Kinematik Weißer Zwerge und heißer, unterleuchtkräftiger Sterne

Diplomarbeit vorgelegt von

Roland Bernhard Josef Richter Dr. Remeis-Sternwarte Bamberg Astronomisches Institut der Universität Erlangen-Nürnberg Sternwartstraße 7, 96049 Bamberg

Betreuer: Prof. Dr. U. Heber

27. Oktober 2006

4 - 1-14 I

Inhalts	sverzeichnis
0	Einleitung
1	Die Messobjekte dieser Arbeit
1.1	Die Weißen Zwerge
1.2	Die unterleuchtkräftigen Sterne
1.3	Die Milchstraße, unsere Galaxie
1.4	Die Rotation der Milchstraße
2	Populationen der Sterne
21	Das galaktische Koordinatensystem
2.1	Daten zu den Populationen
3	Kinematische Kriterien zur Klassifikation
31	Kalibrierung nach Pauli
3.1	Galaktische Orbits
3.2	Gaschwindigkaitsdiagramma von
5.5	gelektischen Orbite
221	V II Diagramm
2.2.1	V-O Diagramm
3.3.2 2.4	
5.4 2.5	$e-J_z$ Diagramm
3.5	Cesamikiassifikation
4	Physikalische Eigenschaften und ihre
4.1	Bestimmung
4.1	Radialgeschwindigkeit
4.2	Temperatur und Schwerebeschleunigung
	an der Oberfläche
4.3	Masse und chemischer Aufbau
4.4	Entfernung
4.4.1	Extinktion durch den interstellaren Staub
	in der Milchstraßenebene
4.4.2	Glücklich der Besitzer einer
	trigonometrischen Parallaxe
4.5	Eigenbewegungen
5	Kinematik der Weiße Zwerge
5.1	Die Datenquellen für die Weißen Zwerge
5.2	Ergebnisse der DA Weißen Zwerge
5.2.1	Die Positionen der DA Programmsterne in
	der Milchstraße
5.2.2	Das VU-Diagramm der DA Weißen
	Zwerge
5.2.3	Das e-J _z Diagramm der DA Weißen
	Zwerge
5.2.4	Klassifikation
5.2.5	Alternative Messungen
5.2.6	Zusammenfassung der kinematischen
	Messergebnisse
5.2.7	Das Alter der DA Weißen Zwerge
5.2.8	Massenverteilung der DA Sterne
5.3	Weiße Zwerge vom Typ DB
5.3.1	Messung der Radialgeschwindigkeit der
	DB Sterne
5.3.2	Das DB+dM System HE0429-1651
5.3.3	Messung des ³ He Gehaltes im DB Stern
5.3.4	Messung der Radialgeschwindigkeit von
	DB Sternen mit synthetischen Spektren
5.4	Ergebnisse der Weißen Zwerge vom Typ
	DB und DBA
5.5	Das VU-Diagramm der DB und DBA
	Weißen Zwerge
5.5.1	Das e-J _z Diagramm der DB und DBA
	Weißen Zwerge

- 5.5.2 Klassifikation
- 5.5.3 Das Alter der DB Weißen Zwerge
- DA Weiße Zwerge, die nicht im SPY 5.6 Katalog waren.
- 5.7 Verhältnis zwischen DB und DA Weißen Zwergen
- 5.8 Ist WD0255-705 aus der dünnen Scheibe ausgetreten?
- 5.9 Vergleich meiner Arbeit mit Paulis Weißen Zwergen (nur DA)
- 5.10 Statistik aller DA Weißen Zwerge
- 5.11 Vergleich mit theoretischen Halo-Dichten
- Heiße unterleuchtkräftige Sterne 6 (subdwarfs (sd))
- 6.1 Auswahl der unterleuchtkräftigen Sterne
- 6.2 Unterschiede zu Weißen Zwergen in der Kinematik
- 6.3 Ergebnisse der kinematischen Untersuchung der unterleuchtkräftigen Sterne
- 6.3.1 Die Position der sdB Sterne in der Milchstraße
- 6.3.2 Das VU-Diagramm der unterleuchtkräftigen Sterne
- 6.3.3 Das e-J_z Diagramm der unterleuchtkräftigen Sterne
- 6.3.4 Klassifikation der unterleuchtkräftigen Sterne
- 6.3.4.1 Klassifikation der sdB
- 6.3.4.2 Klassifikation der sdO
- 6.3.4.3 Klassifikation der He-sdB und He-sdO
- 6.3.5 Statistik der unterleuchtkräftigen Sterne
- 6.3.5.1 Statistik der sdB
- 6.3.6 Statistik der sdO und He-sdO Zusammenfassung und Ausblick 7
- 7.1 Grenzen der Anwendbarkeit der kinematischen Tests
- SPY Bearbeitungsstand 7.2
- Bedeutung der Katalognamen α)
- Typische SPY Spektren A)
- unterleuchtkräftige Sterne A1)
- A2) Weiße Zwerge
- Daten der DA Weißen Zwerge B)
- **B**1) Alle Eingabedaten
- Weitere Daten aus der Spektroskopie B2)
- B3) Die komplette Klassifikation
- Daten der DB und DBA Weißen Zwerge C)
- C1) Alle Eingabedaten
- Weitere Daten aus der Spektroskopie C2)
- C3) Die komplette Klassifikation
- Daten der unterleuchtkräftigen Sterne D)
- D1) Alle Eingabedaten
- D2) Weitere Daten aus der Spektroskopie
- Die komplette Klassifikation der D3) unterleuchtkräftigen Sterne
- E) Kataloge der Eigenbewegungen
- Literaturverzeichnis F)
- G) Erklärung

0 Einleitung

Die Kinematik Weißer Zwerge zu untersuchen besteht doch einfach nur darin zuzusehen wie sich diese Objekte am Himmel bewegen. Was könnte daran interessant sein?

Nun, das Ziel der kinematischen Untersuchung liegt darin, mehr über die Beschaffenheit unserer Galaxie zu erfahren.

Begonnen hat alles schon vor langer Zeit mit Galilei, der mit seinen ersten Teleskopen um 1610 herum erkannte, dass das milchige Band am Himmel ebenfalls aus einzelnen Lichtpunkten, also aus Sternen, zusammengesetzt war. Die Galaxie war erkannt. Um 1750 erkannte Kant die Milchstraße als Sternscheibe.

Als Bessel 1838 die erste Parallaxenmessung an 61Cygni gelang, war der Weg frei die Sterne mit Sonnen zu identifizieren. Als dann noch erkannte wurde, dass das Sonnensystem selbst in Mitten der Milchstraße liegt, wurde vermutet, dass das Universum nur aus unserer Galaxie und einigen Nebeln bestehen würde. Es wurde davon ausgegangen, dass das Universum/die Galaxie in regelmäßigen Abständen mit Sternen besetzt sei.

Als in den Zwanziger Jahren des letzten Jahrhunderts in den Nebeln schließlich weitere Galaxien erkannt wurden, die in sehr unterschiedlichsten Formen, wie elliptische, spiral oder irreguläre (also ohne erkennbare Symmetrie) Galaxien vorkommen können, stellte sich die Frage, welcher dieser Formen unsere Milchstraße am meistens ähnelt.

Dabei gibt es eine kleine Schwierigkeit. Wir wollen ja unsere Galaxie in das Klassifikationsschema der anderen Galaxien einordnen. Aber von den anderen Galaxien sehen wir nur ihre großen und groben Strukturen. Da wir uns aber inmitten der Milchstraße befinden, können wir genau diese großen Strukturen nicht sehen. Wir müssen also über kleinere Strukturen und Objekte, wie Sternverteilungen, den Vergleich wagen. Aber wir können auch leuchtschwächere Objekte, wie Braune und Weiße Zwerge in unserer direkten Umgebung beobachten, diese sehen wir jedoch wieder in den fernen Galaxien nicht.

Die genaue Beschaffenheit der Milchstraße, wie groß und wie schwer sie ist, wo finde ich mit welcher Wahrscheinlichkeit welche Sterne, ist noch immer nicht vollständig geklärt. In weit entfernten Gebieten können nur sehr große, weil helle, Sterne, so genannte Riesen beobachtet werden. Ebenso verhält es sich mit der Galaxienebene. Hier liegt so viel Staub, dass viel Licht absorbiert wird und wieder nur die hellsten Sterne beobachtet werden können. Weiße Zwerge und andere leuchtschwache Objekte, haben da ab wenigen hundert Parsec Entfernung gar keine Chance mehr beobachtet zu werden.

Daher haben wir die Weißen Zwerge in unserer näheren Umgebung beobachtet, um aus den Eigenschaften dieser Gruppe etwas mehr über unsere Galaxie zu erfahren.

In Kapitel 1 beschreibe ich meine Untersuchungsobjekte und wie wir unsere Galaxie momentan sehen, wie sich die Populationen der Sterne unterscheiden und wie wir das ausnutzen können folgt in Kapitel 2 und 3. Danach gibt es in Kapitel 4 die ausführliche Beschreibung der Maßnahmen, die zur kinematischen Klassifikation eines Weißen Zwerges notwendig sind. Und endlich kommen in Kapitel 5 die Ergebnisse der Arbeit an den Weißen Zwergen und in Kapitel 6 die Ergebnisse der unterleuchtkräftigen Sterne sowie jeweils eine statistische Auswertung. Nach der Zusammenfassung in Kapitel 7 werden im Anhang sämtliche Daten in tabellarischer Form zusammengestellt.

Zunächst also die Objekte meiner Arbeit.

1 Die Messobjekte dieser Arbeit

In meiner Arbeit habe ich nicht nur die Kinematik Weißer Zwerge und unterleuchtkräftiger Sterne ermittelt, sondern auch ihre Bedeutung für die Galaxie, daher möchte ich im Folgenden sowohl die Eigenschaften der Messobjekte, als auch die der Milchstraße beschreiben.

1.1 Die Weißen Zwerge

Weiße Zwerge sind die auskühlenden Reste von Sternen geringer bis mittlerer Masse. Messungen in offenen Kugelsternhaufen haben ergeben, dass Sterne, die bis zu 5,6 vielleicht sogar bis zu 8 Sonnenmassen bei ihrer Entstehung schwer sind, nach dem Ende ihrer Fusionstätigkeit und nach starkem Massenverlust einen Weißen Zwerg übriglassen (Weidemann⁽²²⁾). Dieser Weiße Zwerg besitzt dann je nach Vorläuferstern eine Masse von bis zu 1,4 Sonnenmassen, dem Chandrasekar Limit. Der Weiße Zwerg stellt im Wesentlichen den ausgebrannten Kern des Vorläufersterns dar. Dieser Kern besteht bis zu einer Masse von ca. 0,4 bis 0,5 Sonnenmassen nur aus Helium mit einer dünnen Schicht aus Wasserstoff an der Oberfläche. Bei etwa 0,5 Sonnenmassen beginnt das Heliumbrennen, daher bestehen schwerere Weiße Zwerge dann aus Kohlenstoff und Sauerstoff. Noch schwerere Weiße Zwerge können dann auch noch höhere Fusionsprodukte enthalten.

Weiße Zwerge zählen zu den kompaktesten Objekten im Universum. Bis zu eineinhalb Sonnenmassen werden in die Größe der Erde gepresst. Ihre Schwerebeschleunigung an der Oberfläche ist entsprechend hoch und liegt zwischen log g = 6,5 und 9, also bis zum millionenfachen der Erdbeschleunigung! Die Temperatur eines Weißen Zwerges hängt nur von seinem Alter und seiner Masse ab. Die heißesten Weißen Zwerge besitzen Temperaturen von über 100.000K, die meisten hatten aber bereits mehrere Millionen Jahre Zeit um abzukühlen und somit gibt es sogar Weiße Zwerge mit weniger als 10.000K. Der heißeste Stern in dieser Arbeit besaß eine Oberflächentemperatur von 94400K, der kälteste von 7200K.

Gruppe	min T _{eff}	max T _{eff}	Balmer-	He-I -	He-II-Linien
1. DO	45.000 K	120.000 K	-	(schwach)	stark
DAO			mittel	-	mittel
2. DA	<5.600 K	>80.000 K	stark	-	-
DBA	25000K		mittel	mittel	
3. DB	5.600 K	30.000 K	-	stark	
4. DC	kalt		im DC Sp	ektrum sind l	keine Linien sichtbar
5. DQ	>10.000 K		C_2 (und an	ndere Molekü	ile)
6. DZ		>10.000 K	keine Balr	ner-, aber He	I- und Metalllinien

In Tabelle 1.1 werden die 6 Gruppen der Weiße Zwerge und mehrere Übergangsgruppen beschrieben.

 Tabelle 1.1: Die Gruppen der Weißen Zwerge. Quelle: Kawaler, Novikov und Srinivasan⁽²⁹⁾ (s. Anhang A2 für Beispielspektren)

Die meisten Sterne im SPY-Projekt sind DA Sterne. Diese Gruppe der Weißen Zwerge zeichnet sich dadurch aus, dass sie nur Balmerlinien zeigt und keine Heliumlinien. Dadurch ergibt sich der Vorteil, dass zum Berechnen der synthetischen Spektren die Heliumhäufigkeit auf Null gesetzt werden kann. Es brauchen daher nur zwei Parameter (T_{eff} und logg) ermittelt zu werden. Entsprechend gut bzw. glaubwürdig sind die Ergebnisse und die Fehler sind überschaubar. Andererseits ist die Zahl der Balmerlinien, je nach Qualität des Spektrums auf höchstens sieben begrenzt.

Die zweithäufigste Gruppe war die der DB und DBA Weißen Zwerge. DB Sterne sind im Gegensatz zu DA Sternen keine dankbaren Messobjekte. Statt den leicht zu vermessenden Balmerlinien zeigen sie relativ kleine He-I Linien, die zu allem Überfluss auch noch asymmetrisch sind. Die Asymmetrie rührt vom höheren Druck, in der von Helium dominierten Atmosphäre, her. Der Grund für den hohen Heliumgehalt im DB Weißen Zwerg könnte in einer Konvektion der obersten Schichten des Sterns liegen. Durch die Konvektion wird der Wasserstoff des Weißen Zwerges in die tieferen Schichten hineingemischt, so dass beinahe nur noch He an der Oberfläche zu finden ist. Sind die Wasserstofflinien nicht mehr nachweisbar, so spricht man von einem DB Stern, sind sie andeutungsweise zu erkennen, so spricht man von einem DBA Weißen Zwerg.

Es gab auch einige DO im SPY Projekt. Diese Sterne zeichnen sich durch HeII-Linien aus.

Wenige Sterne wurden als DC oder DQ klassifiziert. DC sind Sterne die keinerlei Spektren zeigen, da sie zu wenig Wasserstoff für Balmerlinien besitzen und zu kalt für andere Linien sind. DQ sind Sterne, die bereits so kühl sind, dass in ihren Atmosphären, Moleküle existieren können. Neben den Molekülbanden sind keine anderen Linien mehr zu sehen.

1.2 Die unterleuchtkräftigen Sterne

Heiße unterleuchtkräftige Sterne, ähneln in ihren Spektralen Eigenschaften den Weißen Zwergen so sehr, dass nur hochaufgelöste Spektren einen Unterscheid zeigen können. Das erklärt warum im SPY Projekt so viele unterleuchtkräftige Sterne mitbeobachtet wurden. Unterleuchtkräftige Sterne sind Sterne denen scheinbar der Großteil ihrer Wasserstoffhülle abhanden gekommen ist und die einen fast ungehinderten Blick auf den heißen, Kern erlauben. Ihre Energie erzeugen sie durch Heliumbrennen. Sie sind nur etwa eine halbe Sonnenmasse schwer.

Über die Entstehung von unterleuchtkräftigen Sternen ist noch nichts Genaues bekannt. Es gibt vier mögliche Szenarien: Erstens, einem Roten Riesen wird die Hülle abgesaugt und der Kern bleibt nackt zurück, zweitens, ein Roter Riese schließt seinen Begleiter mit in seine Hülle ein, durch die entstehende Reibung wird die Hülle abgestoßen; Drittens zwei leichte Weiße Zwerge verschmelzen.

Man geht also in den ersten drei Fällen davon aus, dass unterleuchtkräftige Sterne aus Doppelsystemen hervorgehen. Da sie also mindestens einen weißen Zwerg als Begleiter besitzen, gibt uns das die Möglichkeit weiße Zwerge in weit größerer Entfernung nachzuweisen, als das die direkte Messung möglich machen würde.

Es gibt noch die vierte Möglichkeit, dass ein Roter Riese aufgrund seines Sternwindes so viel Masse verliert, dass nur noch der Kern zurückbleibt. Dabei ist allerdings noch nicht genau geklärt, wieso nicht alle Sterne diesen Weg beschreiten und von welchen Faktoren die Entwicklung abhängt.

Im Spektrum der sdBs sind von H-Alpha bis H-10 alle Linien zu sehen. Auch die Helium I Linien sind in der Regel gut zu sehen. Die Gruppen der unterleuchtkräftigen Sterne werden in Tabelle 1.2 beschrieben.

Gruppe	T _{eff} >	< T _{eff}	Balmer-	He-I -	He-II-Linien
sdB	20.000 K	30.000 K	stark	Schwach	-
sdOB	30.000 K	40.000 K	stark	Schwach	schwach
sdO	40.000 K	100.000 K	stark	-	stark
He-sdB	30.000 K	40.000 K	schwach	Stark	schwach
He-sdO	40.000 K	100.000 K	-	Schwach	stark

Tabelle 1.2: Die Gruppen der sdBs. Siehe auch die Spektren in Anhang A1).

Die Temperaturen der unterleuchtkräftigen Sterne in meiner Arbeit liegen im Bereich von 33000K bis 79000K. Die Schwerebeschleunigung an der Sternoberfläche liegt zwischen log g = 4,2 bis 6,0. Die Masse der sdBs scheint sich nur in einem relativ kleinen Bereich um 0,465 Sonnenmassen herum zu bewegen.

1.3 Die Milchstraße, unsere Galaxie

Um später die Bedeutung der Messungen für die Galaxie beschreiben zu können, möchte ich hier kurz einige Eigenschaften der Milchstraße vorstellen.

Abbildung 1.1: Künstlerische Darstellung der Milchstraße (mit langem Balken). Quelle: NASA - Spitzer Space Telescope⁽⁶²⁾

Es ist uns leider nicht möglich wie in Abbildung 1.1 von außen die Galaxie zu betrachten, in der wir uns selbst befinden. Doch zum Glück gibt es jede Menge andere Galaxien, die wir unter allen möglichen Blickwinkeln betrachten können. Ihre einzelnen Sterne können wir jedoch nicht mehr unterscheiden und schon gar nicht ihre Bewegung beobachten. Aber wir sind in der Lage über die Spektren vieler Sterne zu integrieren und so zumindest Rotationskurven von Galaxien zu vermessen. Vergleichen wir nun die Bewegung der Sterne in unserer Milchstraße mit den Bewegungen anderer Galaxien, so können wir darauf schließen, zu welcher Sorte Galaxie unsere Milchstraße gehört. Es stellte sich heraus, dass sie zu den Spiralgalaxien gehört und seit wenigen Jahren ist auch bekannt, dass sie einen Balken besitzt. Ob dieser, wie lange vermutet, kurz (wie in Abbildung 1.3) oder, wie neueste Daten des SPITZER Weltraumteleskops vermuten lassen, lang (wie in Abbildung 1.1) ist, steht noch zur Debatte.

Ganz allgemein betrachtet besitzt eine **Spiralgalaxie** zwei markante Zonen, den Bulge im Zentrum und die Scheibe mit den Spiralarmen. Das Verhältnis von Bulge zu Scheibe ist für Spiralgalaxien ein wichtiges Kriterium für ihre Hubble Klassifikation. Der Bulge kann den Rest der Galaxie überstrahlen, wie in Abbildung 1.2 oder aber relativ schwach sein wie in Abbildung 1.3.

Im zentralen Bulge haben sich sehr viele Sterne kugelförmig um ein Supermassives Schwarzes Loch (SMBH) angesammelt. Die Rotationsgeschwindigkeit der Sterne nimmt mit dem Abstand zu; ganz so als sei der Bulge ein starrer Körper, bei dem sich ja die äußeren Bereiche schneller bewegen, als die Inneren.

Abbildung 1.2: Beispiel einer Spiralgalaxie anhand der Sombrerogalaxie (M109). Gut lässt sich das helle Zentrum und die dunkle Staubscheibe erkennen. Quelle: NASA (www.nasa.gov).

Abbildung 1.3: Beispiel für eine Balkengalaxie anhand der vom Anglo-Australian Observatory aufgenommen NGC 1300. Deutlich zu erkennen wie an das Zentrum zwei beinahe symmetrische, gerade Balken anschließen, die dann nach einem ~90° Knick in gekrümmte Spiralarme übergehen.

Bei Balkengalaxien schließen sich an den Bulge Balken an, die ebenfalls starr rotieren. Der zweite, weit größere Bereich einer Spiralgalaxie ist die Scheibe. Die Sterne in ihr rotieren mit nahezu konstanter Geschwindigkeit.

In der Scheibe befinden sich auch die Sternentstehungsgebiete in den Spiralarmen. Die ganze Galaxie ist eingebettet in einen kugelförmigen Halo, der eine noch weit größere Ausdehnung als die Scheibe besitz. Im Halo befinden sich nur wenige Sterne, diese nehmen auch nicht an der Rotation der Scheibe teil, sondern weisen eine beliebige Geschwindigkeitsverteilung auf. Man findet sogar Halosterne die sich entgegen der Rotationsrichtung der Scheibe um die Galaxie bewegen.

Nach unserem momentanen Kenntnisstand befindet sich **unsere Position** etwa 8,5kpc (1pc \approx 3,26 Lichtjahre) sind vom galaktischen Zentrum entfernt, was dem Standard der Internationalen Astronomie Union (IAU) entspricht. Vielleicht sind es aber sogar nur 7,6kpc wie von Aschenbach⁽⁵⁶⁾ postuliert. Die Sonne bewegt sich auf einer fast perfekten Kreisbahn mit 240km/s um dieses Zentrum. Dies entspricht etwa einer Umlaufzeit von ca. 200 Millionen Jahren. Die Sonne liegt in einer absorbierenden Staubscheibe mit einer Dicke von 200pc in einer staubfreien Blase mit einem Radius von 60pc bis 100pc (Frisch und Slavin⁽⁷⁵⁾).

1.4 Die Rotation der Milchstraße

Betrachtet man die Geschwindigkeiten mit denen sich Sterne und (weiter außen) Kugelsternhaufen um eine Galaxie bewegen, so erhält man eine Geschwindigkeitskurve wie in Abbildung 1.4.

Abbildung 1.4: Die Geschwindigkeitsverteilung in der Milchstraße. Quelle: Clemens⁽⁵⁷⁾

Aus der Umlaufgeschwindigkeit kann ich mit Hilfe der Newton'schen Gravitationstheorie die eingeschlossene Masse berechnen, indem ich die Zentripetalkraft gleich der Gravitationskraft setzte (Formel 1.1).

$$m\frac{v^2}{r} = \frac{GmM_r}{r^2}$$

Formel 1.1: m ist die Masse des Sterns; v seine Geschwindigkeit; r der Abstand zum Schwerpunkt der Massenverteilung; G die Gravitationskonstante; M_r ist die Eingeschlossene Masse.

Berechne ich diese für den gesamten Kurvenverlauf, so erhalte ich die Verteilung der schweren Masse der Galaxie. Statt mit Newton kann natürlich auch relativistisch gerechnet werden. Balasin und Grumiller⁽⁶³⁾ haben aber herausgefunden, dass sich dadurch die eingeschlossene Masse höchstens auf 70% ihrer Newton'schen Masse reduzieren lässt.

Betrachte ich andererseits den Helligkeitsverlauf der Scheibe einer Spiralgalaxie, so stelle ich fest, dass die Helligkeit von innen nach außen exponentiell abfällt. Aus der Helligkeit kann ebenfalls die Masse abgeleitet werden. Dazu wird das Masse-Leuchtkraft Verhältnis typischer Sterne benötigt. Während bei der Sonne auf eine Sonnenmasse eine Sonnenleuchtkraft entfällt, kommen schon in der Sonnenumgebung im Durchschnitt zwei Sonnenmassen auf eine Sonnenleuchtkraft. Für eine Scheibengalaxie werden bis zu 4 Sonnenmassen pro Sonnenleuchtkraft, unter der Annahme einer Standard Sternmassenverteilung, erwartet.

Aus den gemessenen Geschwindigkeiten ergeben sich jedoch viel größere Massen als aus den Helligkeiten. Da es eigentlich keinen Grund gibt an der Formel, den gemessenen Abständen und der Gravitationskonstanten zu zweifeln bleibt nur einen Fehler in der eingeschlossenen Masse zu vermuten.

Je nach Galaxientyp können demnach bis zu 100 Sonnenmassen auf eine Sonnenleuchtkraft kommen. Es liegt also nahe weitere unsichtbare Masse in Galaxien zu vermuten. Diese so genannte Dunkle Materie könnte noch in Form von Gasen, Staub, Planeten, Braunen Zwergen, ausgekühlten Weißen Zwergen, Neutronensternen und Schwarzen Löchern vorliegen. Gase und Staub sind aber keineswegs unsichtbar, sondern machen sich entweder über Strahlung (z.B. die 21cm Strahlung von neutralem Wasserstoff) oder durch Extinktion an Hintergrundsternen bemerkbar. Planeten leisten weder in unserem Sonnensystem noch in den bisher gefundenen Planetensystemen einen nennenswerten Beitrag zur Systemmasse und können daher auch ausgeschlossen werden. Braune Zwerge sind bisher auch nicht zahlreich genug um einen bedeutenden Beitrag zu leisten und können auch ausgeschlossen werden. Auch die drei Varianten kompakter Objekte konnten bisher noch nicht in genügender Zahl nachgewiesen werden.

Ein Versuch, die Anzahl der leuchtschwachen kompakten Objekte zu messen, unternahm das MACHO Projekt, das MAssive Compact Halo Objects, durch so genannte "microlensing" Effekte finden sollte. Die Messmethode nutzt das Prinzip des Gravitationslinseneffekts. Dabei schiebt sich ein Objekt in unserem Milchstraßenhalo vor einen Stern in einer der beiden Magellanschen Wolken. Durch den Gravitationslinseneffekt wird dabei die Helligkeit des Hintergrundsterns um mehr als 2,5 mag verstärkt. Im Gegensatz zu Variablen Sternen, die in regelmäßigen Perioden heller und dunkler werden, hat ein Gravitationslinseneffekt nur eine einmalige, symmetrische Lichtverstärkung zur Folge. Des Weiteren sind nur einige Sternsorten variabel. während der Gravitationslinseneffekt unvoreingenommen jeden Hintergrundstern verstärkt. Ein weiteres Merkmal des Effektes ist außerdem, dass er alle Wellenlängenbereiche gleichermaßen verstärkt, was sonst eigentlich durch kein anderes Ereignis hervorgerufen werden sollte.

