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In Astronomy one cannot use conventional observation methods for high-energetic γ-rays, because
they cannot be focussed by lenses or mirrors. Coded mask telescopes are one possible alternative.
They are based on the observation of the shadow of the γ-rays caused by a mask with a particular
pattern in the optical path. The shadow is shifted relative to the mask according to the angle of
incidence. Mathematical methods like the correlation make it possible to reconstruct the position
of the source, even for weak intensities and high background radiation.
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I. INTRODUCTION

X-rays and γ-rays are high-energetic electromagnetic
waves, which penetrate most materials with almost no
interaction. This property makes especially the x-rays
very important for medicine.

γ-rays are produced e.g. by nuclear decays and play an
important role in astronomy for observing high-energetic
phenomena like black holes or supernovae.

Since the atmosphere of the earth is a natural shield
against γ-rays, the telescopes and other instruments have
to be installed on rockets or satellites to operate in the
outer space (cf. [HG], introduction p. xiv f.).

For γ-rays cannot be focussed by lenses or mirrors like
optical light, one has to use alternatives like Wolter tele-
scopes (cf. [W] or [SH]: ”Wolter”). This technology has
been used e.g. on the satellite ”Chandra”. It is based
on the total reflection of γ-ray photons with a very small
angle of incidence on a metal surface. Using a combi-
nation of several parabolic, hyperbolic or elliptic mirrors
the γ-rays can be focussed on a detector.

However this method is only applicable up to photon
energies of about 10 keV. At higher energies, as we usu-
ally have for γ-rays, we have to consider other ways of
imaging, like coded masks.

In these telescopes the incident radiation is falling on
a mask with a particular pattern, which is transparent at
some pixels and opaque to photons at the rest of the sur-
face. So only a part of the radiation can pass the mask
and get to the underneath detector, where it creates a
shadow pattern, which is determinated by the coding of
the mask. If the incidence angle of the radiation accord-
ing to the optical axis changes, the shadow pattern is
shifted. In this way, one can caluclate the direction of
the source of radiation from the position of the shadow
on the detector relative to the mask.

A simple example is the pinhole camera: there we have
a mask with one single transparent hole. The shadow and
the light spot respectively on the plane behind the hole
gives us the incident angle of the light, i.e. the direction
of the source.

This single hole has the advantage of a positioning with
high accuracy, if the hole is very narrow. But otherwise
a narrow hole means little intensity of the transmitted
radiation, i.e. a weak spot. This can be avoided by us-
ing several holes, which are distributed on the mask area
forming a particular pattern. Of course, the shadow pat-
tern resembles the mask pattern apart from a shift, which
is caused by the position of the source according to the
optical axis. So similarly to the pinhole camera the di-
rection of the incident radiation can be determined from
the shift of the shadow pattern.

When there is an overlap of shadows created by dif-
ferent sources of radiation, we have to use mathematical
methods to reproduce the direction and intensity of each
source.

In this project report you will first get some general
information about coded mask telescopes and the math-
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ematical background (section II). Section III describes
the implementation of a simulation for coded mask tele-
scopes, the analysis program, which processes the simu-
lation data, and some other tools. The results of several
simulations are presented in section IV, focusing on the
HEXIS instrument currently being designed by UC San
Diego. Section V contains a summary of this project.

II. THEORETICAL BACKGROUND

A. Telescope structure

Coded mask telescopes usually consist of a γ-ray de-
tector, the mask and a housing, which should screen off
background photons coming through the sidewalls. (As
the telescope is operating on a satellite and therefor has
to be as lightweight as possible, the screening of the side-
walls and also the mask are usually not very perfect, so
that we cannot neglect background effects.)

You can see the principle of a coded mask telescope
assembly in figure 1.

housing
mask

detector

FCFOV
PCFOV

FIG. 1: basic assembly of a coded mask telescope

The mask and the detector each consist of a particular
number of pixels. In general these numbers are not equal
and the mask usually has a bigger area than the detector,
to have a large FCFOV (”fully coded field of view”, cf.
[HG], p. 10). So for sources which have only a little devi-
ation from the optical axis (i.e. lie within the FCFOV),
there is no shadow from the walls on the detector.

