has been eliminated completely by
the compiler. During compilation it determines the offset of the two structure members
from the start of the structure. Those are, in this case, 4 and 12, respectively. The
generated assembly code indicates that the compiler has laid out the memory so that
the structure starts at %rbp - 16. The address of the members bar.b and bar.d is
therefore determined at compiletime to be %rbp - 12 and %rbp - 4. As the x86-64
architecture does not allow a direct move instruction with both operands using the
register indirect with displacement addressing, a detour over register %eax is used.

The corresponding Java equivalent could not be more different as the JVM bytecode
provides own opcodes for accessing structure members:

Listing 1.4: Structure access in Java
1 class strukt {
2 public int a; public int b;
3 public int c; public int d;
4 }
5 public class foo {
6 public static void main() {
7 strukt bar = new strukt();
8 bar.b = bar.d;
9 }

10 }

Listing 1.5: Structure access in Java
bytecode

1 aload_1
2 getfield #4 (int strukt.d)
3 putfield #5 (int strukt.b)

The references #4 and #5 are meaningless without the layout of the method and
constant table – but these are available as part of the class file. It is only necessary to
trace those by following the indices in the table, which is exemplary done for index #4:

const #4 = Field #2.#19;

const #2 = class #18;
const #18 = Asciz strukt;

const #19 = NameAndType #25:#26;
const #25 = Asciz d;
const #26 = Asciz I;

Although the names can be removed from such a structure in Java bytecode, the
types of members and their positions in the structure cannot. Hence the information
that access to an integer within a structure is performed is always preserved – giving
any reverse engineer yet another advantage compared to reversing code compiled to
low-level assembly.

1.2.5 Concurrent operation
Changing the current lightweight thread of execution in low-level assembly is usually
performed by a dispatch function. The dispatcher copies the function pointer of the
thread start function to the lower end of a previously prepared memory region. The
address of this memory region is then copied into the stack pointer. When the dispatcher
returns from the subroutine, it therefore jumps to the kickoff function. For an inexperi-
enced person, such assembly code may look unusual and confusing. It is, however, easy
to spot, as the direct manipulation of the stack pointer (apart from arithmetic operations)
is a rather uncommon operation. Locking is seldomly implemented directly, but instead
delegated to special functions within thread-handling libraries as the libpthread. In
Linux 2.6 those in turn delegate the call to the operating system’s futex(2) call. In

9

Java’s high-level assembly bytecode threads are far easier to spot and locking of critical
sections is obvious: Threads are created by a class inheriting from the special Thread
class. They are started by the virtual method call start(). When a thread enters a
critical section by using the language keyword synchronized, code is generated which
contains the monitorenter and monitorleave opcodes – yet another example of how
high the JVM’s abstraction level really is.

1.2.6 Memory Allocation
Memory allocation in code compiled into low-level assembly can generally be differ-
entiated between stack and heap memory allocation. Stack space is requested by the
application by decrementing the stack pointer. Heap memory is allocated on Linux
systems by calling the brk(2) system call which is called, for example, by the library
function malloc(3). When creating new objects, all these steps can be seen on as-
sembly level. Things become interesting when the compiler uses optimizations on
arithmetic operations performed on the stack pointer when the total stack size required
by the subroutine is known in advance. Memory allocation can then be performed in a
single operation by decrementing the stack pointer by the sum of required memory – all
objects or variables then lie next to each other with a reverse engineer having no idea
which one could be which until they are actually used. In contrast, Java does type-safe
memory allocation: The new opcode takes the index of a class type, for which then
memory is reserved. The reverse engineer therefore always knows what type of memory
a certain object refers to. With arrays it is similar, except for the fact that the newarray
opcode is used by the JVM for that purpose: Here, not only is the exact size known for
each array, but also the types of elements contained in the array – very much unlike
low-level assembly code. Both facts make it much easier for any reverse engineer to
spot interesting portions of code in Java bytecode than it is to spot a similar code in
low-level assembly.

1.2.7 Return Values of Functions
Similar to the prototype of functions, there really is no strict procedure on how values
should be returned in low-level assembly code – there is merely a calling convention of
the application binary interface (ABI) [St08]. It varies greatly depending on platform,
programming language and compiler used. Any software developer not interested in
interoperability can choose the internal ABI to his own liking as long as it is kept
consistent. With the GCC compiler and an x86 machine, integral data types will be
returned in %eax and floats will be returned in a FPU special register. GCC on x86-64
behaves differently: Here, integral data types are returned in %rax, floats are in the
%xmm0 register.

Java again does things very differently: As type safety is a very important aspect of
the Java language, each returning opcode also has its own associated type. There are the
return, ireturn, lreturn, freturn, dreturn and areturn opcodes to return either
nothing, integers, long integers, float values, double values or pointers. Although type
safety in general is very important, in this case it once again gives the reverse engineer
an edge over reversing low-level assembly code.

10

1.3 From Assembly to Higher-Level Abstraction

1.3.1 Goals
First off, it needs to be clarified what the goals are which can be expected from a tool
aiding the user in his reverse engineering work. Only when those are clearly defined
in advance is it possible to measure how well they perform. Although there are works
in literature which refer to the complexity of reverse engineering and particularly the
deobfuscation process, there usually is no practical solution presented. This also is the
result of Appel [App02], who concludes that that given knowledge about the way an
obfuscation works, it “should be possible to make specialized execution-analysis tools
tuned to” particular obfuscation algorithms. Although Barak et al. [BGI+01] prove
that it is generally impossible to obfuscate programs in a way so their original form
cannot be restored efficiently, i.e. O(P), many forms of obfuscation exist which cannot
be reversed by any algorithm as the necessary problem which needs to be solved is
undecidable. Useful applications of such algorithms are shown, e.g., by Collberg et
al. [CTL97] in the form of aggregation transformations or the merge of scalar variables.

As shown in Sect. 1.2, there are remarkable differences between the level of abstrac-
tion different architectures provide. Therefore it has to be formalized what information
is definitely lost (irretrievably) and what information is only converted during the pro-
cess of compilation. As explained before, this is, however, highly dependent on the
architecture. As Müller has shown [Mü93], it is possible to create a fully-functional
Turing-complete machine which contains only 8 opcodes. It is obvious that the abstrac-
tion level of such a machine is grossly different from the one a high-level assembly
language like Java bytecode provides.

The goals for the reverse engineering tool created in this work shall therefore be:

• Aiding Data Flow: Data flow shall be tracked by the disassembler in order to
evaluate register values at certain code locations.

• Arbitrary Addressing: Indirect addressing shall be possible for arbitrary arith-
metic expressions.

• Intermediate Code: The disassembler shall represent the disassembled code
internally in a machine independent, high level intermediate code.

• Code Transformations: On the used intermediate code operations code transfor-
mations shall be possible to increase the level of abstraction.

• Extensibility: Updates of the disassembler like retargetation shall be possible
easily.

• Memory Models: The utility shall support an infinite amount of separate memory
spaces.

• User Interactivity: The user shall have the possibility to interfere with the
disassemblers results at any code location and at any abstraction level (e.g., by
splitting up Maximal Basic Blocks or by changing register values).

From now on this work will only refer to x86 or x86-64 code when discussing
assembly representation unless explicitly stated so.

11

1.3.2 Useful Premises for Offline Analysis
To be able to decipher the meaning of static code effectively, it is very important to
realize what premises are assumed when looking at code and what the implication of
such premises is. Many authors merely imply these premises – one of the authors which
do explicitly state the assumptions their tools rely on are Kruegel et al. [KVRV04]. The
reason so few authors explicitly state the prerequisites on assembly code is probably
because any code which differs from the standard case of sequential deterministic
execution is difficult to handle and requires special attention.

Moreover, it is essential to keep in mind that heavily obfuscated code may explicitly
break simple assumptions in order to complicate disassembly. Thus the design of a
reverse engineering utility should be kept modular enough to be able to handle such
deviating code. The basic assumptions made in standard code are:

• The internal state of the processor will change only in the way specified by the
performed instructions.

• Except for control transfer instructions code will execute in a sequential fashion.

In practice neither of those assumptions is completely true, but systems mostly
behave as if they were. Code that is analyzed will rarely run on bare hardware, but
rather on top of an operating system. The operating system will most likely be of
preemptive kind and continuously generate interrupts by a system timer. The Interrupt
Service Routine (ISR) then might occasionally preempt the running process in favor of
another – in this process not also will the control flow change to a completely undefined
location, but also the internal state of the processor will. However, in order to keep
everything as simple as possible for the application developer, such operating systems
will usually restore the environment completely before returning flow control to the
user application. It could be possible, however, that for example specialized types
of operating systems make use of the possibility to change the applications registers.
Since the above assumptions would then be broken, the constraints for analysis would
necessarily have to be reevaluated. To show that such cases really exist in real-world
applications, consider the piece of code presented in List. 1.6, which was compiled for a
AVR microcontroller.

Listing 1.6: AVR assembly example using a volatile register
1 0000004c <main>:
2 4c: 88 24 eor r8, r8

4 0000004e <check>:
5 4e: 88 20 and r8, r8
6 50: f1 f3 breq .-4 ; 0x4e <check>
7 52: 01 d0 rcall .+2 ; 0x56 <done>

If it would be executed in a non-concurrent (i.e., sequential) manner, the breq opcode
at 0x50 would always branch since r8 would always remain 0. If an Interrupt Service
Routine (ISR) would however change that register value, the loop would break and done
would be called. This shows how important it is that assumptions made about code are
true in all cases – anything may leads to a false disassembly result.

1.3.3 Control Flow Representation
For all further discussion the control flow representation of any given program will be
represented by control flow graphs, or CFGs for short. The formal representation of a

12

CFG is the graph tuple
G(V,E) (1.1)

V := {v1,v2, . . . ,vn} (1.2)

E := {(x1,y1),(x2,y2), . . . ,(xm,ym)}, x ∈V ∧ y ∈V (1.3)

where V denotes the vertices and E denotes the edges in the graph. The graph is directed
and possibly cyclic. Any vertex in that a CFG represents a Maximal Basic Block.
Maximal Basic Blocks are sections of code which fulfill the following requirements:

• Except for the last instruction in the block they do not contain any control flow
instruction.

• Except for the first instruction in the block they are not referenced by any other
control flow instruction in the CFG as a target.

• The block cannot be enlarged in either direction without violating the other
requirements.

The edges between blocks represent control flow transitions from one MBB into another.
The algorithm to identify the first instruction of MBBs is as follows:

• The first instruction in the program (entry point) starts a MBB.

• Any instruction referenced by a control flow instruction in the program starts a
MBB.

• Any instruction directly following a control flow instruction in the program starts
a MBB.

This algorithm will determine all static entry points for MBBs from which on the
actual MBB can be deduced by simply increasing the MBB, sequentially adding all
instructions which do not branch control flow. Dynamic entry points of MBBs (i.e.,
entries induced by indirect call or jmp opcodes) can not be determined in that manner
– a constraint-based analysis can detect some, but not all.

1.4 Pitfalls and Obfuscation

1.4.1 Clarification
Software developers may have various reasons to inhibit reverse engineering of deployed
code. In order to make it more difficult for reverse engineers to perform their work some
anti-reversing techniques have been developed. These are called obfuscations. There
are many kinds of obfuscations – some are targeted against the disassembler and others
against the reverse engineer. How such obfuscations work and how a constrained-based
disassembler may cope with them is explained in the next sections.

13

1.4.2 Overlapping Instructions
A problem of disassembling binary code is to separate instructions from data – which
may both very well reside in the same segment. When the location of the instructions
has been determined, another problem is to identify which of these instructions are
actually valid. Valid in this context means instructions which might actually executed
during runtime and which do not serve the sole purpose of confusing disassemblers and
thus obfuscating code. Consider the following piece of x86-64 code:

Listing 1.7: Overlapping assembly instructions
1 4004a0 <main>:
2 4004a0: eb 09 jmp 4004ab <safe>

4 4004a2 <illegal>:
5 4004a2: 48 c7 c0 0f 0b 00 00 mov $0xb0f , %rax
6 4004a9: eb fa jmp 4004a5 <illegal+0x3>

8 4004ab <safe>:
9 4004ab: c3 retq

The particular piece of code shown in List. 1.7 will be successfully processed
by a disassembler using either a linear-sweep- or a recursive-descent-approach. The
interesting part lies in the code started by the “illegal” label. The jump instruction jumps
“into” the mov instruction, effectively decoding the partial mov as an ud2 opcode, which
will result in an illegal instruction trap to be thrown by the processor. This is actually
no problem – the problem is that a disassembler will continue disassembling from that
instruction on and might skip or even crash when completely illegal opcodes are found
on that path.

As Linn et al. have shown [LD03], constructs like the above are highly artificial and
can seldomly be constructed from regular code. Therefore, although they may in theory
contain useful code, they will usually only appear in order to confuse disassemblers.

1.4.3 Opaque Constraints
Conditional branches in machine code are always split into two parts (although these
two may be combined into the same opcode): First some sort of comparison occurs,
which yields a boolean value, followed by the branch, which depends on the outcome
of the comparison. Code emitted which does a comparison of which the outcome is
always known beforehand is called a opaque constraint or opaque predicate. It is used
solely to obfuscate code. When the result of the condition evaluation is constant, the
conditional branch effectively becomes an unconditional branch with the added benefit
of confusing the decompiler with a dead branch target. This dead branch may point to
valid code sections with an invalid offset as described in Sect. 1.4.2, or it may point
into a data section. In order to trigger false detection of control flow in functions, it
may also simply point to a main code line – how a disassembler can try to evade such
maneuvers can be found in Sect. 1.6.4. The trick aims at fooling the disassembler
into the assumption that code might branch when in practice it never will because of
the opaque predicate. This might give the programmer the advantage of leading the
disassembler of a reverse engineer into code regions which contain illegal instructions –
resulting in skipped instructions, a wrong CFG and possibly even a disassembler crash.

Collberg et al. describe many different types of opaque constraints [CTL98]. Not
all opaque constraints can be identified as such by sole offline analysis. This is the case,

14

e.g., when concurrent threads modify memory in a pseudo-random manner [Eil05]. In
order to fulfill the requirement of stealth, however, the opaque constraint has to be as
inconspicuous as possible – therefore usually very short portions of code are used for
this purpose.

The simplest form of an opaque constraint is a comparison of two known values and
a following jump, as seen in List. 1.8.

Listing 1.8: Most basic form of an opaque constraint
1 4004a4: 48 c7 c0 00 0f 00 00 mov $0xf00 , %rax
2 4004ab: 48 c7 c3 a2 0b 00 00 mov $0xba2 , %rbx
3 4004b2: 48 39 c3 cmp %rax, %rbx
4 4004b5: 75 00 jne <somewhere >

These constructs can be easily beaten by static analysis of a constraint-based disassem-
bler. There are more complex forms of opaque constraints, however, which are only
slightly more complicated to write, but much more complicated to solve, as in List. 1.9.
Here, first a register is cleared, effectively setting the ZF to 0. The condition codes con-
tained in the RFLAGS register are pushed onto the stack using the pushf opcode [Int07b].
From there it is manually retrieved in order to check the zero flag, which is located at the
6th bit [Int07a]. Such constraints can also be beaten by the disassembly tool developed
in the course of this work.

Listing 1.9: More complicated, but still solvable, opaque constraint
1 400514: 48 31 c0 xor %rax, %rax
2 400517: 9c pushfq
3 400518: 58 pop %rax
4 400519: 48 83 e0 20 and $0x20 , %rax
5 40051d: 75 07 jne <never > ; Will never be

taken

Finally, there are opaque constraints which are so complicated that a constraint-
based disassembly tool cannot determine if they are true or not. Consider the piece of
code in List. 1.10 for example.

Listing 1.10: Unsolvable opaque constraint
1 unsigned int cnt = 0;
2 for (unsigned int i = 0; i < 1000; i++) {
3 if (randomfloat (1.0) < 0.1) cnt++;
4 }
5 if (cnt) {
6 // Live code branch
7 } else {
8 // Dead code branch
9 }

This opaque constraint is not solvable because it has nondeterministic behavior.
Assuming the random source is really random, it can, in fact, not be predicted which
branch will be taken. However, the probability the live code branch is taken is much
grater than the probability of taking the dead code branch. In order to reach the dead
code branch the random value 0 ≤ r < 1 would have to be greater than 0.1 for 1000
consecutive times. The chance of that happening are approximately

p = (1−0.1)1000 ≈ 1.74787 ·10−46

15

Collberg et al. describe in the highly interesting possibility of including a theorem
prover into the disassembler in order to be able to decode even more complicated types
of opaque predicates [CTL97]. One example they give is

x2(x+1)2 = 0 (mod 4)

Another interesting possibility might be to introduce numerical problems which can
only be solved algebraically or by iteration, but which cannot be calculated directly,
such as:

lim
x→0

sinx
x

= 1

or
min
x>0

xx = e−e−1

The complexity when using such theorems leaves great room for experimentation.
Collberg et al. [CTL97] describe the idea of using a simple, yet unproven, conjecture as
an opaque predicate such as the Collatz problem, seen in Eq. 1.4. The conjecture states
that recursive application of the formula will eventually converge to 1 [Lag96].

T (n) =

{
n
2 if n≡ 0 (mod 2)
3n+1 if n≡ 1 (mod 2)

(1.4)

As the Collatz conjecture holds true for values well beyond 232, it is possible to choose
an arbitrary integer i ≤ 232 as an input value to introduce nondeterminism. In that
range, the loop will terminate within 1050 steps (this worst-case value occurs, e.g., for
i = 2610744987 as can be calculated easily on any modern computer within a hour).