Da die Entfernung zu den Magellanschen Wolken einigermaßen bekannt ist, kann über die Dauer des Ereignisses auf die Masse des Linsenobjektes geschlossen werden (Formel 1.2).

$$t_{\rm var} = \frac{\sqrt{5.9 \cdot \frac{M}{M_s} d_g}}{v_T}$$

Formel 1.2: Aus der Dauer des Ereignisses (t_{var}) und der abgeschätzten Entfernung des Linsenobjektes (d_G) wird mit der errechneten Transversalgeschwindigkeit der Linse (v_T) die Masse des Objekts (M) abgeschätzt. (Heber, Vorlesung SS2003)

MACHO fand viel zu wenige Ereignisse um die Dunkle Materie rein durch kompakte Objekte erklären zu können. Und nur 7% der MACHO Ereignisse lagen in einem Massenbereich, der mit Weißen Zwergen in Verbindung gebracht werden kann (vgl. Novati, Luca und Jetzer⁽³⁷⁾, Siegfried⁽⁴¹⁾ und Tisserand et al.⁽⁴³⁾). In Kapitel 5.10 versuche ich durch die Ergebnisse meiner Arbeit auf eine Dichte von Weißen Zwergen im Halo zu schließen.

2 Populationen der Sterne

Da die einzelnen Bereiche der Milchstraße nicht sauber voneinander getrennt sind, wie Abbildung 2.1 impliziert, vermischen sich die Sterne der verschiedenen Populationen. Daher erwarten wir auch in der Sonnenumgebung Sterne der dünnen und dicken Scheibe, sowie einige Halosterne zu finden. Um die Sterne der verschiedenen Populationen unterscheiden zu können müssen wir deren Eigenschaften kennen.

Abbildung 2.1 zeigt systematisch die verschiedenen Sternpopulationen. Wobei der Bulge in meiner Arbeit keine Rolle spielte und die "Extreme Disk" eher nicht als eigene Sternpopulation anzusehen ist, sondern als Staubscheibe. Quelle: Buser⁽⁶⁴⁾

Scheibensterne bewegen sich auf leicht elliptischen Bahnen in einer geordneten Scheibe mit einer gemeinsamen Rotationsrichtung um das galaktische Zentrum. In der Scheibe findet auch heute noch Sternentstehung statt, daher finden sich auch viele massive Sterne mit kurzer Lebensdauer, deren Entwicklung im Kernkollaps endet und eine Supernova auslöst, die das interstellare Medium mit Metallen anreichert.

Die **dünne Scheibe** besteht aus den jüngsten Sternen mit der höchsten Metallizität. Die Bahnen der Sterne weisen die geringste Exzentrizität auf und die Geschwindigkeitsdispersion ist gegenüber der Rotationsgeschwindigkeit der Scheibe gering.

Dagegen besitzt die **dicke Scheibe** ältere Sterne als die dünne Scheibe. Da hier die Sternentstehung schon vor geraumer Zeit abgeschlossen war ist auch die Metallizität der Sterne geringer. Die Bahnen der Sterne weisen gegenüber den Bahnen der Sterne der dünnen Scheibe eine größere Exzentrizität auf und die Geschwindigkeitsdispersion ist ebenfalls größer. Im Allgemeinen hinkt die dicke Scheibe der dünnen Scheibe um etwa 50km/s bei der Rotation hinterher.

Der Halo enthält die ältesten Sterne in der Galaxie. Entsprechend ist die Metallizität der Sterne ebenfalls am geringsten. Die Sterne laufen auf völlig ungeordneten Bahnen

mit höchsten Exzentrizitäten und manchmal sogar entgegen der Rotationsrichtung der Scheibe. Auch ihre Geschwindigkeitsdispersion ist weit größer als die der anderen Populationen.

Bis jetzt konnte ich nur allgemein über die kinematischen Eigenschaften der Sternpopulationen schreiben, daher will ich als nächstes ein Koordinatensystem einführen, mit dem die Eigenschaften absolut, also mit Zahlen, beschrieben werden können.

2.1 Das galaktische Koordinatensystem

Für die Kinematik von Sternen ist es sinnvoll in einem anderen Koordinatensystem als dem Äquatorialen zu rechnen. In dieser Arbeit wurde wie bei Pauli⁽¹²⁾ und Pauli et al.⁽⁵⁸⁾ ein kartesisches galaktisches Koordinatensystem verwendet. Die Positionen werden hier mit X, Y und Z angegeben. Der Ursprung des Koordinatensystems liegt im Zentrum der Milchstraße. Dabei wird X vom galaktischen Zentrum (X=0) durch die Sonne (X=-8,5kpc), Y senkrecht dazu in der Scheibenebene und in Rotationsrichtung und schließlich Z senkrecht zur Scheibe in gleicher Richtung wie die Deklination gemessen. Da viele Eigenschaften und Graphen weniger von X und Y abhängen, als vom Abstand zum galaktischen Zentrum, werden noch die Größen ρ und R eingeführt.

$$\rho = \sqrt{X^2 + Y^2}$$
 und $R = \sqrt{\rho^2 + Z^2}$

Zu jeder Raumkoordinate werden noch die entsprechende Geschwindigkeiten U, V und W gebildet. Es wird in alphabetischer Reihenfolge U der X-, V der Y- und W der Z-Richtung zugeordnet.

2.2 Daten zu den Populationen

Jetzt haben wir ein Koordinatensystem mit dem wir die Verteilung und die Eigenschaften der Sternpopulationen in unserer Umgebung beschreiben können. Die Form ihrer Verteilungen lassen sich am besten mit Skalenlängen und Skalenhöhen beschreiben. Die Skalenlänge ist dabei der Abstand ρ vom galaktischen Zentrum, nach dem die Dichte auf 1/e gefallen ist. Die Skalenhöhe ist der entsprechende Abstand in Z-Richtung.

Leider gehen die Meinungen über die genauen Werte der Skalenhöhen stark auseinander (s. Tabelle 2.1).

	Minimale Skalenhöhe	Maximale Skalenhöhe
Dünne Scheibe	>153pc ¹⁾	300pc ²⁾
Dicke Scheibe	800pc ³⁾	1300pc ⁴⁾

Tabelle 2.1: Grenzen der Skalenhöhen für die beiden Scheibenpopulationen nach: 1) Kroupa⁽⁷⁴⁾; *2)* Haywood, Robin und Creze^(72,35); *3)* Ojha et al.⁽⁷⁰⁾; *4)* Chen⁽⁷¹⁾.

Die Werte hängen dabei stark von den verwendeten Sternen ab, wie Kroupa⁽⁷⁴⁾ mit seinen Modellen zeigt. So findet er, dass die Skalenhöhe der Scheibe (er unterscheidet hier nicht zwischen Dünner und Dicker Scheibe) zwischen 153pc und 270pc variiert, je nachdem, welche Temperaturen die betrachteten Sterne besitzen und wie häufig Doppelsterne auftreten (Abbildung 2.2).

Abbildung 2.2: Abhängigkeit der Skalenhöhe von der Temperatur (kühler: von links nach rechts) und der Häufigkeit von Doppelsternen (f) unter den betrachteten Sternen nach Kroupa⁽⁷⁴⁾.

Eine Zusammenfassung der Populationseigenschaften findet sich in den Tabellen 2.2 und 2.3.

	Bulge	Dünne Scheibe	Dicke Scheibe	Halo
Alter der Sterne	-10^{10} a	$0-10^{10}$ a	$0,7 - 1,3 \cdot 10^{10}$ a	$1,0-1,4\cdot10^{10}$ a
rel. Sterndichte		1	0,02-0,05	0,002-0,005
Skalenlänge		2800 pc	3700 pc	-
Skalenhöhe		100 – 300 pc	600 – 1300 pc	-
Geschwindigkeits-		15 - 30 km/s	$40.50 \rm km/s$	$100 \mathrm{km/s}$
dispersion		13 - 30 km/s	40 - 30 KIII/S	100 KIII/S

[in Sonnenmassen]	Masse
SMBH	$3,7^{+0,2}_{-0,2}\cdot 10^{6}$
sichtbare Materie <30kpc	$1,5 \cdot 10^{11}$
gesamte Materie <30kpc	$2,3 \cdot 10^{11}$
gesamte Materie <50kpc	$5,5^{+0,1}_{-3,7}\cdot 10^{11}$

Tabellen 2.2 und 2.3: Daten aus Berti und Cardoso⁽³⁹⁾ und O. Gerhard⁽⁴⁰⁾.

3 Kinematische Kriterien zur Klassifikation

Wie in Kapitel 2 beschrieben gibt es sowohl die Möglichkeit Sterne nach ihrer Kinematik, als auch nach ihrem Metallgehalt verschiedenen Populationen zuzuordnen. Diese Arbeit befasst sich jedoch mit sehr heißen Objekten. Diese zeigen in der Regel keine Metalllinien, aus denen eine Metallizität gemessen werden könnte. Selbst wenn der Metallgehalt bekannt wäre, so wäre nicht sicher, dass Weiße Zwerge oder unterleuchtkräftige Sterne sich genauso wie Hauptreihensterne einsortieren lassen. Daher haben Pauli⁽¹²⁾ und Pauli et al.⁽⁵⁸⁾ mit Hilfe der Metallizität von Hauptreihensternen kinematische Klassifikationstests geeicht, um so Sterne, rein aufgrund ihrer kinematischen Eigenschaften, den Populationen zuordnen zu können.

3.1 Kalibrierung nach Pauli

Pauli et al.⁽⁵⁸⁾ nahmen sich eine Gruppe F- und G-Hauptreihensterne von Fuhrmann⁽⁷⁶⁾ vor, für die es sowohl kinematische Daten, als auch Metallizitäten (s. Abbildung 3.1) gab.

Abbildung 3.1 Die Metallizitäten der Eichsterne. Quelle: Pauli et al.⁽⁵⁸⁾

	[Fe/H]	[Mg/Fe]
Dünne Scheibe	>0,3	<0,2
Dicke Scheibe	>-1,05	>0,3
Halo	<-1,05	-

Tabelle 3.1 Metallizitätsbereiche für die drei Populationen. Quelle: Pauli et al.⁽⁵⁸⁾

Über die Metallizität wurden die Sterne in die drei Gruppen eingeteilt (s. Tabelle 3.1). Jetzt konnten die Kinematischen Tests an den Sternen geeicht werden.

3.2 Galaktische Orbits

Als erstes Kriterium möchte ich die Orbitklassifikation vorstellen. Zur Orbitklassifikation wird hauptsächlich das maximale |Z| benötigt (Z_{max}) . Wie Abbildung 3.2 sehr gut veranschaulicht, gibt es in verschiedenen Höhen über der

galaktischen Scheibe unterschiedliche Wahrscheinlichkeiten auf Angehörige der drei verschiedenen Populationen zu stoßen. Diese Wahrscheinlichkeit ist es, mit der Z_{max} verglichen wird. Die Skalenhöhe spielt also keine direkte Rolle.

Abbildung 3.2 zeigt in der rechten Hälfte die relative Dichte (ρ) der Sternpopulationen in Abhängigkeit der Höhe über der galaktischen Scheibe (Z) und in der linken Hälfte wird diese für die Sonnenumgebung anschaulich dargestellt. Die horizontalen, gestrichelten Linien geben die Skalenhöhen an. Quelle: Buser⁽⁶⁴⁾.

Wie die Graphik zeigt bleibt die Dichte der Dünnen Scheibe bis beinahe 1000pc dominierend. Typische galaktische Orbits der Dünnen Scheibe erreichen normalerweise nicht mehr als 500pc (Abbildung 3.3), sie können aber durchaus bis zu 1200pc Höhe über der Scheibe erreichen. In größeren Höhen wird die Dicke Scheibe dominant. Die galaktischen Orbits der Dicken Scheibe erreichen Höhen von bis zu 2,5 bis 3 kpc (Abbildung 3.4). Die Sterne des Halos gehen darüber hinaus, bzw. machen sich durch einen chaotischen Orbit bemerkbar (Abbildung 3.5).

Da es einen kontinuierlichen Übergang zwischen den Höhen gibt, in welchen die Dünne Scheibe dominiert, und denen, in welchen die Dicke Scheibe dominiert, habe ich keine scharfen Grenzen gesetzt, sondern Übergangsbereiche zugelassen, in denen die Klassifikation des Sterns den, in den folgenden Kapiteln beschriebenen, Klassifikationskriterien überlassen wird.(s. Tabelle 3.2)

Orbitklassifikation					
Z _{max}	Klassifikation	Meine Erfah	nrungswerte		
<0,9 kpc	Dünn	90 % Dünn	10 % Dick		
<1,2 kpc	Dünn oder Dick	66 % Dünn	33% Dick		
<2,0 kpc	Dick	90 % Dick	10 % Dünn		
<2,5 kpc	Dick oder Halo	100% Dick			
>3,0 kpc	Halo	100 % Halo			

Tabelle 3.2: Die Klassifikation des Orbits nach Z_{max}

Abbildungen 3.3 (links) und 3.4 (rechts): typische Orbits für Dünne und Dicke Scheiben Sterne. Quelle: Pauli et al.⁽⁵⁸⁾

Abbildung 3.5: Typischer chaotischer Orbit eines Halo Sterns. Pauli et al.⁽⁵⁸⁾

Die galaktischen Orbits wird von einem Programm von Odenkirchen und Brosche⁽⁶⁵⁾, Brosche et al.⁽⁶⁶⁾ und Odenkirchen et al.⁽⁶⁷⁾ iterativ aus den kinematischen Daten berechnet. In dieser Simulation wird die Bewegungsgleichung eines Sterns im galaktischen Potential von Allen und Santillán^(68,69) integriert. Deren Potenzial (Φ_T) setzt sich aus drei Potenzialen zusammen, die jeweils von einer galaktischen Komponente erzeugt werden. Φ_C wird von der zentralen Masseverteilung, Φ_D von der Scheibe und Φ_H vom Halo erzeugt (Formel 3.1).

$$\Phi_T = \Phi_C(\rho, z) + \Phi_D(\rho, z) + \Phi_H(R)$$

Formel 3.1: Berechnung des galaktischen Gesamtpotentials von Allen und Santillán⁽⁶⁹⁾. Dabei ist ρ der Abstand vom galaktischen Zentrum in der X-Y Ebene, z die Höhe über der Scheibe und R der totale Abstand vom galaktischen Zentrum.

Etwas anschaulicher als die Formel dürfte Abbildung 3.6 sein, in dem die beiden dargestellt haben, welchen Beitrag die einzelnen Komponenten zu den Umlaufgeschwindigkeiten stellen.

Abbildung 3.6: Beitrag der einzelnen Potentialkomponenten zur Umlaufgeschwindigkeit in Abhängigkeit zum Abstand vom galaktischen Zentrum. Allen und Santillán⁽⁶⁹⁾

In meiner Arbeit wurden die Orbits immer mit einer Schrittweite von 500.000 Jahren für 2 Milliarden Jahre (2Gy) in die Zukunft berechnet. Die errechneten Bahnen wurden in ρ -Z Diagrammen aufgetragen. Im Gegensatz zu Y-X, X-Z oder Y-Z Diagrammen kann im ρ -Z Diagramm nicht nur die maximale Z Höhe abgelesen, sondern auch die Exzentrizität leichter ermittelt werden. So beschreibt zum Beispiel der Orbit eines Sterns mit ε =0 im Y-X Diagramm ein Kreis, während er im ρ -Z Diagramm auf einen Punkt beschränkt ist. Mit wachsender Exzentrizität würde der Orbit im Y-X Diagramm, nach einem Umlauf eine Ellipse, nach mehreren Umläufen einen ausgefüllten Ring beschreiben, durch dessen Abstand des inneren und äußeren Randes vom Nullpunkt des Diagramms die Exzentrizität berechnet werden kann. Leichter geht das im ρ -Z Diagramm, hier kann die Exzentrizität schon aus den am weitesten links und am weitesten rechts befindlichen Punkten des Orbits errechnet werden. Die Abbildungen 3.7 bis 3.10 zeigen einige Beispiele wie sich die Orbits berechnen und veranschaulichen den Unterschied zwischen ρ -Z und Y-X Auftragung.

Abbildungen 3.7 bis 3.10: Die Entwicklung eines Halo-Stern-Orbits habe ich hier am Beispiel von WD1319-288 dargestellt. Oben: Bewegung für 0,5 Gy mit einem roten Kreuz nach allen 12,5 My. Unten: der volle Orbit für 2 Gy. Links jeweils die Projektion auf die Y-X Ebene, in der der Orbit schön zu sehen ist. Rechts jeweils in die ρ-Z Ebene in dem die Klassen leichter voneinander unterschieden werden können.

Die Orbitklassifikation ist keineswegs eindeutig. In gewisser Weise ist das nächste Kriterium da schon einen Schritt weiter.

3.3 Geschwindigkeitsdiagramme von galaktischen Orbits

Das zweite Kriterium sind Geschwindigkeitsdiagramme. Hierbei werden die drei Komponenten der Geschwindigkeit im galaktischen Koordinatensystem verwendet. U ist die radiale Komponente positiv zum galaktischen Zentrum. V ist die Komponente in Drehrichtung der Scheibe. W ist die Komponente in Z-Richtung. Diese drei Geschwindigkeiten können zu verschiedenen Diagrammen kombiniert werden.

3.3.1 V-U Diagramm

Das V-U Diagramm ist der Klassiker unter den kinematischen Tests, da es am einfachsten zu erstellen und auszuwerten ist. Für die Eichsterne ergab sich für die Dünne Scheibe im Mittel eine Geschwindigkeit von 215km/s in V- und von 3km/s in U-Richtung. Die Sterne der Dicken Scheibe bewegen sich mit 160km/s in V- und mit -32km/s in U-Richtung. Fügt man noch die 3 σ -Grenzen hinzu ist ein V-U Diagramm wie in Abbildung 3.11 entstanden. (die Werte dazu in Tabelle 3.3)

Abbildung 3.11 V-U Diagramm für die Eichsterne. Pauli et al.⁽⁵⁸⁾

km/s	<v></v>	<u></u>	$\sigma(V)$	σ (U)	3σ(V)	3σ(U)
Dünne Scheibe	215	3	24	35	72	105
Dicke Scheibe	160	-32	45	56	135	168

Tabelle 3.3: Mittelwerte, ein und drei σ -Grenzen für die Scheibenpopulationen. Pauli⁽¹²⁾

Wie sofort auffällt überlappen die beiden Bereiche. Zirka ein Drittel der Fläche für die Dicke Scheibe wird von der Ellipse der Dünnen Scheibe überdeckt. Die Sterne des Halos können sich theoretisch überall auf dem Diagramm wieder finden, aber aufgrund der geringeren Anzahl ist es sehr unwahrscheinlich Sterne des Halos innerhalb der Grenzen für die Scheibensterne zu finden. Daher ist nur die Zuordnung zum Halo und zur Dicken Scheibe als zuverlässig zu betrachten. Die Zuordnung zur Dünnen Scheibe ist da etwas problematischer, denn bis auf einen winzigen Bereich kann das Gebiet der dünnen Scheibe auch Sterne der dicken Scheibe enthalten. Als Erfahrungswert lässt sich hier ausnutzen, dass tatsächlich etwa ein Drittel der Dicken Scheiben Sterne innerhalb der Ellipse für die Dünne Scheibe liegen. Dass das V-U Diagramm die W-Komponente nicht enthält ist angesichts der Scheibenstruktur unserer Galaxie nicht weiter tragisch, es gibt jedoch eine beliebte Möglichkeit die W-Komponente zu berücksichtigen.

3.3.2 Toomre Diagramm

Das V zu $(U^2+W^2)^{1/2}$ Diagramm bietet eine gute Möglichkeit die W-Komponente der Geschwindigkeit mehr zu berücksichtigen. Die Sterne des Halos lassen sich hier gut von den Scheibensternen trennen, da Scheibensterne eine Pekuliargeschwindigkeit von weniger als 200km/s besitzen, Halosterne dagegen mehr als 250km/s schnell sind (vgl. Abbildung 3.12).

Abbildung 3.12: Das V zu (U²+W²)^{1/2} Diagramm mit einigen Beispielsternen. Halo und Scheibensterne lassen sich gut trennen, die verschiedenen Scheibensternarten sind aber schwerer zu trennen als im VU-Diagramm. (Grün sind Sterne der Dünnen, blau sind Sterne der Dicken Scheibe und rot sind Sterne des Halo dargestellt). Die Ellipsen stellen ähnlich wie im V-U Diagramm Grenzen dar. Dünne Scheiben Sterne sollten sich innerhalb der innersten Ellipse befinden, dann folgt ein Übergangsbereich zur Dicken Scheibe. Im Großen Zwischenraum sollten die Dicken Scheiben Sterne liegen. Und außerhalb der äußersten Ellipse sollten sich die Sterne des Halos befinden.

Das Toomre Diagramm nutzt durch die Einbeziehung der W-Komponente zwar mehr Information, ist dafür aber schwieriger zu lesen und löst auch nicht das Problem die dünnen von den dicken Scheibensternen zu trennen. Ich habe mich deswegen wie Pauli et al. dazu entschieden auf das Toomre Diagramm als diagnostisches Mittel zu verzichten.

3.4 e-J_z Diagramm

Das, für sich genommen, wohl beste Klassifikationsverfahren ist das $e-J_z$ Diagramm. Es trennt Halo von Scheibensternen mindestens so gut wie das V-U Diagramm und trennt auch Sterne der dünnen und dicken Scheibe räumlich auf. Im $e-J_z$ Diagramm werden die numerische Exzentrizität (e) (s. Abbildung 3.13 zur Erklärung) und die Z-Komponente des Orbitdrehimpulses (J_z) gegeneinander aufgetragen.

Abbildung 3.13: Die geometrische Bedeutung der Exzentrizität; Berechnung der numerischen Exzentrizität: a und b sind die große und die kleine Halbachse in der Ellipse, R_{min} ist der minimale, R_{max} der maximale Abstand zum Zentrum, e_l ist die lineare Exzentrizität (in der Abbildung als "e" bezeichnet) und e die numerische Exzentrizität. Abbildung aus Barth et al.⁽⁵⁹⁾

Mit den Eichsternen konnten auch für das e-J_Z Diagramm verschiedene Bereiche für die verschiedenen Populationen ermittelt werden. Da die Sterne des Halos in der Regel hohe Exzentrizität aufweisen lassen sie sich besonders leicht von den Scheibensternen trennen. Leider mischen auch hier die Dicken mit den Dünnen Scheiben Sternen (Abbildung 3.14).

Abbildung 3.14: e-J_z Diagramm für die Eichsterne von Pauli et al.. Innerhalb der Raute befinden sich die Sterne der Dicken Scheibe, links davon die Dünne Scheibe, rechts davon die Sterne des Halos. Alle Sterne liegen beinahe auf einer Linie, was sich darüber und darunter befand war zunächst unklar. Pauli et al.⁽⁵⁸⁾

Außerhalb des Bereiches der Eichsterne fand ich Sterne mit retrograden Orbits. Diese Orbits sind mit den Scheibenpopulationen völlig unvereinbar und sind daher dem Halo eindeutig zugeordnet worden. Außerdem fand ich noch Sterne mit gleicher Exzentrizität wie die Dicken Scheiben Sterne, aber mit höherem Drehimpuls. Ich konnte mit Hilfe der anderen kinematischen Tests feststellen, dass sich diese Sterne klar in eine Komponente der Dicken Scheibe und eine Komponente des Halo trennen lassen (s. Abbildung 3.15).

Abbildung 3.15: Zeigt einige Sterne aus dieser Arbeit. Mit der grünen empirisch gefundenen Trennlinie lassen sich Dicke Scheibensterne und Halosterne mit größerem Drehimpuls trennen. (Gesamtklassifikation: Dünn: grün; Dick: blau; Halo: rot)

Diese kinematischen Tests können jetzt auf Weiße Zwerge und unterleuchtkräftige Sterne angewandt werden, bei denen ja keine Information über den Metallgehalt vorliegt.

3.5 Gesamtklassifikation

Da jedes der oben beschriebenen Klassifikationsschemata Schwächen besitzt, sollten immer alle drei Methoden kombiniert werden, um dann gemeinsam zu einer verlässlichen Klassifikation zu gelangen. Natürlich können dabei die drei Kriterien zu einander widersprechenden Ergebnissen kommen. In Tabelle 3.4 wird daher zusammengefasst, wie die einzelnen Kombinationsmöglichkeiten zu einer Gesamtklassifikation zusammengetragen wurden.

V-U	e-Jz	Orbit	Gesamtklassifikation
Diagramm	Diagramm		
dünn	dünn	dünn oder dick	dünn ^{a)}
dünn	dünn	halo	dick ^{a,b)}
dünn	dick	dünn	dünn / (dick) ^{b)}
dünn	dick	dick	dick ^{b)}
dünn	dick	halo	dick / (halo) ^{b)}
dünn	halo	dünn	halo / (dünn) ^{b,d)}
dünn	halo	dick	- ^{b,d)}
dünn	halo	halo	halo ^{b,d)}
dick	dünn	dünn	dünn / (dick) ^{c,d)}
dick	dünn	dick	dick ^{c)}
dick	dünn	halo	halo / (dick) ^{c,d)}
dick	dick	dünn	dick ^{a)}
dick	dick	dick	dick ^{a)}
dick	dick	halo	dick ^{a)} / halo ^{b,e)}
dick	halo	halo	halo ^{b)}
dick	halo	dünn	halo / (dick) ^{b,d)}
dick	halo	dick	halo / (dick) ^{b)}
halo	dünn	dünn, dick, halo	- ^{d)}
halo	dick	dünn oder dick	dick / (halo) d,e)
halo	dick	halo	halo / (dick) ^{e)}
halo	halo	dünn	halo ^{a,d)}
halo	halo	dick oder halo	halo ^{a)}

Tabelle 3.4: Die 27 Kombinationsmöglichkeiten lassen sich noch mal in fünf Klassen unterteilen:

 a) Wenn die Klassifikation im VU- und e-Jz Diagramm übereinstimmen, ist die Gesamtklassifikation fast immer klar. Die Ausnahme bilden Sterne deren Orbit zu chaotisch ist um zur Scheibe zu gehören. Das liegt daran, dass das V-U Diagramm und das e-Jz Diagramm (zumindest im Jz) die W-Komponente der Geschwindigkeit ignorieren, was der Orbit nicht tut.

b) Im VU-Diagramm ist es immer möglich, dass Sterne einer äußeren Population im Bereich einer inneren Population zu liegen kommen. Deuten die beiden anderen Kriterien auf eine äußere Population hin, so ist mit großer Wahrscheinlichkeit anzunehmen, dass der Stern dorthin gehört.

c) Liefern VU- bzw. e-J_z Diagramm dick bzw. dünn, so ist der Orbit ausschlaggebend.

d) Kommt nicht vor und kann wahrscheinlich nicht vorkommen. Falls doch, sollte dringend der Drehsinn des Sternorbits nachgeprüft werden.

e) Die Sterne dieser Kombinationen liegen meist nur knapp im Bereich der Dicken Scheibe und ihre Fehlerbereiche reichen weit in den Halo hinein.