For sources in the PCFOV (”partially coded field of
view”) there is always a shadow from the walls on the
detector area.

This project deals with a detector and a mask of the
same square size and with the same number of pixels.
So the FCFOV is limited to the optical axis. All other
sources that can be seen, must be at least within the
PCFOV (”partially coded field of view”).

B. Mask layout

The mask has a square area and consists of several
pixels, which are either transparant or impenetrable for

γ-rays. (Of course a real mask cannot perfectly screen off
all radiation, but this simplification is used in our model.)

The pattern should be designed in such a way, that one
can achieve as good reconstruction properties as possible.
As we will see later (section II E) it is important, that the
correlation of the mask function has a very sharp peak
at zero and very small values otherwise.

One possible approach is a mask with randomly dis-
tributed pixels and an entire opacity of about 2/3. Some
simulations were performed with such a 64 × 64 mask,
and the results turned out to be quite acceptable.

From the mathematical point of view there are better
mask layouts, which are actually in use on satellites.

C. Coded mask telescopes

A popular example for a coded mask telescope actually
operating on a satellite is the IBIS instrument on IN-
TEGRAL (INTErnational Gamma-Ray Astrophysics
Laboratory), which was launched on 17th of October in
2002 (cf. [UI]) and can detect γ-rays in an energy range
from 15keV up to 10MeV with an angular resolution of
12arcmin. Its detector consists of two layers (CdTe and
CsI) for different energy ranges with areas of 2600cm2

and 3100cm2 respectively (cf. [FI]).
In this project some measurement data from INTE-

GRAL was used to test the simulation on proper envi-
ronment variables (see section IVE).

Opposite to Wolter telescopes the coded mask technol-
ogy allows us to locate high energetic γ-ray sources. It
also has the advantage of a quite large field of view, so
one can observe whole areas of the sky at the same time
without moving the telescope.

D. MIRAX

The MIRAX (Monitor e Imageador de RAios-X) mis-
sion, on which this project is based, is intended to observe
γ-ray phenomena in the galactic center (see [M]) in an
energy range from 10keV to 200keV.

With its large FCFOV of 7.7◦ × 7.7◦ ([M], p. 12) it is
designed for permanent observation of the galactic center
and the detection of short time events.

The mask pixels of MIRAX have a width of 865µm
([M], p.16), so in this project the width of both mask
and detector pixels is set to 865µm. (I have used the
simplification that all pixels have the same size.) The
distance between mask and detector is 76cm.

The MIRAX telescope in planned to be built with
a MURA (”modified uniformly redundant array”) mask
pattern, which is created by using prime numbers. (You
can find more about the theory of mask patterns in [HG],
p. 21 ff.) Most of the data in this project was created
with a 151 × 151 MURA mask, which is intended to be
used for MIRAX balloon experiments.
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You can find more detailed information about MIRAX
in the document [M] itself.

E. Mathematical methods

The mathematically most interesting part of this
project is the analysis of the detector data, which al-
lows us to reconstruct the directions and the intensities
of several sources.

In order to do this, we define the following two func-
tions:

• D(x, y) contains the detector data: it gives the
number of detector events at each detector pixel
(position (x, y)). If we neglect background radia-
tion, D(x, y) is the result of the photons coming
from the source and passing the mask through a
transparent pixel.

• M(x, y) represents the mask:

M(x, y) =
{

C1 for a transparent mask pixel
C2 for an opaque pixel (1)

The constants are chosen like this:

C1 =
N

Nt

C2 = − N

N −Nt

where N is the total number and Nt the number of
transparent mask pixels.

This choice ensures that
∑

~x

M(~x) = Nt · C1 + (N −Nt) · C2 = 0 (2)

(I use the notation ~x =
(

x
y

)
. Although the following

plots usually show the one-dimensional case for conve-
nience, one can easily generalise the ideas to two dimen-
sions.)