1.4.4 Abstruse Code
A final example for the difficulty of reverse engineering is the generation of abstruse
code. It is a highly efficient method to confuse a human reading the disassembled output.
Abstruse code can be generated in an extremely performant way while deobfuscation
requires a powerful disassembler. Consider this piece of code:

Listing 1.11: Abstruse code
1 40060c <abstruse>:
2 40060c: 48 c7 c0 ee ff c0 00 mov $0xc0ffee , %rax
3 400613: 48 3d 0d f0 ad 0b cmp $0xbadf00d , %rax

5 400619 <i1>:
6 400619: 74 02 je 40061d <i3>

8 40061b <i2>:
9 40061b: 75 02 jne 40061f <i4>

11 40061d <i3>:
12 40061d: 77 04 ja 400623 <target1>

14 40061f <i4>:
15 40061f: 73 0a jae 40062b <target2>

17 400621 <i5>:
18 400621: eb 10 jmp 400633 <target3>

16

20 400623 <target1>:
21 400623: 48 c7 c0 01 00 00 00 mov $0x1 , %rax
22 40062a: c3 retq

24 40062b <target2>:
25 40062b: 48 c7 c0 02 00 00 00 mov $0x2 , %rax
26 400632: c3 retq

28 400633 <target3>:
29 400633: 48 c7 c0 03 00 00 00 mov $0x3 , %rax
30 40063a: c3 retq

At the start of List. 1.11 the comparison between 0xc0ffee and 0xbadf00d is
performed – after the comparison instruction all condition codes of the CPU are known
and can be calculated by a disassembler using a constraint-based approach. Therefore,
when it can be assumed that the labels i1 through i5 are never referenced from outside
the abstruse function, it can be calculated in advance what value the function will
return in advance. However, for a human reader the prediction is error-prone and tedious.

1.5 The Constraint-Based Approach

1.5.1 Nomenclature
The internal state of a CPU usually is composed of many subunits:

• General-purpose registers,

• Special-purpose registers: Stack Pointer and Instruction Pointer,

• Flags Register (Condition Codes).

This list is incomplete – however for the analysis of static code it usually is unnecessary
to include other parameters, such as, for example, the internal instruction counter a CPU
may provide. Any subset of these variables might be taken into account for constraint-
based analysis. The set of analyzed state parameters will be called A, the set of so-called
aspects which are taken into consideration for analysis. For classical static disassembly,
A = /0.

For any set of CPU instructions, I = {i1, . . . , in}, which are detected during disas-
sembly there exists a unambiguous relation which assigns every instruction i to exactly
one Maximal Basic Block of the set B = {b1, . . . ,bm}. B is a partition of I:

∀i ∈ I ∃b ∈ B : i ∈ b, bi∩b j = /0 if i 6= j, ∪B = I (1.5)

The instructions contained in any Maximal Basic Block are then referred to again in
indices bi, j, where 1 ≤ i ≤ m determines the number of the MBB and 1 ≤ j ≤ |bi|
determines the actual instruction number in order of natural execution.

The state of the processor is called a condition c. It is represented as a set of tuples
(aspect,value) which includes all known processor aspects at that time. Aspects not
contained in such a set are considered undefined:

c = {(a1,v1),(a2,v2), . . . ,(an,vn)} (1.6)

Of particular interest are the preconditions and postconditions associated with every
MBB b∈ B. All preconditions are guaranteed to be satisfied before the block is executed

17

(no matter by which edge of the CFG) and all postconditions are guaranteed to be
satisfied after the block has completed its execution.

For clarification an example of the above is given in Appendix A.2 on page 61.

1.5.2 Principle of Operation
The idea of doing constraint-based reverse engineering is in theory simple and similar
to the data flow analysis provided by some disassemblers. After the code has been
disassembled and the MBBs have been identified, the code is internally annotated by a
set of constraints C which reflect a subset of the processor’s internal state. In practice,
this subset will contain the most important condition codes and registers the CPU
provides. All elements of A will initially be set to an undefined value. Consider the
piece of code shown in List. 1.12. For simplicity, in this example A was chosen to be

A = {ZF,OF,CF, rax, rbx, rcx, rdx} (1.7)

The set includes four general-purpose registers %rax through %rdx and three condition
codes (processor flags) which are the zero, overflow, and carry flag. For the short
example List. 1.12 the CFG is shown in Figure 1.1. Assuming that MBB3 can only be
reached through MBB1 or MBB2, the precondition of MBB3 is the intersection of the
postconditions MBB1 and MBB2. In general this means

cri =
[

j

co j ∀ j|∃E(bi,b j) (1.8)

Listing 1.12: Constraint-Based disassembly showing all conditions C
1 ; { }
2 MBB1:
3 mov $9, %rax
4 ; +{ rax = 9 }
5 mov %rax, %rbx
6 ; +{ rbx = 9 }
7 mul %rbx
8 ; +{ rax = 81, rdx = 0, OF = 0 }
9 jmp MBB3

10 ; { rax = 81, rbx = 9, rdx = 0, OF = 0 }

13 ; { }
14 MBB2:
15 xor %rdx, %rdx
16 ; { rdx = 0, ZF = 1, OF = 0, CF = 0 }

19 ; { rdx = 0, OF = 0, CF = 0 }
20 MBB3:
21 jmp MBBx
22 ; { rdx = 0, OF = 0, CF = 0 }

1.6 Possible Extensions
While the principle of operation discussed in Sect. 1.5.2 for itself is not very spectacular,
it is merely the description of the most basic data flow analysis. This basic approach
can be extended in various ways to yield far more impressive results aiding the reverse
engineer in his work.

18

MBB1

mov $9, $rax

mov %rax, %rbx

mul %rbx

jmp MBB3

All UD

OF = 0, CF = 0,

%rax = 81, %rbx = 9,

%rdx = 0

xor %rdx, %rdx

MBB2

All UD

ZF = 1, OF = 0,

CF = 0, %rdx = 0

jmp MBBx

MBB3

OF = 0, CF = 0,

%rdx = 0

OF = 0, CF = 0,

%rdx = 0

Figure 1.1: Maximal Basic Blocks arranged in the CFG

1.6.1 Extending Data-Flow to Arithmetic Expressions
Updating conditions in the data-flow analysis like in Sect. 1.5.2 is only of limited use:
Usually most of the variables will be undefined firsthand and therefore the disassembler
will yield little helpful information. This behavior can be improved when the disassem-
bler is programmed in a way to use variables optionally instead of undefined values.
In the representation chosen, the user will always use the assume statement borrowed
from Maple to tell the disassembler to assume certain premises at locations in code.

Listing 1.13: CRC-8 calculation with polynomial x8 + x5 + x4 +1
1 8048430: 55 push %ebp
2 8048431: 89 e5 mov %esp, %ebp
3 8048433: 0f b6 4d 08 movzbl 0x8(%ebp), %ecx
4 8048437: 53 push %ebx
5 8048438: 0f b6 5d 0c movzbl 0xc(%ebp), %ebx
6 804843c: 89 c8 mov %ecx, %eax
7 804843e: 89 ca mov %ecx, %edx
8 8048440: 83 e0 01 and $0x1 , %eax
9 8048443: 81 e2 e6 00 00 00 and $0xe6 , %edx

10 8048449: 31 c3 xor %eax, %ebx
11 804844b: 89 d8 mov %ebx, %eax
12 804844d: d1 fa sar %edx
13 804844f: c1 e0 07 shl $0x7 , %eax
14 8048452: 09 d0 or %edx, %eax
15 8048454: 89 ca mov %ecx, %edx
16 8048456: 83 e2 10 and $0x10 , %edx
17 8048459: 83 e1 08 and $0x8 , %ecx
18 804845c: c1 fa 04 sar $0x4 , %edx
19 804845f: 31 da xor %ebx, %edx
20 8048461: c1 f9 03 sar $0x3 , %ecx
21 8048464: 31 d9 xor %ebx, %ecx
22 8048466: c1 e2 03 shl $0x3 , %edx
23 8048469: 09 d0 or %edx, %eax
24 804846b: c1 e1 02 shl $0x2 , %ecx
25 804846e: 09 c8 or %ecx, %eax
26 8048470: 5b pop %ebx
27 8048471: 5d pop %ebp
28 8048472: c3 ret

19

A good example for this technique can be seen in List. 1.13, a function which
computes the CRC-8 checksum of a single bit. Deducing manually what operation this
function performs exactly is tedious and, much more importantly, extremely error-prone.
When using a constraint-based approach all the work can be left to the computer algebra
system (CAS) running in the background of the disassembler. The full computation is
available in the appendix as List. A.1 on page 62. Here only the result will be discussed:

eax := OR(OR(OR(SHL(XOR(Par2, AND(Par1, 1)), 7), SHR(AND(Par1, 230), 1)),
SHL(XOR(SHR(AND(Par1, 16), 4), XOR(Par2, AND(Par1, 1))), 3)),
SHL(XOR(SHR(AND(Par1, 8), 3), XOR(Par2, AND(Par1, 1))), 2))

This can be written as:

Listing 1.14: Return code written in C-like fashion
1 eax = ((Par2 ^ (Par1 & 0x01)) << 7
2 | (Par1 & 0xe6) >> 1
3 | (((Par1 & 0x10) >> 4) ^ (Par2 ^ (Par1 & 0x01))) << 3
4 | (((Par1 & 0x08) >> 3) ^ (Par2 ^ (Par1 & 0x01))) << 2

If this still looks confusing or unclear, the original code should be considered from
which it was initially assembled:

Listing 1.15: Actual C source code of the listing
1 unsigned char CRC8_Bit(unsigned char OldCRC , unsigned char Bit) {
2 unsigned char NewCRC;
3 NewCRC = (((OldCRC & 0x01) ^ Bit) << 7) |
4 ((((OldCRC & 0x10) >> 4) ^ ((OldCRC & 0x01) ^ Bit)) << 3) |
5 ((((OldCRC & 0x08) >> 3) ^ ((OldCRC & 0x01) ^ Bit)) << 2) |
6 ((OldCRC & 0xe6) >> 1);
7 return NewCRC;
8 }

So by telling the disassembler to use the computer algebra system on a certain
register of a function by usage of variables instead of undefined values essentially the
whole function could be restored into a compilable, readable form.

Listing 1.16: Comparison of global variable with a constant
1 80484b5: a1 18 a0 04 08 mov 0x804a018 , %eax
2 80484ba: 3d ef be 00 00 cmp $0xbeef , %eax
3 80484bf: 75 07 jne 80484c8 <main+0x24>
4 80484c1: e8 ce fe ff ff call 8048394 <code1 >
5 80484c6: eb 05 jmp 80484cd <main+0x29>
6 80484c8: e8 cc fe ff ff call 8048399 <code2 >
7 80484cd: [...]

This fact is particularly interesting when considering that the condition codes the
architecture provides are included in the disassembler aspects A. Their inclusion does
not make much sense when only representation of explicit values is possible as this will
almost never be the case in production code. However, when using a CAS capable of
boolean expressions in the background, the code in List. 1.16 can be transformed in an
abstract way: The important parts are shown in List. 1.17, where the DInt() function is
the CAS representation of dereferencing an address pointing to a 32-bit signed integer
value.

20

Listing 1.17: Impact of the comparison on the ZF aspect
1 ; { }
2 mov 0x804a018 , %eax
3 ; +{ eax = DInt(0x804a018) }
4 cmp $0xbeef , %eax
5 ; +{ ZF = ((DInt(0x804a018) - $0xbeef) == 0) }
6 jne 80484c8 <main+0x24>

As the disassembler knows that the jne opcode is essentially an instruction which
translates to

if (ZF == 0) goto Target

this means, knowing about the aspect ZF, the disassembler can translate the jne instruc-
tion into

if (((DInt(0x804a018) - $0xbeef) == 0) == 0) goto 0x80484c8

which any capable CAS will optimize to

if (DInt(0x804a018) - $0xbeef) goto 0x80484c8

Knowing the preference of programmers, such constructs present in intermediate code
can be further translated into the final representation

if (*((int*)0x804a018) != $0xbeef) goto 0x80484c8

Such an aid is great for any reverse engineer, as he must not concern himself with
the low-level details, but immediately sees what work the code is actually performing.

1.6.2 Maximal Stack Regions
Indirections in code relative to the stack pointer are difficult to read for humans as the
stack pointer value constantly changes due to push or pop instructions. Many times, the
actual value of the stack pointer is not relevant, whereas the value relative to the entry
point of a function is. As a solution, Maximal Stack Region analysis is presented: A
MSR is a portion of code in which the stack pointer does only change in predeterminable
ways. These might be push or pop instructions or arithmetic computations. Analysis
of MSRs is done in much the same way as the standard analysis of MBBs described in
Sect. 1.3.3. The MBB analysis is done beforehand and is used to calculate the MSRs:

1. At first, the first instruction of each MBB is assigned its own MSR with offset 0.

2. Then, each MSR is processed sequentially. The instructions encountered can be
one of the following kind:

(a) The instruction does not modify the stack pointer in any way: Assign the
instruction the same MSR with same offset as the instruction right before it.

(b) The instruction modifies the stack pointer in a predeterminable way: Assign
the instruction the same MSR of the instruction right before it, but adjust the
MSR offset to reflect the stack pointer change inflicted by the instruction
itself.

(c) The instruction modifies the stack pointer in an indeterminable way: Assign
the instruction a new MSR with offset 0 and break the current MSR up into
two separate MSRs.

21

After this is done the analysis yields a consistent memory block table, but the
memory blocks are not yet maximal. To get the final MSRs, optimization is necessary:
Any MSR of which all predecessor MSRs are equal can be optimized away. This
is especially the case when there is only one predecessor node. When only an edge
MSR0→MSR1 exists, all references of MSR1 can be replaced by MSR0. The offset
has to be adjusted so the new offset of all instructions in MSR1 is the sum of the MSR
offset of the last instruction of MSR0 and the MSR1 instruction offset. The optimization
is iteratively applied until there are no more changes in the layout of the MSRs.

If an analysis is done that way, it is possible to assign to each instruction within
every MSR a offset. The initial MSR offset is 0. Every instruction pi, j+1 has the offset
pi, j +offset(pi, j+1), where the offset function returns the relative stack pointer change
of an instruction. An example is given in the appendix on page 63. This makes it
possible to calculate at any place in the code where the address of a the stack pointer
is relative to the current MSR. The advantage for the reverse engineer is that it is not
necessary to think relative to the stack pointer (which may change throughout code
by, e.g., push or pop instructions), but in the contiguous memory segments which are
represented by the MSRs.

1.6.3 Extension by Specialized Constraints
When disassembling code for a specific target, there are instances in which certain code
sequences or instructions are used which have a specific high-level equivalent. Usually
those are introduced not in order to obfuscate code, but simply because of the limitations
of the architecture. Consider the code shown in List. 1.19 which is from a shared object
compiled for the x86.

Listing 1.18: Position-independent in source code of a library
1 extern int cup;

3 void foobar() {
4 cup = 0xc0ffee;
5 }

Listing 1.19: Position-independent code on x86

1 469 <__i686.get_pc_thunk.cx >:
2 469: 8b 0c 24 mov (%esp),%ecx
3 46c: c3 ret

5 0000043c <foobar >:
6 43c: e8 28 00 00 00 call 469 <__i686.get_pc_thunk.cx >
7 ; { ecx = 0x441 }
8 441: 81 c1 b3 1b 00 00 add $0x1bb3 ,%ecx
9 ; { ecx = 0x1ff4 }

10 447: 8b 81 f8 ff ff ff mov -0x8(%ecx),%eax
11 44d: c7 00 ee ff c0 00 movl $0xc0ffee ,(%eax)
12 453: c3 ret

14 1ff4 <_GLOBAL_OFFSET_TABLE_ >:
15 [...]

After the call of the rather peculiar function __i686.get_pc_thunk.cx, the return
address of the next instruction after the call opcode is pushed on the stack. This
address then is moved to the %ecx register before returning to the caller. The value is

22

then added with a precalculated offset in order to retrieve the address of the global offset
table (GOT). This table then is indirected with a displacement of −8 in order to get the
address of the effective target. The indirection over the GOT is necessary because the
shared library is relocatable and therefore needs to consist of position independent code
(PIC). The absolute addresses may change, but the relative address of the instruction at
0x43c relative to the GOT will not change when the library is mapped to memory in
one contiguous block. During runtime the address of cup is then resolved and written to
GOT - 0x08. This address then is finally assigned its value during the call of foobar.

The way in which a constraint-based disassembler can aid the reverse engineer
in this scenario is the following: When __i686.get_pc_thunk.cx is identified as a
function which solely moves the return address to %ecx, the reverse engineer can tell
the disassembler that the postcondition of the MBB should be:

assume((%esp) = %eip, trait=postcall)

This is not performed automatically, as it is not always ensured that the function is really
reached via a call opcode. Therefore the assumption will have to be stated explicitly
with the added trait keyword – this tells the disassembler that the statement is only
effective after a call has returned. In this case it is necessary because the referenced
value %eip is not yet available within the MBB __i686.get_pc_thunk.cx. When the
disassembler is allowed to safely assume that %ecx holds the value of %eip after the
call it can precalculate the addresses as shown in List. 1.19. It then can also identify
the indirection with displacement instruction to read a value from the GOT, as the size
of the GOT has to be known beforehand. This way it is possible to transform the four
instructions from 0x43c to 0x45e into the single pseudocode instruction mov %eax,
Global[2] (the 2 being the size of the GOT plus the displacement in the GOT divided
by four). When comparing the code generated for x86 to that generated by x86-64, the
above function call will not occur: The x86-64 allows, in contrast to the x86, indirect
register access relative to the instruction pointer %rip.

Another use case of specialized constraints is the access of 16-bit words on the 8-bit
AVR architecture, as shown in List. 1.20.

Listing 1.20: AVR code accessing a 16 bit int variable
1 ce: cf ef ldi r28, 0xFF ; 255
2 d0: d0 e1 ldi r29, 0x10 ; 16
3 d2: de bf out 0x3e, r29 ; 62
4 d4: cd bf out 0x3d, r28 ; 61

For the reverse engineer it is quite apparent that the registers r28 and r29 belong
together as one word and so do r24 and r25. However, the disassembler cannot simply
assume this is true, but must rely on the aid of the reverse engineer. He can instruct the
disassembler to assume that two bytes belong together to form a double word by use of
the typeof command:

assume(typeof(r29:r28, dword))

Then, in the ongoing code transformations, the disassembler will always join r28
together with r29 to form the virtual 16-bit register r28:29. The same is possible with
memory-mapped I/O addresses:

assume(typeof(0x3e:0x3d, dword))

So that through the iterative optimization process, in the end the internal intermediate
code will yield

23

(uint16_t*)(0x3e:0x3d) = 0x10ff

which is exactly the original form of the code in question.