4 Physikalische Eigenschaften und ihre Bestimmung

In Kapitel 3.2ff habe ich bereits erwähnt, dass wir für kinematische Studien sowohl die räumliche Position als auch die Geschwindigkeit im galaktischen Koordinatensystem angeben müssen. In diesem Kapitel zeige ich wie diese Werte ermittelt wurden. In den Abbildungen von 4.1 bis 4.6 und 4.9 bis 4.12 zeige ich dabei in welcher Beziehung die einzelnen Messgrößen zueinander stehen.

Abbildung 4.1: Aus der Position und den 3 Geschwindigkeiten des Sterns kann, wenn die eigene Position in der Galaxie bekannt ist, die Bewegung des Sterns in der Milchstraße berechnet werden.

Position und Geschwindigkeit im Raum werden benötigt um die kinematischen Parameter eines Sterns verarbeiten zu können. Die Position setzt sich für den Beobachter aus den beiden äquatorialen Koordinaten (Rektaszension und Deklination) und der Entfernung zusammen. Die Geschwindigkeit setzt sich aus der Transversalgeschwindigkeit (v_T), so wie aus der Radialgeschwindigkeit (v_r) zusammen.

Um die beiden Bewegungskomponenten zu erhalten müssen zahlreiche Messungen und Rechnungen durchgeführt werden. Ich beginne mit der Radialgeschwindigkeit.

4.1 Radialgeschwindigkeit

Aus dem Spektrum lässt sich die Radialgeschwindigkeit relativ leicht messen. Dies geschieht einfach durch Messung der Dopplerverschiebung bekannter Linien (Formel 4.1).

Abbildung 4.2: Die Radialgeschwindigkeit wird aus dem Spektrum gemessen.

$$v_r = \frac{\Delta \lambda_i \cdot c}{\lambda_i}$$

Formel 4.1: Berechnung der Radialgeschwindigkeit v_r : $\Delta \lambda_i$ ist die Verschiebung und λ_i die Laborwellenlänge einer Linie, sowie c die Lichtgeschwindigkeit im Vakuum.

Die Radialgeschwindigkeiten vieler SPY-Sterne wurden bereits von Ralf Napiwotzki (private Mitteilungen) vermessen. Die übrigen Radialgeschwindigkeiten habe ich mit dem Programm MIDAS bzw. FitSB2 gemessen. Dabei wurden die Linien von H_{α} , H_{β}

und H_{γ} mit Gauß- bzw. Lorentzfunktionen angepasst um die Wellenlänge des Linienkerns zu bestimmen.

Leider ist es dann doch nicht so einfach. Um die reale Radialgeschwindigkeit zu erhalten müssen noch Korrekturen berücksichtigt werden.

Abbildung 4.3: Die tatsächliche Radialgeschwindigkeit wird aus der gemessenen Radialgeschwindigkeit und den beiden Korrekturen, der heliozentrischen Korrektur und der Gravitationsrotverschiebung ermittelt.

Die erste dieser Korrekturen ergibt sich aus der Bewegung der Erde. Dabei spielt sowohl die Rotation um die Erdachse, als auch der Orbit um die Sonne eine Rolle. Durch diese Bewegung wird die gemessene Radialgeschwindigkeit um bis zu 30km/s verfälscht.

Die Heliozentrische Korrektur ist sowohl von der Tages- und Jahreszeit, als auch von der Beobachtungspositon auf der Erde und der Position des Objekts abhängig. Sie kann aus Tabellen abgelesen oder durch Programme wie MIDAS oder FitSB2 errechnet werden.

Abbildung 4.4: Die Koordinaten des Sterns beeinflussen die heliozentrische Korrektur.

Nachdem wir die Heliozentrische Korrektur von der gemessenen Radialgeschwindigkeit abgezogen haben, sind wir für die meisten Sterne bereits fertig. Bei den Weißen Zwergen darf jedoch nicht außer Acht gelassen werden, dass sie große Masse auf relativ kleines Volumen konzentrieren und daher eine hohe Schwerebeschleunigung an der Oberfläche herrscht, was zu einer starken Gravitationsrotverschiebung führt.

Wie funktioniert **die Gravitationsrotverschiebung**? Beim Verlassen des Gravitationspotentials eines Sterns verlieren die Photonen einen Teil ihrer Energie. Im Gegensatz zu Masseteilchen, die an Geschwindigkeit verlieren können, bewegen sich Photonen mit Lichtgeschwindigkeit voran. Deshalb wird durch den Energieverlust ihre Frequenz reduziert bzw. ihre Wellenlänge erhöht. Die Erhöhung der Wellenlänge wiederum täuscht dem Beobachter eine zusätzliche von ihm fortgerichtete Bewegung vor (v_G) (Formel 4.2).

$$v_G = \frac{\sqrt{MGg}}{c}$$

Formel 4.2:Berechnung der Gravitationsrotverschiebung: M ist die Masse des Sterns, "G" ist die Gravitationskonstante, "g" ist die Schwerebeschleunigung an der Oberfläche des Sterns, "c" ist die Lichtgeschwindigkeit.

Für normale Sterne spielt die Gravitationsrotverschiebung praktisch keine Rolle. Für die Sonne z.B. liegt der Wert bei etwa 636m/s. Auch für die unterleuchtkräftigen Sterne ist die Gravitationsrotverschiebung fast noch vernachlässigbar, sie liegt höchstens bei bis zu 3km/s. Bei Weißen Zwerge jedoch liegen die Werte zwischen 8 und 100km/s und können damit weit größer sein als die direkt gemessenen Radialgeschwindigkeiten.

Die aus der Gravitationsrotverschiebung ermittelte scheinbare Geschwindigkeitsänderung muss also von der gemessenen Geschwindigkeit (v_r) abgezogen werden um **die tatsächliche Radialgeschwindigkeit** (v_{rad}) zu erhalten (Formel 4.3).

 $v_{rad} = v_r - v_G$ Formel 4.3: v_r ist die gemessene Radialgeschwindigkeit s.o.

Um die Gravitationsrotverschiebung zu bestimmen müssen wir jetzt noch die Schwerebeschleunigung messen und danach die Masse ermitteln. Haben wir das geschafft, so können wir die tatsächliche Radialgeschwindigkeit berechnen.

Abbildung 4.5: Die Gravitationsrotverschiebung wird aus der Masse und der Schwerebeschleunigung errechnet.

4.2 Temperatur und Schwerebeschleunigung an der Oberfläche

Temperatur und Schwerebeschleunigung werden in einem Aufwasch ermittelt. Hierfür wurden synthetische Spektren, basierend auf theoretische Modellatmosphären, für verschiedene Temperaturen und Schwerebeschleunigungen gerechnet. Es werden nun mehrere Linien des gemessenen Spektrums mit synthetischen Spektren verglichen. Mit Hilfe einer χ^2 Minimierung wird das Modell gefunden, dass am besten zur Messung passt und die gesuchten Werte für Temperatur und Schwerebeschleunigung werden dem Modell entnommen. Dabei gilt grundsätzlich, je mehr Linien verwendet werden können, desto besser.

Abbildung 4.6: Temperatur und Schwerebeschleunigung werden aus den Spektren ermittelt.

Das Programm Fitprof (Napiwotzki (private Mitteilungen)) kann genau dieses leisten. Das Programm vergleicht das Spektrum automatisch mit Modellgittern von bis zu 8 Temperaturen und 5 verschiedenen Schwerebeschleunigungen für beliebig viele Linien. Der vom Programm ermittelte Fehler ist oft unrealistisch klein. Ich habe deshalb entweder die Standardabweichung aus den Messwerten der beiden SPY Spektren ermittelt oder mit einem Mindestfehler der Temperatur von 500K und einem Mindestfehler der logarithmischen Schwerebeschleunigung von 0,05 weitergerechnet.

4.3 Masse und chemischer Aufbau

Aus Temperatur und Schwerebeschleunigung kann theoretisch auf die Masse eines Weißen Zwerges geschlossen werden, da für sie eine Masse Radius-Beziehung gilt (Chandrasekhar⁽⁷⁹⁾).

Je nach Masse ist ein Weißer Zwerg aus unterschiedlichen Elementen aufgebaut. Bis zu einer Masse von etwa einer halben Sonnenmasse kann der Stern hauptsächlich aus Helium bestehen, zusätzlich gehen die Modelle von Driebe et al. von einer 10^{-2} Sonnenmassen schweren Wasserstoffatmosphäre aus. Schwerere Sterne beinhalten dann hauptsächlich Kohlenstoff und Sauerstoff. Für diese habe ich Abkühlsequenzen für Weiße Zwerge mit C/O Kernen von Wood verwendet (Abbildungen 4.7 und 4.8). Diese Modelle bestehen im Kern aus 60% Kohlenstoff und 40% Sauerstoff und besitzen eine dünne Hülle mit 10^{-2} Sonnenmassen an Helium und 10^{-4} Sonnenmassen an Wasserstoff.

Da Weiße Zwerge über keine thermonukleare Energiequelle mehr verfügen und nur noch auskühlen, kann bei angenommener chemischer Zusammensetzung, aus ihrer Temperatur und Schwerebeschleunigung direkt auf die Masse geschlossen werden. Dies kann leicht erklärt werden. Wenn man sich eine Linie bei einer festen Temperatur, z.B. 10.000K (= 4 im logT - Diagramm) in Abbildung 4.7 vorstellt, so müssen alle Weißen Zwerge während ihrer Abkühlsequenz früher oder später diese Linie überqueren. Bei der Überquerung besitzen alle Weißen Zwerge die gleiche Temperatur, das einzige was sie unterscheidet ist ihre Masse und damit ihre Schwerebeschleunigung. Es gibt also für einen Weißen Zwerg, der nur noch abkühlt, einen eindeutigen Zusammenhang zwischen Temperatur, Schwerebeschleunigung und Masse.

Abbildung 4.7 (links): Abkühlsequenzen im logT – log g Diagramm (Erstellt nach Daten von Wood) für verschiedene Massen;

Abbildung 4.8 (rechts): Zwischen den Theoretisch ermittelten Linien habe ich linear mit 0,01 Sonnenmassenschritten interpoliert. Der resultierende Fehler sollte unter 0,05 Sonnenmassen liegen. (<0,01 Fehler der theoretischen Abkühlsequenz + 0,01 Fehler der Interpolation + <0,03 Fehler aufgrund der angenommenen Ungenauigkeit von log g und T_{eff} = <0,05) Vorsicht mit den Skalen, die logT-Achse zeigt in beiden Bildern in verschiedene Richtungen.

Ich habe immer bis 0,414 Sonnenmassen mit Helium Kernen gerechnet und die Abkühlsequenzen von Driebe et al.⁽⁸²⁾ verwendet. Bei größeren Massen ging ich immer von Kohlenstoff- und Sauerstoffkernen aus und benutzte die Daten von Wood⁽⁸⁰⁾. Im Überlappungsbereich unterscheiden sich die Daten von Driebe et al.⁽⁸²⁾ und Wood⁽⁸⁰⁾ nur in einer Größenordnung, die in der Masse des Weißen Zwerges etwa 0,01 Sonnenmassen entspricht.

Abbildung 4.9: Die Masse eines Weißen Zwerges wird aus der Temperatur und der Schwerebeschleunigung bestimmt.

Jetzt besitzen wir alle Informationen, die wir für die Berechnung der Radialgeschwindigkeit benötigen. Wir haben die Radialgeschwindigkeit gemessen und die Heliozentrische Korrektur abgezogen. Wir können die Gravitationsrotverschiebung mit Hilfe der Schwerebeschleunigung und der Masse berechnen und dann ebenfalls abziehen. Was übrig bleibt ist die reale Radialgeschwindigkeit, die wir für die Kinematik benötigen.

Damit sind wir im Besitz von einer Geschwindigkeitskomponente und zweier Koordinaten. Jetzt wird es Zeit die Position des Sterns zu bestimmen.

4.4 Entfernung

Die meisten Daten für die Entfernungsbestimmung haben wir oben schon ermittelt. Als letztes fehlt nur noch die scheinbare, visuelle Helligkeit (Abbildung 4.10). Die **scheinbare Helligkeit** eines Sterns ist die Helligkeit, die der Stern für uns als Beobachter besitzt. Sie ist entfernungsabhängig und somit ungleich der absoluten Helligkeit. Die scheinbare Helligkeit wird in Magnituden (mag) angegeben, einer logarithmischen Skala, mit der Helligkeit von Vega als Nullpunkt. Die hellsten Sterne am Himmel haben eine Magnitude von etwa -1, die schwächsten, bei klarem Himmel noch mit dem Auge zu erkennenden Sterne, besitzen eine Magnitude von 6. Die scheinbare Helligkeit erhält man aus den gleichen Katalogen, die auch die Eigenbewegungen enthalten (Anhang E).

Die visuelle Helligkeit der Sterne im SPY Projekt lag zwischen 12,5 und 16,5 mag.

Abbildung 4.10: Die Entfernung wird spektroskopisch aus der Masse, der Helligkeit, der Temperatur und der Schwerebeschleunigung berechnet.

Um die dreidimensionale Position zu erhalten benötigten wir nur noch die Entfernung zum Stern. Diese wird mit dem Programm "mvdist" (Napiwotzki, priv. Mitteilung) mit Modellflüssen nach Formel 4.4 berechnet.

$$\log d = 1 + \frac{m_v + 2.5 \cdot \log \frac{\pi GMM \cdot FT}{(0.358 \cdot 3.085 \cdot 10^{19})^2}}{5}$$

Formel 4.4: Entfernungsbestimmung durch: scheinbarer Helligkeit m_v, Masse M, Sonnenmasse M_o, Effektivtemperatur T, Schwerebeschleunigung an der Oberfläche (g) und dem Fluss (F).

Der Fehler ergibt sich dabei nur aus den Fehlern der Ingredienzien m_V , M, T_{eff} und logg, sowie aus dem Fehler des zugrunde liegenden Modells, denn ich als vernachlässigbar angenommen habe. Für m_V wurde ein Fehler von $\Delta m_V = 0,05$ Magnituden angenommen. Dies liegt über dem üblicherweise angenommenen Fehler. Die anderen Fehler wurden immer mit mindestens $\Delta M = 0,05$ Sonnenmassen, $\Delta T_{eff} = 500$ K, und $\Delta \log g = 0,05$ angenommen. Im ungünstigsten Falle können alle vier Fehler in die gleiche Richtung zeigen und ein Fehler von $\log d \le 0,08$ entstehen. Dies hab ich als Standardfehler für die Entfernung angenommen.

Aber was wäre die Astronomie wenn damit schon alle Schwierigkeiten überwunden wären. In der Galaxie liegt eine Menge Staub und Gas, die die Helligkeit von Sternen abschwächt und damit die Entfernungsberechnung verfälschen kann.

4.4.1 Extinktion durch den interstellaren Staub in der Milchstraßenebene

In der Milchstraßenebene gibt es eine ca. 200pc dicke Scheibe von interstellarem Staub. Dieser Staub absorbiert Licht. Leider befindet sich die Sonne in genau dieser

Scheibe und daher werden für uns die Helligkeiten aller Sterne abgeschwächt. Ein schwächer leuchtender Stern erscheint uns als weiter entfernt, als er in Wirklichkeit ist. Wenn die Stärke der Absorption bekannt ist, so kann die eigentliche Helligkeit der Sterne ermitteln und damit die richtige Entfernung (nach 4.3) bestimmt werden. Unter Berücksichtigung der Absorption verringert sich die Entfernung zum Stern.

 $m_V = m_{gem} - A_V$ Formel 4.5: Wirkung der Extinktion: m_V ist die tatsächliche Helligkeit, m_{gem} ist die gemessene Helligkeit, A_V ist die "ausgelöschte" Helligkeit

Abbildung 4.11: Die Extinktion reduziert die Helligkeit die für die Entfernungsbestimmung benötigt wird.

Besitzt man bereits einen Entfernungswert zu dem Stern kann man die Entfernungskorrektur auch direkt aus der Extinktion mit Hilfe des Entfernungsmoduls berechnen (Formeln 4.6 bis 4.8).

$$m_{gem} - M_V = 5 \log d - 5$$

Formel 4.6: Entfernungsmodul

 $m_{gem} - A_V - M_V = 5\log(d - d_{ext}) - 5$

Formel 4.7: Entfernungsmodul mit Extinktion, d_{ext} ist die Entfernungsänderung durch die Extinktion

$$\mathbb{E}\left(d-d_{ext}\right) = d \cdot 10^{-\frac{A_t}{5}}$$

Formel 4.8: Entfernung mit Extinktion bestimmt aus der Entfernung ohne Extinktion und dem Extinktionswert.

Schlegel, Finkenbeiner und Davis⁽¹⁾ haben eine Karte für die Extinktion erstellt. Dabei hatten sie jedoch mehr intergalaktische Messungen im Auge und ihre Extinktionswerte für unendlich weit entfernte Objekte erstellt. Da aber die Galaktische Staubscheibe für die meiste Extinktion verantwortlich ist, kann man die Werte für die Sterne, die sich außerhalb der Staubscheibe aufhalten verwenden. Vorsicht muss man dagegen walten lassen bei Sternen, die sich in der Staubscheibe befinden. Extinktionswerte von mehreren Magnituden sind hier keine Seltenheit. Diese Werte stammen aber größtenteils von hinter dem Stern liegendem Material.

Ebenfalls gefährlich ist es die Extinktionskorrektur auf Sterne anzuwenden, die dadurch in der Staubscheibe landen würden. Auf solche Sterne kann nicht der volle Extinktionswert angewandt werden. Ihre reale Position liegt also irgendwo zwischen der mit und der ohne Extinktion. In meiner Arbeit habe ich nur Extinktionen für Sterne verwendet, wenn der Stern nach der Extinktion immer noch außerhalb der Staubscheibe blieb.

Im Internet kann man die Koordinaten seines Sternes direkt in die Extinktionkarte von Schlegel, Finkenbeiner und Davis⁽¹⁾ eingeben und erhält die galaktische Extinktion in

dieserSichtrichtungalsAntwort.Unterhttp://ned.ipac.caltech.edu/forms/calculator.htmlbefindet sich die Eingabemaske.Wie Tabelle 4.1 deutlich zeigt, kann die Extinktion, gerade in Scheibennähe sehrstarken Einfluss auf die Entfernung haben. In der Regel lagen die SPY Sterne aberweit genug über der Scheibe, so dass die Extinktion nicht mehr als 0,05 Magnitudenbetrug, was sich in nur wenigen Parsec Entfernungsänderung niederschlug.

Name	Entfernung	Entfernung mit Extinktion
HS0424+0141	213,0pc	154,9pc
WD0343-007	218,1pc	169,0pc
WD0430+136	380,7pc	183,9pc
WD0443-037	207,4pc	191,6pc
WD0957-666	223,4pc	160,9pc
WD1646+062A	210,4pc	168,5pc
WD2308+050A	206,2pc	169,9pc
WD2331+290	215,6pc	182,2pc

Tabelle 4.1 mit allen Sternen die trotz einer Entfernung von mehr als 200pc ohne Extinktion gerechnet wurden, da unter Berücksichtigung der Extinktion die Entfernung auf unter 200pc gesunken wäre.

Eine zuverlässigere Art der Entfernungsbestimmung kann die trigonometrische Parallaxenmessung sein, da sie von der Extinktion und der Messung von Spektren völlig unabhängig ist und nur reine Geometrie benötigt um die Entfernung zu einem Stern messen zu könne.

4.4.2 Glücklich der Besitzer einer trigonometrischen Parallaxe

In ganz seltenen Fällen ist es möglich auf die oben beschriebene Prozedur ganz zu verzichten und einfach aus dem Hipparcoskatalog die trigonometrischen Parallaxen zu entnehmen.

d = 1/pFormel 4.9: d ist die Entfernung in pc; p ist die Parallaxe im Bogenmaß

Leider enthält der Hipparcoskatalog nur Sterne bis zu einer Helligkeit ca. 12,5mag und SPY hat gerade dunklere Sterne beobachtet.

Name	Parallaxen Entfernung	Spektroskopische Entfernung
WD1620-391	$15,27 \pm 1,59$	$14,4^{+2,9}_{-2,4}$
WD2007-303	$15,37 \pm 0,97$	1 5 ,8 ^{+3,2} _{-2,7}
WD2039-202	$21,10 \pm 1,97$	25,6 ^{+5,2} -4,3
WD2149+021	$25,10 \pm 3,17$	$25,0^{+5,1}_{-4,2}$

Tabelle 4.2 mit den SPY Sternen für die auch Parallaxen verfügbar waren; Entfernungen sind in Parsec angegeben.

Wie aus Tabelle 4.2 zu entnehmen ist konnten die wenigen Parallaxensterne die spektroskopische Entfernungsbestimmung bestätigen.

Jetzt haben wir fast alles um eine kinematische Auswertung der Daten zu beginnen. Wir haben die Radialgeschwindigkeit und die 3D Position des Sterns. Was jetzt noch fehlt ist die Transversalgeschwindigkeit. Diese können wir aus der Entfernung und den Eigenbewegungen errechnen.

4.5 Eigenbewegungen

Die Eigenbewegung setzt sich aus der Bewegung an der Himmelskugel entlang des Himmelsäquators (μ_{α}) und der dazu senkrechten Komponente entlang des Meridians ($\mu_{\delta} \cos \alpha$) zusammen. Sie wird in mas/a (Millibogensekunden/Jahr) angegeben und aus den Positionsänderungen über die Jahrzehnte bestimmt. Zusammen mit der Entfernung kann man nun die tatsächliche Tangentialbewegung berechnen.

Diese Eigenbewegungen wurden mit Hilfe des VizieR Services des Centre de Données http://vizier.u-strasbg.fr/cgi-bin/VizieR Astronomiques de Strasbourg (verschiedenen Datenbanken entnommen (s. Anhang E). Mit VizieR durchsuchte ich alle, dem Programm bekannten, Kataloge im Umkreis von zehn Bogensekunden um die Koordinaten meiner Sterne. Häufig wurden Eigenbewegungen für einen Programmstern in mehreren Katalogen gefunden. Wichen die gefundenen Eigenbewegungen, unter Berücksichtigung der individuellen Fehler, nicht zu sehr voneinander ab, so bildete ich den Mittelwert aus den einzelnen Messungen und deren Fehlern. Leider konnten nicht allen Sternen eindeutige Eigenbewegungen zugewiesen werden. Das lag zum Teil daran, dass sich bei den Sternkoordinaten entweder mehrere in Frage kommende Objekte befanden oder verschiedene Kataloge verschiedene Eigenbewegungen veröffentlicht hatten. In diesen Fällen habe ich keine Möglichkeit ausgeschlossen und die Sterne jeweils mit den unterschiedlichen Daten ausgewertet. Diese Varianten habe ich hinter dem Sternnamen mit Großbuchstaben gekennzeichnet (z.B. CD-24 731A und CD-24 731B). Für manche Sterne lagen keine Eigenbewegungsmessungen vor (s. Kapitel 7). Diese Sterne konnten daher nicht zur Auswertung herangezogen werden.

Aus den Eigenbewegungen kann man mit Hilfe der Entfernung die Transversalgeschwindigkeit berechnen.

Abbildung 4.12: Aus spektroskopischer Entfernung (oder Parallaxe) und Eigenbewegung kann die Tangentialbewegung bestimmt werden.

Jetzt ist endlich alles beisammen, um die kinematische Auswertung zu starten. In Bild 4.13 werden noch mal alle Schritte zusammengefasst.

Abbildung 4.13:Der Weg vom Spektrum bis zur Kinematik. Aus theoretischen Modellen (violett) und Messwerten (die übrigen einfarbigen) werden Parameter bestimmt (Übergangsfarben), die letztendlich die Kinematik liefern.

5 Kinematik der Weiße Zwerge

Der Großteil meiner Arbeit besteht aus der Kinematik Weißer Zwerge. Dieses Kapitel ist den Datenquellen und den Ergebnissen, die mit den Weißen Zwergen ermittelt wurden, gewidmet.

5.1 Die Datenquellen für die Weißen Zwerge

Für alle DA Sterne wurden, im Rahmen des SPY Projektes (Napiwotzki et al.⁽⁵²⁾), ein oder mehrere Spektren aufgenommen und meine Arbeit bestand hauptsächlich darin, die in Kapitel 4 beschriebenen Maßnahmen durchzuführen um ihre kinematischen Parameter zu bestimmen. Doch manche Daten einiger Sterne wurden bereits vorher von anderen Personen ermittelt. So habe ich von Kowalski und Saumon⁽⁶¹⁾ die Temperatur und Schwerebeschleunigung für WD0752-676 entnommen.

Die ersten 398 DA Weißen Zwerge aus SPY wurden von Pauli⁽¹²⁾ und Pauli et al.⁽⁵⁸⁾ in ihrer Doktorarbeit kinematisch untersucht. Pauli hatte in ihrer Arbeit die Extinktion nicht berücksichtig, da die meisten ihrer Sterne innerhalb der Staubscheibe liegen und daher nicht klar ist wie viel Extinktion auf den Stern angewandt werden kann. Ich habe für die Sterne, die weiter als 200 pc entfernt sind die Extinktion bestimmt und diese Sterne noch einmal klassifiziert.

Zuerst habe ich die Z-Koordinate bestimmt, ob der Stern wirklich außerhalb der Scheibe liegt. War dies der Fall, so korrigierte ich die Entfernung entsprechend der Extinktion und klassifizierte den Stern erneut. Wie Tabelle 5.1 zeigt, hatte die Extinktion aber keine Auswirkung auf die Klassifikation, da die Änderung in der Entfernung meist recht klein ausfiel.

In meiner Arbeit habe ich weitere 300 DA Weiße Zwerge aus dem SPY Projekt bearbeitet. Dazu zählen 238 DA Einzelsterne, die nach der Fertigstellung von Paulis Arbeit aufgenommen wurden.

Unter den SPY Sternen tauchten auch mehrere doppellinige, spektroskopische Doppelsterne auf. Diese Doppelsterne können in drei Gruppen eingeteilt werden. Die erste Gruppe (Tabelle 5.2) besteht aus 24 Sternen. deren Radialgeschwindigkeitkurven durch mehrere Messungen gelöst werden konnten (Karl et al.⁽³⁴⁾, Marsh⁽³⁸⁾, Morales-Rueda et al.⁽¹⁵⁾, Napiwotzki (und private Mitteilungen) und Nelemans et al.⁽²⁾). Diese Sterne konnten dann wie Einzelsterne behandelt werden, nachdem die gemessene Geschwindigkeit durch die Systemgeschwindigkeit ersetzt wurde.