Since we have a finite number of detector elements, the
detector data can only be resolved up to some discrete
values for ~x. For convenience we choose the same grid
size for the detector and for the mask.

For the simple one-dimensional mask with 8 pixels in
figure 2 the function M(x) and D(x) may look like in
figure 3.

From these data we can reconstruct the position of
the source on the sky-projection plane S(~x) using simple
trigonometric methods, as you can see in figure 4.

In our example the form of the detector data is shifted
relative to the mask by exactly 1 pixel to the right.

θ = arctan(
b

8h
) (3)

h

b

FIG. 2: example of a simple 1-dimensional mask
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FIG. 3: M(x) and D(x) in 1-dimensional example

From the mathematical point of view the function
D(~x) is the convolution of the mask function M(~x) with
the source function S(~x) (see [HG], p. 18):

D(~x) = (M ∗ S)(~x) (4)

If we now choose G(~x) ≡ M(−~x), we get:

(G ∗M)(~x) =
∫

G(~z)M(~x− ~z)d~z

=
∫

M(−~z)M(~x− ~z)d~z

=
∫

M(~z)M(~x + ~z)d~z (5)

= δ(2)(~x) (6)

which is the autocorrelation function of M(~x). If M(~x)
is a widely extended 2-dimensional array of independent
random numbers, the autocorrelation function is almost
a δ-function with a very sharp peak at ~x = 0: δ(2)(~x).

With this approximation we get from equations (4),
(5) and the associativity of the convolution:

(G ∗D)(~x) = (G ∗ (M ∗ S))(~x)
= ((G ∗M) ∗ S)(~x)

=
∫

δ(2)(−~z)S(~x− ~z)d~z

= S(~x) (7)

This means, that we can reconstruct the distribution
of the sources by calculating the convolution of G(~x) with
the detector data D(~x).
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FIG. 4: 1-dimensional case: connection between D(x), M(x)
and S(x)

If we use M(−~x) instead of G(~x), we arrive at:

S(~x) = (G ∗D)(~x)

=
∫

M(−~z)D(~x− ~z)d~z

=
∫

M(~z)D(~x + ~z)d~z (8)

From this formula we can easily calculate the postition
of the sources.

III. PROGRAM

The intention of this project was

• on the one hand to write a computer program,
which does the simulation of the measurement pro-
cess, i.e. the counting of the photons coming from
sources in specified directions with particular inten-
sity, hitting a detector element, and

• on the other hand, to develop an analysis al-
gorithm, which reconstructs the direction of the
sources from the given detection rates of each de-
tector pixel using the information about the layout
of the mask.

In the following I give a description of the program
”coded mask”, the main element of this project.

The program is written in C and basically consists of
4 parts:

• rndmask: tool, which creates a coded mask using
a random number generator

• sample: simulates the measurment process for one
or several γ-ray sources

• analyse: uses the data output from ”sample” to re-
construct the direction and intensity of the sources.

• plot: several tools to plot the mask, the detector
data or a skyplot with the calculated positions and
intensities of the sources

A. Mask creators

1. Random masks

The program ”rndmask” creates a mask with a defi-
nite number of pixels in x- and y-direction and a desired
opacity.
With these parameters the single Pixels and mask ele-
ments respectively are chosen transparent or opaque ac-
cording to a random number generator, using the follow-
ing format:

• ”0” represents a mask element which is transparent
for γ-rays

• ”1” represents an opaque mask element

Figure 5 gives an example for a 64× 64-mask with an
opacity of 2/3 in

FIG. 5: randomly generated mask with 64× 64 pixels and an
opacity of 2/3

Of course it might not be the best way to choose a
mask in this simple way. But the result turns out to be
quite good, even in comparison to masks actually used
on satellites. So I have used the 64 × 64 random mask
for testing.