1.6.4 Determining the Extent of Subroutines
To be able to group logically coherent parts of the disassembled output together into
subroutines, it is an important goal to identify those sections of code which belong
together. For this purpose, the following algorithm can be used:

1. Identify all opcodes which are directly referenced by call instructions.

2. Annotate the MBBs which are targeted by call opcodes with a sequentially
increasing function number f0 to fn−1 with n being the number of subroutines
detected in the control flow.

3. For each function fi start a depth-search following the CFG at control at all control
transfer instructions except for call opcodes. If is it possible to determine that a
control transfer instruction will never take a branch, do not follow it.

4. Annotate each MBB in the way of the depth-search with the label fi.

5. Stop when a ret opcode is encountered.

This mapping can be ambiguous, i.e., it is possible that an MBB belongs to more
than one function. An obfuscating compiler can also obstruct the correct functionality
of this mapping by use of opaque constraints. To solve this problem, the use of a
constraint-based disassembler can help as described in Sect. 1.6.1.

24

Chapter 2

Astrophysical Premises

After the theoretical considerations of the previous chapters, we now turn to the practical
application in astronomy. In this chapter, the astronomical and instrumental background
is set. The following chapter 3 then describes the application of reverse engineering on
a special piece of hardware. Observation of the skies may seems like a straightforward
endeavour – however, it can become almost arbitrarily complicated when the require-
ments of equipment and software need to fulfill scientific standards. In order to give a
quick insight on how telescopes and imaging devices work, the theory will be discussed
in the next few sections. An understanding of these theoretical basics is important as
many effects impact the process of creating high-quality images.

2.1 Basics and operation

2.1.1 Telescopes
There are many ways how optical instruments can be built in order to achieve magnifi-
cation of objects. A relative simple design is a simple lens construction in a so-called
refractor telescope. For larger telescopes, refractors are unsuitable as a cell can only
sustain its lens in the circumference – large lenses therefore deform under their own
weight leading to optical aberrations. Mirror telescopes or reflector telescopes are a
viable solution to this problem, as a mirror can be attached with its whole back surface
to the telescope tube, leading to much better stability. One design used for a reflector
telescope is the Cassegrain design, which is shown in Fig. 2.1. The parallel rays of light
coming from the sky fall onto the primary mirror which has a hole in the middle and has
been ground into parabolic shape. The light is from there reflected onto the secondary
mirror which has hyperbolic shape. It reflects the light back through the hole in the
primary mirror onto the ocular or CCD camera used for imaging.

For doing imaging, the mount carries a telescope which has specific optic parameters.
Among the most important are the focal length f and the objective diameter D or
telescope aperture. For calculations the aperture ratio F is interesting:

F =
D
f

(2.1)

while in digital photography often the inverse is used, called the f -number or relative

25

Figure 2.1: Schematic drawing of a Cassegrain telescope

aperture [Smi05]:

κ =
1
F

=
f
D

(2.2)

κ is a dimensionless unit but, especially in digital photography, often is written as f /κ

(e.g., f /8). An object seen under the angle u forms an image of height s [KKO+96]:

s = f tanu≈ f u (2.3)

The simplification is possible since the angle u is usually very small: For u =
100

3600
◦ = 100′′ the relative error is in the region of 10−6, for u = 1′′ it is already less than

10−10.
The resolution of the system is not only limited by the imaging device, but also

by the telescope itself. Because for high focal lengths as they occur in telescopes, not
only the lens imperfections become relevant, but also diffraction of light. Diffraction
limits the maximal achievable optical resolution of an optical instrument. The so-called
Airy Diffraction Disk is the pattern which is generated by these limitations. The angle
between the maximum in the center and the first minimum can be calculated by [McL97]:

θ = 1.22
λ

D
rad (2.4)

The Raleigh criterion uses the Airy Disk to calculate the minimal distance two
objects can have in order to be able to distinguish them during observation. In the visible
range from around 350nm to 750nm diffraction is reasonably small, as can be seen in
Fig. 2.2.

26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

450 500 550 600 650 700 750

D
if
fr

a
c
ti
o

n
 L

im
it
 /

Wavelength / nm

D = 40cm

D = 60cm

Figure 2.2: Diffraction limited resolution of 40cm and 60cm telescopes in visible light

2.2 Imaging Detectors
In order to use telescopes to make images, astronomers originally used photogra-
phy. Since the early 1990s, this technique has been superseded by the use of charge
coupled devices (CCDs). Starting after their invention in 1969, these detectors have
today become the single most important imaging technique used in astrophysical imag-
ing [McL97].

A CCD chip is an array of photosensitive pixels which is usually arranged in
rectangular shape. Every pixel itself is a bin for charge. A photon hitting the CCD
carries a specific energy

E = hν =
hc
λ

(2.5)

where h is Planck’s constant, c is the speed of light and λ is the wavelength of the photon.
When the photon is absorbed in the CCD chip, if E is larger than the band gap of Silicon
(a few electron volts for typical CCDs), then an electron is excited from the valence
into the conduction band and eventually stored in the charge bin. The resulting charge
distribution over the CCD is therefore a representation of the distribution of light hitting
the CCD, i.e., it is an image. The major advantage of CCDs is that they have a very high
quantum efficiency in the 80–90% range, i.e., 80–90% of all optical photons result in a
detectable charge. This efficiency is much higher than that of photographic emulsions
with an equivalent quantum efficiency of 1–2%. Therefore CCDs are significantly more
sensitive than photographic film [McL97]. Charge bins are not of infinite size – they
can overflow into neighbouring pixels. This effect is called blooming and it occurs, for
example, when a CCD is overexposed.

27

Figure 2.3: SBIG STL-11000 camera with open shutter

R
o
w

 tra
n
s
fe

r

Column transfer

Sample/Hold

ADC

0c1c2c3c4c5c6c7c8c9c10c

r0

r1

r2

r3

r4

r5

r6

r7

Figure 2.4: Schematic drawing of a CCD

28

Every CCD chip has two methods of shifting pixels in the picture, the row- and
column-transfer, as shown in Fig. 2.4. When a row transfer occurs, the content of rn
is replaced by the charge of rn+1. The charge of r0 is discarded and the first row (r7)
is filled with a zero charge. Much the same happens during column-transfer although
here only the single row r0 is affected: Each bin r0,cn is replaced by the charge of bin
r0,cn+1, the charge of r0,c10 is filled with a zero charge. The charge in r0,c0 is not
discarded, but stored in a sample and hold circuit until it has been converted to a digital
value by the analog-digital converter (ADC) contained in the CCD camera. This is the
way the charge distribution on the CCD can be measured and the image is taken.

For an ideal CCD, row and column transfer operations would be completely lossless.
They are almost lossless in a real-world device: The so-called charge transfer efficiency
of the, for example, KAI-11002 is about 99.999% [Kod06]. Furthermore in an ideal
CCD bins would only fill up when they are actually hit by photons. Real-world CCDs
differ in this aspect again: Even with no photons hitting the photosensitive layer charge
carriers are generated. This effect is known as the dark current. The dark current is an
thermally induced component and becomes less at sufficiently low temperatures [Rie03].
This effect is called dark noise and increases exponentially over temperature and almost
linear over time.

Readout and analog-to-digital conversion is not lossless, but associated with a certain
error called the bias error. Both effects can be seen in the measurements in Fig. 2.5.

 8600

 8800

 9000

 9200

 9400

 9600

 9800

 0 5 10 15 20 25 30 35 40 45

T
ot

al
 n

oi
se

 (
av

er
ag

e
in

 A
D

U
)

Integration time

Measured dark noise on ST-237

Figure 2.5: Dark current measurements on TC-237

The bias error is around 8850ADU (Analog-Digital Units) and dark noise increases in
an almost linear fashion with around 22 ADU

s .

29

2.3 Telescope Mountings

2.3.1 Telescope mount
The earth revolves around its own axis once approximately every 24 hours. Therefore
for a stationary observer it appears as if the stars, of which we can assume their distance
is infinite, rotate in a circumpolar fashion around earth. When trying to take a digital
image of the stars using a CCD camera, the exposure time has to be quite long relative to
the earth’s rotational velocity. Would an observer therefore point his optical instrument
against the sky without any further technical equipment and integrate an image over tens
of minutes, the result would be a rotationally smeared image. The solution is obviously
to make arrangements so the optics follow the apparently moving star in order to get a
sharp image.

To achieve this goal, it is the easiest approach to mount the optics in a so-called
equatorial mount. The equatorial mount basically ensures that the suspension of the
optics are parallel to earth’s axis. The two telescope axes are called right ascension
(RA) and declination (DEC), where RA is usually measured in hours and ranges from
0h to 24h and DEC is measured in degrees and ranges from −90◦ to +90◦. This does
not resolve the problem of having to move the optics together with the rotation of the
earth – it simplifies it, however: Since the axis of the earth and the optics are parallel,
the telescope’s tracking only needs to move the optics in RA direction.

Another approach commonly found in telescopes suspension is the azimuthal mount,
where one axis is orthogonal to the horizontal plane. The telescope can be moved in
its azimuth (i.e., the bearing) and in its altitude. Telescopes mounted on an azimuthal
mount can track objects, but always have to be guided on both axes in order to follow
the movement. There is a major problem, however: When tracking an object on an
azimuthally mounted telescope, the object stays in the center of the field of view – but
in contrast to equatorial mount, the field of view is rotating around its center. While this
is no problem for visual observation, it completely removes the ability of a telescope
mounted in such a way to integrate images over long periods of time. Trailing becomes
a problem at integration times of as short as 30 seconds. As telescopes mounted
azimuthally are therefore unsuitable for imaging without further technical equipment
(e.g, a device rotating the imaging camera together with the telescope, introducing a
third axis), this work will from now on focus solely on equatorially mounted telescopes.

Even when using an equatorially mounted telescope there are still various pitfalls:
One has to keep in mind that telescopes used for professional observation of the sky
are large in both dimension and weight. For example the mirror alone of the 60 cm
Zeiss Cassegrain Telescope in the observatory of Bamberg, Germany, has a weight of
125 kg – the counterweight of the telescope is 250 kg. The main tube has a diameter of
almost 2 m and a length of 3.3 m. An image of the telescope can be seen in Fig. 2.6.
The suspension which carries such a large telescope needs to be suited to move around
such a great weight – therefore large gears are manufactured and used in conjunction
with a transmission. Large gears have a significant disadvantage for this purpose: Manu-
facturing the center drilling with high precision is difficult and expensive. Therefore
gears used in mounts for astrophysical equipment usually are slightly eccentric. This
manifests in the core problem of guiding: The velocity with which the gear has to be
moved cannot be constant, but must vary with the position of the gear in a sinusoidal
manner in order to achieve constant angular velocity ω.

30

Figure 2.6: 60cm Carl Zeiss telescope of the Remeis Observatory, Bamberg

31

2.3.2 Mount Gear Inaccuracy

A gear can be approximated by its ideal center point C =
(

0
0

)
and its outer radius r.

The eccentricity of an actual drilling Ce can be represented as e, which we define as

e =
|Ce|

r
=

1
r

√
C2

ex +C2
ey, 0≤ e < 1 (2.6)

Figure 2.7: Schematic drawing of a gear, showing r and r · e

This means a perfectly centered gear has an eccentricity coefficient of 0. As the eccentric
drilling rotates around C during motion of the gear there will always be a position in

which the eccentric drilling is at
(

r · e
0

)
.

When the gear is set in motion, the effective radius (i.e. the distance between Ce and
a fixed point on the outer radius where the transmission occurs) varies in a sinusoidal
manner:

reff(ω) =
∣∣∣∣(r cosω

r sinω

)
−
(

r · e
0

)∣∣∣∣= r
∣∣∣∣(cosω− e

sinω

)∣∣∣∣ (2.7)

normalizing this by dividing by r yields die relative effective radius s (which is propor-
tional to the transmitted gear velocity as the circumference of a circle is proportional to
2πr)

s(ω) =
∣∣∣∣(cosω− e

sinω

)∣∣∣∣=√(cos2 ω−2ecosω+ e2)+ sin2
ω =

√
e2−2ecosω+1

(2.8)
As can be easily guessed from Fig. 2.8 the gear eccentricity e is directly related to

the maximal relative error. To verify these maxima we calculate the values at ω = 0 and
ω = π:

smax =
√

e2−2ecosπ+1 =
√

e2 +2e+1 =
√

(1+ e)2 = 1+ e (2.9)

smin =
√

e2−2ecos0+1 =
√

e2−2e+1 =
√

(1− e)2 = 1− e (2.10)

32

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

0 π/2 π 3/2 π 2 π

s (
ω

)

ω

sqrt(e2 - 2 e cosω + 1)

Figure 2.8: Relative radius s(ω) with e ranging from 0.05 to 0.30

In any transmission there is usually more than one gear involved. When consider-
ing many cascaded gears with radii r0, . . . ,rn and their according gear eccentricities
e0, . . . ,en, the total relative error S accumulates:

S =
n

∏
i=0

√
e2

i −2ei cos
(

ωr0

ri
+∆ωi

)
+1 (2.11)

where ∆ω is the initial angular offset to the first gear which has ∆ω0 = 0. It usually will
not play a role as the ratio of radii is fractional – if it would be integral, however, there
is the chance that gear eccentricities cancel each other out. In practice, this is highly
unlikely. The absolute error can be gained by multiplying S with all radii.

In the worst-case scenario the maximal eccentricity would be

Smax =
n

∏
i=0

√
e2

i −2ei cosπ+1 =
n

∏
i=0

√
e2

i +2ei +1 =
n

∏
i=0

(1+ ei) =
n

∏
i=0

smax (2.12)

and Smin analogously. However, these numbers are just upper and lower bounds for the
errors – the true formulae become so complicated with even two gears that numerical
calculation is more viable than a symbolic approach. For the variables used in Fig. 2.9
the true minimal and maximal total relative errors are Emin = 0.855 and Emax ≈ 1.127.

When comparing Fig. 2.9 to the actual drift which occurs in a real system as in
Fig. 2.10, the resemblance is remarkable.

33

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

0 2 π 4 π 6 π 8 π 10 π

S
(ω

)

ω

sqrt(e0
2 - 2 e0 cos(ω) + 1) sqrt(e1

2 - 2 e1 cos(r0/r1 ω) + 1)

Figure 2.9: S(ω) with two gears: e0 = 0.05, e1 = 0.1, r0 = 1, r1 = 1.1, ∆ω1 = 0

 0

 0.5

 1

 1.5

 2

 2.5

 3

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00

A
bs

ol
ut

e
D

rif
t (

″/
m

in
ut

e)

Time (min:sec)

Interpolated drift
Measurements

Figure 2.10: Measured total system drift of the 40 cm telescope mount in the Remeis
Observatory, Bamberg

34

Chapter 3

Autoguiding with Astrophysical
Imaging Detectors

The work which was done in order to show that the developed reverse engineering tools
described in Ch. 1 function properly as described was to disassemble and reimplement a
CCD camera driver together with the autoguiding procedures. The next section gives a
description of how this was done.

3.1 Reverse Engineering the CCD Camera Driver
Reverse engineering is each time something new – until the assembly code has actually
been reviewed, there is no way of knowing how obfuscated code is or what special tricks
are used by the original developer. Therefore, this description can only be an example
of what actual reverse engineering work might look like – different circumstances might
call for different measures or, maybe, a completely different approach.

3.1.1 Getting to Know the Target
The target in question is the SBIG unified CCD camera driver included in the Linux
SBIG SDK. The driver is available from the SBIG website in different versions and for
different platforms – it is important to download all of them and keep them safe. In
case of the SBIG driver there were two Linux versions, one for x86 and another for
x86-64, but at the time of writing this thesis, the x86-64 driver has disappeared from
their website. Although by special request, SBIG will send customers this driver via
email, this still raises the concerns mentioned in the “Maintenance” argument presented
in Sect. 1.1. The driver is provided both as a shared and a static library. This is useful as
the static library consists of object-files which are usually broken down into semantically
similar parts – an information that might be helpful when reversing the code. It is also
interesting to look at what external libraries the driver links against:

$ ldd libsbigudrv.1.4.60.so
linux-gate.so.1 => (0xb8065000)
libusb-0.1.so.4 => /lib/libusb-0.1.so.4 (0xb8017000)
libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0xb7eb4000)
/lib/ld-linux.so.2 (0xb8066000)

35

The second thing which should be checked is which calls are used from these external
libraries – they will be prominent in the shared library as unresolved symbols. In this
particular example, of particular interest are:

$ nm -u libsbigudrv.1.4.60.so
U memcpy@@GLIBC_2.0
U strcmp@@GLIBC_2.0
U strcpy@@GLIBC_2.0

[...]
U usb_bulk_read
U usb_bulk_write

[...]

Library calls are of special interest because they cannot be obfuscated – their name
needs to be present in the library in order to be resolved by the loader and their calling
convention is precisely known. Especially the very low-level functions for memory
comparison (like memcpy(3)) are often inlined by compilers – not in this case. This
gives the reverse engineer the advantage of being able to produce high-level code with
least effort around the regions where these calls are made.