Gruppe Zwei (Tabelle 5.3) besteht aus 39 Sternen, die aufgrund ihrer Spektren hochgradig verdächtig sind Doppelsterne zu sein, die aber in den beiden SPY Spektren keinerlei Anzeichen auf Radialgeschwindigkeitsveränderungen aufweisen (Farihi, Hoard und Wachter⁽³⁾ und Napiwotzki (private Mitteilungen)). Diese Sterne wurden gesondert betrachtet, da hier nicht ausgeschlossen werden konnte, dass die Messungen Phase mit der Umlaufzeit des Doppelsternsystems gemacht wurden. in Wahrscheinlicher ist jedoch, dass die Sterne relativ weit voneinander entfernt sind und Messungen zwischen den nicht genug Zeit vergangen ist um die Radialgeschwindigkeit merklich zu verändern. Im Falle von weiten Abständen sind Umlaufgeschwindigkeiten jedoch recht klein und die gemessene die

			neue	außerhalb	
	Entfernung	Extinktion	Entfernung	der	neue
Name	in pc	in mag	in pc	Staubscheibe	Klassifikation
EC12489-2750	431,5	0,199	393,7	ја	bleibt dünn
EC13123-2523	572,0	0,261	507,2	ја	bleibt dünn
HE0418-5326	217,2	0,031	214,1	nein	-
HE1215+0227	371,1	0,065	360,2	ја	bleibt dünn
HE1328-0535	246,2	0,121	232,9	nein	bleibt dünn
HE1518-0344	203,9	0,400	169,6	nein	-
HE2334-1355	257,5	0,101	245,8	ја	bleibt dünn
HS1204+0159	209,2	0,087	201,0	ја	bleibt dünn
MCT0031-3107	373,5	0,062	363,0	ја	bleibt dünn
MCT0105-1634	315,2	0,075	304,5	ја	bleibt dünn
MCT0110-1617	318,3	0,074	307,6	ја	bleibt dünn
MCT2349-3627	400,5	0,077	386,5	ја	bleibt dünn
WD0138-236	296,0	0,038	290,9	ја	bleibt dünn
WD0205-136J	269,0	0,066	260,9	ја	bleibt dünn
WD0205-365	559,7	0,073	541,2	ја	bleibt dünn
WD0208-263	215,3	0,048	210,6	nein	bleibt dünn
WD0416-550	226,6	0,028	223,7	nein	-
WD1010+043	224,8	0,073	217,4	nein	-
WD1036+085	208,2	0,088	199,9	nein	-
WD1144-246	271,6	0,193	248,5	nein	-
WD1328-152	352,5	0,235	316,3	ја	bleibt dünn
WD1434-223	274,4	0,359	232,6	nein	-
WD2311-260	434,3	0,090	416,7	ја	bleibt dünn
WD2318-226	210,2	0,090	201,7	nein	-
WD2354-151	278,2	0,107	264,8	ја	bleibt dünn

Radialgeschwindigkeit gibt zum größten Teil die Systemgeschwindigkeit wieder. Ist das der Fall, so kann man sie beinahe wie Einzelsterne behandeln.

Tabelle 5.1: Pauli-Sterne außerhalb der Staubscheibe. Die Tabelle zeigt die Extinktion, sowie die Entfernung mit und ohne Extinktion. Außerdem, ob die Sterne nach Extinktion in Z-Richtung weiter als 200pc entfernt liegen und wie die neue Klassifizierung lautet.

HE0320-1917	HE1414-0848	HE1511-0448	HE2147-1405	HE2209-1444
HS1334+0701	HS1606+0153	WD0028-474	WD0135-052	WD0326-273
WD0453-295	WD1013-010P	WD1022+050P	WD1042-690	WD1058-129
WD1115+166	WD1210+140	WD1229-012	WD1241-010	WD1349+144
WD1449+168	WD1736+052	WD1824+040	WD2032+188P	

Tabelle 5.2: Gelösten Doppelsternsysteme. Darunter auch die drei mit "P" markiertenSterne, die bei Pauli noch als Einzelsterne galten.

EC13349-3237	HE0016-4340	HE0131+0149	HE0331-3541	HE0409-3233
HE0410-1137	HE0423-2822	HE0523-3856	HE1333-0622	HE2155-3150
HE2200-1341	HE2345-4810	HS0130+0156	HS1334+0701	HS2216+1551
WD0032-317	WD0034-211	WD0037-006	WD0131-163	WD0137-349
WD0205+133	WD0347-137	WD0430+136	WD0922+162a	WD0933+025
WD1001+203	WD1300-098	WD1319-288	WD1415+132	WD1436-216
WD1541-381	WD1643+143	WD1646+062	WD1802+213	WD1844-654
WD2020-425	WD2059+190	WD2151-015	WD2336-187	

Tabelle 5.3: Spektroskopische Doppelsterne ohne Radialgeschwindigkeitsveränderungen.

Die dritte 5.4) Gruppe (Tabelle besteht aus Sternen. deren Radialgeschwindigkeitsmessungen zwei völlig unterschiedliche Werte lieferten. Diese Gruppe konnte nicht in die Auswertung mit aufgenommen werden. Sobald einmal mehrere Messungen vorliegen, könnte sein. dass ihre es Radialgeschwindigkeitskurven ebenfalls gelöst werden und diese Sterne auch ausgewertet werden können.

EC14329-1625	HE0222-2336	HE0324-1942	HE0455-5315	HE0516-1804	
HE0959-0828	HE1103-0049	HE1106-0942	HE1208-0736	HS0051+1145	
HS1102+0934	HS1136+0326	HS2130+1215	WD0232+035	WD0303-007	
WD0308+096	WD0429+176	WD0922+162b	WD1026+002	WD1049+103	
WD1124-018	WD1218-198	WD1247-176	WD1511+009	WD1532+033	
WD1952-584	WD2051-208	WD2056+033	WD2313-330	WD2330-212	

Tabelle 5.4: radialgeschwindigkeitsvariable Sterne

5.2 Ergebnisse der DA Weißen Zwerge

In diesem Unterkapitel möchte ich zunächst die Ergebnisse meiner Arbeit präsentieren und gegen Ende des Kapitels werde ich meine Ergebnisse mit denen von Pauli et al.⁽⁵⁸⁾ zu einem Gesamtergebnis verrechnen.

5.2.1 Die Positionen der DA Programmsterne in der Milchstraße

Da das SPY Projekt hauptsächlich nach heißen Objekten gesucht hatte, wurde versucht, möglichst außerhalb der galaktischen Ebene zu messen, um Verwechslungen mit heißen Hauptreihensternen zu vermeiden. Daher befinden sich die DA Weißen Zwerge aus meiner Arbeit in einem Doppelkegel, der sich von der galaktischen Scheibe fort öffnet und dessen Spitzen sich beim Beobachter treffen (Abbildung 5.1).

Abbildung 5.1: Die Positionen der DA Programmsterne in galaktischen Koordinaten. Die galaktische Scheibe wäre hier ein horizontales Band bei Z=0. Es lassen sich die beiden Doppelkegel des Beobachtungsbereiches, deren Spitzen sich hier (bei ρ =-8,5; Z=0) treffen, gut erkennen.
Wie Abbildung 5.1 zeigt, waren die meisten Weißen Zwerge im SPY Projekt nicht weiter als 200pc von der Erde entfernt. Dass bedeutet, dass die beobachteten Weißen Zwerge sich nicht einmal über mehr als eine Skalenhöhe der Dünnen Scheibe hinaus erstrecken. Daher ist zu erwarten, dass wir es hauptsächlich mit Mitgliedern der Dünnen Scheibe und nur wenigen Mitgliedern der anderen Populationen zu tun bekommen. Aufgrund der geringen Höhenverteilung können wir die Weißen Zwerge, im Gegensatz zu den unterleuchtkräftigen Sternen dazu benutzen um etwas über die lokale Dichte an Weißen Zwergen auszusagen (s. Kapitel 7). Zunächst aber zur Klassifizierung der DA Weißen Zwerge.

5.2.2 Das VU-Diagramm der DA Weißen Zwerge

Das VU-Diagramm (Abbildung 5.2) liefert uns hauptsächlich Mitglieder der Dünnen Scheibe. An der Häufung der Dicken Scheiben Sterne in der Nähe der 3σ -Grenze der Dünnen Scheibe, lässt sich schon erahnen, dass viele Dicke Scheiben Sterne ebenfalls im Bereich der Dünnen Scheibe zu liegen kamen. Die hohe Anzahl der Punkte im Bereich des Halo ist darauf zurückzuführen, dass viele Sterne des Halos mit zwei verschiedenen Eigenbewegungsmessungen ausgewertet wurden, von denen nicht immer beide eine Halo Mitgliedschaft des Sterns ergaben (s. Kapitel 5.2.4).

Abbildung 5.2: VU-Diagramm mit allen DA Weißen Zwerge aus dieser Arbeit (also Einzelund Doppelsterne aus SPY).

5.2.3 Das e-J_z Diagramm der DA Weißen Zwerge

Ebenso wie im VU-Diagramm finden sich auch im $e-J_Z$ Diagramm (Abbildung 5.3) hauptsächlich Sterne der Dünnen Scheibe. Die Sterne der Dicken Scheibe fanden sich bei den Eichsternen ausschließlich in dem Bereich, der durch das Parallelogramm zwischen 0,27<e<0,70 gekennzeichnet wurde (vgl. Abbildung 3.14). In meiner Arbeit fand ich aber auch Sterne oberhalb des Parallelogramms. Die meisten dieser Sterne

(links der diagonalen Linie) wurden als Mitglieder der Dicken Scheibe identifiziert, einige gehören zum Halo (rechts der diagonalen Linie). Eine nähere Erläuterung findet sich im entsprechenden Kapitel über die unterleuchtkräftigen Sterne (Kapitel 6.3.3). Es fanden sich auch Sterne mit retrograden Orbits, also Sterne die gegen den Drehsinn der Scheibe umlaufen. Auch diese Sterne wurden der Halo Population zugeschlagen, da sie kein Teil der Scheibenpopulationen sein können (Sterne unterhalb der horizontalen Linie bei $J_Z=0$.

Abbildung 5.3: e- J_Z Diagramm mit all meinen DA Sternen (Einzel- und Doppelsterne) aus SPY.

5.2.4 Klassifikation

Die meisten DA Sterne waren, wie nicht anders zu erwarten, Mitglieder der Dünnen Scheibe. Ihre Klassifikation fiel besonders leicht, da alle Klassifikationskriterien meist übereinstimmende Ergebnisse lieferten.

In diese Kategorie fallen auch drei Sterne von Pauli et al.⁽⁵⁸⁾, die sich seit der Veröffentlichung als Doppelsterne herausgestellt hatten. Es handelt sich dabei um die beiden Sterne WD1022+050 und WD2032+188, die Pauli et al.⁽⁵⁸⁾ ebenfalls der Dünnen Scheibe zuordneten, sowie WD1013-010, der der Dicken Scheibe zugeordnet wurde. Diese Klassifikation ist also zu revidieren. Nelemans et al.⁽²⁾ und L. Morales-Rueda et al.⁽¹⁵⁾ hatten die Systemgeschwindigkeit dieser Systeme lösen können und ich habe alle drei Systeme eindeutig der Dünnen Scheibe zuordnet.

Bei den anderen Populationsgruppen war dies meist nicht so eindeutig.

Es konnten nur fünf DA Weiße Zwerge eindeutig dem Halo zugeordnet werden. Es handelt sich dabei um die Sterne WD0239+109, WD1314-153, WD1319-288, WD1350-090 und WD2253+054.

Bei den meisten uneindeutigen Sternen konnte zunächst nicht zwischen der Dünnen und der Dicken Scheibe entschieden werden. Dabei war eine Entscheidung noch einfach, wenn nur der Orbit auf eine andere Populationszugehörigkeit hinwies (vgl. Tabelle 5.5).

Gesamtklasse:		dick		dick		halo	
dünn							
V-U und	Orbit:						
e-J _Z : dünn	dick	e-J _Z : dick	dünn	e-J _Z : dick	halo	e-J _Z : halo	dick
EC13349-3	237	HE0523-3856		HE2133-0410		WD0158-227	
HE1346-0632		WD0102-185		WD2020-425A			
HE2345-48	10	WD0956+045		WD2020-425B			
HS1334+07	'01	WD1013-0	50				
HS1606+01	53	WD2059+1	90				
PNG2119+226		WD2120+0)54				
WD0034-211 WD2240-045							
WD0114-03	34	WD2353+026B					

Tabelle 5.5: Alle DA Sterne, bei denen nur die Orbitklassifikation abweicht.

Dann gab es Sterne deren Ausgangsdaten nicht völlig eindeutig waren. Für WD0017+061 und WD1129+071 finden sich zwei widersprüchliche Eigenbewegungsmessungen (s. Anhang **B**1). Je nachdem welche der Eigenbewegungen zutreffen, gehören die Sterne entweder zum Halo oder zur Dünnen Scheibe. WD0257+080 ist sogar noch kurioser, für ihn liegen drei unterschiedliche Eigenbewegungsmessungen vor. Demnach kann dieser Stern sowohl zur Dünnen, zur Dicken als auch zum Halo gehören.

Bei WD2159+082 treffen wir auf ein anderes Problem. Für diesen Stern liegen zwei unterschiedliche Temperatur- und Schwerebeschleunigungsmessungen vor. Variante A nutzt die Temperatur und Schwerebeschleunigung, die sowohl von Napiwotzki (private Mitteilungen), als auch von Voss⁽⁷⁷⁾ gemessen wurde. Variante B enthält Werte von Koester et al.⁽²⁶⁾. Dadurch kommt es zu unterschiedlichen spektroskopischen Entfernungen und aufgrund unterschiedlicher Gravitationsrotverschiebung auch zu unterschiedlichen Radialgeschwindigkeiten. Dieser Stern gehört also zur Dünnen (A) oder zur Dicken Scheibe (B).

Das System HE0331-3541 weist ebenfalls Unterschiede in der Temperatur- und Schwerebeschleunigungsmessung auf. Doch diesmal widersprechen sich Napiwotzki (private Mitteilungen) (A) und Voss⁽⁷⁷⁾ (B). Dies führt in Fall A zu einer stark exzentrischen Bahn (geringster Abstand zum galaktischen Zentrum 1kpc, größter Abstand 10kpc), die aber die Milchstraßenebene kaum verlässt. Daher fällt die Orbitklassifikation auch als "dick" aus, während die anderen Klassifikationsmethoden "halo" fordern. Im Fall B gehört das System zur Dicken Scheibe.

Auch im Falle des Systems WD1643+143 sind sich Napiwotzki (private Mitteilungen) (A) und Voss⁽⁷⁷⁾ (B) uneins. Dieses System gehört entweder zur Dicken (A) oder zur Dünnen Scheibe (B).

Das System WD1844-654 läst zwei Möglichkeiten zu. Entweder handelt es sich um den zweiten Eintrag bei diesen Koordinaten im USNO-B1.0 Katalog (s. Anhang E) mit hoher Eigenbewegung und niedriger Magnitude (Version B) oder der Stern befindet sich 85pc näher am Beobachter, besitzt eine höhere Magnitude und kleinere Eigenbewegung (Mittelung aus erstem Eintrag im USNO-B1.0, UCAC2 und NOMAD aus Anhang E). Fall B wäre demnach ein Halo Stern, während A zur Dünnen Scheibe gehören würde.

Größere Probleme bereiten diejenigen Sterne, deren V-U und e-J_Z Klassifikationen voneinander abweichen. Insbesondere dann, wenn die V-U Klassifikation für die Dünne Scheibe während die e-J_Z Klassifikation für die Dicke Scheibe spricht (Tabelle 5.6). Da ja das gesamte Gebiet der Dünnen Scheiben Sterne im V-U Diagramm auch vom Gebiet der Dicken Scheibe eingeschlossen wird, könnte man sich jetzt das Leben einfach machen und annehmen, dass es sich um Mitglieder der Dicken Scheibe handelt, die nur im V-U Diagramm im Gebiet der Dünnen Scheibe zu liegen kamen. Besser ist es natürlich sich erstmal den Orbit anzusehen. Meistens entspricht der Orbit auf den ersten Blick der V-U Klassifikation, würden wir nun einfach über die drei Klassifikationen mitteln, so würden wir eigentlich nur Dünne Scheiben Sterne finden, was aber der Tatsache widersprechen würde, dass wir Dicke Scheiben Sterne im Gebiet der Dünnen Scheibe auf dem V-U Diagramm erwarten. Daher war meine Lösung für dieses Problem das V-U Diagramm bei der Klassifizierung dieser Objekte zu ignorieren und dafür den Fehlerbereichen im e-J_Z Diagramm und in der Orbitklassifizierung mehr Beachtung zu schenken. Wenn also beispielsweise der Fehler im e-J_Z Diagramm nur die Dicke Scheibe zuließ, aber der Fehler in der Orbithöhe über den Bereich der Dünnen Scheibe hinausging, so ordnete ich diesen Stern der Dicken Scheibe zu.

V-U: dünn	V-U: dünn e-J _Z : dick		Orbit: meist dünn	
dünne Scheib	e	dicke Scheibe		
HE0409-3233	3	WI	D0443-037j	
HS1102+003	2	WI	01950-432	
WD0220+222	2			
WD0326-273				
WD1254+223	3			
WD1755+194	4			
WD2235+082				
WD2353+026A				
WD1824+040	C			

Tabelle 5.6: Nur zwei Sterne im V-U Bereich der Dünnen Scheibe konnten mit e- J_z und Orbit als Mitglieder der Dicken Scheibe ermittelt werden.

Der Stern WD2353+026 muss aufgrund unterschiedlicher Temperatur- und Schwerebeschleunigungsmessungen entweder zur Dünnen Scheibe (A: Voss⁽⁷⁷⁾) oder zur Dicken Scheibe (B: Liebert, Bergeron und Holberg⁽⁴⁹⁾) gezählt werden.

Als letztes Problemkind bleibt noch das System WD2020-425 mit unterschiedlichen Temperaturen von Napiwotzki (private Mitteilungen) (B und D) und Voss⁽⁷⁷⁾ (A und C), sowie zwei verschiedenen Helligkeiten (A und B aus dem SPM Catalog 2.0 (s. Anhang E), sowie C und D Koester et al.⁽²⁶⁾). Version A und B deuten hauptsächlich auf die Dicke Scheibe hin, auch wenn die Orbitklassifikation auf den Halo hinweist. Aber die Fehler in VU-Diagramm und e-J_Z Diagramm sind sich sicher und weisen auch kein Stück in Richtung Halo, es handelt sich also um einen Dicken Scheiben Stern der extreme Höhen über der Scheibe erreicht. Die Versionen C und D dagegen geben gleichzeitig je eine Klassifikation für die Dünne (VU), Dicke Scheibe (e-J_Z),

sowie für den Halo her (Orbit). Auch hier kann wie oben argumentiert werden, dass im Bereich der Dünnen Scheibe im V-U Diagramm sowohl Dicke, als auch Sterne des Halos liegen können. Daher bleiben nur e- J_Z und Orbit für die Klassifizierung übrig. Da sich e- J_Z in seiner Aussage für die Dicke Scheibe sehr sicher ist und der Orbit keinerlei chaotische Auffälligkeiten zeigt, habe ich auch die Varianten C und D zur Dicken Scheiben Population gerechnet, wodurch WD2020-425 insgesamt zur Dicken Scheibe gerechnet wird.

5.2.5 Alternative Messungen

Kawka et al.⁽⁴⁶⁾ haben ebenfalls Weiße Zwerge vermessen. Dabei haben sie auch eine Liste mit Temperaturen und Schwerebeschleunigungen ihrer Sterne veröffentlicht. Die Sterne die sowohl bei Kawka et al.⁽⁴⁶⁾, als auch bei SPY waren, habe ich in Tabelle 5.7 zusammengestellt. Obwohl einige Sterne in Schwerebeschleunigung und Masse stark von unseren Messungen abwichen, hatte dies kaum Auswirkung auf die Kinematik.

WD0018-339	WD0047-524	WD0050-332	WD0106-358
WD0255-705	WD0310-688	WD0446-789	WD0455-282
WD0509-007	WD0549+158	WD0621-376	WD0715-703
WD0732-427	WD0839-327	WD1053-550	WD1056-384
WD1236-495	WD1323-514	WD1425-811	WD1544-377
WD1620-391	WD1659-531	WD1953-715	WD2007-303
WD2039-682	WD2105-820	WD2115-560	WD2159-754
WD2211-495	WD2331-475	WD2351-368	WD2359-434
			1 (46)

Tabelle 5.7: Alle SPY Sterne aus Kawka et al.⁽⁴⁶⁾

Die einzige nennenswerte Abweichung ergab sich bei WD1236-495. Dieser Stern wurde von Pauli⁽¹²⁾ untersucht und der Dünnen Scheibe zugeordnet. Mit den Daten von Kawka et al.⁽⁴⁶⁾ ergibt sich eine Zugehörigkeit zur Dicken Scheibe (Unterschiede in Tabelle 5.8).

	log g	Masse	Gravitationsrotverschiebung
Pauli	8,74	1,07	92,975 km/s
Kawka	$8,84 \pm 0,04$	1,11±0,02	106,251 km/s

Tabelle 5.8: Unterschiedliche Daten von Pauli⁽¹²⁾ und Kawka et al.⁽⁴⁶⁾ für den DA Stern WD1236-495.

5.2.6 Zusammenfassung der kinematischen Messergebnisse

Zusammenfassend kann ich sagen, dass von 237 Sternen nur 9 aufgrund unterschiedlichster Messergebnisse nicht klar zu einer Population zugeordnet werden konnten (Tabelle 5.9). Dies muss später bei der Auswertung gesondert berücksichtigt werden.

Anzahl	Klassifizierung
213	dünn
10	dick
5	halo
3	dünn/dick
3	dünn/halo
2	dick/halo
1	dünn/dick/halo

Tabelle 5.9: Die Anzahl der DA Weißen Zwerge dieser Arbeit nach Klassifizierungsergebnis.

5.2.7 Das Alter der DA Weißen Zwerge

Nachdem jetzt alle Sterne klassifiziert sind, besteht die Möglichkeit zu testen, ob alle kinematischen Mitglieder der Dicken Scheibe und des Halos so alt sind wie wir das erwarten. Wie in Kapitel 2.2 angesprochen erwarten wir ja das die Dicken Scheiben Sterne älter als 7 Milliarden und die Sterne des Halos älter als 10 Milliarden Jahre sind.

Aus den Abkühlsequenzen, über die wir ja die Massen der Weißen Zwerge bestimmt haben, kann man auch die Abkühlzeit ablesen. Die Kühlzeit plus die Zeit die der Stern zuvor auf der Hauptreihe gelebt hat (Formel 5.1), ergibt das Alter des Sterns. Die Hauptreihenzeit richtet sich nach der Masse eines Sterns.

$$T_{HR} = 10^{10} \cdot \left(\frac{M_*}{M_{\Theta}}\right)^{-2.2} a.$$

Formel 5.1: Mit dieser Formel wir die Zeit berechnet, die der Vorläuferstern auf der Hauptreihe zubrachte. Dazu benötigt man "nur" die Masse des Vorläufersterns. (Heber, Vorlesung WS01/02)

Die Masse des Vorläufersterns erhält man aus der "Initial-Mass to Final-Mass Relation" (s. Abbildung 5.4)

Abbildung 5.4: Initial-Mass to Final-Mass Relation (aus Weidemann⁽²²⁾) (die untere durchgezogene Linie wurde zur Bestimmung der Vorläufersternmasse benutzt).

Mit diesem Wissen habe ich alle Sterne, die als Dicke Scheibe oder Halo klassifiziert wurden, auf ihr Alter hin überprüft (Tabellen 5.10 und 5.11).

Daten der mög	lichen Die	cke Sch	eibe St	erne	Kühlze	eit/log T	Vorl	äuferstern	Gesamtalter in Ga		
Name	Тур	Teff	Logg	М	min	max	М	Alter (Ga)	von	bis	reicht?
HE0331-3541B	DA+dM	31372	7,70	0,50	6,89	6,97	<1	>10	>10	>10	ja
HE0523-3856	DA+dM	19402	7,64	0,46	7,77	8,24	<1	>10	>10,1	>10,2	ja
WD0034-211	DA+dM	17180	7,63	0,45	7,75	7,98	<1	>10	>10,1	>10,1	ja
WD0102-185	DA	22678	7,75	0,50	7,45	7,45	<1	>10	>10	>10	ja
WD0257+080B	DA	22489	8,26	0,78	7,75	7,98	3,89	0,504	0,56	0,598	nein
WD0443-037j	DA	71545	8,54	1,00	5,80	5,80	6,72	0,151	0,152	0,152	nein
WD0956+045	DA	18391	7,75	0,49	7,86	8,37	<1	>10	>10,1	>10,2	ja
WD1013-050	DA+dM	59577	7,69	0,58	5,87	6,13	1,34	5,25	5,25	5,25	nein
WD1643+143A	DA+dM	27537	7,45	0,45	6,91	7,18	<1	>10	>10	>10	ja
WD1950-432	DA	40571	7,59	0,49	6,06	6,57	<1	>10	>10	>10	ja
WD2120+054A	DA	36052	7,75	0,54	6,70	6,78	<1	>10	>10	>10	ja
WD2120+054B	DA	35860	7,80	0,56	6,76	6,78	1,13	7,64	7,65	7,65	ja
WD2159-414B	DA	57173	7,39	0,49	5,99	5,99	<1	>10	>10	>10	ja
WD2020-425	DA+DA	29612	8,08	0,69	7,08	7,18	3,09	0,836	0,848	0,852	nein
WD2059+190	DA	7470	8,88	1,15	9,44	9,65	7	0,138	2,92	4,65	?
WD2240-045	DA	43839	7,75	0,56	6,46	6,53	1,13	7,64	7,65	7,65	ja
WD2331+290	DA	27320	7,48	0,44	7,08	7,30	<1	>10	>10	>10	ja
WD2353+026B	DA	60970	7,60	0,55	5,80	6,12	<1	>10	>10	>10	ja

Tabelle 5.10 mit den Dicken Scheibe Sternen. Links die Daten des Weißen Zwerges (Name, Typ, Effektivtemperatur in K, log g und Masse in Sonnenmassen), dann die Zeit die er bereits abgekühlt ist (log T in Jahren), dann die Masse (in Sonnenmassen) und die Lebensdauer des Vorläufersterns. Rechts dann das Gesamtalters des Weißen Zwerges und ob es für das erwartete Alter von 7 Ga reicht.