2. MURAs

MURAs are an alterative to random masks with better
reconstruction properties. They are created with prime
numbers. You can find more about that in [HG], p. 28
f).
The mask of the MIRAX HXI telescope is a 151 × 151
MURA (see [M]). I have done some simulation with this
mask, which you can see in figure 6.
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FIG. 6: 151× 151 MURA of the MIRAX HXI imager

B. ”sample”

The program ”sample” simulates the measurement
process in space, where γ-rays from different with partic-
ular intensity are hitting the detector through the mask.
The results are the coordinate (i.e. the index) of the de-
tector element, the time of the detection event and the
energy of the single photon.

In principle ”sample” consists of the three following
files (and some additional header-files):

• ”sample.c”: main part of the program

• ”read mask from file.c”: reads the mask layout
from a file

• ”create rnd photon.c”: creates a random pho-
ton according to a given source position

• ”intersection.c”: calculates the intersection of a
photon with the plane of the mask and the detector
respectively

Important parameter files:

• ”../parameter.dat”: main parameters like mask-
file, detector-dimensions or output-file

• mask-file: layout of the mask (format see section
IIIA 1)

• ”sources.dat”: directions and intensities of the
different γ-ray sources

Additional settings like the number of background pho-
tons are defined as constants within ”sample.c”.

At the beginning the program reads the settings, in-
cluding the mask- and the source-file. The position of

each source is given as a direction in 3-dimensional space,
using the polar angle θ and the azimuth angle φ of spher-
ical coordinates. The intensity is specified as the number
of photons per unit time passing a circle with reference
area Aref = 1

4d2
maskπ, where dmask is the length of the

diagonal of the square mask.
The radius is chosen in such a way that the mask is

entirely covered by the reference circle (see figure 7).

reference area

mask

FIG. 7: reference area covering the mask

For the measurement process the simulation creates
photons at a random position within the reference area.
The reference circle can be imagined to lie perpendicular
to the connection line between the mask and the source,
as you can see in figure 8. 7.

FIG. 8: reference circle according to the mask in 3-
dimensional space

Of course the circle (or disk in 3-dimensional space)
can be moved along the connection line without changing
the intersection point of a photon with the plain of the
mask. For convenience the center of the disk is chosen
to be identical with the center of the square mask as the
the origin of the coorinate system. From the side view
this looks like in figure 9.

Figure 10 gives an example with 5000 photons ran-
domly distributed on the reference disk in 3-dimensional
space. With this coordinate system, in which the center
of the disk and of the mask are identical, the intersection
point of the line representing the flight of the randomly
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mask

reference disk

FIG. 9: sideview of the reference disk and the square mask
with centers chosen to be identical
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FIG. 10: randomly distributed photons of the reference circle

positioned photon with the the plain of the mask can be
calculated easily.

If the photon misses the mask, it is lost in any case
and will not be registered. Whereas, if it hits the mask,
one has to decide, whether it passes through a transpar-
ent pixel or whether it is absorbed by an opaque mask
element.

For θ = 0 all photons passing the mask will hit the de-
tector, but for θ 6= 0 some of them are usually absorbed
by the walls of the device. The intersection point of the
transmitted photon with the detector plain is calculated
with the same function as the intersection with the mask
plain. Only the height of the plain in z-direction is dif-
ferent (the detector level is below the mask level).

If a transmitted photon hits the detector and not the
walls, the coordinates of the affected detector element
(integer numbers!) are written into the output file to-
gether with the time of the event and the energy of the
photon, which is generally set to 1.0 for our purpose.

Apart from the photons coming from the γ-ray sources,
there is a particular amount of photons registered by the
detector, which is independent from outer parameters
like source positions or the mask layout. These photons
are randomly distributed over the entire detector area
and simulate the background events in space, which are
for example caused by imperfect screening.

Figure 11 displays the detector data for a source on
the optical axis (θ = 0) with some background radiation.

The brightness of each pixel represents the number of
photons that have been registered by this pixel.

FIG. 11: plot of detector data D(~x) for a source on the optical
axis

If you compare figure 11 with the mask in figure 6,
you will certainly recognize the pattern of the mask in
the detector data.

Figure 12 displays a plot for a slightly off-axis source
with θ = 0.005 and φ = π

2 .