3.1.2 Intercepting Library Calls
In order to get an impression on what the driver does, first a working example program
has to be created which calls the SBIG driver library functions. In this case this has al-
ready been done by SBIG, who included an example application for use with their driver.
As the ST-9XE and STL-11000 are both USB cameras, the most obvious way com-
munication could be performed via USB bulk transfers (namely, the usb_bulk_read
and usb_bulk_write calls provided by the libusb library). To see what the example
program transmits and receives on USB, these calls now need to be trapped. For this, the
special purpose tool LibTrapper has been developed, which is merely a code-generator:
It receives a configuration file input which states what the names of functions to be
intercepted are and what prototypes they have. Then it emits code which compiles to a
shared object file and which defines exactly these symbols.

libsbigudrv

Application

libusb

1c
a
ll

4

re
tu
rn

c
a
ll

3

re
tu
rn

2

Figure 3.1: Standard driver library call

The intention is as follows: The loader can be instructed to load the generated
trapper library before it loads any other libraries (via means of LD_PRELOAD). When
symbolic names such as usb_bulk_read are encountered in the loader resolve stage,

36

the order in which symbols are defined matters – preloaded libraries have precedence
over ordinarily linked libraries. Therefore, the loader will resolve the library call to the
function contained in trapper library. The trapper library consists of carefully designed
trampolines which in their turn call dlsym(2) to find out where the functions are located
in memory that the application actually wanted to call (via means of RTDL_NEXT). Then,
it is designed to call a user-implemented prehook, which is called before the actual
library call: This hook can modify the parameters passed to the actual library call and
specify if this call should be executed. If the prehook decides not to let the actual call
pass, it can simply instruct the call to return an arbitrary value. If it does call the actual
library, the trapper library executes it and can afterwards execute a posthook within
the trapper library: This once again can modify all parameters and can also modify the
value returned to the application. This is shown graphically in Fig. 3.2 – path “a” is the

libsbigudrv

Application

libusb

1c
a
ll

6a/10b

re
tu

rn

libtrapper

2

PreHook

PostHook

3

45a/9b

5b

6b
7b 8b

Figure 3.2: Library call intercepted and mangled by libtrapper

one taken when the prehook decides the actual library call should not be made, path “b”
is taken otherwise.

The reason for having the prehook not make the actual library call might not be so
obvious: Doing that it becomes possible to emulate the camera’s behavior in software.
This is a real advantage: When rudimentary camera behavior is emulated only so far
that the driver thinks it is talking to a real camera, the camera itself becomes obsolete
for studying the driver. it is also possible to emulate camera behavior incrementally – all
commands which are not implemented yet are passed to the actual camera in the prehook,
all others are emulated. These are some of the methods used the gain knowledge about
how the driver and error codes within the protocol work.

3.1.3 A Peek into the SBIG Protocol
One of the first things that can be done when intercepting camera communication is
writing hooks which dump the communication to a file. Using the Packet Capture-format
(PCAP) is (using the libpcap [LSW08]) just little more work than dumping directly
into a file in binary mode, but it gives the reverse engineer another advantage: There
are many powerful tools available freely to inspect PCAP dumpfiles, the most popular

37

probably being Wireshark [LSW08]. For analysis of the SBIG protocol a Wireshark
plugin was written. During the beginning of the reverse engineering process little to
nothing is known about the protocol and its structure. However, the early dumps still
remain valid as they are interpreted by the Wireshark plugin. When it occurs that the
reverser finds out later that an opcode was misinterpreted or takes parameters in a
different fashion, only the plugin needs to be updated and all previous recordings are
then interpreted correctly. In contrast, when writing to a textfile and doing interpretation
of the dump on the fly during packet capture the process of reinterpretation of those
dumpfiles becomes tedious. The following is an example of a dump, showing what is
transmitted to the camera and what the camera responds with:

→ a560

← a5620218

→ a5738089a0

← a5710318

→ a5738189a0

← a571fb18

→ a5738289a0

← a5710118

→ a5738389a0

← a5710f18

→ a5738489a0

← a5710118

→ a5738589a0

← a5710118

. . .

The dump immediately suggests that commands start out with the constant sequence
0xa5 and responses are of fixed size depending on the request. Also, the protocol
operates in a question-answer manner: The driver requests something, the camera
responds. For each request there is exactly one response.

3.1.4 Understanding the Protocol Semantics
A complete dump of the protocol is the premise to the engineering of a new driver, but
the work is not finished there: Knowledge about what was transmitted is worth nothing
when the meaning of the protocol parts remains hidden, as it is then not possible to
easily write code that does something different than replaying the dumped commands.
Therefore, more high-level information must be extracted. The SBIG library API
provides only one function:

short SBIGUnivDrvCommand(short Command, void *Params, void *Results);

where the Command parameter is actually of type enum PAR_COMMAND, a list of the 60
distinct commands the driver accepts. The easiest approach is now to simply add the
call to SBIGUnivDrvCommand() to the number of trapped libraries and also dump this
information in the PCAP file which is generated during run of the application. It will be
embedded as metadata, giving the reverse engineer the possibility to take a look into the
call stack at the time of the data transfer. This way it can be determined quickly which
API command corresponds to which driver command or commands.

38

3.1.5 Hardware Disassembly
After getting a general overview of what is communicated in the SBIG protocol, it
can be beneficial to take a look at the used hardware. Disassembly of the SBIG STL-
11000 enclosure reveals a prominent IC in a 80-pin Plastic Quad Flat Package (PQFP).
Removal of the sticker covering the top the IC makes it possible to read the imprint:
The controlling MCU is a Cypress EZ-USB AN2131. The Cypress EZ-USB is a

Figure 3.3: Disassembly of the STL-11000 showing the EZ-USB AN2131 in the center

unique MCU design featuring a 8051 core and an USB transceiver in a System-on-Chip
(SoC) [Cyp02b]. It is the first chip generation by Cypress featuring this design and
has since been superseded by the more advanced EZ-USB FX and EZ-USB FX2, also
known as the CY7C464XX [Cyp01a] [Cyp00] and CY7C68XX [Cyp02a] [Cyp01b]
series. Between all three series there is little difference in the basic architecture, although
the capabilities of each chip vary greatly. The MCU almost completely handles the
complicated USB communication, leaving a very high level abstraction in assembly.
The firmware loader is present in hardware – since the firmware is loaded via USB
into the SRAM of the SoC, it can be put in its original state by a simple power-cycle.
The USB transceiver also has remarkable hardware-capabilities including Isochronous
Transfer and Direct Memory Access (DMA).

For the purpose of reverse engineering, a 8051 core is ideal: There are few instruc-
tions and registers. The device has 8kB of SRAM of which the lower 128 byte are
memory mapped into the address space for direct access. Special device registers (e.g.,
for port access) are also accessed using memory-mapped I/O in the high memory region
from 0x7b00 and upwards.

39

3.1.6 Firmware Disassembly
After disassembling the hardware, the firmware becomes interesting because it is now
possible to disassemble it meaningfully. The first thing to do is just letting the whole
firmware pass through a disassembler for the 8051 architecture. Then it is most useful
to take a sweep through and start out reversing in striking code regions – as it is hard to
define what exactly is meant by that, here is an example:

Listing 3.1: First sweep through the disassembled SBIG ST-L firmware
1 [...]
2 L0106:
3 MOV DPTR, #07DC1h
4 MOVX A, @DPTR
5 ANL A, #0F0h
6 CJNE A, #0F0h, L0107
7 LCALL L0108
8 LJMP L0109

10 L0107:
11 CJNE A, #0h, L0210
12 LCALL L0211
13 SJMP L0109

15 L0210:
16 CJNE A, #10h, L0226
17 LCALL L0227
18 SJMP L0109

20 L0226:
21 CJNE A, #20h, L0230
22 LCALL L0231
23 SJMP L0109

What happens at L0106 is that the number 0x7dc1 is loaded in the pointer register of
the MCU. Then the value from address 0x7dc1 is loaded by indirection of this pointer
register into the accumulator. Only the most significant nibble of the accumulator
is needed, which is why a bitwise AND is performed with 0xf0. Then, a series of
comparisons starts, which can be expressed by pseudocode of the form

msn = (*0x7dc1) & 0xf0
if (msn == 0xf0) l0108();

else if (msn == 0x00) l0211();
else if (msn == 0x10) l0227();
else if (msn == 0x20) l0231();

[...]

Revealing the meaning of this code is easy when taking a look in the MCU hand-
book [Cyp02b]. When looking at the RAM table, the area form 0x7dc0 to 0x7dff is a
USB buffer for endpoint 2. Therefore the nibble that is checked is that of the second
byte of the buffer (i.e., buf[1]).

Keeping in mind what the protocol looked like when taking a short peek into it, the
meaning is quite obvious: The code in question is processing the received buffer. Is it
checking which command code was issued by the host.

When performing the disassembly for embedded devices a trivial feature which has
a great effect is automatic resolving of special registers. This means the disassembler
is told what names special regions in the memory map have. The user can override
the architectural names to give them more meaning. In this particular example, by

40

disassembly of the SBIG binary it was found that the memory region from 0x1b4b
onwards was used for sending USB responses and the memory region from 0x7dc0 was
used to receive USB requests – from the EZ-USB architecture, those two would have
been called EP07OUT[11] and EP02OUT respectively. As per user request, however, they
will simply be called sendbuf and recvbuf, which is far more intuitive for the reverse
engineer.

It also is possible to rename all labels as per user request, so that they actually
have meaning. To aid the reverse engineers work, it is useful to enable certain code
transformations: Due to hardware restrictions, memory indirections above 0x80 always
are performed indirectly by use of the dptr register. When labeling all the above
memory to the discoveries found and enabling code transformations which improve
readability and were performed in a fully automatic manner, the code becomes much
clearer:

Listing 3.2: Disassembled SBIG ST-L firmware after code transformations
1 interpret -recvd -data:
2 a = ([recvbuf + 1])
3 a &= 0xf0
4 cjne a, 0xf0, l0107
5 call interpret -recvd -data -0xf_
6 goto interpret -recvd -data -finished

8 l0107:
9 cjne a, 0x0, l0210

10 call interpret -recvd -data -0x0_
11 goto interpret -recvd -data -finished
12 [...]

While reverse engineering more and more code, some other interesting examples
can be encountered:

Listing 3.3: Disassembly of high-level arithmetic routines on the 8051
1 l0116:
2 a = r7
3 b = r5
4 mul ab
5 r0 = b
6 xch a, r7
7 b = r4
8 mul ab
9 add a, r0

10 xch a, r6
11 b = r5
12 mul ab
13 add a, r6
14 r6 = a
15 ret

For which the constraint-based disassembler gives the following result as a postcondition
of the MBB:

R6 (((r6 * r5) & 0xff) + (((r7 * r4) & 0xff) + (((r7 * r5) & 0xff00) >> 8)))
R7 ((r7 * r5) & 0xff)

While this might look strange at the first look, it becomes apparent when thinking about
how integer multiplication works. When multiplying two numbers, A and B, both of
word width w, the result is an integer of length 2 ·w. This result cannot be represented

41

in one register as it exceeds the machine word width. Therefore, it it split up into two
registers, (A ·B)H and (A ·B)L, where

(A ·B) = w · (A ·B)H +(A ·B)L (3.1)

Now consider two double word integers x,y at word width w. Let

x = A ·w1 +B ·w0, y = C ·w1 +D ·w0 (3.2)

The multiplication x · y is

x = (A ·C) ·w2 +(A ·D+C ·B) ·w+(B ·D) (3.3)

As each of these multiplications can overflow, substitution as in Eq. 3.1 yields

x = ((AC)H ·w2 +((AD)H +(CB)H) ·w+(BD)H) ·w1

+((AC)L ·w2 +((AD)L +(CB)L) ·w+(BD)L) ·w0 (3.4)

and simplification then

x = (AC)H ·w3

+((AC)L +(AD)H +(CB)H) ·w2

+((AD)L +(CB)L +(BD)H) ·w1

+(BD)L ·w0

(3.5)

Knowing this and again taking a close look at the above assembly code, that reads:

r6 = (r6 · r5)L +(r7 · r4)L +(r7 · r5)H

r7 = (r7 · r5)L
(3.6)

This means the function in questions performs a multiplication of two 16-bit integers,
resulting in the 16 least significant bits of the multiplication. The upper 16 bit are
discarded.

Another interesting part appears during disassembly of the response routine:

Listing 3.4: Disassembly of the send command routine
1 send -cmd -((0x16), ([sendbuf + 2])...):
2 (0x52) = 0x0
3 (0x33) = 0x0
4 dptr = [sendbuf + 0]
5 (0x31) = dph
6 (0x32) = dpl
7 a := @dptr = 0xa5
8 dptr++
9 ; assume((0x16) := ResponseID

10 a := @dptr = (0x16)
11 a &= 0xf
12 add a, 0x3
13 a &= 0xfe
14 rr a
15 (0x2d) = a
16 (0x2c) = 0x0
17 ret

42

This is the command which does the final preparation of the send buffer right before
it is sent out the USB port. The packet has already been initialized starting from the
byte with offset 2 and the response ID has been put at memory address 0x16. The
disassembler calculates the value of the accumulator register a in the postcondition:

a = ROR(((ResponseID & 0x0f) + 3) & 0xfe)

and simplifies it to

a = ((ResponseID & 0x0f) + 3) / 2

This might look strange, as instead of a regular logical shift right instruction the combina-
tion of the bitwise AND with 0xfe is made followed by a rotate right opcode. The reason
is simply that the 8051 MCU core is lacking a SHR opcode. In practice, however, the
SHR operation is required far more often than the ROR opcode – yet this is not surprising,
but a clever design decision: Expressing a SHR by using ROR requires two instructions,
as shown above. The other way around, however, would cause four instructions and
require a byte of memory:

SHR A, 1
CLR (0x20)
MOV C, (0x20.7)
ORL A, (0x20)

By using these techniques of which only selected examples were presented it was
possible to reverse engineer the whole SBIG CCD camera protocol. The complete
results of this work are summarized in the Appendix B.

3.2 Forms of Object Tracking
Guiding the telescope is possible in different ways, ranging from hardware-only so-
lutions to software-only solutions – of greatest interest are methods which are cost-
effective and are easy to setup for the user: Those are mostly hardware/software-
combinations. Some possible ways of solving the tracking problem will be discussed in
the next few sections.

3.2.1 Off-Axis Guiding
The most popular form of autoguiding is the off-axis guiding. In this method a second
CCD chip (the guiding chip) is fixed within the CCD camera itself next to the imaging
CCD (i.e., off the optical axis). The optical instrument in front of the CCD is obviously
the same for both imaging and guiding, being both an advantage and disadvantage at the
same time: As can be seen in Eq. 3.9 using this technique the focal length cancels out
and the achievable accuracy is only determined by the ratio of pixel sizes of the imaging-
and guiding CCD. As the imaging CCD’s pixels are usually designed to be smaller
than the imaging CCD’s pixels, the achievable performance is outstanding. As both
CCDs are attached to the PCB in a rigid manner, the distance between them stays the
same during guiding. This means any inadvertent movement or change of the telescopes
image (for example thermal expansion of the mirror) affects both CCDs in the same
manner. However, these advantages come at a price: Small pixels in the guiding CCD
mean that the total dimension of the guiding CCD is also quite small – in practice it
is often difficult to find an object illuminating the guiding CCD as the field of view is
extremely small. Using a TC-237 guiding sensor on, for example, a telescope with 4m

43

focal length gives a field of view of around 4′×3′ (see table 3.1). Not all objects that
are selected for imaging have appropriately bright guiding stars in their direct proximity
which could be used for off-axis guiding. If one can be found, however, off-axis guiding
is by far the most effective solution to the guiding problem.

3.2.2 Auxiliary Telescope Guiding
When off-axis guiding is impractical or undesirable, a remote guiding head can be used
to guide the main telescope. This guiding head will then be attached to the auxiliary
telescope, a second telescope which is rigidly attached to the main tube. As both
telescopes view the same direction, errors due to guiding impact the images generated
by both telescopes in the same manner. There are some pitfalls, however: Some mirrors
tend to move slightly when the position of the tube changes. If this happens on either the
imaging or guiding device the images of the running exposure must be discarded: The
movement offset will clearly be visible. Having a second telescope also increases the
necessary overhead that has to be made before starting any observation. Both devices
need to have precise focus in order to get good image quality. The main reason why
auxiliary telescope guiding can be a great advantage over off-axis guiding is that the
focal lengths of both instruments can be different – and generally are. The auxiliary
device usually has a focal length at least 10 times smaller than the main telescope has.
That way, the field of view is much larger and it will almost always be possible to find
an object bright enough for guiding purposes.

3.2.3 Software Virtual Guiding
The gear inaccuracy described in Sect. 2.3.2 is not constant over time as gears rotate.
This means that with sufficiently small integration times the guiding error of some
images will be small compared to other systemic influences like seeing. As Berry et at.
describe in [BB06], with a standard 360-tooth gear the worm driving it will rotate once
in 4 minutes. When integrating pictures of 60 seconds per exposure, this means that
without guiding two out of four images will be reasonably well-tracked while the other
two will be slightly trailed. When imaging the same object over and over again, the
trailed pictures can be discarded. The good images can then be cross-correlated against
each other in order to determine their shift. In software it is then possible to add the
shift-corrected images together, yielding a higher signal to noise ratio. However each
readout will have its own readout noise which adds to the degradation of the summed
image. Therefore it is usually best to make exposures as long as possible (limited by
the equipment precision) and only resort to software virtual guiding if nothing else is
available.

3.3 Guiding Accuracy
For the imaging device itself the width and height of the pixel array (number of pixels),
nw and nh, and the width of height of each pixel, dw and dh, is of interest. Not all
imaging devices provide square pixels, but the ones used in this work do. It has to be
kept in mind that if the imaging device has rectangular shaped pixels the resolution in x
and y direction is different.

44

Table 3.1: Different devices and their characteristics when behind optics

Device d r in
′′
px fw fh

f = 48cm
ST-9 9µm 3.87 33′0′′ 33′0′′

STL-11K 9µm 3.87 4◦0′4′′ 2◦0′2′′

TC-237 7.4µm 3.18 34′49′′ 26′14′′

f = 400cm
ST-9 9µm 0.46 3′58′′ 3′58′′

STL-11K 9µm 0.46 31′0′′ 20′40′′

TC-237 7.4µm 0.38 4′11′′ 3′9′′

Table 3.2: Maximal guiding performance for focal widths on main/guide optical instru-
ments

HH
HHHfG

fI 48cm 400cm 1000cm

48cm 0.82px 6.85px 17.13px
400cm 0.10px 0.82px 2.06px

1000cm 0.04px 0.33px 0.82px

The resolution a imaging device provides is usually given in arcseconds per pixel and
can easily be calculated by solving Eq. 2.3 for u and inserting s = dx into the equation:

rx =
dx

f
(3.7)

When using auxiliary telescope guiding, as described above, two optical instruments
are used: The first captures the actual object and is solely used for imaging while
the second captures nearby stars and is used for guiding the main instrument. The
focal lengths of the instruments will be called fI and fG. They are usually not equal.
Assuming the smallest possible change detectable by the guiding sensor is ±1px and
under the assumption of square pixels on both the guiding and imaging device, according
to Eq. 2.3 a angular guiding error results,

uerr =±dG

fG
(3.8)

which then results in a pixel error on the imaging sensor of

nerr =± fIuerr

dI
=±dG fI

dI fG
(3.9)

When inserting realistic values for the Bamberg instrumentation fI = 400cm, fG =
48cm, dI = 9µm and dG = 7.4µm, the minimal achievable pixel error on the imaging
sensor is

nerr =±7.4µm ·400cm
9µm ·48cm

≈±7px (3.10)

Considering that both the telescope diffraction and the guiding precision are far
smaller than the weather conditions in middle Europe permit it can be concluded that

45

guiding with these parameters is generally possible and brings a significant improvement
in image quality over long exposure times. The remaining factor dominating image
quality is seeing, i.e., turbulence in Earth’s atmosphere causing objects to appear
flickering.