Daten der S	Sterne, die	e im Hal	o liege	n	Kühlze	eit/log T	Vorl	äuferstern	Gesamtalter in Ga		
Name	Тур	Teff	Logg	М	min	max	Μ	Alter (Ga)	von	bis	reicht?
HE0331-3541A	DA+dM	44311	7,12	0,44	5,13	6,46	<1	>10	>10	>10	ja
WD0017+061B	DA	28165	7,80	0,54	7,07	7,22	<1	>10	>10	>10	ja
WD0028-474	DA	16683	7,64	0,45	7,86	8,08	<1	>10	>10,1	>10,1	ja
WD0158-227	DA	75758	7,39	0,53	5,22	5,81	<1	>10	>10	>10	ja
WD0239+109	DA	45148	7,84	0,60	6,49	6,49	2,01	2,15	2,16	2,16	nein
WD0257+080A	DA	22489	8,26	0,78	7,75	7,98	3,89	0,504	>0,56	0,60	nein
WD1129+071B	DA	12740	7,93	0,56	8,35	8,53	1,13	7,64	7,87	7,98	nein
WD1314-153	DA	15977	7,81	0,51	8,08	8,20	<1	>10	>10,1	>10,2	ja
WD1319-288	DA+dM	18012	7,77	0,50	7,72	7,79	<1	>10	>10,1	>10,1	ja
WD1350-090A	DA	23157	7,45	0,43	7,45	7,83	<1	>10	>10	>10,1	ja
WD1350-090B	DA	23794	7,34	0,41	6,41	7,677	<1	>10	>10	>10	ja
WD1844-654B	DA+dM	44211	7,30	0,46	5,13	6,46	<1	>10	>10	>10	ja
WD2234+222	DA	11080	6,32	0,17	7,52	9,41	?	-	>0,03	>2,56	?
WD2253+054	DA	87269	6,21	0,42	4,44	4,98	<1	>10	>10	>10	ja

Tabelle 5.11 mit den Sternen des Halos. Links die Daten des Weißen Zwerges (Name, Typ, Effektivtemperatur in K, log g und Masse in Sonnenmassen), dann die Zeit die er bereits abgekühlt ist (log T in Jahren), dann die Masse (in Sonnenmassen) und die Lebensdauer des Vorläufersterns. Rechts dann das Gesamtalters des Weißen Zwerges und ob es für das erwartete Alter von 10 Ga reicht.

Wie aus den Tabellen zu entnehmen ist passt das Alter der Weißen Zwerge meist zu ihrer Populationszugehörigkeit, einige scheinen jedoch jünger zu sein.

5.2.8 Massenverteilung der DA Sterne

Als Nebenergebnis der Arbeit fallen ja auch die Massen der Sterne an. Die Massenverteilung ist eine wichtige Kenngröße für die Entwicklungsgeschichte der Galaxis. Da ja wie im letzten Kapitel erwähnt, ein Zusammenhang zwischen der Masse des Weißen Zwerges und der Anfangsmasse des Vorläuferstern existiert, könnte man über die Verteilung der Weißen Zwerg Massen auf die letzten Sterngenerationen zurück schließen.

In Abbildung 5.5 können die Massenverteilungen der drei Populationen miteinander verglichen werden. Da die Anzahl der Sterne der Dicken Scheibe und des Halos so viel geringer ist, bleibt aber eigentlich nur die mittlere Masse und die Häufungspunkte zu vergleichen. Diese sind sich in allen drei Populationen sehr ähnlich. Die mittlere Masse sinkt von der Dünnen Scheibe über die Dicke Scheibe zum Halo hin. Aber bei den Sternen der Dicken Scheibe fallen zwei Objekte mit etwas mehr als einer Sonnenmasse auf. Diese könnten auf einen vergleichsweise höheren Anteil von schweren Weißen Zwergen in der Dicken Scheibe hindeutet, als das bei den Weißen Zwergen der Dünnen Scheibe der Fall ist. Aber die Anzahl der Sterne ist zu gering um signifikant zu sein.

 Abbildung 5.5 Massenverteilung der DA Weißen Zwerge. Die gestrichelten Linien stellen die Massenverteilung von Pauli et al.⁽⁵⁸⁾ dar, die durchgezogenen Linien stellen die
 Massenverteilung einschließlich dieser Arbeit dar. Links die Verteilung der Dünnen Scheiben Sterne (Balkenbreite: 0,05 Sonnenmassen), rechts die der Dicken Scheiben Sterne (Balkenbreite: 0,0988 Sonnenmassen) und unten die Massenverteilung der Halosterne (Balkenbreite: 0.0872 Sonnenmassen).

Bei der Massenverteilung aller DA Weißen Zwerge fällt besonders die relativ scharfe Spitze zwischen 0,50 und 0,55 Sonnenmassen auf. Auch die beiden Nebenmaxima, bei 0,8 und 0,3 finden sich in den Verteilungen anderer Arbeiten wieder (vgl. Liebert, Dahn und Monet⁽⁴⁷⁾, Finley, Koester und Basri⁽⁴⁸⁾, Kepler⁽⁴²⁾). Auch der Mittelwert der dünnen Scheibe von 0.58 Sonnenmassen und der Gesamtmittelwert von 0,578 Sonnenmassen sind typisch (s. Tabelle 5.12).

	Pauli	meine Arbeit	gesamt
dünne Scheibe	0,587	0,580	0,583
dicke Scheibe	0,511	0,565	0,531
Halo	0,457	0,471	0,465
gesamt	0,580	0,586	0,578

Tabelle 5.12: Die Mittleren Massen der DA Weißen Zwerge für die einzelnen Populationen und die einzelnen Arbeiten.

Das zeigt, dass die Beschränkung durch das SPY Projekt auf heiße Weiße Zwerge außerhalb der Scheibenebene keine Auswirkung auf die Massenverteilung der Programmsterne hatte. Deshalb könnte man sich auch einmal überlegen, welche Auswirkungen es hätte die gefundenen Verhältnisse von Dünnen Scheiben Sternen zu Dicken Scheiben Sternen und zu den Sternen des Halos für Weiße Zwerge anderer Temperaturen und Aufenthaltsgebiete zu übernehmen.

5.3 Weiße Zwerge vom Typ DB

Im SPY Projekt wurden aber nicht nur DA Weiße Zwerge sondern auch verschiedene andere Typen von Weißen Zwergen beobachtet. So gibt es auch noch Spektren von mehreren DB Weißen Zwergen. Koester et al.⁽²⁶⁾ hatten die meisten dieser Sterne bereits nach Temperatur und Schwerebeschleunigung analysiert. (Tabelle 5.13, siehe auch Anhang C2)

DB:				
he0215-0225	he1409-1821	wd0615-591	wd1336+123	wd2130-047
he0308-5635	mct0149-2518	wd0845-188	wd1428-125	wd2234+064
he0417-5357	wd0119-004	wd0900+142	wd1445+152	wd2354-305
he0420-4748	wd0158-160	wd1046-017	wd1542+182	wd2354+159
he0423-1434	wd0249-052	wd1144-084	wd1612-111	

DBA:				
ec12438-1346	he2334-4127	wd1134+073	wd1444-096	wd2154-437
he0025-0317	wd0125-236	wd1311+129	wd1456+103	wd2229+139
he0413-3306	wd0503+147	wd1352+004	wd1557+192	wd2253-062
he1349-2305	wd0921+091	wd1403-010	wd2142-169	
he2237-0509	wd0948+013	wd1421-011	wd2154-437	

DB+dM

- -

he0429-1651 wd1004-178

5.3.1 Messung der Radialgeschwindigkeit der DB Sterne

DB Sterne besitzen keine Wasserstofflinien, daher muss man versuchen HeI Linien zu vermessen. Viele dieser Linien werden jedoch durch das hohe Schwerebeschleunigung so sehr verbreitert, dass eine Geschwindigkeitsmessung an ihnen unmöglich gemacht wird. Die Singulett-Linien (5015, 4922, 4471, 4026 und 3888) bleiben jedoch relativ scharf und eignen sich daher zur Geschwindigkeitsmessung.

Aber auch dann, wenn sich die Messung nur auf die Singulett-Linien beschränkt, werden oft für jede Linie völlig unterschiedliche Geschwindigkeiten gemessen. Des Rätsels Lösung liegt entweder in der Anwesenheit von ³He oder an der Tatsache, dass die He-Linien eine starke Asymmetrie aufweisen. FitSB2 versucht aber symmetrische Funktionen an den Fluss anzupassen.

Tatsächlich würde das leichtere Heliumisotop die He-I Linien auf so unterschiedliche Weise verschieben, dass man durch ein bestimmtes ³He/⁴He Verhältnis auch die übrigen Linien eher zu einer gemeinsamen Geschwindigkeitsaussage bewegen kann. (vgl. Tabelle 5.14)

Tabelle 5.13: Weiße Zwerge vom Typ DB und DBA, die mit Hilfe der Temperatur und Schwerebeschleunigungsbestimmung von Koester et al.⁽²⁶⁾ gelöst werden konnten.

Wellenlänge in Á	$\Delta\lambda$ in Á
3819	0.08
3867	0.08
3888	0.212
3964	0.138
4026	0.077
4121	0.074
4388	0.28
4472	0.07
4713	0.07
4921	0.33
5015	0.21
5875	0.062

Tabelle 5.14: Isotopenverschiebung nach Hartoog und Cowley⁽³¹⁾ und Wolff et al.⁽⁵³⁾.

5.3.2 Das DB+dM System HE0429-1651

Abbildung 5.6: IR-Bild der Umgebung von HE0429-1651 (Pfeil). Quelle: Der Aladin Sky Atlas⁽⁶⁰⁾

Unter allen Spektren von DB Weißen Zwergen gibt es genau eines, dass nicht nur ein Doppelsystem ist, sondern dass eine Geschwindigkeitsmessung beider Komponenten zulässt. Das Spektrum des dM-Sterns zeigt nämlich 4 Balmerlinien in Emission und der DB Weiße Zwerg gibt uns 5 messbare HeI Linien (Abbildung 5.7). Der Unterschied in der Geschwindigkeitsmessung zwischen den Balmerlinien und den HeI Linien entspricht genau der Gravitationsrotverschiebung (s. 4.1.2) des DB Sternes. Da die Geschwindigkeiten von beiden Spektren in etwa gleich waren können wir von einem weiten System ausgehen, dessen Komponenten sich in etwa mit der Systemgeschwindigkeit bewegen. Dies würde bedeuten, dass wir in der Lage sind die Radialgeschwindigkeit mit Hilfe der HeI Linien in einem DB Weißen Zwerg mit etwa der gleichen Genauigkeit messen können wie mit den Balmerlinien in einem DA Stern.

Abbildung 5.7: Spektrum des Systems HE0429-1651. Deutlich sind die Balmerlinien des dM Sterns und die HeI Linien des DB Weißen Zwerges zu erkennen.

5.3.3 Messung des ³He Gehaltes im DB Stern

Hartoog⁽³³⁾ kann bei Horizontalaststernen in einem schmalen Temperaturbereich zwischen 16000K und 25000K ³He beobachten, das ist genau der Temperaturbereich von DB Sternen. Wolff et al.⁽⁵³⁾ vermuten bei veränderlichen DB Weißen Zwergen bis zu 27% ³He. Es liegt also nahe bei unseren DB Sternen allgemein ³He zu vermuten. Man kann mit FitSB2 die Geschwindigkeit eines Sterns anhand mehrerer Linien gleichzeitig messen. Vergleicht man die Ergebnisse zweier Spektren und besonders den Fehler an der Geschwindigkeitsmessung könnte man damit den ³He-Gehalt abschätzen. Für einen Stern, der keinen Begleiter besitzt, würde erwartet werden, dass beide Spektren, innerhalb der zu erwartenden Fehler, die gleiche Radialgeschwindigkeit zeigen. In Tabelle 5.15 wurde die Radialgeschwindigkeit von HE0429-1651 für mehrere ³He-Häufigkeiten gemessen. Die Ergebnisse lagen nie mehr als 2kms⁻¹ auseinander. Rein aus der Geschwindigkeitsmessung kann also keiner ³He-Häufigkeit der Vorzug gegeben werden.

Daher wendete ich mich dem χ^2 -Fehler des Vergleiches mit dem synthetischen Spektrum zu. Ich vermutete, dass ein Trend erkannt werden könnte, der für eine ³He-

Häufigkeit einen minimalen Fehler liefern würde. Die ersten Ergebnisse schienen diese Vermutung zu bestätigen. So lieferten die ersten fünf Messungen am Spektrum A von HE0429-1651 einen Trend zu großen ³He-Häufigkeiten und ließen ein Minimum zwischen 75% und 100% ³He vermuten (Tabelle 5.15, die fett gedruckten Werte). Dieselben Messungen im Spektrum B deuteten dagegen auf ein Minimum zwischen 50% und 75% hin (Tabelle 5.15, die kursiv gedruckten Werte). Weitere Messungen innerhalb des vermuteten Bereiches des Minimums ergaben dann leider keine klare Fortsetzung des Trends und daher ist es wohl nicht möglich mit dieser Methode eine Aussage über den ³He-Gehalt zu treffen.

³ He	Geschwindigkeit	Fehler	Geschwindigkeit	Fehler
in %	Spektrum A		Spektrum B	
1.0000	28,05 km/s	1,19	27,31 km/s	1,65
0.9375	29,04	1,13	30,06	1,19
0.8750	30,10	1,25	31,25	1,17
0.8125	30,81	1,24	31,41	1,25
0.7500	31,77	1,19	32,80	1,20
0.6875	-	-	33,13	1,17
0.625	-	-	33,66	1,25
0.5625	-	-	35,43	1,18
0.5000	33,33	1,41	36,07	1,13
0.2500	39,19	1,54	38,48	1,35
0.0000	43,27	1,62	41,94	1,35

Tabelle 5.15: Geschwindigkeitsmessungen an He0429-1651 für verschiedene ³He-Häufigkeiten. Die Fehler des ersten Durchlaufs (in 25% Schritten) deuten auf eine Häufigkeit zwischen 100% und 75% ³He hin. Der zweite Durchlauf geht dann wieder in die Mitte. Bis jetzt wird also die ³He-Häufigkeit auf 87,5% +- 10% geschätzt. Leider gibt die B-Messung andere Werte und deutet auf eine Häufigkeit zwischen 100% und 25% hin.

Ich habe dann noch getestet, ob es vielleicht möglich wäre durch Addition der Spektren ein besseres Ergebnis zu erzielen. Normalerweise würde man erwarten, dass das addierte Spektrum eine Geschwindigkeit von Null besitzt, da ja die Geschwindigkeiten für die Addition herausgerechnet wurden. Es kamen jedoch Werte größer als 5km/s heraus. Die Beste Lösung lieferte dabei die Addition der beiden Spektren mit einem ³He-Gehalt von 0%. Dies lässt wieder Zweifel an der Qualität der Messung mit Gauss- und Lorenzfunktionen durch FitSB2 aufkommen.

Es bietet sich also nur noch die Möglichkeit die Geschwindigkeit mit synthetischen Spektren für DB Weiße Zwerge von Koester (private Mitteilungen) zu messen.

5.3.4 Messung der Radialgeschwindigkeit von DB Sternen mit synthetischen Spektren

Der zweite Versuch die Radialgeschwindigkeit mit den Modelllinien zu messen, brachte überraschenderweise ganz ähnliche Ergebnisse. Wieder liefert Spektrum A kleinere Fehler für hohe ³He Konzentrationen, während Spektrum B eher die niedrigen Werte bevorzugt (Tabelle 5.16).

³ He	Geschwindigkeit	Fehler	Geschwindigkeit	Fehler
in %	Spektrum A		Spektrum B	
00	49,69 km/s	1,32	52,11 km/s	1,48
25	47,05	1,26	49,13	1,49
50	44,26	1,26	46,24	1,48
75	41,77	1,11	43,06	1,58
99	39,23	1,12	40,60	1,52

Tabelle 5.16: Gemessene Geschwindigkeiten mit Fehlern für verschiedene ³He-Häufigkeiten. Um mit der letzten Tabelle vergleichen zu können muss man noch die Gravitationsrotverschiebung abziehen.

Das lässt jetzt leider nur den Schluss zu, dass es nichts bringt über den Geschwindigkeitsfit auf die ³He-Häufigkeit zu schließen. Daher habe ich für die Kinematik der DB Weißen Zwerge darauf verzichtet den ³He-Gehalt abzuschätzen und nur synthetischen Spektren für reine ⁴He-Atmosphären gemessen.

5.4 Ergebnisse der Weißen Zwerge vom Typ DB und DBA

Prinzipiell dürfte man für die DB Weißen Zwerge keine anderen Ergebnisse erwarten als für die DA Sterne. Es werden also auch hier hauptsächlich Dünne Scheiben Sterne erwartet und schon aufgrund der geringen Anzahl der DB und DBA Weißen Zwerge dürften sich kaum Dicke Scheiben Sterne oder Sterne des Halos zeigen.

5.4.1 Das VU-Diagramm der DB und DBA Weißen Zwerge

Auch für die DB und DBA Weißen Zwerge bietet sich das übliche Bild im VU-Diagramm (Abbildung 5.8).

Abbildung 5.8: VU Diagramm der DB und DBA Sterne. Modellfits.

Die meisten Sterne liegen im Bereich der Dünnen und nur wenige im Bereich der Dicken Scheibe. Auch hier liegen die Sterne im Bereich der Dicken Scheibe wieder sehr nahe an der 3σ -Grenze der Dünnen Scheibe und lassen vermuten dass sich dort weitere Dicke Scheibe Sterne aufhalten. Aufgrund der geringen Anzahl der DB und DBA Sterne ist es eigentlich schon fast verwunderlich hier gleich zwei Objekte im Bereich des Halo zu sehen.

5.4.2 Das e-J_z Diagramm der DB und DBA Weißen Zwerge

Auch das $e-J_Z$ Diagramm (Abbildung 5.8) zeigt, dass die DB und DBA hauptsächlich aus Sternen der Dünnen Scheibe bestehen. Bemerkenswert ist hier vielleicht, dass die Hälfte der Dicken Scheiben Sterne außerhalb des Parallelogramms der Eichsterne zu finden sind. Mit den Sternen des Halos sieht es hier nicht so üppig aus, da sich einer der beiden Halo Kandidaten (s. Kapitel 5.4.3 und Anhang C3) im Bereich der Dicken Scheibe befindet und der andere bei e=0,85 am unteren Rand des Diagramms versteckt hält.

Abbildung 5.9: e-J_Z Diagramm aller DB und DBA Sterne. Modellfits.

5.4.3 Klassifikation

Auch bei diesen Sternen gab es natürlich mehrdeutige Eigenbewegungen, so wie bei WD1654+160. In Version A gehört der Stern zur Dünnen Scheibe, in Version B zum Halo.

Bei WD0125-236, WD1403-010 und WD1311+139 überstimmen VU- und $e-J_Z$ Diagramm den Orbit und ordnen die beiden ersten der Dicken Scheibe und den letzten der Dünnen Scheibe zu.

Bei einer Anzahl Sterne war genau das Gegenteil der Fall. VU- und $e-J_Z$ Diagramm widersprechen sich und der Orbit wird entscheidend (Tabelle 5.17).

Name	V-U	e-J _z	Orbit	Klasse
he0423-1434	-1	1	-1	dick
wd0119-004B	-1	1	-1	dünn
wd0845-188	-1	1	-1	dick
wd2354-305	-1	1	-1	dünn

 Tabelle 5.17 Aller DB und DBA Sterne, bei denen der Orbit den entscheidenden Hinweis gab.

Der Stern WD0119-004, zu dem zwei unterschiedliche Eigenbewegungsmessungen vorliegen, gehört in Fall A zur Dicken und in Fall B zur Dünnen Scheibe.

Fast alle Weißen Zwerge vom Typ DB und DBA erwiesen sich eindeutig als Teil der dünnen Scheibe.

Der einzige Stern, der eindeutig zur Dicken Scheibe gerechnet werden konnte ist WD2229+139. Der einzig echte Halo Kandidat ist WD1046-017. Tabelle 5.18 fast das **Ergebnis** noch einmal zusammen.

Klassifikation	DB Sterne	DBA Sterne
dünn	25	20
dick	2	3
halo	1	0
dünn/dick	1	0
dünn/halo	1	0

Tabelle 5.18: Die Zusammenfassung der Ergebnisse der DB und DBA Klassifikation.

5.4.4 Das Alter der DB Weißen Zwerge

So wie zuvor schon für die DA Sterne kann auch für die DB Weißen Zwerge das Alter bestimmt werden.

Daten der mögli	chen Dick	en Sche	iben S	terne	Kühlze	it/log T	Vorl	äuferstern	Gesar	ntalter	
Name	Тур	Teff	logg	М	min	max	М	Alter	von	bis	reicht?
HE0423-1434	DB	16559	7,87	0,54	7,977	8,208	1	1,00E+10	1,01E+10	1,02E+10	ja
WD0845-188	DB	16790	7,92	0,57	7,977	8,208	1,26	6,01E+09	6,11E+09	6,18E+09	ja
WD1403-010	DBA	16397	8,13	0,69	8,135	8,31	3,09	8,36E+08	9,72E+08	1,04E+09	nein
WD2229+139	DBA	17165	8,79	1,10	8,796	8,875	6,72	1,51E+08	7,76E+08	9,01E+08	nein
Daten der S	Sterne, die	im Halo	lieger	۱	Kühlze	it/log T	Vorl	äuferstern	Gesar	ntalter	
Name	Тур	Teff	logg	М	min	max	М	Alter	von	bis	reicht?
WD1046-017	DB	16957	8,84	0,88	8,322	8,621	3,89	5,04E+08	7,14E+08	9,21E+08	nein
WD1654+160B	DB+dM	26912	7.84	0.56	7.067	7.217	1.13	7.64E+09	7.65E+09	7.66E+09	nein

Tabelle 5.19: Alterstabelle für die DB Sterne. Links die Daten des Weißen Zwerges (Name, Typ, Effektivtemperatur in K, log g und Masse in Sonnenmassen), dann die Zeit die er bereits abgekühlt ist (log T in Jahren), dann die Masse (in Sonnenmassen) und die Lebensdauer des Vorläufersterns. Rechts dann das Gesamtalters des Weißen Zwerges und ob es für das erwartete Alter von 7 bzw. 10 Ga reicht.

Wie Tabelle 5.19 zeigt reicht das Alter der DB Weißen Zwerge im Gegensatz zu den DA Sternen eher nicht aus um eine Geburt in der jeweiligen, kinematisch bestimmten Population zuzulassen. Harris et al.⁽⁸⁴⁾ meinen jedoch, dass DB Sterne höhere

Opazitäten besitzen als bisher angenommen, daher langsamer abkühlen und somit bei gleicher Temperatur und Masse älter als DA Sterne sind.

5.5 DA Weiße Zwerge, die nicht im SPY Katalog waren.

Während meiner Arbeit fielen mir noch zehn DA Sterne in die Hände, die zwar nicht Teil des SPY Projektes waren, aber dennoch nicht uninteressant sein können (Tabelle 5.20). Die Daten stammen aus T.R. Marsh, Dhillon und $\text{Duck}^{(14)}$ und G. Neelemans et al.⁽²⁾.

WD0136+768	WD0957-666	WD1202+608	WD1204+450	WD1428+373	
WD1704+481	WD1713+332	WD2009+622	WD2234+222	WD2331+290	
Tabelle 5.20 DA Weiße Zwerge die nicht Teil des SPY-Projekts waren.					

Auch hier waren die meisten Sterne eindeutig Teil der dünnen Scheibe. Nur WD2234+222 war eindeutig dem Halo zuzuordnen und WD2331+290 übertritt zwar die 3σ -Grenze der Dicken Scheibe im VU-Diagramm, aber ist sonst ganz klar ein Weißer Zwerg der Dicken Scheibe.

Da diese Sterne aber leider etwas untypisch für die restlichen Sterne dieser Arbeit waren, wurden sie für die spätere statistische Betrachtung nicht berücksichtigt. Die Unterschiede waren zum einen eine unterdurchschnittliche Masse, einige waren auch sehr kühl und zum anderen die geringere Präzision in den Geschwindigkeitsmessungen.

5.6 Verhältnis zwischen DB und DA Weißen Zwergen

Weiße Zwerge teilen sich grob in zwei Gruppen, die vom Spektraltyp DA und die von anderen Spektraltypen. Diejenigen die nicht vom Typ DA sind, zeigen genau nicht die DA Eigenschaften, die Balmerlinien. Weil es sich hierbei vielleicht um verschieden Entwicklungsergebnisse handelt, ist das Verhältnis der beiden Gruppen von Interesse. Bei Temperaturen von mehr als 45.000K trifft man auf Weiße Zwerge vom Typ DA und DO (He-II-Linien s. Anhang A). Geht man zu niedrigeren Temperaturen, so folgt unter der "DB-Gap" zwischen 30.000K und 15.000K der Bereich der DB Weißen Zwerge. Bei noch tieferen Temperaturen, sind keine Heliumlinien mehr sichtbar und andere Spektraltypen als DA und DB treten auf (Tabelle 5.21). Wie man aus der Tabelle entnehmen kann sind die Verhältnisse von DA Sternen zu anderen Weißen Zwergen in den einzelnen Temperaturbereich von der gleichen Größenordnung, was die Theorie unterstützen würde, dass es eine Entwicklung von Weißen Zwergen vom Typ DO über DB zu D(Z/Q/C) gibt. Dazu muss allerdings die Lücke ("DB-Gap") zwischen 30.000 und 45.000K überwunden werden, in der sich die Helium Weißen Zwerge als DA oder heiße DQ (36) tarnen sollen.

Temperaturbereich	DA	DB/DBA	anderer	DA/
		bzw. DO	Тур	nicht DA
> 45.000K	42,33	9	7^*	2,65
30.000 - 45.000K	50,5	-		-
15.000 - 30.000K	134,5	53	4 [#]	2,36
< 15.000K	66,67	-	32~	2,08

Tabelle 5.21 über die Temperaturverteilung meiner Weißen Zwerge. Nur für die DA wurde die Temperatur gemessen. *) 1DOZ, 4DAO, 2DAO-CSPN; #) 1DBAZ, 2DBZ, 1DZAB; ~) 18DC, 12DQ, 1DQZ, 1DZQ

5.7 Ist WD0255-705 aus der dünnen Scheibe ausgetreten?

Vier Sterne von Paulis Dicken Scheiben Sternen und 5 von meinen Dicken Scheiben Sternen sind nicht alt genug um in der dicken Scheibe geboren worden zu sein. Es gibt zwei Interpretationsmöglichkeiten, die sofort ins Auge stechen.

Entweder wurden diese Sterne aus der dünnen Scheibe ausgestoßen oder die Unterscheidungskriterien zwischen der dicken und der dünnen Scheibe sind noch nicht gut genug.