FIG. 12: plot of detector data D(~x) for an off-axis source at
θ = 0.005 and φ = π

2



7

C. ”analyse”

The program ”analyse” processes the ouput data from
”sample” and reconstructs the directions of the different
sources with their intensities. It uses the same parameter
file ”../parameter.dat” as ”sample” to ensure equivalent
settings.

The main input data is on the one hand the mask file,
and on the other hand the output file of ”sample”, which
contains the coordinates of the detected photons. (The
energy and detection time are neglected for our purpose.)

After all data is loaded from the files, the program
calculates the convolution of the mask with the detector
data according to equation 8 in section II E, i.e. the
correlation function. You can clearly recognize the delta
peak in figure 13 for an example with a source on the
optical axis.

source on the optical axis

-80 -60 -40 -20  0  20  40  60  80
x -80

-60
-40

-20
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 20
 40
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 500000
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 2e+06

 2.5e+06

G(x,y) * D(x,y)

FIG. 13: delta peak of the correlation function for a source
on the optical axis

Additionally the correlation is normalized according
to the fact, that the power from the radiation on the
detector depends on the polar angle θ (cf. section IVA).
The bigger θ is, the lower is the power on the detector in
comparison to the actual power of the source.

This effect is avoided by dividing the correlation by
some reference term, which depends on deviation from
~x = 0 (equivalent to θ = 0) and takes into account the
size of the actually available mask area and the cosine of
the polar angle θ.

As there are only few mask pixels available, the de-
nominator for the normalization becomes very small for
~x-values close the edges, which might cause singularites.
So the correlation for these ~x-values is neglected (about
10 rows/colums from the edge).

The normalized convolution is written to the file ”sky-
plot.dat”, because it can be directly used to create a
skyplot with the position and intensity of the different
sources on the sky projection plane. A skyplot displays
the positions of the sources on a projection plain from
the point of view of the telescope (see figure 14).

h

source

skyplot

h

FIG. 14: principle of a skyplot

For additional analysis the program determines the po-
sition ~xmax of the maximum of the normalized convolu-
tion. From ~xmax, the width of one detector pixel, and
from the height h of the device, i.e. the distance between
mask and detector, the direction of the brightest source
can be calculated easily in spherical coordinates.

The intensity of the source can also be determined
from the height of the maximum peak in the convolution,
whereas there might be some deviation from the actual
value caused by background photons or the influence of
other sources.

In order to find some sources with less intensity, the
influence of the brightest source, which has already been
determined, on the detector data is calculated and sub-
tracted. Then the convolution is re-calculated again with
the modified detector data in order to get the second
brightest source, and so on.

For a single source the reconstruction of the source
position from the mask pattern and the detector data
might still be possible by simply looking at the detector
plot, if you consider figure 14. But for several sources
the shadow pattern is a superposition of shadows from
several sources. In this case might not be so obvious at
first sight, that it resembles the mask pattern.

As you will see in section IVB, the correlation is a
powerful tool even to resolve several cells. (As long as
they do not have too different intensities.)

The background radiation of photons, which are ran-
domly distributed over the entire detector area in our
model, is filtered out quite well by the correlation, as we
would estimate from equation 2 in section II E (simula-
tion data in section IVE).

Unfortunately calculation the correlation for a NxN-
detector array with loops takes almost N4 steps. So for
large values of N it would be better to use an alternative
method like fast fourier transformation according to the
convolution theorem.

D. Plotting

There are three tools for plotting:

• ”plot mask”: displays the mask from ”rndmask”
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• ”plot det data”: displays the detector data from
”sample”

• ”skyplot”: creates a skyplot from ”skyplot.dat”,
which is an output of ”analyse”

All of them create a ”.png” file.

For these programs are neither really important for
the actual simulation nor very complicated, I will not go
into the here.

IV. SIMULATION DATA

In this chapter you will find the results of some partic-
ular experiments with the simulation, in order to make
sure that it works properly.