3.4 Cross Correlation
The telescope slew velocity is variable over time as described in Sect. 2.3.2. Therefore
the most commonly used approach is to first make one reference image with the guiding
CCD sensor. Then, integration of the main image is started. During that same time, the
guiding sensor integrates images of the same object over and over again. These pictures
are then cross-correlated against the reference image in order to determine the shift.
The shift can then be corrected in a negative feedback loop by changing the slew of the
telescope mount’s motors accordingly.

3.4.1 Efficient Implementation
Since for determination of the movement shift guiding images have to be calculated
frequently, cross correlation must necessarily be implemented efficiently. The discrete
cross correlation formula for two images A and B with according geometries WA×HA
and WB×HB is [Rus98]

(A?B)(i, j) = C(i, j) =
WA−1

∑
x=0

HA−1

∑
y=0

A(x,y) ·B(x−i,y− j) (3.11)

where 0 ≤ i < WA +WB−1 and 0 ≤ j < HA + HB−1. The complexity of this spatial
domain cross correlation algorithm is O((WA +WB) · (HA +HB) ·WA ·HA). This can be
be simplified if we assume that the dimensions of the two images A and B are equal:

2W ·2H ·W ·H = 4(WH)2→ O(n2) (3.12)

where n is a measure for the number of pixels in each image. This performance is quite
poor, but can be improved by using the equivalent algorithm in the frequency domain.
The convolution theorem is applied and yields:

˜(A?B)(x) = Ã(x) · B̃(x) (3.13)

Here, X̃ indicates the discrete Fourier transform of X while X is used as a notation for
the complex conjugate of X . This immediately gives the required result:

(A?B) = C = IDFT(Ã · B̃) (3.14)

The algorithm which performs a DFT or IDFT can be implemented in O(n logn)
using the fast Fourier transformation (FFT) algorithm originally introduced by Cooley
and Turkey [CT65] [FJ05]. As the complexity of a multiplication in frequency space is
of magnitude O(n), the total algorithmic computational complexity is O(n logn).

For finding the actual shift the cross correlation image has to be analyzed. By
simply taking the position in the image where the magnitude is greatest, the shift can be
determined. When the cross correlation has been calculated without zero padding, it
must be noted that because of the Nyquist sample theorem only movement over half

46

the height and width can be detected: Any motion that moves further will be falsely
detected as motion in the opposite direction. This is due to the fact that the Fourier
transform actually analyzes a function which is periodically continued beyond the actual
limits of the image. Both images used for the cross-correlation are mathematically tiled
to infinite size – any feature which moves more than half an image dimension could
therefore also have moved a shorter distance in opposite direction. This can nicely be
seen when the elliptic feature of Fig. 3.4a is moved so that the result is Fig. 3.4b. In the
cross-correlation Fig. 3.5 the detected movement is highlighted by the strait line while
the actual movement (dotted line) remains undetected.

(a) (b)

Figure 3.4: (a) shows the original image, (b) with the feature shifted

Figure 3.5: Infinite continuation of images in overlay

3.4.2 Avoiding False Positive Detection by Normalization
It may prove difficult to determine the actual shift from the resulting values as one of
the main problems is the locationally invariant noise (see Sect. 2.2) which covers the
complete background of the picture. As this noise is not random, but due to the fact that
certain pixels simply have a higher sensitivity than others, the noise of two images is
correlated. This will contribute a substantial part to the shift vector (0,0). This vector
cannot simply be ignored either because it often will be the case that the image actually
has not moved at all. Similar problems are also discussed by Lewis in [Lew95] where it
is mentioned that the classical cross-correlation may fail under certain circumstances –

47

the alternative is the normalized cross-correlation function:

γ(i, j) =
∑
(
(A(x,y)− Â(i, j))(B(x−i,y− j)− B̂)

)√
∑(A(x,y)− Â(i, j))2 ·∑(B(x−i,y− j)− B̂)2

(3.15)

where each of the sums is actually the implicit double sum ranging over B, i.e.:

∑Expr =
i+WB−1

∑
x=i

j+HB−1

∑
y= j

Expr (3.16)

This term can thus be written differently:

γ(i, j) =
∑B
(
(A(x+i,y+ j)− Â(i, j))(B(x,y)− B̂)

)√
∑B(A(x+i,y+ j)− Â(i, j))2 ·∑B(B(x,y)− B̂)2

(3.17)

This normalized cross-correlation function will yield significantly better results.
Unfortunately, however, it is a much more expensive operation than the naïve cross-
correlation implementation, but thankfully can be implemented efficiently when using
the algorithm presented by [Lew95]. This is done by first building summed-area tables
(SAT) over A, in a way so that

sk
P(x,y) =

{
Pk

(x,y) + sk
P(x−1,y) + sk

P(x,y−1)− sk
P(x−1,y−1) if (x≥ 0)∧ (y≥ 0)

0 otherwise
(3.18)

By convention, the exponent k of the summed-area table sk
P can be omitted if k = 1, i.e.:

s1
P = sP (3.19)

Note that for the general case

sk
P(x,y) 6= (sP(x,y))

k (3.20)

Summed-area tables are an old concept [Cro84] which will be immensely helpful in
efficiently solving the normalized cross correlation function. Each pixel in the SAT is
the sum over all pixels to the top and left of it to the power of k, including itself:

sk
P(i, j) =

i

∑
x=0

j

∑
y=0

(P(x,y))
k (3.21)

Calculation of the SAT is of order O(n), as the operation in Eq. 3.18 can be performed
efficiently using the algorithm in List. 1. Once calculated, the sum over any arbitrary
rectangular region of A with size w,h and offset i, j can be retrieved in O(1) using the
formula:

i+w−1

∑
x=i

j+h−1

∑
y= j

Pk
(x,y) = sk

P(i−1, j−1)+sk
P(i+w−1, j+h−1)−sk

P(i+w−1, j−1)−sk
P(i−1, j+h−1) (3.22)

48

To prove this is true one needs only to plug the basic premise Eq. 3.21 into Eq. 3.22:

i−1

∑
x=0

j−1

∑
y=0

Pk
(x,y) +

i+w−1

∑
x=0

j+h−1

∑
y=0

Pk
(x,y)−

i+w−1

∑
x=0

j−1

∑
y=0

Pk
(x,y)−

i−1

∑
x=0

j+h−1

∑
y=0

Pk
(x,y) =

=
i−1

∑
x=0

j−1

∑
y=0

Pk
(x,y)+

(
i+w−1

∑
x=0

j−1

∑
y=0

Pk
(x,y) +

i+w−1

∑
x=0

j+h−1

∑
y= j

P(x,y)k

)
−

i+w−1

∑
x=0

j−1

∑
y=0

Pk
(x,y)−

i−1

∑
x=0

j+h−1

∑
y=0

Pk
(x,y) =

=
i−1

∑
x=0

j−1

∑
y=0

Pk
(x,y) +

i+w−1

∑
x=0

j+h−1

∑
y= j

Pk
(x,y)−

i−1

∑
x=0

j+h−1

∑
y=0

Pk
(x,y) =

=
i−1

∑
x=0

j−1

∑
y=0

Pk
(x,y) +

i+w−1

∑
x=0

j+h−1

∑
y= j

Pk
(x,y)−

(
i−1

∑
x=0

j−1

∑
y=0

Pk
(x,y) +

i−1

∑
x=0

j+h−1

∑
y= j

Pk
(x,y)

)
=

=
i+w−1

∑
x=0

j+h−1

∑
y= j

Pk
(x,y)−

i−1

∑
x=0

j+h−1

∑
y= j

Pk
(x,y) =

=

(
i−1

∑
x=0

j+h−1

∑
y= j

Pk
(x,y) +

i+w−1

∑
x=i

j+h−1

∑
y= j

Pk
(x,y)

)
−

i−1

∑
x=0

j+h−1

∑
y= j

Pk
(x,y) =

=
i+w−1

∑
x=i

j+h−1

∑
y= j

Pk
(x,y) (3.23)

Efficient calculation of such an integral over the area [(i, j),(i+w−1, j +h−1)] using
a previously calculated SAT will be notated using:

i+w−1

∑
x=i

j+h−1

∑
y= j

Pk
(x,y) =

Z w,h

i, j
Pk (3.24)

Algorithm 1 GetSATk: Precalculate the summed-area table sk
P over P

1: sPk[0,0] := P[0,0]k

2: for 1≤ x < WP do
3: sPk[x, 0] := P[x,0]k + sPk[x−1,0]
4: end for
5: for 1≤ y < HP do
6: sPk[0, y] := P[0,y]k + sPk[0,y−1]
7: end for
8: for 1≤ x < WP do
9: for 1≤ y < HP do

10: sPk[x, y] := A[x,y]k + sPk[x−1,y]+ sPk[x,y−1]− sPk[x−1,y−1]
11: end for
12: end for

As Lewis explains, the numerator of the normalized cross-correlation function can
be calculated efficiently using the FFT convolution of A− Â with B− B̂. The problematic
portion of the denominator, ν, is

ν = ∑
B

(A(x+i,y+ j)− Â(i, j))
2 = ∑

B
(A(x+i,y+ j)−η)2 (3.25)

49

Calculation of ν can first be simplified by using the summed-area table in Eq. 3.18 in
order to efficiently calculate η, the local average of A under i, j:

η =
1

WB ·HB
(sA(i−1, j−1)+sA(i+WB−1, j+HB−1)−sA(i+WB−1, j−1)−sA(i−1, j+HB−1)) (3.26)

The remaining portion of ν can be expressed as follows:

ν = ∑
B

(A(x+i,y+ j)−η)2 = ∑
B

(A2
(x+i,y+ j)−2ηA(x+i,y+ j) +η

2)

= ∑
B

A2
(x+i,y+ j)−2η∑

B
A(x+i,y+ j) +∑

B
η

2 (3.27)

The two first sums can then again be represented using the previously calculated summed-
area tables sA and s2

A. The third sum is invariant of x,y and can be expressed directly:

ν =
(Z WB,HB

i, j
A2
)
−2η

(Z WB,HB

i, j
A
)

+WBHBη
2 (3.28)

The remaining denominator sum

σB = ∑
B

(B(x,y)− B̂)2 (3.29)

is invariant over the shift i, j and must therefore only be calculated once.

(a) (b) (c)

Figure 3.6: (a) shows the image and (b) the feature which it is cross correlated against,
(c) the normalized cross correlation function

3.4.3 Subpixel Accuracy
Using the approach presented in Sect. 3.4.2 the accuracy gained by cross correlation is
±1px. It might be desirable to improve that resolution to subpixel accuracy. The naïve
approach is to simply upsample the images A,B to A′,B′ so that

WX ′ = κWX , HX ′ = κHX (3.30)

and then cross correlating A′ against B′. The achieved minimal accuracy

τ =
1
κ

(3.31)

50

Algorithm 2 GetInt: Retrieve the integrated area over Pk using its summed-area table
sPk
Require: Summed-area table sPk, offsets x,y and integral dimensions w,h

if x 6= 0∧ y 6= 0 then
A := sPk[x−1,y−1]

else
A := 0

end if
if y 6= 0 then

B := sPk[x+w−1,y−1]
else

B := 0
end if
C := sPk[x+w−1,y+h−1]
if x 6= 0 then

D := sPk[x−1,y+h−1]
else

D := 0
end if
return A+C−B−D

Algorithm 3 Calculation of the normalized cross correlation function γ

Require: WA > WB∧HA > HB
1: PadX := (2 ·WA)−1
2: PadY := (2 ·HA)−1
3: APad := PadImage(A−A.Avg(),PadX ,PadY)
4: BPad := PadImage(B−B.Avg(),PadX ,PadY)
5: AFreq := DFT(APad)
6: BFreq := DFT(BPad)
7: AFreq *= BFreq
8: Conv := IDFT(AFreq)
9: sA1 := GetSATk(A,1)

10: sA2 := GetSATk(A,2)
11: SigmaB := B.SqrSum()−2 ·B.Avg() ·B.Sum()+WB ·HB ·B.Avg()2

12: ASqr := A.SqrSum()
13: for 0≤ i < WA−WB do
14: for 0≤ j < HA−HB do
15: η := GetInt(sA1, i, j,WB,HB)/WB/HB
16: Numerator := Conv[(i − (WA/2) + (WB/2)) mod PadX ,(j − (HA/2) +

(HB/2)) mod PadY]
17: ν := GetInt(sA2, i, j,WB,HB)− (2 ·η ·GetInt(sA1, i, j,WB,HB)+(WB ·HB ·η2)

18: Denominator :=
√

ν ·SigmaB
19: γ[i, j] := Numerator/Denominator
20: end for
21: end for

51

However, as Guizar-Sicairos et al. note [GSTF08], this is in practice impossible
to calculate for large κ, as the complexity of the upsampled cross correlation oper-
ation is O(κ2n logκ2n). These authors instead present an algorithm which performs
dynamic upsampling during the computation of the Fourier transformation which is
only insignificantly slower than the basic κ = 1 version.

Other approaches include the fitting of a Gaussian function onto the cross correlated
image in order to determine the interpolated peak [NDT04]. Such an approach is much
faster than the dynamic upsampling variant, but also less accurate [GSTF08].

(a) (b) (c)

Figure 3.7: (a) and (b) show two consecutive images, (c) the absolute difference

Although guiding with subpixel accuracy if often advertised for commercial ap-
plications, it is goal which is difficult to achieve: Fig. 3.7 shows two images which
were taken with the SBIG TC-237 remote guide head behind a f = 48cm auxiliary
guiding telescope on an observation night with bad seeing. They were integrated for 1
second each and taken right after each other. The difference image shown in 3.7c shows
the catastrophic extent of the seeing influence. In the star central region, no change is
visible (hence it is black). Regions around the star, which are changed by seeing, are
smeared up to 5 pixels, the average being around 1 pixel. On the instruments used this
corresponds to

u =
1px ·7.4µmpx−1

480mm
rad≈ 3.2′′ (3.32)

Given the fact that the accuracy of the instruments is heavily dominated by seeing makes
using a subpixel-accuracy guider an unrealistic endeavour for many observations in
Central Europe. This is why subpixel determination has not been implemented during
the reimplementation of the CCD software.

3.5 Determining the movement field
In order to determine how far and in which direction the telescope has to be moved
to achieve a certain pixel shift, the software has to be calibrated first. Most telescope
mounts provide only very simple means of controlling the slew velocity: An external
interface is supplied at which four relays can be connected. These relays then change
the slew in one of the four possible directions. Two of these have influence of the right
ascension direction while the other two influence slew on the declination axis. As the
camera is connected at an angle ϕ to the telescope, the change in the image by the CCD
camera caused by slew is also seen under this angle ϕ. Another aspect making the
determination of the movement field more difficult are the nonlinearities of the motors.

52

They have a phase in which they accelerate after the slew change was initiated, a phase
in which their velocity is constant, and a phase in which they decelerate after the slew
change was stopped. Due to hysteresis caused by the motor mechanics the motors also
tend remain in their position for a certain time when the direction is reversed.

The first step in the calibration process is to find a suitable guide star and setting up
the focus. After this has been done, the guiding star should be centered on the guiding
chip manually to give the greatest possible movement ability in all directions. Then the
software calibration process is started. The calibration routine integrates a picture of the
guiding star for use as reference and then moves the telescope in a specific direction for a
different time periods. After each movement another image is integrated and the feature
(i.e., the guiding star) is cross correlated against the reference image. This is performed
for all four directions, so that a movement field as seen in Fig. 3.8 is determined.

The axis designation is relatively arbitrary: Any axis can be chosen to be the X+
axis, it is only important that the other three axes are named in a consistent way: The
Y+ axis is the axis rotated π

2 against X+ and X- is the one rotated π against X+. These
designations are not to be confused with those of a regular Cartesian coordinate system.

X
+

X
−

Y−

Y+

Figure 3.8: Vector field determined by cross correlation

The movement field of the example in Fig. 3.8 contains vectors which show perfect
linear dependence on each other within the same axis and an exact phase angle of
π

2 inbetween axes. In practice, this is often different: Due to bitmap rasterization of
the images, the vector components will be integral values. Since this in an inaccurate
representation, it is very likely that the vectors even along the same axis in the same
direction will have different polar angles due to rounding errors.

With the values recorded the process of finding the correct movement times for the
X and Y direction at a given object displacement (which is calculated by continuous
imaging and cross correlation against the reference) is straightforward: The angle of the
displacement α is first calculated

α = atan2(y,x) (3.33)

53

where atan2 is defined as

atan2(y,x) =

sgn(y) · arctan(| yx |) y 6= 0∧ x > 0
sgn(y) · π

2 y 6= 0∧ x = 0
sgn(y) · (π− arctan(| yx |)) y 6= 0∧ x < 0
0 y = 0∧ x < 0
undefined y = 0∧ x = 0
π y = 0∧ x > 0

(3.34)

The next step then is to determine which of the four directions is closest to α, i.e., the
smallest angular difference between α and ϕ+ k · π

2 ,k = 0 . . .3. This is the direction out
of which a movement vector will definitely be chosen. The second field would naturally
be the one second closest to α. However, in practice this is numerically unstable when
the angular difference between α and ϕ + k · π

2 is sufficiently small. Therefore both
directions of the orthogonal axis are taken into account.