Name	V in km/s	U in km/s	e	J_Z
WD0119-004(DB)	161	199,1	0,62	1399,4
WD0255-705(P)	121,8	-3,1	0,44	974
WD0257+080	146,7	-38,1	0,35	1256,5
WD0352+052(P)	196,6	102,4	0,34	1582
WD0443-037	174,6	-76,4	0,30	1518,3
WD1013-010(P)	135,1	-91,9	0,45	1084
WD1013-050	155,0	-78,8	0,38	1334,0
WD1334-678(P)	150,2	-53,9	0,35	1200
WD2020-425	179,8	25,5	0,2	1527,9

Tabelle 5.22: Bei näherer Betrachtung lässt sich keine Gemeinsamkeit zwischen den zu jungen Sternen feststellen. (P):Werte von Pauli übernommen

Würde man eine Gemeinsamkeit all dieser Sterne finden, so könnte man auf eine Lücke im Klassifikationssystem schließen und die Klassifikation verbessern (vgl. Tabelle 5.22). Da dies aber nicht der Fall ist scheinen wir hier tatsächlich Sterne gefunden zu haben, die aus der dünnen Scheibe ausgestoßen wurden. Von 46 Sternen in der dicken Scheibe sind also 9 ausgestoßene der dünnen Scheibe. Das sind nur etwas weniger als 20%.

Ist ein so großer Teil der Sterne nicht alt genug, lohnt es sich auch über die Altersbestimmung noch einmal nachzudenken. Wir bestimmen ja das Alter der Weißen Zwerge hauptsächlich dadurch, dass wir von ihrer Masse auf die Anfangsmasse des Vorläufersternes schließen. Dieser Vorgang könnte jedoch stark fehlerbehaftet sein, wenn man allein die verschiedenen Graphen in Bild 5.6 vergleicht.

5.8 Vergleich meiner Arbeit mit Paulis Weißen Zwergen (nur DA)

Die ersten DA Weißen Zwerge aus SPY wurden von Pauli in ihrer Doktorarbeit⁽¹²⁾ ausgewertet. Sie fand unter 398 Weißen Zwergen 7 Halo und 27 Dicke Scheiben Sterne. Von zwei Dünnen und einem Dicken Scheiben Stern stellte sich nachträglich heraus, dass es sich bei ihnen nur um eine radialgeschwindigkeitsveränderliche Komponente eines Doppelsternsystems handelte. Die neue Klassifikation mit den gelösten Radialgeschwindigkeitskurven ergab für alle drei Systeme eine Zugehörigkeit zur Dünnen Scheibe. Daher müssen ihre Ergebnisse zu 7 Sterne im Halo und 26 Sterne der Dicke Scheibe, von insgesamt 395 Sternen, korrigiert werden. Tabelle 5.23 liefert einen Vergleich, sowie die Summe beider Arbeiten.

	Paulis DA	diese Arbeit	alle DA
Halo	1,8%	3,3%	2,3%
Dicke Scheibe	6,6%	5,6%	5,7%
Dünne Scheibe	91,6%	91,1%	92,0%

Tabelle 5.23: Wie man sieht habe ich im Verhältnis mehr Halosterne gemessen. Das lässt sich vielleicht dadurch begründen, dass ich leuchtschwächere und damit fernere Sterne zu bearbeiten hatte. Mit größerer Entfernung sollte nämlich die Anzahl der Scheibensterne schneller abnehmen als die Anzahl der Halosterne.

5.9 Statistik aller DA Weißen Zwerge

Insgesamt wurden 578 DA Weiße Zwerge der Dünnen Scheibe, 37 der Dicken Scheibe und 12 des Halos gefunden. Hinzu kommen 9 weitere Sterne deren Klassifizierung noch an der Zweideutigkeit von verschiedenen Messwerten hängen. Diese Sterne können aber durchaus in die Statistik miteinbezogen werden. So wurden die drei Sterne die entweder zur Dünnen und Dicken Scheibe gehören jeweils zur Hälfte der Dünnen und zur Hälfte der Dicken Scheibe zugeordnet und der Messwert der Dünnen und Dicken Scheibe entsprechend mit einem Fehler von 3/2 versehen. Ebenso wurde mit den anderen unklaren Klassifizierungen aus Tabelle 5.18 verfahren. Das Komplette Messergebnis findet sich in (Tabelle 5.24).

	Anzahl	in %
Dünne Scheibe	581,3 ± 2,7	92,0 ± 0,43
Dicke Scheibe	$35,8 \pm 2,2$	$5,7 \pm 0,35$
Halo	14,8 ± 2,2	$2,3 \pm 0,35$
Summe	632	100

Tabelle 5.24: Alle DA SPY Sterne nach ihrer Klassifizierung.

Wie bei jeder Messung streut natürlich auch dieses Messergebnis um den Wert der tatsächlichen Verteilung der drei Populationen. Durch statistische Überlegungen, kann man abschätzen, wie weit diese tatsächliche Verteilung vom Ergebnis entfernt sein könnte.

Dazu nimmt man verschieden mögliche Verteilungen an und berechnet das χ^2 nach Formel 5.2 zum Messergebnis.

$$\chi^{2} = \sum_{i=1}^{k} \frac{(a_{i} - b_{i})^{2}}{b_{i}}$$

Formel 5.2: Das χ^2 berechnet sich aus den a_i und b_i . Dabei ist a_i der Messwert und b_i der angenommene Verteilungs- oder Theoriewert. Das χ^2 wird mit wachsendem Abstand zum Messwert immer größer. Je größer ich das χ^2 wachsen lasse, desto sicherer wird mein Vertrauensbereich (engl. "confidence level").

Ist das χ^2 kleiner als ein vorher festgelegter Grenzwert, so gehört diese Verteilung zu dem gewählten Vertrauensbereich. Ist zum Beispiel das χ^2 kleiner als 11,8 so gehört die Verteilung zum 3 σ -Bereich.

Vergleicht man die Abbildungen 5.10 und 5.11, die die 3σ -Grenzen meiner und Paulis Arbeit illustrieren, so wird sofort deutlich, dass die Größe des 3σ -Bereichs stark von der Anzahl der Sterne abhängig ist.

Abbildung 5.11: 3σ -Grenze aus Pauli et al.⁽⁵⁸⁾.

In Abbildung 5.12 wird's dann noch deutlicher, wenn die beiden Arbeiten gleichzeitig in einem Graphen zu sehen sind. Die Summe beider Arbeiten ist natürlich noch aussagekräftiger.

Abbildung 5.12: Kombination der Ergebnisse von Pauli et al.⁽⁵⁸⁾ und meiner Arbeit

Beide Arbeiten zusammen liefern ein Ergebnis von 6,20% Dicke Scheibe Sterne und 2,34% Sterne des Halos. Leider ist die 3σ -Grenze noch so groß, dass beinahe 10,5% Dicke Scheibe und 5,75% Sterne des Halos nicht ausgeschlossen werden können (vgl. Abbildung 5.12).

5.10 Vergleich mit theoretischen Halo-Dichten

Wie Abbildung 5.12 dargestellt, ist die Anzahl der Weißen Zwerge des Halo der Sonnenumgebung zwischen 1,25 und 5,75% eingegrenzt. Nehmen wir einmal an SPY hätte in einer Kugel mit Radius 200pc alle Weißen Zwerge entdeckt, die zur Halopopulation gehören. Dann können wir mit einer angenommenen Dichtefunktion der Halo Weißen Zwerge auf den gesamten Halo hochrechnen.

Für Weiße Zwerge ist diese Dichtefunktion natürlich nicht bekannt, da wir Weiße Zwerge in großen Entfernungen ja nicht beobachten können. Aber jeder Weiße Zwerg ist einst ein Hauptreihenstern gewesen und deren Dichtefunktion im Halo ist bekannt.

Die beobachteten Sterndichten im Halo laufen mit $r^{3,5}$ und auch viele Simulationen mit Dunkler Materieverteilungen (vgl. Navarro⁽⁵⁵⁾, de Narai et al.⁽³⁰⁾ und Merritt et al.⁽⁵⁴⁾) simulieren mit einer solchen Dichtefunktion (r ist dabei der Abstand zum galaktischen Zentrum). Es spricht also nichts dagegen, diese Dichtefunktion auch einmal auf Weiße Zwerge anzuwenden und zu sehen was geschieht.

Die Versuche die Dunkle Materie in der Milchstraße zu messen, wollen zwischen $2,3\cdot10^{11}$ und $5,5\cdot10^{11}$ Sonnenmassen innerhalb von 30kpc bzw. 50kpc Entfernung vom galaktischen Zentrum gemessen haben. Davon liegen dann noch $1,5\cdot10^{11}$ Sonnenmassen in Form von leuchtender Materie vor (s. Kapitel 2.2).

In Tabelle 5.25 habe ich einmal die Masse aller Halo Weißen Zwerge innerhalb von 200pc Entfernung addiert, eine lokale Dichte berechnet, in die Dichtefunktion eingesetzt und einmal über 30kpc, sowie über 50kpc integriert. Von den nicht leuchtenden 0,7·10¹¹ Sonnenmassen innerhalb von 30kpc können zwischen 11% und 52% mit Halo Weißen Zwergen erklärt werden. Bei der Integration über 50kpc bleibt die Masse des Weißen Zwerg Halos natürlich weit hinter den gemessenen 4·10¹¹ Sonnenmassen zurück. Die Halo Weißen Zwerge können hier höchstens noch 10% der Dunklen Materie erklären, aber der Messwert bei 50kpc ist auch so stark fehlerbehaftet, dass ich mir deswegen keine größeren Sorgen machen würde. Mit meiner Messung liege ich deutlich über anderen Abschätzungen des Anteils von Weißen Zwergen am Halo, so wollen z.B. Canal, Isern und Ruiz-Lapuente⁽⁴⁴⁾ zeigen dass höchstens 10% der Halo Masse in Form von Weißen Zwergen vorliegen können. Hierzu können noch Oppenheimer et al.⁽⁸³⁾ und Reid, Sahu und Hawley⁽⁸¹⁾ verglichen werden.

		Masse in Sonnenmassen			
		Halo Weiße Zwerge	Hochrechnung	Hochrechnung	
		innerhalb 200pc	auf 30kpc	auf 50kpc	
statistisches Minimum	1,25%	3,21	$0,79 \cdot 10^{10}$	$1,02 \cdot 10^{10}$	
meine Messung	2,78%	$7,\!13^{\scriptscriptstyle +1,44}_{\scriptscriptstyle -2,47}$	$1,75_{-0,61}^{+0,35}\cdot 10^{10}$	$2,\!26^{\scriptscriptstyle +0,45}_{\scriptscriptstyle -0,79}\cdot\!10^{\scriptscriptstyle 10}$	
statistisches Maximum	5,75%	14,75	$3,62 \cdot 10^{10}$	$4,67 \cdot 10^{10}$	

Tabelle 5.25 zeigt die Masse der Weißen Zwerge des Halos innerhalb von 200pc Entfernung sowohl aufgrund des Messwertes, als auch aufgrund der Statistik. Außerdem wird aus den sich jeweils ergebenden Dichten eine Gesamtmasse an Weißen Zwergen innerhalb von 30kpc bzw. 50kpc Entfernung vom galaktischen Zentrum integriert.

Mögliche Fehler in meiner Dichteberechnung:

- Weiße Zwerge des Halos wurden übersehen die Dichte wird größer
- Es wurden Sterne fälschlicherweise als Weiße Zwerge des Halos klassifiziert die Dichte wird kleiner
- Die Weißen Zwerge liegen nicht in einer Kugel sondern nur in einem Doppelkegel, also in einem kleineren Volumen die Dichte wird größer
- Wir haben uns auf heiße Weiße Zwerge beschränkt. Wenn aber der Halo schon vor 10Gy aufgehört hat neue Sterne zu erzeugen, so sollten die Reste dieser Sterne bereits weiter abgekühlt sein es gibt viel mehr Weiße Zwerge in unseren Untersuchungskegeln die Dichte wird größer

Die möglichen Fehlerquellen deuten insgesamt eher auf eine größere Dichte der Weißen Zwerge des Halos hin.

Bei dieser ganzen Diskussion haben ich noch unterschlagen, dass es auch noch möglich ist, dass die Weißen Zwerge der Dicken Scheibe nicht genug berücksichtigt wurden und dass die Dicke Scheibe dadurch ebenfalls schwerer wird, als bisher gedacht. Dadurch würde der Anteil des Halo an der Gesamtmasse der Galaxie weiter zurückgehen und der Anteil der Weißen Zwerge am Halo dadurch steigen.

6 Heiße unterleuchtkräftige Sterne (subdwarfs (sd))

6.1 Auswahl der unterleuchtkräftigen Sterne

Die ersten sdB **aus dem SPY Projekt** wurden bereits bei Löbl⁽¹³⁾ kinematisch untersucht. Da jedoch die Extinktion nicht berücksichtigt wurde, musste ich hier noch für jeden Stern den jeweiligen Extinktionswert bestimmen und anschließend neu klassifizieren. In Tabelle 6.1 sind alle Änderungen aufgeführt, im Anhang D3 sind alle Sterne von Löbl⁽¹³⁾ mit eingearbeitet.

Name	alte Klassifikation	neue Klassifikation
HE0016+0044	dünn	dick
HE0230-4323	dick	dünn
HE0447-3654	halo	dünn
HE0929-0424	halo	dick
HE1450-0957	dünn	dick
HE2151-1001	halo	dick
HE2201-0001	-	halo
HE2307-0340	dick	halo
HE2349-3135	dick	halo
PG1519+640	halo	dick/halo
TONS183	-	dünn

Tabelle 6.1: Alle sdB von Löbl, die ihre Populationszugehörigkeit nach Berücksichtigung derExtinktion geändert haben.

Weitere Daten für SPY Sterne wurden schon von Lisker et al.⁽¹⁶⁾, Karl⁽¹¹⁾, Karl et al.⁽³⁴⁾ und Ströer et al.⁽²⁴⁾ (sdO) veröffentlicht. Karl⁽¹¹⁾ und Karl et al.⁽³⁴⁾ hatten dabei besonders radialveränderliche sdB und sdO im

Karl⁽¹¹⁾ und Karl et al.⁽³⁴⁾ hatten dabei besonders radialveränderliche sdB und sdO im Sinn und haben deren Geschwindigkeitskurven gelöst (Tabelle 6.2).

sdB	sdO
WD0048-202	HE1059-2735
HE0532-4503	HE1115-0631
HE0929-0424	HE1318-2111
HE1421-1206	
HE1448-0510	
HE2135-3749	
HE2150-0238	
HE2208+0126	

Tabelle 6.2 der unterleuchtkräftigen Sterne nach Karl⁽¹¹⁾. Für diese Doppelsysteme wurde die Systemgeschwindigkeit ermittelt.

Des Weiteren wurden noch Daten von Sternen verwendet die **nicht im SPY Projekt** enthalten waren. Diese wurden aus den Veröffentlichungen von Maxted et al.^(17,20), Edelmann et al.⁽¹⁹⁾ und Morales-Rueda et al.⁽¹⁸⁾, entnommen.

6.2 Unterschiede zu Weißen Zwergen in der Kinematik

Im Gegensatz zu den Weißen Zwergen gibt es noch keine Möglichkeit aus dem Spektrum eines unterleuchtkräftigen Sternes auf seine Masse zu schließen. Daher

musste immer mit der kanonischen Masse von 0,465 Sonnenmassen gerechnet werden.

6.3 Ergebnisse der kinematischen Untersuchung der unterleuchtkräftigen Sterne

6.3.1 Die Position der sdB Sterne in der Milchstraße

Die Positionen der sdB befinden sich innerhalb einer gedachten Verlängerung des Doppelkegels der DA Weißen Zwerge (vgl. Abbildungen 6.1 und 6.2). Dies liegt daran, dass die unterleuchtkräftigen Sterne viel größer sind als die Weißen Zwerge und dadurch ihre absolute Helligkeit entsprechen größer ist, wodurch sie noch bei größeren Entfernungen gesehen werden können.

rechts: Abbildung 6.1: X-Z Diagramm der sdB Positionen; links: Abbildung 6.2: zum Vergleich: ρ-Z Diagramm der DA Weißen Zwerge. Deutlich zu erkennen sind die beiden Doppelkegel, deren Spitzen sich hier (bei X=-8,5; Y=0; Z=0)) treffen.

Daher überschreiten die unterleuchtkräftigen Sterne in Z-Richtung auch mehrere Skalenhöhen der dicken Scheibe, aber selbst am Ende des Beobachtungsbereiches erstrecken sich die Programmsterne nicht über mehr als eine Skalenlänge der Dicken Scheibe. Aufgrund dieser großen Ausdehnung in Z-Richtung bin ich in der Lage meine eigene Skalenhöhe für die unterleuchtkräftigen Sterne der Dünnen und der Dicken Scheibe zu bestimmen (Tabelle 6.3), aber die Skalenlänge zu bestimmen ist nicht möglich.

unterleuchtkräftige Sterne (sdB)	Skalenhöhe
dünne Scheibe	200pc
dicke Scheibe	600pc

Tabelle 6.3: Die in dieser Arbeit ermittelten Skalenhöhen der unterleuchtkräftigen Sterne der Dünnen und der Dicken Scheibe.

Aufgrund der hohen Z-Ausdehnung ist es auch nicht möglich, wie bei den DA Weißen Zwergen, eine lokale Dichte der unterleuchtkräftigen Sterne des Halos zu berechnen, da diese mit Sternen berechnet würde, die in unterschiedlichen Gebieten mit verschiedenen lokalen Dichten lägen.

6.3.2 Das VU-Diagramm der unterleuchtkräftigen Sterne

Im Vergleich mit den DA Weißen Zwergen aus Kapitel 5 musste die kinematische Untersuchung der unterleuchtkräftigen Sterne mit weniger Testexemplaren auskommen. Da sich die 177 untersuchten Sterne wie gerade gezeigt bei größeren galaktischen Höhen aufhalten, sind mehr Dicke Scheibe und Halosterne zu erwarten. Und tatsächlich besitzt das VU-Diagramm Einträge im gesamten Bereich der Dicken Scheibe und auch viele Sterne im Bereich des Halo (Abbildung 6.3). Bei der hohen Anzahl an Sternen, die gleichzeitig innerhalb des 3σ -Bereiches der Dicken Scheibe und außerhalb des 3s-Bereiches der Dünnen Scheibe liegen, ist auch eine große Anzahl an Dicken Scheiben Sternen zu erwarten, die hier im Bereich der Dünnen Scheibe zu liegen kamen (vgl. den entsprechenden Eintrag über DA Weiße Zwerge in Kapitel 5 und die Auswertung in Kapitel 6.3.4). Gleiches kann hier natürlich für die Sterne des Halos gelten. Auch hier haben wir eine weit größere Anzahl als bei den DA Weißen Zwergen und können weder für den Bereich der Dicken, noch für den Bereich der Dünnen Scheibe ausschließen, dass sich dort Sterne des Halos aufhalten.

Abbildung 6.3: VU-Diagramm aller sdB aus dem SPY-Projekt.

6.3.3 Das e-J_z Diagramm der unterleuchtkräftigen Sterne

Auch im $e-J_Z$ Diagramm kann die höhere Anzahl an Sternen der Dicken Scheibe und des Halo erkannt werden. In Abbildung 6.4 finden sich, bei gleicher Exzentrizität wie bei den Mitgliedern der Dicken Scheibe der Eichsterne, ein großer Anteil außerhalb

des Parallelogramms der Eichsterne. Es wurden sowohl Sterne gefunden die mehr, als auch weniger Drehimpuls aufwiesen. Die unterleuchtkräftigen Sterne mit weniger Drehimpuls besitzen in der Regel große Fehler auf ihren e- und J_Z -Werten, so dass ihre Position immer noch den Bereich des Parallelogramms berührt, oder im Fall von hohen Exzentrizitäten auch in den Bereich des Halos hineinreicht.

Im e-J_Z Diagramm der sdB ist es besonders gut zu sehen, wie sich scheinbar zwei Äste aufspalten um den typischen Keil zu bilden. Der erste Ast ist mit vielen Sternen besetzt und läuft durch den ganzen Bereich der Kalibrierungssterne. Von e=0 und J_Z=-1900 durch das Parallelogramm der dicken Scheibe und in den Halo hinein, wo er bei J_Z=0 auf e=1 stößt. Der zweite Ast dagegen läuft nach unten in die andere Richtung. Er ist mit weniger Sternen ausgestattet, doch etwa zu Beginn der Dicken Scheiben Raute trennt er sich deutlich vom ersten Ast ab.

Die höhere Zahl an Sternen außerhalb des Kalibrierungsbereiches hat es mir ermöglicht auch diese Bereiche in Klassenzonen einzuteilen.

So fand ich heraus, dass sich die Sterne mit höherer Exzentrizität wie zu erwarten wie Sterne des Halos verhalten, jedoch teilweise schon weit vor e=0,7. Dies führte zu der grünen Linie die das untere Drittel meiner $e-J_Z$ Diagramme teilt. Rechts der Linie verhielten sich alle sdB wie Sterne des Halos, links der Linie wie Sterne der Dicken Scheibe. Für die Trennung der Dünnen und Dicken Scheibensterne hat sich bis jetzt noch keine neue Trenngrenze ergeben. Sie werden weiterhin bei e=0,27 getrennt.

Abbildung 6.4: e-J_Z Diagramm aller sdB aus dem SPY-Projekt.

Eine empirische Suche nach Unterschieden zwischen den beiden Ästen hat ergeben, dass sich die Sterne des ersten Astes einen mittleren Bahnradius besitzen, der kleiner als der Bahnradius der Sonne ist und die Sterne des zweiten Astes besitzen einen Mittleren Bahnradius außerhalb der Sonnenbahn. In Abbildung 6.5 zeige ich ein e-J_Z Diagramm in dem die beiden Äste unterschiedlich markiert sind. Die Unterscheidung erfolgt über den minimalen und den maximalen Abstand zum galaktischen Zentrum. Ist R_{min}+R_{max}<16 so gehört der Stern zum ersten Ast, ist der Abstand größer, so gehört er zum zweiten Ast. Dabei fiel jedoch eine kleine Verunreinigung des Bereichs des ersten Astes durch Sterne des zweiten Astes auf. Diese Sterne besaßen als Gemeinsamkeit eine V-Geschwindigkeit von weniger als 200km/s. Wendet man diese beiden Kriterien an, so kann man die beiden Äste recht sauber voneinander trennen. In Abbildung 6.6 werden die beiden Äste im VU-Diagramm dargestellt. Es ist deutlich zu erkennen, dass die Sterne des zweiten Astes, genau wie im e-J_Z Diagramm (Abbildung 6.5), den größten Teil des Gebietes der Dünnen Scheibe ausmachen. Dagegen ist das Gebiet der Dicken Scheibe im VU-Diagramm für die Sterne des zweiten Astes nur zu einem kleinen Teil erreichbar (nur der Teil mit V > 200 kms⁻¹) und das Gebiet des Halo liegt näher. Dies steht wohl in direktem Zusammenhang zum kleineren Bereich für Dicke Scheibe Sterne im e-J_Z Diagramm.

Alle meine e-Jz Diagramme besitzen eine scheinbar typische Keilform, mit der Spitze bei e=0 und Jz~1900. Zu größerem e hin dünnen die Punkte aus. Das Fehlen von Sternen unter- und oberhalb des Keils lässt sich mit dem Beobachtungsbereich von SPY erklären. In den Bereich oberhalb des Keils würden Sterne fallen, die, bei gleicher Exzentrizität, einen kleineren Drehimpuls aufweisen, also Teil der Scheibe sind und einen kleineren Bahnradius besitzen. Mit Sternen unterhalb des Keils verhält es sich genau umgekehrt, sie müssten einen größeren Bahnradius besitzen. Und genau diese Sterne wurden von SPY nicht beobachtet (s. Abbildung 6.2).

links: Abbildung 6.5 mit einem e-J_Z Diagramm einiger sdB Sterne; rechts: Abbildung 6.6 mit dem zugehörigen V-U Diagramm; Es sind jeweils die Sterne des ersten Astes blau und die des zweiten Astes grün gefärbt.

Das Ausdünnen nach rechts, kann man dadurch erklären, dass sich Sterne mit gleichem Drehimpuls und höherer Exzentrizität zwar mit ähnlichem mittlerem Radius, dafür aber auf elliptischeren Bahnen bewegen. Das hat zur Folge, dass sie sich zu einem großen Teil weiter innen oder weiter außen in der Galaxie befinden und sich nicht in unserer Nähe aufhalten.

Nun aber zu der Auswertung der einzelnen Sterne.

6.3.4 Klassifikation der unterleuchtkräftigen Sterne

Da sich die unterleuchtkräftigen Sterne ebenso wie die Weißen Zwerge in mehrere Untergruppen aufspalten habe ich die sdB, sdO und He-sdB/O Sterne getrennt voneinander ausgewertet.

6.3.4.1 Klassifikation der sdB

Wie schon die DA Weißen Zwerge, so sind auch die meisten sdB Teil der Dünnen Scheibe. Eindeutig den beiden anderen Populationen zugeordnet werden konnten die Sterne in Tabelle 6.4.

Dicke Scheibe	Halo
CD-48 106	Feige 86
HE0123-3330	HE0019-5545
HE0447-3654	HE0136-2758
HE0532-4503	HE0151-3919
HE1021-0255	HE0415-2417
HE1221-2618B	HE1038-2326
PG0849+319	HE1352-1827
PG1017-086B	HE1441-0558B
PG1040+234	HE1459-0234B
PG1258-030A	HE2150-0238
PG1432+004	HE2156-3927A
PG1519+640A	HE2322-0617A
PG2151+100	HS2224+2618
PHL382	PG1258-030B
TONS135	PG1519+640B
WD2122+157	PG1701+359A
	WD0028-274
	WD1549-000

Tabelle 6.4: Alle sdB, bei denen alle Klassifikationsmethoden den gleichen Wert ausspucken.

PG1258-030 und PG1519+640 sind gleich die ersten Sterne für den die Eigenbewegungen nicht eindeutig waren und die deswegen sowohl "dick" als auch "halo" sein können.

Der Stern HE1441-0558 ist ebenfalls Aufgrund der Eigenbewegungen entweder "dünn" oder "dick".

Auch hier waren wieder das V-U und das $e-J_Z$ Diagramm zuverlässiger als der Orbit und daher wurden die Sterne mit gleichem V-U und $e-J_Z$ ohne Berücksichtigung des Orbits klassifiziert (Tabelle 6.5).

dünn		dick		dick				
V-U:	e-J _Z :	Orbit:	V-U:	e-J _Z :	Orbit:	V-U:	e-J _Z :	Orbit:
dünn	dünn	dick	dick	dick	dünn	dick	dick	halo
EC113	49-2753		[CW83] 1419-0)9	HE1422-1851		
Feige 1	.08		CD-24	731		HE1459-0234A		
Feige 6	55		CPS-64	4 4 8 1		PG1051+501		
HE000	7-2212		EC151	03-1557		PG131	5-077	
HE010	1-2707		GD108					
HE023	0-4323		HD205	805				
HE032	1-0918		HE120	0-0931				
HE051	3-2354		JL36					
HE105	0-0630		PB533	3				
HE120	0-1924		PG091	8+029				
HE122	1-2618	A	PG103	2+406				
HE141	9-1205		PG104	3+760B				
HE142	1-1206		PG123	2-136				
HE144	8-0510		PG1303+097					
HE145	0-0957		PG1329+159A					
HE151	9-0708		Feige 4	9A				
HE 213	35-3749							
HE222	2-3738							
HS171	0+1614							
HS212	5+1105							
PG085	0+170							
PG090	7+123							
PG090	9+164							
PG111	6+301							
PG123	7+132							
PG124	8+164A	-						
PG130	0+279							
PNG21	19+226							
SB395								
TONS	183							
UV01	735+22							
WD00	31-274							
WD004	48-202							
WD01	09-264							
WD02	58+183							

Tabelle 6.5: Normalerweise sind sich V-U und e- J_Z einig und überstimmen dieOrbitklassifikation.