A. Power as a function of θ

The radiation flux through the mask is determined by
the position of the source (compare figure 15). It has a

0I

θ

mask

optical axis

FIG. 15: radiation flux through the mask depends on the
polar angle θ

maximum, if the source is on the optical axis (i.e. θ = 0):

Imask = I0 · cos(θ) (9)

Since the detector is within a box of definite height,
the walls of the box induce a shadow on the detector
area (compare figure 16). If h is the height and b the
width of the box, there is absolutely no radiation coming
to the detector for θmax ≥ arctan( b

h ), even if the mask is
transparent everywhere. For 0 ≤ θ ≤ θmax the radiation
power on the detector can be calculated as

P (θ) = P0 · cos(θ) · (1− h

b
· tan(θ)) (10)

You can see the radiation power on the mask-area and
on the detector-area (with the assumption of a totally

θ

detector

h

b

I 0

FIG. 16: radiation power on the detector area depends on the
polar angle θ and the shape of the box

transparent mask) as a function of the polar angle θ (φ =
0) for a box with height h = 760 and width b = 130.6
in figure 17. Obviously the simulation data matches the
theoretical curves well.

 0
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theoretical value: cos(θ)
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FIG. 17: radiation power on mask and detector as a function
of the polar angle θ

This confirms, that the process of setting random pho-
tons on the reference disk and calculating their intersec-
tion with the mask and detector area in simulation code
(program part ”sample”) is implemented correctly.

B. Skyplots

A skyplot is a graphical presentation of the convolu-
tion, calculated by ”analyse”. Bright points in the plot
are caused by δ-peaks of the convolution and correspond
to the source position on the sky projection plane.

For an example you can see a section of a skyplot with
four sources in figure 18. The fact, that you only see three
different points is caused by angular resolution effects



9

of the coded mask telescope. The upper point actually
consists of two different sources, which lie very close to
each other and have less intensity than the remaining
two.

FIG. 18: section from a skyplot with four sources; the up-
per two of them are very close to each other and cannot be
resolved

C. Angular resolution

The angular resolution of the coded mask telescope
depends on the number and the width of its detector
pixels. For they a have finite size, we get the detector
data from the measurement process only for discrete ~x-
values. So the program cannot resolve sources, which are
too close together.

From the dimensions of the telescope, we can deter-
mine the minimum angular resolution for the polar angle:

δθ = arctan
(

dpixel

h

)
(11)

where dpixel = 865µm is the width of one detector pixel
and h = 76cm is the distance between the mask and the
detector (cf. [M]).

With this data we get a theoretical angular resolu-
tion of δθ ≈ 0.001138=̂3.9′, which is exactly the same
as from the simulation: for a source at θin = 0.0005
as an input for ”sample”, ”analyse” returns a value of
θout = 0.000000, whereas for θin = 0.0006 we get the
next bigger value of θout = 0.001138.

Of course, the angular resolution of the azimuth angle
φ depends on the value of θ. The bigger θ the better is
the resolution for φ.

If two sources are so close to each other, that they
cannot be resolved, they are one wide spot on the skyplot,
as you can see in figure 18 for the upper two sources.

D. Intensity

Additional to the angular resolution, the fact, that the
detector consists of discrete pixels, has also an effect on
the reconstruction of the source intensity. The detector
cannot determine the exact position, where the photon
hits the plain, but integrates over its single elements with
a finite size.

If we assume e.g. φ = 0 and choose θ in such a way,
that one mask pixel is imaged on two detector pixels as
in figure 19, the power coming through the transparent
mask pixel is distributed among the two detector pixels.

FIG. 19: power of one mask pixel distributed among two
detector pixels

Calculating the correlation, only the detector rate of
one of both pixels is taken into account. So the recon-
structed intensity value for the source is too low.

For φ 6= 0 the radiation power can be even distributed
among four detector pixels in general, so the deviation
from the true value might be bigger (cf. figure 20).

FIG. 20: power of one mask pixel distributed among four
detector pixels

In figure 21 you can see the ratio of the calculated and
the proper source intensity as a function of θ ∈ [0; 0.0016],
i.e. for the shift over about one detector pixel in diagonal
and 1. pixels in horizontal direction.