Out of the vector field three vectors are chosen which are in their length closest to
the length of the displacement vector. Then, the linear combinations

~d = λ~x+µ~y (3.35)

are calculated for x,y1 and x,y2 through

λ =
y1d0− y0d1

y1x0− y0x1

µ =
x0d1− x1d0

y1x0− y0x1

(3.36)

under the constraint that
λ≥ 0∧µ≥ 0 (3.37)

These coefficients λ and µ then are multiplied with the movement duration that was
recorded during the calibration process. This way, the directions and movement dura-
tions can be determined which cause the corrective motion that has to be performed.

3.6 Design of a Distributed System
Astronomical imaging devices are often split up into many components like the telescope
motors, the dome motor, and guiding and imaging CCD cameras. Not all interfaces
of these components are controlled by the same computer. Unification of the control
mechanism is desirable for the operator as it relieves him of the need to know where
exactly interface points to the devices are. For a transparent access to all devices, a
special device server protocol was developed. It operates on a very low abstraction
layer and leaves enough room for the implementation to be able to handle devices with
very different capabilities and properties. It operates in a simple request/response style
manner and is in its design similar to that of the Post Office Protocol (POP) used for
mail transfer [MR96]. However, in order to ensure that transparent access to devices
is possible with only a single device server, the protocol knows the special LISTEN
command. It is different than all other commands because it reverses the roles of the
server and client during an active client-server session if it is executed successfully.
Consider two computers, «UrsaMajor» and «UrsaMinor». While «UrsaMajor» controls

54

all major functionality of the astronomical equipment, the dome control is connected to
«UrsaMinor». For command unification, the protocol therefore can perform the follow-
ing function: In the configuration of the «UrsaMinor» the dome driver is registered and
also a reference to the controlling host «UrsaMajor» is stored. When the «UrsaMinor»
server is first brought up it connects to «UrsaMajor» after device initialization and then
issues the LISTEN command. This command tells «UrsaMajor» that the connected
client can provide resources (i.e., devices) available which it is willing to share. If
«UrsaMajor» accepts the resources, it acknowledges the command. Immediately after
the LISTEN command has been issued the roles are reversed: The connection is now in
a state where «UrsaMajor» is the client and «UrsaMinor» is the server. «UrsaMajor»
then performs commands to look up the resources which «UrsaMinor» has to share
and incorporates these into the list of available devices. When a client then connects to
«UrsaMajor» and requests device operations which are actually in hardware available
on «UrsaMinor», all commands are transparently relayed back and forth. This way, a
connecting client does not have to have knowledge about the actual hardware or network
layout, but can issue the commands to a single device server which takes care or the
rest.

The advantage of using the LISTEN command in contrast to «UrsaMajor» simply
connecting to «UrsaMinor» in the first place is that this way in the configuration of
«UrsaMajor» no references to the clients have to be made. Therefore, the layout and
location of the client servers may change, but the server configuration will always stay
the same. Details about how the protocol is implemented and what parameters are used
can be found in the Appendix C.

3.7 Imaging Examples
In Fig. 3.9 the difference between enabled and disabled guiding can be seen. Paradoxi-
cally, the image in Fig. 3.9a with disabled guiding might appear to show more details
(i.e., some objects close to the right border). This is not not the case, however: Its
brightness has only been scaled to match the apparent brightness of Fig. 3.9b. As the
total maximal brightness of the guided picture is much higher (and so is its signal-to-
noise ratio), through the scaling the faint objects in Fig. 3.9b become invisible (although
they are indeed there). This becomes clear when looking at Fig. 3.10, which shows a
different area of the same image, this time scaled equally. The non-guided picture 3.10a
is much less bright than the guided equivalent in Fig. 3.10b.

An example of real imaging can be seen in Fig. 3.11, an image of the Ring Nebula
(Messier Object 57). Images with red, green and blue filters were integrated to combine
them into a single RGB picture. When the brightness is raised so much that the details
of the Ring Nebula become invisible, a spiral galaxy can be seen to its right, shown on
Fig. 3.11b. That image also shows a strait line from top to bottom which is probably
caused by a airplane or satellite crossing the field of view during the integration period.

55

(a) (b)

Figure 3.9: Two images of 5 minutes each, (a) without and (b) with guiding both scaled
to match same impression

(a) (b)

Figure 3.10: Two images of 5 minutes each, (a) without and (b) with guiding both scaled
equally

56

(a)

(b)

Figure 3.11: (a) Messier 57 (Ring Nebula) taken with reverse engineered software,
(b) shows same picture with luminance channel scaled for greater intensity

57

Chapter 4

Conclusion and Outlook

In the course of this work it was shown that the reverse engineering of binaries can be
simplified significantly when appropriate utilities are used. Such a constraint-based
reverse engineering tool has been developed and tested in the field to dissect code
for various platforms. While the improvement of readability of disassembled code is
good on complex instruction set computers (CISC) like the x86 or x86-64, it performs
outstandingly well with code for reduced instruction set computers (RISC). The expec-
tations that were aimed at were definitely met: The disassembler performs those tasks
that a machine can perform well, while leaving the important part of deciphering the
semantic meaning to the user.

Through an iterative process it is possible to dissect code efficiently on the assembly
level. Guided by other tools for analysis of library calls and writing this information
intermingled with received and transmitted data into dumpfiles makes the reverse
engineering of drivers like the used one relatively easy. However, there is much work
still to do: The reverse engineering tool has no complete support of the supported
instruction sets. The meaning of many opcodes is not understood by the disassembler
and therefore all conditions have to be reset to an undefined state when such opcodes
are encountered. It would be no problem to add support for these opcodes, too, but this
was not yet done due to the time consuming nature of that task.

The practical work performed was the reimplementation of the CCD camera driver
and the appropriate guiding implementation. It was explained that this is a rather
nontrivial task with many constraints. Through use of efficient algorithms working in the
frequency domain a solid solution could be presented which enables astrophotographers
to take images of the skies with integration times far beyond 15 minutes. More than that,
having an open implementation of the imaging framework gives users the possibility
to write scripts performing astronomical imaging – something which was not possible
before. This is an important step towards automated imaging. The framework was also
designed for remote operability, something which is not only convenient in cold winter
nights but also has positive impact on the imaging itself as the turbulence generated by
the operator’s body temperature disappears.

Only few things are perfect, however, and on this side there is also still work to be
done: The usability of the imaging server is not as comfortable as could be expected.
Setting up the guiding on a telescope is a lot of work and the tools designed are often
not very verbose: Should, for example, a cable get loose on the connection from the
telescope to the computer, the frontend will inform about the device error without
hinting to the possible reasons. For experienced users such messages are annoying but

58

for beginning astrophotographers they might save a lot of time searching for the error.
In this work on both the computer science and astrophysical side two very different

but equally interesting topics were addressed. The work on the computer science side
will aid reverse engineers in a manner in order to make static disassembly of binary
code becomes less complicated – thus increasing productivity. On the astrophysical side
it is now possible to perform high-quality imaging with completely free open source
software. Both are merely tools which require capable hands to achieve good results –
hopefully this work is a valuable contribution for both scientific fields.

59

Appendix A

Notation and Examples

A.1 Mathematical Notation
For all mathematical formulae used throughout this document, the following notation is
used:

x̃ = FFT(x)

x = conj(x)

Should X be an image, then WX is its width and HX is its height. Image indices start
from 0, the dimensions of X are therefore from 0 . . .WX − 1 in X-direction and from
0 . . .HX −1 in Y-direction. When summing over a picture, the following explicit syntax
will be used:

∑
x,y=dim(A)

expr =
WA−1

∑
x=0

HA−1

∑
y=0

expr

If it is clear which picture is meant, this may be omitted:

∑
x,y

A(x,y) =
WA−1

∑
x=0

HA−1

∑
y=0

A(x,y)

If indices are not ambiguous, x and y will be used:

∑
A

expr =
WA−1

∑
x=0

HA−1

∑
y=0

expr

Averaging of a picture is notated by:

Â = avg(A) =
1

WA ·HA
∑
x,y

A(x,y)

The local average as it appears in [Lew95] is notated by:

Â(x,y)

60

and it has only then a meaning when there is a convolution of A with another (implied)
image B(at an implied position i, j: Then, it denotes the average of the area under the
feature B, i.e.

1
WB ·HB

i+ 1
2WB−1

∑
x=i− 1

2WB

 j+ 1
2 HB−1

∑
y= j− 1

2 HB

A(x,y)

A.2 Notation of MBBs
As described in Sect. 1.5.1 on page 17 an example of the nomenclature will be given
here. Consider the code List. 1.12. Formally, the analysis includes the aspects A:

A = {ZF,OF,CF, rax, rbx, rcx, rdx} (A.1)

The code which is analyzed contains 6 instructions:

i1 = mov $9, %rax, i2 = mov %rax, %rbx, i3 = mov mul %rbx
i4 = jmp MBB3, i5 = xor %rdx, %rdx, i6 = jmp MBBx

(A.2)

I = {i1, i2, i3, i4, i5, i6} (A.3)

Those instructions are assembled into three Maximal Basic Blocks:

b1 = (i1, i2, i3, i4), b2 = (i5), b3 = (i6) (A.4)

B = {b1,b2,b3} (A.5)

Reference of the instructions is also possible by use of the index of the MBB in question:

b1,1 = i1, b1,2 = i2, . . . , b2,1 = i5, b3,1 = i6 (A.6)

The pre-conditions for the three blocks are

cr1 = /0, cr2 = /0, cr3 = {(OF,0),(CF,0),(rdx,0)} (A.7)

while the post-conditions are:

co1 = {(OF,0),(CF,0),(rax,81),(rbx,9),(rdx,0)} (A.8)

co2 = {(ZF,1),(OF,0),(CF,0),(rdx,0)} (A.9)

co3 = {(OF,0),(CF,0),(rdx,0)} (A.10)

61

A.3 CRC-8 Listing

Listing A.1: CRC-8 calculation with polynomial x8 + x5 + x4 +1
1 ; { }

3 movzbl 0x8(%ebp),%ecx
4 ; assume(ecx := Par1)
5 ; +{ ecx := Par1 }

7 push %ebx
8 movzbl 0xc(%ebp),%ebx
9 ; assume(ebx := Par2)

10 ; +{ ebx := Par2 }

12 mov %ecx,%eax
13 ; +{ eax := Par1 }

15 mov %ecx,%edx
16 ; +{ edx := Par1 }

18 and $0x1 ,%eax
19 ; +{ eax := AND(Par1, 1) }

21 and $0xe6 ,%edx
22 ; +{ edx := AND(Par1, 230) }

24 xor %eax,%ebx
25 ; +{ ebx := XOR(Par2, AND(Par1, 1)) }

27 mov %ebx,%eax
28 ; +{ eax := XOR(Par2, AND(Par1, 1)) }

30 sar %edx
31 ; +{ edx := SHR(AND(Par1, 230), 1) }

33 shl $0x7 ,%eax
34 ; +{ eax := SHL(XOR(Par2, AND(Par1, 1)), 7) }

36 or %edx,%eax
37 ; +{ eax := OR(SHL(XOR(Par2, AND(Par1, 1)), 7), SHR(AND(Par1, 230), 1))

}

39 mov %ecx,%edx
40 ; +{ edx := Par1 }

42 and $0x10 ,%edx
43 ; +{ edx := AND(Par1, 16) }

45 and $0x8 ,%ecx
46 ; +{ ecx := AND(Par1, 8) }

48 sar $0x4 ,%edx
49 ; +{ edx := SHR(AND(Par1, 16), 4) }

51 xor %ebx,%edx
52 ; +{ edx := XOR(SHR(AND(Par1, 16), 4), XOR(Par2, AND(Par1, 1))) }

54 sar $0x3 ,%ecx
55 ; +{ ecx := SHR(AND(Par1, 8), 3) }

57 xor %ebx,%ecx

62

58 ; +{ ecx := XOR(SHR(AND(Par1, 8), 3), XOR(Par2, AND(Par1, 1))) }

60 shl $0x3 ,%edx
61 ; +{ edx := SHL(XOR(SHR(AND(Par1, 16), 4), XOR(Par2, AND(Par1, 1))), 3)

}

63 or %edx,%eax
64 ; +{ eax := OR(OR(SHL(XOR(Par2, AND(Par1, 1)), 7), SHR(AND(Par1, 230),

1)),
65 ; SHL(XOR(SHR(AND(Par1, 16), 4), XOR(Par2, AND(Par1, 1))), 3)) }

67 shl $0x2 ,%ecx
68 ; +{ ecx := SHL(XOR(SHR(AND(Par1, 8), 3), XOR(Par2, AND(Par1, 1))), 2)

}

70 or %ecx,%eax
71 ; +{ eax := OR(OR(OR(SHL(XOR(Par2, AND(Par1, 1)), 7), SHR(AND(Par1,

230), 1)),
72 ; SHL(XOR(SHR(AND(Par1, 16), 4), XOR(Par2, AND(Par1, 1))), 3)),
73 ; SHL(XOR(SHR(AND(Par1, 8), 3), XOR(Par2, AND(Par1, 1))), 2)) }

75 pop %ebx
76 pop %ebp
77 ret

A.4 Maximal Stack Regions
As described before, in the first step, each MBB is assigned its own MSR:

Listing A.2: Determining the MSRs
1 i1: ; MSR0 + 0x00
2 push %eax ; MSR0 - 0x04

4 i2: ; MSR1 + 0x00
5 pop %eax ; MSR1 + 0x04
6 pop %eax ; MSR1 + 0x08
7 mov (%rsp), %rsp ; MSR2 + 0x00
8 push %rsp ; MSR2 - 0x04

10 i3: ; MSR3 + 0x00
11 pop %eax ; MSR3 + 0x04

then, optimizations can be performed, by looking at the MSR graph (a modified MBB
CFG), which only has the edges MSR0 → MSR1 and MSR2 → MSR3. Note that
there is no edge between MSR1 and MSR2 as the block MSR2 was created due to an
indeterminable instruction. Therefore, only two MSRs remain, MSR0 and MSR2, with
the summed offsets:

Listing A.3: Determining the MSRs after the optimization step
1 i1: ; MSR0 + 0x00
2 push %eax ; MSR0 - 0x04

4 i2: ; MSR0 - 0x04
5 pop %eax ; MSR0 + 0x00
6 pop %eax ; MSR0 + 0x04
7 mov (%rsp), %rsp ; MSR2 + 0x00
8 push %rsp ; MSR2 - 0x04

63

10 i3: ; MSR2 - 0x04
11 pop %eax ; MSR2 + 0x00

Here is a real-world example:

Listing A.4: Analysis of MSRs in code
1 ; Entry from bar: Active MSR = M0 - 0x40
2 ; Entry from xyz: Active MSR = M1 - 0x08
3 ; Conflict -> Assign new Active MSR := M2 + 0x00
4 4004a0 <foo >: ; M2 + 0x00
5 4004a0: push %rbp ; M2 - 0x08
6 4004a1: xor %edx, %edx ; %rdx = 0
7 4004a3: mov %rsp, %rbp ; %rbp = M2 - 0x08
8 4004a6: sub $0x188 , %rsp ; M2 - 0x190
9 4004ad: lea -0x200(%rbp), %rcx ; %rcx = M2 - 0x208

11 ; Entry from foo : Active MSR = M2 - 0x190
12 ; Entry from 4004c4: Active MSR = M2 - 0x190
13 ; Identical -> M2 - 0x190
14 i1:
15 4004b4: mov (%rdi, %rdx, 4), %eax ; %eax = (int*)%rdi[%rdx]
16 4004b7: mov %eax, (%rcx, %rdx, 4) ; (int*)(M2 - 0x208)[%rdx] = %eax
17 4004ba: inc %rdx
18 4004bd: cmp $0x80 , %rdx
19 4004c4: jne 4004b4 <foo+0x14> ; Active MSR = M2 - 0x190

21 ; Entry from 4004c4: Active MSR = M2 - 0x190
22 ; Identical -> M2 - 0x190
23 i2:
24 4004c6: xor %dl, %dl

26 ; Entry from 4004c6: M2 - 0x190
27 ; Entry from 4004c8: M2 - 0x190
28 ; Identical -> M2 - 0x190
29 i3:
30 4004c8: mov (%rdi, %rdx, 4), %eax ; %eax = (int*)%rdi[%rdx]
31 4004cb: mov %eax, (%rsi, %rdx, 4) ; (int*)%rsi[%rdx] = %eax
32 4004ce: inc %rdx
33 4004d1: cmp $0x80 , %rdx
34 4004d8: jne 4004c8 <foo+0x28> ; Active MSR = M2 - 0x190

36 ; Entry from 4004d8: Active MSR = M2 - 0x190
37 ; Identical -> M2 - 0x190
38 i4:
39 4004da: xor %dl, %dl
40 4004dc: nopl 0x0(%rax) ; Active MSR = M2 - 0x190

42 ; Entry from 4004dc: Active MSR = M2 - 0x190
43 ; Identical -> M2 - 0x190
44 i5:
45 4004e0: mov (%rcx, %rdx, 4), %eax ; %eax = (int*)(M2 - 0x208)[%rdx]
46 4004e3: mov %eax, (%rdi, %rdx, 4) ; (int*)%rdi[%rdx] = %eax
47 4004e6: inc %rdx
48 4004e9: cmp $0x80 , %rdx
49 4004f0: jne <i5> ; Active MSR = M2 - 0x190

51 ; Entry from 4004f0: Active MSR = M2 - 0x190
52 ; -> M2 - 0x190
53 4004f2: leaveq
54 4004f3: retq

64

A.5 Exception Handling

Listing A.5: Exception low-level Assembly
1 ; Get memory for exception to be thrown (4 bytes) in %eax
2 80486bc: c7 04 24 04 00 00 00 movl $0x4 , (%esp)
3 80486c3: e8 70 fe ff ff call <

__cxa_allocate_exception@plt >

5 ; Instantiate moo()
6 80486c8: c7 44 24 04 34 12 00 movl $0x1234 , 0x4(%esp)
7 80486cf: 00
8 80486d0: 89 04 24 mov %eax, (%esp)
9 80486d3: 89 c3 mov %eax, %ebx

10 80486d5: e8 a6 ff ff ff call <moo::moo(int)>

12 80486da: c7 44 24 08 00 00 00 movl $0x0 , 0x8(%esp)
13 80486e1: 00
14 80486e2: c7 44 24 04 10 88 04 movl $0x8048810 , 0x4(%esp)
15 80486e9: 08
16 80486ea: 89 1c 24 mov %ebx, (%esp)
17 80486ed: e8 66 fe ff ff call <__cxa_throw@plt >

19 80486f2: 89 1c 24 mov %ebx, (%esp)
20 80486f5: 89 c6 mov %eax, %esi
21 80486f7: 89 d7 mov %edx, %edi
22 80486f9: e8 4a fe ff ff call <__cxa_free_exception@plt

>

24 ; Is this the correct exception handler? Then handle it
25 80486fe: 83 ef 01 sub $0x1 , %edi
26 8048701: 74 0e je 8048711 <main+0x71>

28 ; No exception handlers match: Continue stack unwinding
29 8048703: 89 34 24 mov %esi, (%esp)
30 8048706: e8 8d fe ff ff call <_Unwind_Resume@plt >

32 804870b: 89 c6 mov %eax, %esi
33 804870d: 89 d7 mov %edx, %edi
34 804870f: eb ed jmp 80486fe <main+0x5e>

36 8048711: 89 34 24 mov %esi, (%esp)
37 8048714: e8 5f fe ff ff call <__cxa_begin_catch@plt >

39 ; %ebx = ((moo*)%eax)->get()
40 8048719: 89 04 24 mov %eax, (%esp)
41 804871c: e8 6f ff ff ff call <moo::get() const >
42 8048721: 89 c3 mov %eax, %ebx

44 ; Clean up
45 8048723: e8 40 fe ff ff call <__cxa_end_catch@plt >

65

Appendix B

SBIG Camera Protocol

B.1 General Notes
All commands which transmit parameters which are more than one byte in length
encode the values with big endianness. Almost all commands and responses have the
constant prefix 0x5a as the byte with offset 0. The only exception is the ACK command,
which is always 00 06. The command number is encoded in the byte with offset 1 (e.g,
command 0x60 is the Establish Link command, described in Sect. B.2.1). Command
bits which are set in the hex display of the graphics are always set, even if that is not
mentioned explicitly each time.