Auch HE1221-2618, PG1043+760 und PG1329+159 können wieder keine eindeutigen Eigenbewegungen zugeordnet werden, daher sind die Sterne entweder Teil der Dünnen oder Dicken Scheibe.

Als nächstens folgt wieder die große Gruppe der sdB die im V-U Diagramm in der Dünnen Scheibe liegen, aber im $e-J_Z$ als Dicke Scheiben Sterne erscheinen, sowie die Sterne die im V-U als "dick" erscheinen aber im $e-J_Z$ zum Halo gehören (Tabelle 6.6).

Auch bei den sdB lief die Klassifizierung dann wieder ohne das V-U Diagramm, dafür mit genauerer Betrachtung des Fehlerbereichs des $e-J_Z$ Diagramms und des Orbits ab.

V-U:	e-J _Z :	Orbit:	V-U:	e-J _Z :	Orbit:
dünn	dick	dünn/dick	dick	halo	dick/halo
dün	n	dick	dick		halo
PG0839+	-399B	HE0016+0044	BD+48 27	21	Feige 49B
PG0919-	-273	HE0207+0030	PG1701+3	359C	PG1701+359B
PG1725-	-252	HE0929-0424			
PG1743-	-477	HE1033-2353			
		HE1254-1540			
		HE2156-3927B			
		HE2208+0126			
		HE2237+0150			
		PG1017-086A			
		PG1047+003			
		PG1248+164B			
		PG1512+244			
		PG1647+056			
		PG1716+426			

Tabelle 6.6: Manchmal, wenn sich V-U und e- J_Z uneinig sind, schlägt für den Orbit die große Stunde und er wird entscheidend.

Der Sterne Feige 49 hat wieder das übliche Problem mit den Eigenbewegungen und gehört entweder zur Dicken Scheibe oder zum Halo.

HE2156-3927 teilt dieses Problem, bleibt aber mit beiden Varianten Teil der Dicken Scheibe. Ebenso bleibt PG0839+399 in beiden Varianten Teil der Dünnen Scheibe.

PG1248+164 muss sich über die Eigenbewegungen für die Dünne oder Dicke Scheibe entscheiden.

PG1701+359 besitzt sogar drei mögliche Eigenbewegungen. Zwei davon würden zur Dicken Scheibe, eine in den Halo führen.

Unter den übrigen sdB gab es merkwürdigerweise eine Häufung von ganz seltsamen Klassifizierungen (Tabelle 6.7). V-U: "dünn", e-J_Z: "dick" und der Orbit fordert sogar "halo". Normalerweise würde ich hier wie oben verfahren und die V-U Klassifizierung fahren lassen, um dann e-J_Z und Orbit die Entscheidung zu überlassen, was dann zur Dicken Scheibe führen würde. Doch hier musste ich feststellen, dass einige der Orbit absolut nicht mehr mit der Dicken Scheibe vereinbar waren. Überraschenderweise gab es auch Objekte bei denen sich V-U und e-J_Z problemlos auf die Dicke Scheibe einigen konnten, aber der Orbit nicht mehr mit einer Scheibenpopulation vereinbar war. Die Ursache dürfte in der recht hohen W-Komponente der Geschwindigkeit zu finden sein, die im V-U Diagramm ja ignoriert wird.

V-U: dünn	e-J _Z : dick		Orbit:	V-U:	e-J _Z :	Orbit:	
			halo	dick	dick	halo	
dick			halo		halo		
HE0135-6150 HE2		HE2	2201-0001	HE2151-1001			
HE2238-1455 HE2		2307-0340	W	D0021-	-234		
HE2322-0617B HE2		2349-3135					
HS1530+05	542						

Tabelle 6.7: Orbits können auch manchmal alleine Ausschlaggebend sein. Wenn der Orbit auf "halo" steht ist Vorsicht geboten.

Das häufigste Problem der sdB, die Eigenbewegungen, schlagen auch bei HE2322-0617 zu. Entweder gehört der Stern zum Halo oder zur Dicken Scheibe.

Ganz spezielle Freude bereiten die Sterne HS2216+1833 und PG1553+273. Sie sind die einzigen Beispiele für Sterne deren Klassifikation im V-U eine Population vorsieht, die weiter außen liegt als die des $e-J_Z$ Diagramms. Aber nach Betrachtung aller Fehlerbereiche, lies sich feststellen, dass beide Sterne nur mit der Dicken Scheibe verträglich sind.

In Abbildung 6.7 sind die sdB Sterne noch einmal nach ihrer Lage in der Galaxie aufgetragen und je nach Populationszugehörigkeit eingefärbt. Die Abbildung erinnert ein wenig an Abbildung 3.2, in der ja die verschiedenen Dichten der Populationen illustriert wurden.

Abbildung 6.7 zeigt das Klassifikationsergebnis der sdB am Ort des Geschehens. Dünne Scheibe: grün; Dicke Scheibe: blau; Halo: rot.

6.3.4.2 Klassifikation der sdO

Bei den sdO finden sich gerade mal zwei eindeutige Mitglieder der Dünnen Scheibe. Bei den anderen Populationen viel die Zahl der eindeutig klassifizierbaren Sterne etwas üppiger aus (Tabelle 6.8).

dünn	dick	halo
HE0111-1526	HE1106-0942	HE1047-0637
PNG0276+169	HE1238-1745	HE1135-1134
	HE1318-2111	HE1356-1613
	WD1008-179B	WD1008-179A
		WD2204+070

Tabelle 6.8: Alle eindeutig klassifizierten sdO.

Für WD1008-179 liegen zwei verschiedene Eigenbewegungsmessungen vor. Dies führt im Fall A zu einem Halo, im Fall B zu einem Sterne der Dicken Scheibe.

Wie immer wenn sich V-U und $e-J_Z$ einig sind, hat der Orbit einen schlechten Stand (Tabelle 6.9).

V-U und e-	Orbit:	V-U und e-	Orbit:	
J _Z : dünn	dick	J _Z : dick	halo	
dünn		dick		
HE1310-273	3	HE1059-2735		
		HE1237-1408		
		HE1502-101	19B	

Die Tabelle 6.9 der sdO, bei denen nur der Orbit abweicht.

Dagegen wird bei Uneinigkeit der Orbit entscheidender (Tabelle 6.10).

V-U:	e-J _Z :	Orbit:	dünn	V-U: halo	e-J _Z :		Orbit:	dick
dünn	dick	oder die	ck		dick		oder ha	lo
dünn			dick			halo		
HE1136-2504		HE1502-10)19A	HE	E2218-20	026n		
	WD09	44-090				PC	62120+0	62

Tabelle 6.10: Die sdO, bei denen der Orbit entscheidend war. Die Fehlerbereiche vonHE2218-2026 kratzen zwar noch den Bereich der Dicken Scheibe an, aber bei PG2120+062deuten auch die Fehler im $e-J_Z$ Bereich mehr Richtung Halo.

Bei HE1502-1019 gibt es ein Problem dem Stern die scheinbare Helligkeit eindeutig zuzuordnen. Er ist aber in jedem Fall Mitglied der Dicken Scheibe.

Der kurioseste Stern aus der Gruppe der sdO ist HE1115-0631. V-U und e- J_Z sind sich einig, dass der Stern zur Dünnen Scheibe gehören muss. Und in der Tat beschreibt der Stern eine schöne, fast kreisrunde Bahn, wenn man auf die Scheibenebene herabblickt. Aber der Orbit erreicht dabei mehr als 3kpc Höhe über und unter der Scheibe, ist also stark gegen die Scheibe geneigt, und muss demnach zum Halo gehören. HE1115-0631 ist damit ein schönes Beispiel für die seltenen, nicht chaotischen Haloorbits.

Nun bleibt nur noch, die heliumreichen unterleuchtkräftigen Sterne zu klassifizieren.

6.3.4.3 Klassifikation der He-sdB und He-sdO

Mit diesem Abschnitt werde ich die Klassifizierung der unterleuchtkräftigen Sterne abschließen und noch die He-sdB und He-sdO besprechen. Dabei sind die meisten Sterne vom Spektraltyp He-sdO und ich habe deshalb in den Tabellen 6.11 und 6.12 die He-sdB speziell mit einem "*" markiert.

Wie schon bei den sdO werden auch bei den He-sdO nur wenige Sterne eindeutig klassifiziert (Tabelle 6.11).

dünn	dick	halo
HE0958-1151	HE0301-3039*	HE0952+0227
WD0447+176	HE1136-1641	HE1316-1834
	HE1142-2311	HE2347-4130
	HE1355-0622	

Tabelle 6.11: Die Tabelle der eindeutig klassifizierten He-sdO.

Etwas besser sieht es schon aus, wenn man nur eine Übereinstimmung von VU- und e- J_Z Diagramm vorraussetzt (Tabelle 6.12).

V-U:	e-J _Z :	Orbit:	V-U:	e-J _Z :	Orbit:	
dünn	dünn	dick	dick	dick	dünn	
	dünn		dick			
HE0155	-3710		HE0001	-2443		
HE0342	-1702		HE0031-5607*			
HE0414	-5429		HE0914-0341			
HE1220	-0536		HE1251+0159			
HE1511	-1103		HE1349-2320			
HE2203	-2210		HE1446	-1058		
HE2305	-1155					
WD1632	2+222*					
WD2258	8+155					

Tabelle 6.12 der He-sdO, deren Orbit von der Klassifikation abweicht.

Bei WD2258+155 gab es wieder zwei mögliche Eigenbewegungsmessungen. Aber beide Varianten laufen auf die Dünne Scheibe hinaus.

Der einzige He-sdO, der im V-U Diagramm zur Dünnen Scheibe gerechnet würde, aber zur Dicken Scheibe gehört ist HE1203-1048.

He0016-3212 gehört nach allen Kriterien zur Dicken Scheibe. Nur der Orbit erreicht eine sehr große Höhe über der Scheibe. Der Orbit ist aber nicht chaotisch und daher auch noch mit der Dicken Scheibe verträglich.

Zwei Sterne besitzen wieder diese äußerst merkwürdige Klassifizierung, in der V-U auf "halo", e-J_Z auf "dick" und der Orbit auf "halo" plädieren. Wenn man sich aber die Fehlerbereiche der einzelnen Klassifikationen und den Orbit genauer ansieht, stellt man fest, dass e-J_Z nur gerade so noch im Bereich der Dicken Scheibe liegt und die Sterne HE1430-0815 und WD2020-253 allesamt in den Halo gehören.

6.3.5 Statistik der unterleuchtkräftigen Sterne

Wie schon für die Weißen Zwerge habe ich auch für die unterleuchtkräftigen Sterne ein wenig Statistik betrieben. Dabei muss ich gleich darauf hinweisen, dass aufgrund der geringeren Anzahl der unterleuchtkräftigen Sterne die 3σ -Gebiete natürlich viel größer sind und damit die Festlegung der Populationsanteile weniger aussagekräftig wird.

Außerdem ist, im Gegensatz zu den statistischen Aussagen über DA Weiße Zwerge, die folgende Statistik über die unterleuchtkräftigen Sterne nicht dazu geeignet, eine Aussage über die lokale Dichte der Sterne der Dünnen Scheibe, der Dicke Scheibe oder des Halos zu treffen, da die untersuchten Sterne hier weit über die Skalenhöhen von Dünner und Dicker Scheibe hinausgehen (vgl. Abbildung 6.2). Die Statistiken sollten also erst mal nur als eine Auswertung der Zusammensetzung der unterleuchtkräftigen Sterne in dieser Arbeit gesehen werden.

6.3.5.1 Statistik der sdB

Die häufigsten unterleuchtkräftigen Sterne im SPY und den anderen Projekt sind vom Typ sdB. Mein Ergebnis liefert 54,4% Zugehörigkeit zur Dünnen, 31,2% Zugehörigkeit zur Dicken Scheibe und 14,4% zum Halo. Die 3 σ -Grenze lässt aber noch zwischen 21% und 46% Dicke Scheibe Sterne und zwischen 7% und 26% Sterne des Halos zu (s. Abbildung 6.8).

Abbildung 6.8 zeigt das Ergebnis nach Quellen aufgeschlüsselt. grün: SPY; blau: Edelmann et al.^(17,20); rot: Maxted et al.^(17,20); schwarz: alle

6.4.4 Statistik der sdO und He-sdO

Die Zahl der sdO war gegenüber den sdB viel geringer, daher ist der Messwert (31,58% Dünne, 39,47% Dicke Scheibe und 28,95% Halo) nicht so gut statistisch belegt und kann somit auch nicht wirklich gut mit dem Ergebnis für die sdB verglichen werden (Abbildung 6.9). Beide Sorten zusammen geben ein leicht modifiziertes Ergebnis der sdB wieder, 51,7% der unterleuchtkräftigen Sterne gehören zur Dünnen Scheibe, 32,1% zur Dicken Scheibe und 16,2% zum Halo (s. Abbildung 6.9).

Abbildung 6.9 vergleicht die sdO mit den sdB. rot: sdO; schwarz: sdB; blau: beides. An der Größe der 3σ-Grenze ist leicht zu erkennen, dass der Vergleich unter der viel geringeren Zahl der sdO leidet.

Zusammen mit den He-sdO kann man die sdO Sterne etwas besser auswerten (Abbildung 6.10). Es ergibt sich für die 37 Sterne im Mittel eine Zugehörigkeit von 34% zur Dünnen, 34% zur Dicken Scheibe und 32% zum Halo. Der 3σ -Bereich ist jedoch noch immer riesig (vgl. Abbildung 6.10).

Abbildung 6.10: Alle sdO und He-sdO mit 1,2 und 3σ-Grenzen. Die Diagonale Linie rechts oben stellt neben der X- und Y-Achse die dritte Begrenzung für mögliche Populationsverteilungen dar.
7 Zusammenfassung und Ausblick

Diese Arbeit ist, zusammen mit den Ergebnissen von Pauli et al.⁽⁵⁸⁾, die größte und präziseste, kinematische Untersuchung von Weißen Zwergen. Aufgrund der hochpräzisen Radialgeschwindigkeitsmessungen und der drei sich ergänzenden kinematischen Tests, können Fehlklassifikationen nahezu ausgeschlossen werden. Die gewonnenen Erkenntnisse über die Menge an Weißen Zwergen im Halo und der Dicken Scheibe könnten dazu beitragen, dem Rätsel um die Dunkle Materie in der Milchstraße etwas näher zu kommen.

Abbildung 7.1: 3σ-Bereiche für verschiedene Datenmengen. Unter der Annahme dass eine Vergrößerung der Datenmenge zum gleichen Ergebnis führt ändert sich zwar nicht der Messwert, jedoch verbessert sich der statistische Fehler immer weiter. Im Bild sind die 3σ -Grenzen (von außen nach innen) für die 1, 2, 4, 8, 16 und die 32-fache Datenmenge, im vergleich zum SPY Projekt, eingezeichnet. Um diesen *z.B. für den Halo auf* $\pm 1\%$ zu reduzieren, müsste man die Datenmenge um den Faktor vier vergrößern.

Der nächste logische Schritt, wäre jetzt die

SPY Daten mit den Daten aus anderen Arbeiten zu vergleichen, die in der Scheibenebene und bei anderen Temperaturen gearbeitet haben. (s. Abbildung 7.1 zur statistischen Verbesserung durch mehr Messwerte.) Dann kann mit den gemeinsamen Daten auf eine tatsächliche Dichte der Weißen Zwergen für die verschiedenen Populationen geschlossen werden. Das geht zum Beispiel mit Arbeiten, die sich mit 2 dimensionaler Kinematik von kalten Weißen Zwergen beschäftigt haben. Mit den Erkenntnissen von Pauli⁽¹²⁾, die sich mit den Unterschieden zwischen 2 und 3 dimensionaler Kinematik beschäftigt hat, könnte versucht werden aus den 2 dimensionalen Arbeiten noch mehr herauszuholen.

Mit den Wahnsinnsfähigkeiten des GAIA Satelliten wird es in den nächsten Jahren auch möglich werden, Eigenbewegungen für viel dunklere Objekte zu messen. Dann können wir unseren Beobachtungsbereich ausdehnen.

Momentan bringt es weniger den Beobachtungsbereich von SPY weiter in die Ferne zu richten, als den Bereich der Scheibe mit zu vermessen und kältere Sterne mit aufzunehmen, um das Gebiet, in dass wir bereits hineingesehen haben, auch vollständig vermessen zu haben.

7.1 Grenzen der Anwendbarkeit der kinematischen Tests

In den Bereich in dem sich die SPY Sterne befanden dürften die Fehler, die ich im Folgenden beschreiben möchte, noch vernachlässigbar klein sein. Sollten jedoch die kinematischen Tests auf fernere Objekte angewandt werden, so muss über einige Grenzen nachgedacht werden.

Im VU-Diagramm gehen wir davon aus, dass sich alle Sterne der dünnen Scheibe in einem bestimmten Bereich aufhalten. Dies ist jedoch nur in der Sonnenumgebung richtig. Da dem VU-Diagramm das kartesische XYZ Koordinatensystem zugrunde liegt, gibt es Probleme, wenn wir Objekte betrachten, die bei anderen XY-Koordinaten liegen. Wie Abbildung 7.2 zeigt hat ein Scheibenstern je nach Position auf seinem galaktischen Orbit völlig unterschiedliche V- und U-Geschwindigkeiten.

Abbildung 7.2: An Position 1hat der Stern eine positive V- und eine negative U-Geschwindigkeit. Auf seinem Weg haben sich dann bis Position 2 die Vorzeichen umgekehrt.

Es müssen also entweder für verschiedene XY Positionen verschiedene VU Grenzen ermittelt werden, oder wir wechseln rechtzeitig auf ein Zylinder- oder Kugelkoordinatensystem, mit dem dann auch Sterne gemeinsam bearbeitet werden können, die in der XY Ebene weit voneinander getrennt sind.

Auch die galaktischen Orbits haben Grenzen. Das Modell von Allen und Santillán⁽⁶⁸⁾ gibt zwar das galaktische Potenzial bis 100kpc an, doch muss, für sehr große Distanzen zum galaktischen Zentrum, das Ergebnis mit besonders viel Argwohn betrachtet werden, da die Anzahl der Messungen ab 20 kpc drastisch zurückgeht und Fehlerbereiche an den Messergebnissen immer größer werden (s. Abbildung 7.3).

Abbildung 7.3: Rotationskurve der Milchstraße. Allen und Santillán⁽⁶⁹⁾

Wie Abbildung 7.4 zeigt, geht der Trend der Rotationsgeschwindigkeit bis 11 kpc nach unten, und nimmt kurz vor 12kpc plötzlich wieder zu. Ab diesem Anstieg nimmt aber die Anzahl der Messungen ab, und zugleich werden die Fehlerbalken immer größer. Im Extremfall wären die Messungen bis 14kpc sogar noch mit einer abfallenden Geraden verträglich. Das letzte Wort in Sachen Rotationskurven ist jedenfalls noch nicht gesprochen und für die Kinematik sollte, spätestens ab 20kpc, die Richtigkeit des Potenzialverlaufs und damit der korrekte Verlauf des Orbits angezweifelt werden. Auch Kostov⁽²⁸⁾ hat in seiner Arbeit ab 20kpc bzw. 30kpc keine Messwerte mehr verwendet, sondern extrapoliert.

Abbildung 7.4: Rotationskurve der Milchstraße. Die Zahlen an den Fehlerbalken geben die Anzahl der Kugelsternhaufen an, aus denen die Eingeschlossene Masse gemittelt wurde, aus der wiederum auf die Rotationsgeschwindigkeit geschlossen wurde. Die von mir eingefügte Gerade gibt einen extremeren Abfall der Rotationskurve an, den man erhält, wenn man die höhere Anzahl der Messwerte bis 11kpc stärker gewichtet. Allen und Santillán⁽⁶⁹⁾

Einzig das $e-J_Z$ Diagramm scheint von solchen Problemen verschont zu bleiben. Doch auch hier gibt es eventuelle Schwierigkeiten, wenn wir beginnen Sterne zu beobachten, die im $e-J_Z$ Diagramm außerhalb des "Keils" liegen und daher nicht mittels Eichsternen sicher einer Population zugeordnet werden können (s. Kapitel 6.3.3).

7.2 SPY Bearbeitungsstand

Von den 980 SPY Sternen bleiben noch 189 nicht gelöste Sterne/Sternsysteme übrig. handelt sich dabei um In der Regel es Doppelsterne, die Radialgeschwindigkeitsveränderlich sind oder um Sterne, deren Spektren zu stark verrauscht waren um sie auszuwerten. Ebenfall sind in diesen 189 die 78 Sterne enthalten, die zu Spektraltypen gehören, die noch gar nicht bearbeitet wurden (Tabelle 7.1). Bei den 18 Weißen Zwergen vom Typ DC und dem einen vom Typ DCA dürfte kaum Hoffnung auf eine mögliche Bearbeitung bestehen.

Spektraltyp	Anzahl
DAO	4
DAO-CSPN	2
DAZ	3
DBAZ	1
DBZ	2
DC	18
DCA	1
DO	9
DOZ	1
DQ	12
DQZ	1
DZ	7
DZA	3
DZAB	1
DZQ	1
PG1159	8
PG1159-CSPN	3
WD?+MS	1

Tabelle 7.1 der noch nicht bearbeiteten Spektraltypen von SPY mit der Anzahl der Objekte
dieses Typs.

Anhang:

In der Astronomie ist es, aufgrund der überwältigenden Menge an Sternen, üblich diesen nur einen Katalognamen zu geben. Bevor sich der Leser also die Tabellen des Anhangs zu Gemüte führt, kann er hier noch erfahren, welche Bedeutungen in den Abkürzungen der Katalognamen stecken.

α) Bedeutung der Katalognamen

- BAL: Ballon number; 1985; W. Tobin; Aston. Astrophys., Suppl. Ser., 60, 459-470
- BD: Bonner Durchmusterung; 1886; E. Schönfeld; Eds Marcus und Weber's Verlag, Bonn, 0
- BPS: Beer+Preston+Shectman; 1982; J.R. Pier; Astron. J., 87, 1515-1526
- CBS: Case univ., Blue; 1983; P. Pesch und N. Sanduleak; Astrophys. J., Suppl. Ser., 51, 171-182
- CD: Cordoba obs., Durchmusterung; 1892; J.M. Thome; Results of Natianal Argentine Obs., 16, 1-604
- CPD: Cape obs., Photographic Durchmusterung; 1896; D. Gill und J.C. Kapteyn; An. Cape Obs., 3, 1
- [CW83]: Carnochan+Wilson, 1983; 1983; D.J. Carnochand und R. Wilson; Mon. Not. R. Astron. Soc., 202, 317-345
- EC: Edinburgh-Cape survey; 1991; D. Kilkenny, D. O'Donogue und R.S. Stobie; Mon. Not. R. Astron. Soc., 248, 664-669
- FEIGE: Feige; 1958; J. Feige; Astrophys. J., 128, 267-272
- GD: Giclas, Dwarf; 1965; H.L. Giclas, R. Burnham, G.N. Thomas; Lowell Obs. Bull., 6, 155-164
- HD: H. Draper; 1918; A.J. Cannon und E.C. Pickering; Ann. Astron. Obs. Harvard Coll., 91
- HE: Hamburg-ESO Survey; 1991; L. Wisotzki, W. Wamsteker und D. Reimers; Astron. Astrophys., 247, L17-L20
- HS: Hamburg Schmidt survey; 1988; H.-J. Hagen, D. Engels, F. Toussaint et al.; Astron. Astrophys., 195, 15-20
- JL: Jaidee+Lynga; 1974; S. Jeidee und G. Lynga; 1974; Arkiv for Astron., 5, 345-379
- LB: Luyten, Blue; 1953-1956; W.J. Luyten; AJ 58, 59, 61 außerdem The Observatory, Univ. Minnesota, Minneapolis
- MCT: Montreal-Cambridge-Tololo survey; 1990; S. Demers, F. Wesemael, M.J. Irwin et al.; Astrophys. J., 351, 271-276
- PB: Palomar obs., Berger; 1977; J. Berger und A.M. Fringant; Astron. Astrophys., Suppl. Ser., 28, 123-152
- PG: Palomar obs., Green; 1976; R.F. Green, J.L. Greenstein und A. Boksenberg; Publ. Astron. Soc. Pac., 88, 598-602
- PHL: Palomar obs., Haro Luyten; 1962; G. Haro und W. J. Luyten; Bol. Obs. Tonantz Tacub., 3, 37-117
- SB: Slettebak+Brundage; 1971; A. Slettebak, R.K. Brundage; Astron. J. 76, 338-362
- TONS: Tonantzintla obs., South; 1958; E. Chavira; Bol. Obs. Tonantz. Tacu., 2, part no 17, 15-31
- UVO: Ultraviolet obj.; 1983; D.J. Carnochand und R. Wilson; Mon. Not. R. Astron. Soc., 202, 317-345
- WD: White Dwarf;1977; G.P. Cook und E.M. Sion; Villanove Univ. Obs. Contr.,2

A) **Typische SPY Spektren**

Zur Illustration habe ich gut belichtete Spektren für die verschiedenen Objekttypen ausgesucht. Ich habe mich dabei immer auf den mittleren Teil unseres Spektralbereichs (von 3200Å bis 6600Å) beschränkt, da hier die charakteristischen Linien für die jeweiligen Spektraltypen liegen. Der Name des Sterns ist immer mit angegeben, wobei "m" für "–" und "p" für "+" steht.

unterleuchtkräftige Sterne

Im Gegensatz zum sdO ist von den Wasserstoff- und Heliumlinien nur die H_{β} zu sehen. Die anderen Linien in diesem Bild sind Metalllinien.

Abbildung A3: Typisches He-sdB Spektrum. Zu sehen sind die HeI Linien 4921,931, 5015,678 und 5047,738. Auch bei 4713,139, 4713,156 und 4713,376 liegen drei He-I-Linien, die hier als eine erscheinen. Außerdem die HeII Linie bei

4685,698. Die H_{β} ist nur zu erahnen.