The minima with the biggest deviation lie between the
maxima, where the caculated intensity is approximately
the proper value, because of integer pixel shift.

The correct implementation of the normalization in
section III C is proved by the fact, that for integer shift
(i.e. each mask pixel is exactly imaged on one detector
pixel) the calculated intensity is approximately equal to
the proper value, over a wide range of θ ∈ [0; 0.158], as
you can see in figure 22. (θ = 0.158 is almost at the edge
of the field of view.)

The deviation at large θ for the diagonal shift can be
explained by the fact, that for this data the source is in
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FIG. 21: calculated intensity deviates from the proper value
due to discrete detector pixels
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FIG. 22: ratio of calculated and actual source intesity is one
over a wide range of θ. (In this plot only values of θ are taken
into account, which correspond to integer shifts of the source
on the sky projection plane. This proves that the intensity
calculation would be correct, if we did not have a finite num-
ber of detector pixels.)

such a position, that only one corner of the detector can
be reached by the radiation.

E. Weak sources

Additionally to the radiation from the sources in the
field of view the detector also counts some background
photons, because the environment cannot be perfectly
screened off. If we observe a very weak source, the effect
of the background radiation on the detector data might
be so large, that the source cannot be located, because
the peak in the convolution is too small in comparison to
statistical fluctuations.

Of course we would like to know, whether our recon-
struction code is good enough to determine real sources
within a realistic environment.

From [M], p. 16 we can estimate a flux of background

photons of about Fbg ≈ 0.01s−1cm−2.

As an example of a real source we take the galatic
center with a flux of Fgc ≈ 5.6mCrab (see [NI],
data of the IBIS instrument on the INTEGRAL satel-
lite). (1mCrab = 1.36 · 10−11erg s−1cm−2 = 1.36 ·
10−18J s−1cm−2)

The area of our detector is Adet = (151·865·10−6m)2 ≈
170.6cm2.

When the observation lasts for ∆t = 4h = 14400s,
the total number of background photons is about Nbg ≈
25 · 103, i.e. on the average 1 photon on each of the 1512

detector pixels.

If we assume a photon energy of about 30keV for the
photons coming from the source, we get a number of
Ngc = 5.6·1.36·10−18J

30keV · 14400 · 22 · 103 ≈ 0.52 · 106.

As the simulation ”sample” distributes the source pho-
tons on the reference disk, we have to use a total number
of Ns = Ngc · π

2 ≈ 0.79 · 106 source photons and Nbg

background photons.

Using these parameters for the simulation, ”analyse”
calculated the position and the intesity of the source
correctly. So the algorithm is good enough for real-
environment simulations.

The correct data was even determined correctly for
Nsrc = 5000 (at θ = 0.018 and φ = π

2 ), although there
are too few photons to recognize the mask pattern in
the plot of the detector data in figure 23. The source is
hardly visible on the skyplot in figure 24.

FIG. 23: detector data for a weak source at θ = 0.018, φ = π
2

with realistic background
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FIG. 24: skyplot for a weak source at θ = 0.018, φ = π
2

with
realistic background

V. CONCLUSION

The simulation and the analysis code were written and
tested with parameters similar to the MIRAX telescope,

although it is not a realistic model. It has some simpli-
fications like a detector and mask of the same size with
the same number of pixels and so on.

Apart from that it uses a realistic mask and has turned
out to work quite well in a realistic environment with
background radiation. It was especially surprising, that
the mathematical methods of reconstructing the source
position are operating even at very low source intensity.

Unfortunately there are some systematical errors on
determining the original source intensity, because of the
discrete detector pixels. I tried to avoid this problem by
using virtual pixels, in order to get a smoother lattice.
But the results from these simulations turn out to be
exactly the same as for the original implementation.

With virtual pixels the fact that the processing time is
proportional to N4 turned out to be a big disadvantage of
using loops for calculating the correlation function. This
problem could be solved by using other methods like fast
fourier transformation.

All in all the program can be seen a basis for developing
advanced simulations on coded masks.
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[W] http://de.wikipedia.org/wiki/Röntgenastronomie
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