Response: Acknowledge

0
06

1
00

B.2 Command Reference

B.2.1 Establish Link
The Establish Link command is called before all other commands and before an exposure
is started.

Command: 0x60: Establish link
Expects: Response 0x62

0
a5

1
60

Response: 0x62: Establish link

0
a5

1
62

2
00

3
00

Firmware version

66

B.2.2 Temperature Regulation
These commands either query the current CCD camera temperature or set the tempera-
ture regulation. The ADU values for the regulation are 12 bits in length, but only the 8
most significant bits are transmitted. The formula with which the values are converted
can be seen in the SBIG SDK source code. It is

r(T) = R0 ·RR(DT−1
Dev·(T0−T))

Dev (B.1)

ADU(T) =
MAXAD

RBDev · r−1
(f) +1.5

(B.2)

where MAXAD, R0 and T0 are constant values for all curves:

MAXAD = 4096, R0 = 3, T0 = 25

and RR, RB and DT are the curve specific parameters which are different for the CCD
temperature calculation and the calculation of the ambient temperature:

RRCCD = 2.57, RBCCD = 10, DTCCD = 25

RRAmbient = 7.791, RBAmbient = 3, DTAmbient = 45

Not all cameras seem to support the ambient temperature calculation – the ST-9 and
STL-11k always return 25◦C.

Command: 0x30: Query temperature status
Expects: Response 0x35

0
a5

1
30

Response: 0x35: Temperature Status

0
a5

1
35

2
00

3
00

4
00

5
00

6
00

7
00

Current Peltier power from 0-255

Ambient temperature >> 4 (in ADU)

CCD temperature >> 4 (in ADU)

Temperature setpoint >> 4 (in ADU)

Temperature regulation state (0 = Off, 1 = On)

Command: 0x23: Set temperature regulation
Expects: ACK

0
a5

1
23

2
00

3
00

4
e6

Setpoint in ADU >> 4

Status of temperature regulation (0 = Off, 1 = On)

B.2.3 I2C Access
Warning: This command can damage your camera if used improperly! It implements
memory read/write access to 128 bytes of specific memory areas. In the command 0x73
an address and a memory area is requested. The areas known are 0xa6 which refers to

67

the internal EEPROM on chip and 0xa4 which is used to control the position of the color
filter wheel in the STL-11k. This is done internally via I2C access (both the CFW and
EEPROM are connected to the I2C bus of the EZ-USB device). In the EEPROM there
is information stored about the chip (i.e., internal specifics), the serial number of the
camera, the device and vendor ID of the USB device, and the user memory area (which
is the only area accessible through the official API). When writing to the EEPROM, it
is very possible to brick the camera, for example if the USB ID is overwritten – the
camera will then no longer correctly do USB enumeration and only manual upload of
the firmware is possible. Use with extreme caution.

Command: 0x73: Memory access
Expects: Response 0x71 (to read) or ACK (to write)

0
a5

1
73

2
00

3
00

4
00

Memory area: 0xa6 = EEPROM, 0xa4 = Memory-mapped
I/O (e.g., for CFW)

Value to write (no meaning when reading?)

Bits 0-6 Memory address
Bit 7 0 = Write, 1 = Read

Response: 0x71: Memory Read Result

0
a5

1
71

2
00

3
00

Unknown

Data byte read

B.2.4 Shutter Control
The manual shutter control is only necessary for use with the remote guide head, which
does not automatically close the shutter when integrating an image. When taking a dark
frame on the remote guide head, this command is useful.

Command: 0x81: Manual shutter control
Expects: ACK

0
a5

1
81

2
00

Bits 0-1 State of internal shutter: 0 = Leave, 1 = Close,
2 = Open, 3 = Calibrate

Bits 2-3 State of LED: 0 = Off, 1 = Slow blink, 2 = Fast
blink, 3 = On

Bit 4 State of fan: 0 = Off, 1 = On
Bits 5-6 State of shutter on remote guider (if present):

0 = Leave, 1 = Close, 2 = Open

B.2.5 Exposure Control
The Start Exposure command is passed the desired integration time in units of 1

100
seconds. It is also given the sensor ID on which integration is desired and if the shutter
should be opened (otherwise a dark frame will be taken). Note that to take a dark frame
on the remote guiding head, the Manual Shutter Control command has to be used.

68

Command: 0x04: Start Exposure
Expects: ACK

0
a5

1
04

2
00

3
00

4
00

5
02

Bit 0 Always 0
Bit 1 Always 1
Bits 2-3 1 = Dark frame, 2 = Light frame
Bit 4 0 = Main sensor, 1 = Guide sensor (internal or

remote)
Bit 5 Always 0
Bit 6 0 = Internal sensor, 1 = Remote guide head
Bit 7 Always 0

Numer of ticks (i.e. 1/100th seconds) the integration
takes

Command: 0x11: End Exposure
Expects: ACK

0
a5

1
11

2
00

0 = Imaging sensor, 1 = Guiding sensor

B.2.6 Command Status
Response: 0x93: Command Status

0
a5

1
93

2
00

3
05

4
08

5
80

Bits 0-1 State of imaging sensor 0 = Idle, 1 = Busy,
2 = Integrating, 3 = Complete

Bits 2-3 State of guiding sensor 0 = Idle, 1 = Busy,
2 = Integrating, 3 = Complete

Command: 0x90: Query Command Status
Expects: Response 0x93

0
a5

1
90

B.2.7 CCD Readout Control
The prepare readout command is issued after the End Exposure command. Then, lines
can be discarded via the Discard Lines command until they are read out via the Request
Data commands.

Command: 0xf8 / 0x05: Prepare readout
Expects: ACK

0
a5

1
f8

2
05

3
00

4
00

5
00

6
00

7
00

8
00

9
00

Magic 0xf805 value Y

Magic 0xf805 value X

Binning Y

Binning X

Sensor ID

69

Command: 0xf8 / 0x06: Discard lines
Expects: ACK

0
a5

1
f8

2
06

3
00

4
01

5
00

6
00

7
00

8
00

9
07

Number of rows to discard

Clearwidth

Row line multiplicator (will usually be 1)

Sensor ID

The 0xf6 command series are commands which are split into somewhat similar
subcommands. Known are the 0xf607, the 0xf60a and 0xf603 subcommand which
are used for clearing the CCD and requesting data from it. When requesting data, for
the first block the 0xf60a subcommand has to be used while all subsequent blocks are
retrieved via the 0xf603 subcommand.

Command: 0xf6 / 0x07: Clear CCD
Expects: ACK

0
a5

1
f6

2
07

3
00

4
00

5
00

6
00

7
00

Clear height in pixels

Clear width in pixels

Sensor ID

0x07: Clear CCD subcommand

Command: 0xf6 / 0x0a, 0x03: Request Data
Expects: Raw data packet of requested length

0
a5

1
f6

2
00

3
00

4
00

5
00

6
00

7
00

Number of requested rows

Requested chip width in pixels

Sensor ID

0x0a: request first chunk, 0x03: request subsequent
chunk

The purpose of the 0xf2 command is unknown. On both the ST-9 and ST-11k
the register 0x08 is set to 0x01 before the begin of the exposure (i.e., before the Start
Exposure command) and set to 0x00 again after the last block has been read from the
CCD. On the ST-11k only there is also access to the 0x0b register after the 0x08 register
has been set. The value passed is the sensor ID which was just read out. The 0xf208
command seems to respond with the request itself (although sometimes it responds with
the request except that the value returned is different from the one set) while the 0xf20b
command always responds with ACK.

Command: 0xf2: Set unknown register
Expects: Different, depending on register: sometimes ACK, sometimes the request itself

0
a5

1
f2

2
00

3
00

Value to set reigster to

Register location

70

B.3 Camera Parameters
All known camera readout mode parameters which have fixed values are recorded in
Tables B.1 and B.2. Some of these are “magic” values which are always sent in the
same commands, other are general readout parameters. The chip width and height give
the amount of pixels which are read from the chip while the image dimensions give
the width and height of the actual picture (after cropping away separation pixels). The
offset of the crop is also given.

Table B.1: High level readout mode parameters

Camera Sensor Binning Mode Image Chip Crop
ST-9XE Imaging 1×1 512×512 516×527 (4,0)

Guiding 1×1 662×495 662×495 (0,0)
Remote 1×1 662×495 662×495 (0,0)

ST-11k Imaging 1×1 4012×2672 4012×2672 (0,0)
2×2 2008×1336 2008×1336 (0,0)
3×3 1340×890 1340×890 (0,0)

Table B.2: Low level readout mode parameters

Camera Sensor Bin Clear Width Row Discard F8-05-X F8-05-Y F3
ST-9XE Imaging 1 534 4 12 10 22

Guiding 1 683 3 26 0 N/A
Remote 1 683 3 26 0 N/A

ST-11k Imaging 1 4076 24 36 32 44
2 4076 24 18 16 13
3 4076 24 12 10 13

71

B.4 Typical Imaging Process

Algorithm 4 Integrate a picture and retrieve it

0x62⇒ EstablishLink
0x11⇒ EndExposure
0xf806⇒ DiscardLines(Mode.RowDiscard)
0xf607⇒ ClearCCD
0xf2⇒MagicF2(0x08 := 1)
0x04⇒ StartExposure
repeat

Wait
until (0x90⇒ QueryCommandStatus) = Exposure finished
0x11⇒ EndExposure
0xf806⇒ DiscardLines(Mode.RowDiscard)
if Camera.MagicF3 6= N/A then
0xf3⇒ PrepareReadout(Mode.MagicF3)

end if
0xf1⇒ PrepareReadout
0xf805⇒ PrepareReadout(Mode.MagicF805X, Mode.MagicF805Y)
while RowsRemaining do

if First chunk then
0xf60a⇒ Fetch first chunk

else
0xf603⇒ Fetch subsequent chunk

end if
end while
0xf2⇒MagicF2(0x08 := 0)
if Camera = ST-11k then
0xf2⇒MagicF2(0x0b := SensorID)

end if

72

Appendix C

Device Server Protocol

C.1 Identifiers
All identifiers are case-sensitive except if explicitly stated. If more than one param-
eters of the same type are included in a command or query, those may be written as
<Type-[0-9]+> for have further reference within the description. If a multiline answer
is given with multiple types those may be written as <Type-[0-9]+-[0-9]+> where
the first integer value indicates the line reference and the latter indicates the argument
reference (if necessary for disambiguation).

• Identifier: [-_A-Za-z0-9]+

• String: [_/.,:$?%-=A-Za-z0-9]+

• Text [_/.,:$?%-=A-Za-z0-9]+

• HexString: [0-9a-f]+

• Code: [0-9]+

• Command: <Identifier> (case insensitive)

C.2 Commands

C.2.1 Requests
• Request := <Command> <Code> <Identifier>(<String>)*

Where arguments are indexed starting from 1 and command may be referred to as
argument 0.

• Example: EXECUTE 4 INTEGRATE 60

• Command: EXECUTE

• Code (Device ID): 4

• Subcommand: INTEGRATE

• Argument 0: INTEGRATE

• Argument 1: 60

73

C.2.2 Responses
• CommentResponse := <Text>

• SingleResponse := (+OK|-ERR) <Identifier> <Text>?

• MultiResponse := (+OKDATA|-ERR <Identifier> <Text>?)

The server may output <CommentResponse> responses at any time except inbetween
"+OKDATA" and "." for the sole purpose of providing additional output to a connected
user. The "+OK" and "-ERR" responses always give the error code as described in
Sect. C.7 as the first parameter and can also provide a textual, possibly more detailed
description of the reason.

C.3 Line format
All lines terminate with 0x0a (\n), although lines terminated with 0x0d 0x0a (\r\n)
shall be tolerated by any server conforming to the protocol.

C.4 Command Format
Single line answer commands:

• → <Request>

• ← <SingleResponse>

Multi line answer commands when response is "+OKDATA":

• → <Request>

• ← <MultiResponse>

• ← <Text>

• ← .

C.5 Protocol States
1. Unauthenticated (NOTAUTH)

2. Authentication requested (AUTHREQ)

3. Authenticated (AUTH)

Conforming implementations shall always return -ERR upon receiving any com-
mand which is not valid in the current state.

74

C.6 Commands

C.6.1 RQAUTH
Requests authorization challenge from server.

Valid in NOTAUTH, AUTH
Request → RQAUTH
Response ← +OK <String> YYYYMMDDHHmmSS-<Identifier>
Where <String> are the server supported authentication hash function identi-

fiers, separated by comma. Any conforming server must support at least
SHA1.
YYYY is the current year
MM is the current month
DD is the current day of month
HH is the current hour
mm is the current minute
SS is the current second
<Identifier> is a string identifying the server host.

Transitions → AUTHREQ
Example → RQAUTH

← +OK MD5,SHA1 20081224123456-imageserver

75

C.6.2 AUTH
Authenticates against server with previously acquired challenge

Valid in AUTHREQ
Request → AUTH <Identifier-1> <Identifier-2> <HexString>
Where <Identifier-1> is the user name of the user trying to authenticate

<Identifier-2> is the hash function used for authentication
<HexString> is the response r to the previously given challenge c with
password k (shared secret) using the previously given hash function h
with block length b (e.g. b = 64 bytes for MD5 or SHA1) calculated as
of RFC 2104 [KBC97]. A short explanation:
ipad = 0x36 repeated b times
opad = 0x5c repeated b times
k = pad(password,b)
r = h(k⊕opad,h(k⊕ ipad,c))
Padding is is left-aligned with pattern 0x00. For details if length(k) > b
consult RFC 2104 [KBC97].

Response ← +OK if authentication succeeded.
Response ← -ERR EAUTHUSR/EAUTHPW/EAUTH if authentication failed.
Transitions → AUTH or→ NOTAUTH
Example Password for joe is foobar in the following example:

→ RQAUTH
← +OK SHA1,MD5 20081022220035-myhost
→ AUTH joe MD5 11111111122222222233333344444444
← -ERR EAUTHPW Your password is not correct.
→ RQAUTH
← +OK SHA1,MD5 20081022220044-myhost
→ AUTH joe MD5 9c64d0990ee92a637d9cb68734a2b937
← +OK Welcome user joe.

Comments The server may choose to close the connection, if authentication fails,
instead of making the transition to the→ NOTAUTH state.

76

C.6.3 LIST
Lists the devices accessible to server.

Valid in AUTH
Request → LIST
Response ← +OKDATA

← <Code-1> <Identifier-1> <String-1>(LOCKED)?
← [...]
← <Code-N> <Identifier-N> <String-N>(LOCKED)?
← .

Where <Code> is the number of device N which the client can get a LOCK on.
<Identifier> is the string representation of device N which is not
necessarily unique and only for user convenience. It usually contains the
type of device.
<String> is the location of the device. For local devices this has to be
"LOCAL", for remote devices it will be the name of the remote host.
The LOCKED keyword indicates that the listed device is currently
locked.

Example → LIST
← +OKDATA
← 0 mysbig-st9-1 LOCAL
← 3 mysbig-st9-2 LOCAL LOCKED
← 4 mysbig-st12 LOCAL
← 8 telescope ngc7293.sternwarte.de LOCKED
← .

C.6.4 LOCK
Lock a connected device or set of connected devices.

Valid in AUTH
Request → LOCK <Code>(<Code>)*
Where <Code> are the device codes of the devices to be locked. Lock acquire-

ment shall happen atomically. Either the current user gets a lock for all
devices or doesn’t acquire any lock at all.

Response ← +OK if all devices could be locked
← -ERR ELOCK if at least one of the requested devices is already locked.
← -ERR ENODEV if at least one of the requested devices does not exist.

C.6.5 UNLOCK
Unlock a connected device.

Valid in AUTH
Request → UNLOCK <Code>
Where <Code> is the device code of the devices to be unlocked.
Response ← +OK if the device could be unlocked.

← -ERR EBUSY if the device could not be unlocked because it is currently
performing an operation.
← -ERR ENODEV if the device number is invalid.
← -ERR ENOLOCK if the device could not be unlocked because it does
not currently have a lock on by the current user.

77

C.6.6 QUIT
Close connection to server.

Valid in NOTAUTH, AUTHREQ, AUTH
Request → QUIT
Response ← +OK before the server closes the connection.

C.6.7 LISTPARAMS
Lists the parameters which a device has.

Valid in AUTH
Request → LISTPARAMS <Code>
Where <Code> is the device code of the device of which the available parameters

should be listed.
Response ← +OKDATA

← <Identifier-1> <String-1> -> <Text-1>
← [...]
← <Identifier-N> <String-N> -> <Text-N>
← .
← -ERR ENODEV if the device number is invalid.

Where <Identifier> is the name of the parameter.
<String> is the prototype of the parameter, separated by commas. The
first value shall always be "RW" for a read-write-property or "RO" for a
read-only property.
<Text> is the description of the parameter.

Example → LISTPARAMS 1
← +OKDATA
← POSITION RW,float,float -> Get/set RA and DEC
← VELOCITY RO,unsigned int -> Get slew velocity
← SWAPRADEC RW,bool,bool -> Swap RA with DEC
← .

78

C.6.8 SETPARAM
Sets a device parameter to a specified value.

Valid in AUTH
Request → SETPARAM <Code> <Identifier> <Text>
Where <Code> is the device code of the device of which the parameters should

be modified.
<Identifier> is the parameter name to modify.
<Text> is the new value or new values the parameter shall have, separated
by spaces.

Response ← +OK
← -ERR ELOCK if the device is currently locked by a different user.
← -ERR ENODEV if the device number is invalid.
← -ERR ENOPARM if the device number does not offer the requested
parameter.
← -ERR ENOLOCK if the parameter requires a lock to be held, but none
exists.
← -ERR EWRPROT if the parameter is write protected.

Example → SETPARAM 0 CFWPOSITION RED
← +OK

C.6.9 LISTCAPABILITIES
Lists the capabilities which a device offers.

Valid in AUTH
Request → LISTCAPABILITIES <Code>
Where <Code> is the device code of the device of which the available capabilities

should be listed.
Response ← +OKDATA

← <Identifier-1> <String-1> -> <Text-1>
← [...]
← <Identifier-N> <String-N> -> <Text-N>
← .
← -ERR ENODEV if the device number is invalid.

Where <Identifier> is the name of the capability.
<String> are the capability prototype parameters.
<Text> is a textual description of the capability.

Example → LISTCAPABILITIES 0
← +OKDATA
← RESET -> Reset the USB port and the camera
← SHUTTER [INT|EXT],[OPEN|CLOSE] -> Shutter control
← .

79

C.6.10 EXECUTE
Execute a capability on a previously opened (and possibly locked) device.

Valid in AUTH
Request → EXECUTE <Code> <Identifier> <Text>
Where <Code> is the device code of the device of which the capability should

be executed.
<Identifier> is the name of the capability call to be executed.
<Text> contains the parameters of the capability, separated by spaces.

Response ← +OK if the capability could be executed successfully.
← -ERR ELOCK if the device is currently locked by a different user.
← -ERR ENOLOCK if capability requires a locked device, but user does
not hold lock.
← -ERR ENODEV if the device number is invalid.
← -ERR ENOCAP if the capability identifier is invalid.
← -ERR EDEVFAIL if the capability cannot be executed because of device
failure.

C.6.11 LISTRESULTS
Lists the results which a device produced.

Valid in AUTH
Request → LISTRESULTS <Code>
Where <Code> is the device code of the device of which the available results

should be listed.
Response ← +OKDATA

← <String-1>
← [...]
← <String-N>
← .
← -ERR ENODEV if the device number is invalid.

Where <String> is the name of the result.

80

C.6.12 FETCH
Fetch a result from a device.

Valid in AUTH
Request → FETCH <Code> <Identifier-1> <Identifier-2>
Where <Code> is the device code of the device of which the available results

should be fetched.
<Identifier-1> is the name of the result to be fetched.
<Identifier-2> is the name of the filter to be applied by the server
before sending out the data. Conforming implementations need to only
support the PLAIN filter, which does not process the data in any way be-
fore Base64-encoding is performed. However this standard suggests that
GZIP should be supported as a filter which performs GZIP compression
as of RFC 1952 [Deu96].

Response ← +OKDATA
← [...]
← .

Where The data is Base64-encoded binary data as of RFC 3548 [Jos03].
← -ERR ENODEV if the device number is invalid.
← -ERR ENORES if the result name is invalid.
← -ERR EINVCONT if the server does not understand the filter identifier.
← -ERR EFILEERR if the server cannot serve the requested result file
(e.g., possibly due to I/O errors).

C.6.13 LISTEN
Switch roles after authentication in order to relay resources. This means the connected
client will, after the LISTEN command has been performed successfully, act as the
server and the server will send client commands. The same connection will be used.
Usually the host acknowledging the LISTEN command will first perform a LIST and
LISTPARAMS command in order to update the own list of known devices. It then will
take care of relaying.

Valid in AUTH
Request → LISTEN <Identifier>
Where <Identifier> is the name of the connected client which offers access

to all of its devices.
Response ← +OK

← -EPERM if the user does not have permission to share devices.
← -ENAMETK if the supplied hostname is already taken by another con-
nection.
← -ENOTIMPL if the LISTEN operation is not implemented in the server.

C.7 Error Codes
1. EAUTHUSR Authentication failed, unknown username

2. EAUTHPW Authentication failed, wrong password

3. EAUTH Unspecified authentication failure

4. EPERMS Permission denied

81

5. EDEVBUSY Device or resource busy

6. ELOCK Device is locked

7. ENOLOCK Device is not locked

8. ENOSUCHDEV No such device

9. ENOCAP No such capability

10. ENOPAR No such parameter

11. ENORES No such result

12. ENAMETK The name is already taken

13. ECMDEX Command expected

14. ECMDINV Command unknown or invalid in current protocol state

15. ECMDPAR Command has not supplied the exact number of required parameters

16. ECMDMLFRM Command has malformed or unsupported syntax or parameters

17. ENOTIMPL The operation is not implemented in the server

18. EINVCONT Invalid or unsupported content type requested

19. EWRPROT Property is write-protected (read-only)

20. EDEVFAIL Device failure or device unresponsive

21. EFILEERR Unable to serve the requested result file

82

Bibliography

[App02] Andrew W. Appel. Deobfuscation is in NP. August 2002.

[BB06] Richard Berry and James Burnell. The Handbook of Astronomical Image
Processing. Willman-Bell, Inc., 2006.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the (Im)possibility of Obfuscating
Programs, 2001.

[BH07] Michael Batchelder and Laurie J. Hendren. Obfuscating java: The most pain
for the least gain. In Shriram Krishnamurthi and Martin Odersky, editors, CC,
volume 4420 of Lecture Notes in Computer Science, pages 96–110. Springer,
2007.

[Boo05] Neil Booth. Cpplib internals, 2005. http://gcc.gnu.org/onlinedocs/
cppinternals.pdf.

[Com95] Tool Interface Standard Committee. Executable and linking format (elf)
specification 1.2. May 1995. http://refspecs.freestandards.org/
elf/elf.pdf.

[Cro84] Franklin C. Crow. Summed-area tables for texture mapping. In SIGGRAPH
’84: Proceedings of the 11th annual conference on Computer graphics and
interactive techniques, pages 207–212, New York, NY, USA, 1984. ACM
Press.

[CT65] James W. Cooley and John W. Tukey. An algorithm for the machine calcula-
tion of complex fourier series. Mathematics of Computation, 19(90):297–301,
1965.

[CTL97] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of
obfuscating transformations, 1997. http://www.cs.auckland.ac.nz/
~collberg/Research/Publications/CollbergThomborsonLow97a/
index.html.

[CTL98] Christian Collberg, Clark Thomborson, and Douglas Low. Manufac-
turing cheap, resilient, and stealthy opaque constructs. In Princi-
ples of Programming Languages 1998, POPL’98, San Diego, CA, Jan-
uary 1998. http://www.cs.auckland.ac.nz/~collberg/Research/
Publications/CollbergThomborsonLow97c/index.html.

[Cyp00] Cypress Semiconductor. EZ-USB FX technical reference manual, 2000.
http://www.keil.com/dd/docs/datashts/cypress/fx_trm.pdf.

83

http://gcc.gnu.org/onlinedocs/cppinternals.pdf
http://gcc.gnu.org/onlinedocs/cppinternals.pdf
http://refspecs.freestandards.org/elf/elf.pdf
http://refspecs.freestandards.org/elf/elf.pdf
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97a/index.html
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97a/index.html
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97a/index.html
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97c/index.html
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97c/index.html
http://www.keil.com/dd/docs/datashts/cypress/fx_trm.pdf

[Cyp01a] Cypress Semiconductor. Cy7c64601/603/613 EZ-USB FX USB micro-
controller datasheet, September 2001. http://www.keil.com/dd/docs/
datashts/cypress/cy7c646xx_ds.pdf.

[Cyp01b] Cypress Semiconductor. EZ-USB FX2 technical reference manual, 2001.
http://www.keil.com/dd/docs/datashts/cypress/cy7c68xxx_ds.
pdf.

[Cyp02a] Cypress Semiconductor. Cy7c68013 EZ-USB FX2 USB microcontroller
high-speed USB peripheral controller, June 2002. http://www.keil.com/
dd/docs/datashts/cypress/cy7c68xxx_ds.pdf.

[Cyp02b] Cypress Semiconductor. EZ-USB technical reference manual, 2002.
http://download.cypress.com.edgesuite.net/design_resources/
datasheets/contents/an21xx_8.pdf.

[Deu96] P. Deutsch. Rfc1952 – gzip file format specification version 4.3, May 1996.
http://www.ietf.org/rfc/rfc1952.txt.

[Eil05] Eldad Eilam. Reversing – Secrets of Reverse Engineering. Wiley, 2005.

[FJ05] Matteo Frigo and Steven G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special issue on
“Program Generation, Optimization, and Platform Adaptation”.

[Gra02] Volker Grassmuck. Freie Software – Zwischen Privat- und Gemeineigentum.
Bundeszentrale für politische Bildung, Bonn, 2002.

[GSTF08] Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup. Efficient
subpixel image registration algorithms. Opt. Lett., 33(2):156–158, 2008.

[Int07a] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual – Volume 1: Basic Architecture. August 2007. http://www.intel.
com/design/processor/manuals/253665.pdf.

[Int07b] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual – Volume 2B: Instruction Set Reference, N-Z. May 2007. http:
//www.intel.com/design/processor/manuals/253667.pdf.

[Jos03] S. Josefsson. Rfc 3548 – the base16, base32, and base64 data encodings,
July 2003. http://www.ietf.org/rfc/rfc3548.txt.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. Rfc2104 – hmac: Keyed-hashing
for message authentication, February 1997. http://www.ietf.org/rfc/
rfc2104.txt.

[KKO+96] H. Karttunen, P. Kröger, H. Oja, M.Poutanen, and K. J. Donner. Fundamen-
tal Astronomy. Springer, Heidelberg, 1996.

[Kod06] Kodak Image Sensor Solutions. Product summary of Kodak
KAI-11002 progressive scan interline ccd image sensor, 2006.
http://www.kodak.com/global/plugins/acrobat/en/business/
ISS/productsummary/Interline/KAI-11002ProductSummary.pdf.

84

http://www.keil.com/dd/docs/datashts/cypress/cy7c646xx_ds.pdf
http://www.keil.com/dd/docs/datashts/cypress/cy7c646xx_ds.pdf
http://www.keil.com/dd/docs/datashts/cypress/cy7c68xxx_ds.pdf
http://www.keil.com/dd/docs/datashts/cypress/cy7c68xxx_ds.pdf
http://www.keil.com/dd/docs/datashts/cypress/cy7c68xxx_ds.pdf
http://www.keil.com/dd/docs/datashts/cypress/cy7c68xxx_ds.pdf
http://download.cypress.com.edgesuite.net/design_resources/datasheets/contents/an21xx_8.pdf
http://download.cypress.com.edgesuite.net/design_resources/datasheets/contents/an21xx_8.pdf
http://www.ietf.org/rfc/rfc1952.txt
http://www.intel.com/design/processor/manuals/253665.pdf
http://www.intel.com/design/processor/manuals/253665.pdf
http://www.intel.com/design/processor/manuals/253667.pdf
http://www.intel.com/design/processor/manuals/253667.pdf
http://www.ietf.org/rfc/rfc3548.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.ietf.org/rfc/rfc2104.txt
http://www.kodak.com/global/plugins/acrobat/en/business/ISS/productsummary/Interline/KAI-11002ProductSummary.pdf
http://www.kodak.com/global/plugins/acrobat/en/business/ISS/productsummary/Interline/KAI-11002ProductSummary.pdf

[KVRV04] Christopher Kruegel, Fredrik Valeur, William Robertson, and Giovanni
Vigna. Static Disassembly of Obfuscated Binaries. In 13th Usenix Security
Symposium, August 2004.

[Lag96] Jeffrey C. Lagarias. The 3x + 1 problem and its generalizations, January
1996.

[LD03] Cullen Linn and Saumya Debray. Obfuscation of executable code to improve
resistance to static disassembly. In In ACM Conference on Computer and
Communications Security (CCS), pages 290–299. ACM Press, 2003.

[Lew95] J. P. Lewis. Fast normalized cross-correlation. In Vision Interface, pages
120–123. Canadian Image Processing and Pattern Recognition Society, 1995.

[LSW08] Ulf Lamping, Richard Sharpe, and Ed Warnicke. Wireshark users’ guide
29371 for wireshark 1.2.0, 2008. http://www.wireshark.org/download/
docs/user-guide-a4.pdf.

[LY99] Tim Lindholm and Frank Yellin. The Java(TM) Virtual Machine Specification
(2nd Edition). Prentice Hall PTR, Palo Alto, California, USA, April 1999.

[McL97] Ian S. McLean. Electronic Imaging in Astronomy – Detectors and Instrumen-
tation. Wiley, Chichester, England, 1997.

[MR96] J. Myers and M. Rose. Rfc 1939 – post office protocol version 3, May 1996.
http://www.ietf.org/rfc/rfc1939.txt.

[Mü93] Urban Müller. Brainfuck – an eight-instruction turing-complete programming
language. http://www.muppetlabs.com/~breadbox/bf/, 1993.

[NDT04] H. Nobach, N. Damaschke, and C. Tropea. High-precision sub-pixel interpo-
lation in piv/ptv image processing. In Proceedings of the 12th International
Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon,
Portugal, July 2004.

[Rie03] George Rieke. Detection of Light – From the Ultraviolet to the Submillimeter.
Cambridge University Press, 2003.

[Rus98] John C. Russ. The Image Processing Handbook. CRC Press, Boca Raton,
FL, USA, 1998.

[Smi05] Warren J. Smith. Modern Lens Design. McGraw-Hill, New York, NY, USA,
2005.

[St08] Richard M. Stallman and the GCC Developer Community. GNU compiler
collection internals, 2008. http://gcc.gnu.org/onlinedocs/gccint.
pdf.

85

http://www.wireshark.org/download/docs/user-guide-a4.pdf
http://www.wireshark.org/download/docs/user-guide-a4.pdf
http://www.ietf.org/rfc/rfc1939.txt
http://www.muppetlabs.com/~breadbox/bf/
http://gcc.gnu.org/onlinedocs/gccint.pdf
http://gcc.gnu.org/onlinedocs/gccint.pdf

	Reverse Engineering
	Motivation
	Differences in Assembly Representation
	Symbolic Names
	Function Prototypes
	Exceptions
	Structure Member Access
	Concurrent operation
	Memory Allocation
	Return Values of Functions

	From Assembly to Higher-Level Abstraction
	Goals
	Useful Premises for Offline Analysis
	Control Flow Representation

	Pitfalls and Obfuscation
	Clarification
	Overlapping Instructions
	Opaque Constraints
	Abstruse Code

	The Constraint-Based Approach
	Nomenclature
	Principle of Operation

	Possible Extensions
	Extending Data-Flow to Arithmetic Expressions
	Maximal Stack Regions
	Extension by Specialized Constraints
	Determining the Extent of Subroutines

	Astrophysical Premises
	Basics and operation
	Telescopes

	Imaging Detectors
	Telescope Mountings
	Telescope mount
	Mount Gear Inaccuracy

	Autoguiding with Astrophysical Imaging Detectors
	Reverse Engineering the CCD Camera Driver
	Getting to Know the Target
	Intercepting Library Calls
	A Peek into the SBIG Protocol
	Understanding the Protocol Semantics
	Hardware Disassembly
	Firmware Disassembly

	Forms of Object Tracking
	Off-Axis Guiding
	Auxiliary Telescope Guiding
	Software Virtual Guiding

	Guiding Accuracy
	Cross Correlation
	Efficient Implementation
	Avoiding False Positive Detection by Normalization
	Subpixel Accuracy

	Determining the movement field
	Design of a Distributed System
	Imaging Examples

	Conclusion and Outlook
	Notation and Examples
	Mathematical Notation
	Notation of MBBs
	CRC-8 Listing
	Maximal Stack Regions
	Exception Handling

	SBIG Camera Protocol
	General Notes
	Command Reference
	Establish Link
	Temperature Regulation
	I2C Access
	Shutter Control
	Exposure Control
	Command Status
	CCD Readout Control

	Camera Parameters
	Typical Imaging Process

	Device Server Protocol
	Identifiers
	Commands
	Requests
	Responses

	Line format
	Command Format
	Protocol States
	Commands
	RQAUTH
	AUTH
	LIST
	LOCK
	UNLOCK
	QUIT
	LISTPARAMS
	SETPARAM
	LISTCAPABILITIES
	EXECUTE
	LISTRESULTS
	FETCH
	LISTEN

	Error Codes