Zusätzlich zu den Linien des He-sdBs sind noch die HeII Linien bei 5411,516 und 4859,320 zu sehen.

Markant sind hier die extrem breiten Balmerlinien, im Bild die H_{β} bei 4862,68. Es sind keine Heoder Metalllinien zu sehen.

Abbildung A6: Weiße Zwerge vom Typ DBA sind Übergangsobjekte zwischen DA und DB Sternen. Sie zeigen die gleichen HeI Linien wie die DB Sterne. Aber man kann bei 4862,68 noch die H_{β} erkennen.

Abbildung A7: Weiße Zwerge vom Typ DB sind heliumreich. Sie zeigen ausschließlich HeI Linien. Im Bild die HeI Linien 4921,931, 5015,678 und 5047,738. Die HeI Linie links besteht eigentlich aus drei Linien bei 4713,139, 4713,156 und 4713,376.

Abbildung A8: DO sind ebenfalls heliumreiche Weiße Zwerge. Jedoch zeigen sie aufgrund ihrer höheren Temperatur nur HeII Linien. Im Bild die HeII Linien bei 5411,516, 4859,320 und 4685,698 zu sehen.

B) Daten der DA Weißen Zwerge

B1) Alle Eingabedaten

Name	Rekta	Deklination	logd	Δ logd	RV	Δ RV	pma	pmd	Δ pma	Δ pmd
EC13349-3237	13 37 50.6	-32 52 21	2,81	0,08	9,19	2,81	4	-26	7	2
HE0016-4340A	00 19 06.10	-43 24 18.5	2,39	0,08	-14,68	3,69	-30	-12	8	5
HE0016-4340B	00 19 06.10	-43 24 18.5	2,18	0,08	-14,68	3,69	-11,8	-13,6	6,4	5,4
HE0031-5525	00 33 36.03	-55 08 37.5	1,84	0,08	28,12	5,12	10	-34	22	9
HE0130-2721	01 33 09.08	-27 05 45.0	2,16	0,08	10,04	6,15	28,3	-57,5	2,04	1,43
HE0131+0149	01 34 28.46	+02 04 21.4	1,78	0,08	-10,99	3,28	58	-32	2	2
HE0205-2945	02 08 08.00	-29 31 38.8	2,01	0,08	33,56	1,33	-46	-44	3	7
HE0211-2824	02 13 56.66	-28 10 17.8	1,73	0,08	23,54	4,14	26	-126	1	5
HE0219-4049	02 21 19.69	-40 35 29.7	2,04	0,08	26,61	3,46	34	12	7	1
HE0221-0535A	02 23 59.88	-05 21 45.9	2,07	0,08	15,73	4,50	-20	-6	4	12
HE0221-0535B	02 23 59.88	-05 21 45.9	2,09	0,08	15,73	4,50	-12,4	10,6	7,9	9,3
HE0221-2642	02 23 29.40	-26 29 19.7	2,26	0,08	22,51	5,26	-2	-44	3	13
HE0225-1912	02 27 41.43	-18 59 24.5	2,18	0,08	-35,56	1,57	-58	-52	1	2
HE0255-1100	02 58 21.72	-10 48 25.7	2,12	0,08	-28,13	4,13	-24,35	-30,8	1,44	1,66
HE0256-1802	02 58 59.54	-17 50 20.3	2,30	0,08	1,21	2,34	-50	-68	3	6
HE0303-2041	03 06 04.96	-20 29 31.1	1,92	0,08	33,21	3,10	-6	-76	5	6
HE0305-1145	03 08 10.25	-11 33 45.7	2,12	0,08	26,21	4,48	52	-22	1	2
HE0315-0118	03 18 13.31	-01 07 13.1	1,69	0,08	20,70	3,58	60	2	0,5	3
HE0325-4033	03 27 43.92	-40 23 26.1	2,08	0,08	37,11	2,61	10	-54	9	3
HE0331-3541A	03 33 52.53	-35 31 18.9	2,48	0,08	28,60	2,16	48	-124	11	5
HE0331-3541B	03 33 52.53	-35 31 18.9	2,13	0,08	18,64	3,16	48	-124	11	5
HE0344-1207	03 47 06.71	-11 58 08.5	1,77	0,08	-14,30	7,66	86	-38	1	2
HE0409-3233	04 11 21.14	-32 26 14.9	2,10	0,08	-37,86	2,24	-58,15	-96,15	2,94	3,58
HE0410-1137	04 12 28.99	-11 30 08.3	2,11	0,08	47,15	2,34	56,85	115,4	3,25	1,73
HE0414-4039	04 16 02.87	-40 32 11.7	2,10	0,08	44,36	4,61	48	-50	2	3
HE0416-3852A	04 17 11.51	-54 57 47.9	2,19	0,08	28,46	4,55	21,2	8,1	5,7	5,4
HE0416-3852B	04 17 11.51	-54 57 47.9	2,19	0,08	28,46	4,55	46	12	18	5
HE0417-3033	04 19 22.07	-30 26 44.0	2,18	0,08	39,75	5,19	88,9	23,9	2,5	1,59
HE0423-2822	04 25 20.85	-28 15 19.9	1,95	0,08	79,86	14,07	30	18	2	3
HE0523-3856	05 25 28.11	-38 54 12.5	2,20	0,08	92,64	2,23	62	100	0,5	9
HE0532-5605	05 33 06.70	-56 03 53.3	1,73	0,08	13,65	8,65	31	1	18	18
HE1247-1130	12 49 54.26	-11 47 00.2	2,06	0,08	-2,81	5,63	-6,65	-36,35	2,35	2,12
HE1258+0123	13 01 10.50	01 07 39.9	1.92	0.08	5.00	6.17	23.82	2.92	0.5	0.5
HE1310-0337	13 13 28.35	-03 53 19.7	2,15	0,08	21,25	6,68	-58,5	-14	7,1	5,57
HE1333-0622	13 36 19.64	-06 37 58.9	2.20	0.08	7.18	3.72	-30	2	2	3
HE1340-0530	13 43 17.88	-05 45 35.8	2,37	0.08	-10,26	6,85	-2	-30	1	3
HE1346-0632A	13 48 48.34	-06 47 21.0	2,51	0,08	74,91	1.04	-10,2	5.7	5	5
HE1346-0632B	13 48 48.34	-06 47 21.0	2.66	0.08	76.46	0.89	-10.2	5.7	5	5
HE1414-0848A	14 16 52.1	-09 02 04	1.66	0.08	-32.48	4.56	-28	4	5	5
HE1414-0848B	14 16 52.1	-09 02 04	1.81	0.08	-22.89	5.23	-28	4	5	5
HE1429-1209	14 32 20.7	-12 22 49	2.49	0.08	16		10	-12	2	8
HE1522-0410	15 25 12.26	-04 21 29.3	1.87	0.08	-5.62	5.17	-7	-7	29	29
HE2147-1405	21 50 03.69	-13 51 45.9	2.41	0.08	125.75	0.89	20.85	13.45	2.25	2.78
HE2148-3857	21 51 19.23	-38 43 04.5	2.24	0.08	15.42	3.25	-30	0	10	,. 0
Fortsetzung auf de	er nächsten S	eite.	,_ ·	2,00	· •, · -		50	. 0		
Name	Bekta	Deklination	load	Δ load	RV	ΔRV	oma	omd	Δ pma	Δpmd
HE2155-3150	21 58 46.08	-31 36 06.5	2,03	0.08	9.72	3.43	-14	-12	1	4

	r	r					1			
HE2159-1649	22 02 20.82	-16 34 38.3	2,05	0,08	15,78	3,22	56	8	3	4
HE2200-1341	22 03 35.6	-13 26 50	2,11	0,08	43,34	3,90	-30	-40	2	3
HE2203-0101	22 06 02.44	-00 46 33.5	2,02	0,08	3,72	3,31	-3,05	-20,15	1,97	1,96
HE2209-1444A	22 12 18.1	-14 29 48.0	1,57	0,08	-42,61	7,32	250,57	91,73	1,86	2,42
HE2209-1444B	22 12 18.1	-14 29 48.0	1,42	0,08	-46,91	9,62	250,57	91,73	1,86	2,42
HE2238-0433	22 41 04.90	-04 18 09.1	1,58	0,08	2,95	7,41	42	20	1	2
HE2241-3235	22 44 43.23	-32 19 43.7	2,29	0,08	-20,35	7,78	57,2	-7,15	3,34	2,04
HE2246-0658	22 48 40.05	-06 42 44.2	1,64	0,08	24,40	5,46	-3,45	-29,8	2,21	1,83
HE2315-0511	23 18 04.31	-04 54 45.7	2,27	0,08	6,21	7,47	-32	-60	3	3
HE2345-4810	23 47 46.16	-47 53 42.8	2,48	0,08	32,48	2,86	58	38	1	2
HS0002+1635	00 04 43.34	16 52 16.7	2,06	0,08	-9,42	3,98	82	-4	4	2
HS0047+1903	00 50 12.43	19 19 49.3	1,94	0.08	1,40	3,30	12	-30	5	2
HS0130+0156	01 32 57.38	02 11 32.6	2.35	0.08	6.97	11.26	8	0	3	2
HS0200+2449	02 03 45.80	25 04 09.1	2.07	0.08	28,40	3.98	10	4	3	2
HS0213+1145	02 16 07.61	11 59 18.9	1.94	0.08	50.73	5.66	132	-8	2	1
HS0237+1034	02 40 35.57	10 47 01.5	2.02	0.08	53.51	7.02	4	12	7	2
HS0309+1001	03 12 34.96	10 12 27.2	2.02	0.08	71.77	3.96	12	-26	1	3
HS0329+1121	03 32 35.92	11 31 31.9	1.97	0.08	-18.79	4.82	4	18	4	2
HS0401+1454	04 04 35.02	15 02 26.7	1.90	0.08	18.04	8.19	14	-88	3	2
HS0424+0141	04 26 52.45	01 47 47.7	2.33	0.08	56.65	14.88	10.3	6.62	4.81	4.65
HS0503+0154	05 05 39.24	01 58 28.2	2.38	0.08	-4.46	9.05	-6.15	-35.1	2.13	2.13
HS0507+0434a	05 10 14.0	04 38 39	1.43	0.08	37.3	1	-2	-94	2	3
HS0507+0434b	05 10 13.3	04 38 55	1.73	0.08	44.8	2.2	0	-96	3	1
HS0926+0828	09 29 36 53	08 15 46 8	1 87	0.08	20.20	7 98	-86	-18	7	0.5
HS0931+0712	09 34 32 67	06 58 48 2	2 49	0.08	7 12	7 47	22	-32	2	
HS0933+0028	09 36 07 96	00 14 35 9	2 20	0.08	6.55	4 13	-14	-2	4	1
HS0937+0130	09 39 58 67	01 16 38 2	2 03	0.08	-13.38	5 90	-12	-8	3	3
HS0949+0823	09 51 56 17	08 09 33 7	1 99	0.08	6.39	4 73	-78	-134	2	3
HS1003+0726	10 06 23 08	07 12 12 6	1,00	0.08	20.94	4 91	40	-64	0.5	2
HS1102±0032A	11 05 15 33	00 16 26 3	1 97	0.08	46 21	2 28	-210 23	25 47	3 96	1 88
HS1102+0032A	11 05 15 33	00 16 26 3	1 97	0,00	46 21	2 28	-212.86	30.36	8 78	1,00
HS1102+0032RD	11 05 15 33	00 16 26 3	1 97	0,00	16.21	2,20	-215	35 25	7 59	7 45
HS1115+0032D	11 17 /6 18	00 10 20.3	1,97	0,00	11 00	2,20	-90 55	35.85	202	2,40
HS1136+1350	11 20 25 /2	13 43 11 0	2 10	0,00	-3 00	7.26	-50,55	55,65 6.4	1 28	1 /5
LC1040100	10 45 29 74	01 16 16 1	2,13	0,00	27.01	1,20	20.75	1 15	1 02	1,40
HS1243+0132	12 45 36.74	01 10 10.1	2,09	0,08	27,91	4,29	-29,75	1,10	2 00	3 76
HS1249+0420	12 11 06 06	16 31 03 4	1,79	0,08	2,97	6 53	12,57	4,33	2,99	3,70
HS1334+0701A	13 36 33 67	06 46 26 8	2.05	0,00	-37 20	2 00	40	-38	3	0 0
HS1334+0701A	13 36 33 67	06 46 26 8	2,00	0,00	-37,23	2,00	40	-38	3	2
HS1606±0153	16 08 55 22	+01 45 48 2	2,00	0,00	-36.82	2,00	40 62	-98	4	0
HS1609+1426	16 12 06 51	14 19 05 8	1 90	0,00	-40 16	5 14	-4	6		2
HS2046+0044	20 48 38 26	00 56 00 8	2 21	0,00	-15 /0	1 63		20	0.5	
HS2040+0044	20 40 30.20	00 30 00.0	1 02	0,00	-11 00	7.04	66	18	0,5	4
HS2050+0721	20 38 43.03	07 33 37.5	0.10	0,00	-11,90	7,04	00	20	1	1
	21 01 47.77	02 20 27.0	2,10	0,08	-4,11	0,49	24	30	4	1
HS2100+1734	21 10 39.32	17 40 32.0	1,91	0,00	-13,00	0,30	12	4	1	2
US000.0146	22 10 01.10	00000.9	1,99	0,08	10 00	3,01 6.65	24 ^ ^	-22	2	3
HSZZZU+Z146	22 23 01.74	22 01 25.0	1,70	0,08	-18,28	6,65	44	-40	4	28
Fortsetzung auf de	Pakta			Alogal	21/		nme	ame	Anma	Anma
					10		prita			⊥рппа
HS0044.0100	22 23 01.64	220131.0	1,76	0,08	-8,45	6,30	34	-22	6	45
H52244+2103	22 46 45.28	21 19 4/./	2,09	0,08	5,26	4,52	-12	-26	4	2
	01 14 03.23	-37 50 41.9	2,76	0,08	18,60	2,69	5,27	-5,4	3,26	3,23
IVICT0136-2010	UT 38 31.67	-19 54 50.6	1,61	0,08	13,01	9,53	212,85	166,43	2,55	2,64

			A 15		00 F T				-	
MC12352-1249	23 55 13.68	-12 32 55.1	2,45	0,08	-28,57	4,17	-20	-16	3	3
PG0026+136	00 28 52.33	13 54 45.80	1,66	0,08	-3,42	5,03	5	-3		
PN2155-308	05 03 07.52	00 39 01	2,73	0,08	-11,61	1,16	-7,75	-2,05	3,30	3,48
WD0017+061A	00 19 40.95	06 24 07.7	2,01	0,08	-26,03	3,93	-44	-22	18	0
WD0017+061B	00 19 41.0	06 24 12	2,01	0,08	-26,03	3,93	-126	408	3	14
WD0024-556	00 26 38.0	-55 25 24	1,42	0,08	10,25	9,13	-305,63	-492,94	0,5	0,5
WD0027-636A	00 29 56.0	-63 24 33	2,23	0,08	-1,17	7,36	-21,8	0,9	6,7	6,1
WD0027-636B	00 29 56.0	-63 24 33	2,23	0,08	-1,17	7,36	-44	-10	12	17
WD0028-474	00 30 47.2	-47 12 36	1,84	0,08	38,63	3,00	60,15	56,6	2,22	2,47
WD0032-317	00 34 49.9	-31 29 55	2,55	0,08	24,34	3,95	16	-4	1	7
WD0034-211	00 37 25.0	-20 53 43	1,83	0,08	4,04	2,76	-253,65	-198,55	6,13	4,91
WD0037-006	00 40 21.6	-00 21 08	1,78	0,08	-47,00	3,39	11,13	-4,6	3,46	2,5
WD0048-544	00 51 09.3	-54 11 22	1,87	0,08	2,03	3,67	187,99	45,83	0,03	0,01
WD0050-332	00 53 17.4	-32 59 57	1,79	0,08	-5,17	4,33	-35,55	25,05	1,83	1,31
WD0058-044	01 01 02.2	-04 11 11	1,87	0,08	15,89	6,12	105,2	44,3	1,52	3
WD0102-185	01 04 53.1	-18 19 52	2,37	0,08	-2,15	5,69	-16	-80,15	1,26	2,78
WD0106-358	01 08 20.53	-35 34 36.5	2,00	0,08	12,34	4,35	0,5	-53,25	3,45	3,7
WD0107-192	01 09 33.1	-19 01 19	1,99	0,08	-22,24	3,30	-70,95	-63	1,79	1,78
WD0112-195	01 15 05.6	-19 15 19	2,47	0,08	-3,91	21,89	20,00	10	7	4
WD0114-034A	01 16 58.8	-03 10 56	1,73	0,08	-54,50	8,11	36,40	3,9	1,34	2,3
WD0114-034B	01 16 58.8	-03 10 56	2,12	0,08	-24,85	5,15	36,40	3,9	1,34	2,3
WD0128-387	01 30 27.9	-38 30 39	1,90	0,08	9,99	12,44	169,26	86,4	2,15	5,42
WD0129-205	01 31 39.2	-20 19 59	1,82	0,08	38,06	3,53	158,15	16,38	7,18	7,22
WD0131-163	01 34 24.1	-16 07 08	2,04	0,08	-22,79	3,30	28,33	26,57	2,26	2,42
WD0133-116	01 36 13.6	-11 20 32	1,50	0,08	68,29	3,90	459,61	-121,86	3,32	2,73
WD0135-052	01 37 59.4	-04 59 45	1,00	0,08	8,72	3,39	-94	-6	4	3
WD0136+768	01 41 21.6	+77 09 01	1,90	0,08	4,11	2,42	128,05	-148,57	7,21	3,98
WD0137-349	01 39 42.9	-34 42 37	2,09	0,08	18,81	2,73	-41,15	-46,6	4,4	2,55
WD0158-227	02 00 53.0	-22 27 30	2,87	0,08	-12,77	3,88	-4,00	22	7	3
WD0205+1330	02 08 03.5	13 36 31	2,33	0,08	-21,21	3,41	43,70	-5,7	1,3	3,43
WD0216+143	02 18 48.3	+14 36 03	1,94	0,08	-15,91	3,76	-99,00	40,5	2,61	2,47
WD0220+222	02 23 34.0	+22 27 36	1,98	0,08	43,45	3,81	161,91	-58,7	9,78	2,79
WD0239+109	02 42 09	+11 12.4	2,34	0,08	-16,40	6,04	168,46	-289,21	4,13	6,73
WD0239+1090	02 42 09	+11 12.4	2,45	0,08	-16,40	6,04	168,46	-289,21	4,13	6,73
WD0257+080A	02 59 59.3	08 11 58	2,00	0,08	43,05	5,19	486,00	-98,3	11,46	5,43
WD0257+080B	02 59 59.3	08 11 58	2,00	0,08	43,05	5,19	139,20	-115,5	5,2	5,2
WD0257+080C	02 59 59.3	08 11 58	2,00	0,08	43,05	5,19	6	-38	21	8
WD0315-332	03 17 26	-33 03.0	2,62	0,08	-2,71	3,45	10	36	14	9
WD0326-273	03 28 48.8	-27 19 02	1,30	0,08	46,43	2,76	806,55	268,30	5,66	5,66
WD0328+008	03 31 34	+01 03.5	2,40	0,08	-4,47	10,93	-0,28	-2	2,11	1,94
WD0330-009	03 32 37	-00 49.6	2,20	0,08	-20,85	5,39	-28,65	-27,9	5,8	5,8
WD0343-007o	03 46 26	-00 38.5	2,34	0,08	-5,48	14,10	20,55	-12,2	5,8	5,8
WD0344+073	03 46 51.29	+07 28 03.2	1,92	0,08	14,47	3,61	-6	-20	4	3
WD0347-137A	03 50 14.53	-13 35 14.0	1,87	0,08	11,41	7,08	173,96	68,46	1,68	3,68
Fortsetzung auf de	r nächsten S	eite.								
Name	Rekta	Deklination	logd	Δ logd	RV	Δ RV	pma	pmd	Δ pma	Δ pmd
WD0347-137B	03 50 14.53	-13 35 14.0	1.87	0.08	11,41	7,08	-10	82	. 14	. 6
WD0352+018	03 54 44	+01 58.8	2,00	0,08	64,47	3,58	94	-18	6	2
WD0406+169	04 09 28.5	+17 07 55	1,70	0.08	43.42	6,56	115.93	-23.3	5.61	3,06
WD0407+179	04 10 10.3	+18 02 24	1.51	0.08	32.72	3.52	73.56	-84.94	6.4	3.87
WD0410+117	04 12 43.2	11 51 47	1,70	0.08	30.51	2,97	48,15	-85,45	1.58	1.35
WD0421+162A	04 23 55.5	16 21 16	1,69	0,08	44.30	4,10	120,13	-17,77	6,58	6,92
WD0421+162B	04 23 55.5	16 21 16	1,69	0,08	51,00	3,10	120,13	-17,77	6,58	6,92

WD0421+162C	04 23 55.5	16 21 16	1,69	0,08	44,30	4,10	35,83	124,96		
WD0425+168	04 28 39.4	16 58 11	1,71	0,08	43,18	4,09	93,19	-27,66	7,73	5,99
WD0426+106A	04 28 58.4	10 44 51	1,79	0,08	30,95	10,13	20,8	71,7	5	5
WD0426+106B	04 28 58.4	10 44 51	1,79	0,08	30,95	10,13	32,14	38,3		
WD0430+1360	04 33 10.5	13 45 16	2,58	0,08	-3,02	2,24	-11,85	3,9	1,91	1,47
WD0443-037jo	04 43 07.1	-03 46 51	2,32	0,08	115,17	17,52	6	-16	4	1
WD0446-789	04 43 45.9	-78 51 50	1,71	0,08	16,83	2,69	-66,7	-1	2,9	2,8
WD0453-295	04 55 36.0	-29 29 01	2,23	0,08	29,20	1,65	-6,15	85,35	1,76	2,91
WD0518-105	05 21 19.0	-10 29 52	1,92	0,08	38,35	17,46	12	-48	2	4
WD0605-483jA	06 05 02.7	-48 19 60	2,31	0,08	33,03	9,21	18	56	7	9
WD0605-483jB	06 05 02.7	-48 19 60	2,31	0,08	33,03	9,21	2,4	7	5,8	5,8
WD0621-376	06 23 12.2	-37 41 29	1,85	0,08	19,09	2,08	65	-3,85	1,02	0,81
WD0630-050	06 32 57.0	-05 05 32	2,13	0,08	-26,63	9,00	8,17	-21,5	4,9	2,2
WD0648-253j	06 48 56.2	-25 23 48	1,95	0,08	45,83	3,22	-30,1	30,85	2	3,8
WD0723-277j	07 23 20.1	-27 47 23	2,09	0,08	-14,07	7,25	80,3	13	5	5
WD0752-676	07 53 08.6	-67 47 34	0.88	0.08	48.00	5.69	1485.51	-1550.6	5.01	5.24
WD0810-728	08 09 34.5	-72 59 04	2.06	0.08	16.62	4.81	-18.5	38.5	6.35	3.99
WD0830-535	08 31 50.6	-53 40 45	1,96	0.08	15,94	4,15	72	-134	19	27
WD0839+231	08 42 52.0	+23 00 18	1,94	0,08	-20,69	3,19	-26	-104	10	8
WD0841+033j	08 41 03.8	+03 21 16	2,10	0,08	8,65	3,63	-14,9	0	6,5	6,5
WD0902-041j	09 02 17.3	-04 06 53	2,08	0,08	-16,26	2,70	-10,45	5,45	1,69	2,27
WD0916+064	09 18 42.0	+06 17 02	2,41	0,08	-13,99	3,50	-22	32	0,25	0,49
WD0922+162a	09 25 13.5	+16 01 42	2,07	0,08	29,81	5,60	-64	-16	8	5
WD0928-713	09 29 11.3	-71 34 15	1,50	0,08	26,38	5,47	-18	20	32	2
WD0933+025	09 35 41.0	+02 22 06	2,15	0,08	-18,65	5,05	-2	-62	3	9
WD0945+245A	09 48 46.7	+24 21 30	1,39	0,08	9,22	9,89	-64,8	-101	1,87	1,33
WD0945+245B	09 48 46.7	+24 21 30	1,39	0.08	8,41	9,97	-64,8	-101	1.87	1,33
WD0956+045	09 58 37.0	+04 21 30	2,09	0.08	48,83	3,00	26	-144	6	11
WD0957-666	09 58 55.0	-66 53 10	2,35	0,08	-25,36	1,50	34	38	11	8
WD1001+203	10 04 04.5	+20 09 09	1,61	0,08	16,91	6,30	-90	-41,55	1,5	2,77
WD1013-050A	10 16 28.6	-05 20 27	2,20	0,08	87,45	2,39	-94	10	9	23
WD1013-050B	10 16 28.6	-05 20 27	2,23	0,08	87,45	2,39	-94	10	9	23
WD1017-138	10 19 52.4	-14 07 35	2,01	0,08	25,00	4,50	-38	14	6	2
WD1023+009	10 25 49.4	+00 39 05	2,37	0,08	46,43	7,63	-10,33	2,15	1,61	2,23
WD1031+063	10 34 05.4	+06 02 46	2,18	0,08	28,42	5,64	40	-24	2	0,5
WD1031-114	10 33 42.8	-11 41 38	1,61	0,08	12,29	2,94	-344,67	-29,37	2,26	2,05
WD1056-384A	10 58 20.4	-38 44 51	1,83	0,08	13,88	3,78	-158	32,4	4,6	4,6
WD1056-384B	10 58 20.4	-38 44 51	1,83	0,08	13,88	3,78	-7,1	0,9	2,26	2,04
WD1058-129A	11 01 11.9	-13 14 42	1,74	0,08	-1,14	8,79	7,85	-2,7	2,21	1,37
WD1058-129B	11 01 11.9	-13 14 42	1,74	0,08	-1,14	8,79	-13,1	-9,4	9,6	9,6
WD1121+216	11 24 13.0	+21 21 36	1,17	0,08	8,95	5,89	-1026,4	-37,87	31,27	35,32
Fortsetzung auf de	er nächsten S	eite.								
Name	Rekta	Deklination	logd	Δ logd	RV	Δ RV	pma	pmd	Δpma	Δ pmd
WD1129+071A	11 32 05.5	+06 54 59	1,72	0,08	-14,79	3,66	-2	96	4	0
WD1129+071B	11 32 05.5	+06 54 59	1,72	0,08	-14,79	3,66	298	186	31	44
WD1141+077	11 43 59.4	+07 29 07	2,28	0,08	25,64	3,52	-36	-28	2	4
WD1147+255	11 50 20.2	+25 18 33	1,66	0,08	24,22	6,07	-310,13	-108,13	3,27	3,16
WD1149+057	11 51 54.0	+05 28 42	1,61	0,08	-39,23	6,55	30,5	-227	1,55	3,38
WD1201-049	12 04 21.8	-05 13 15	2,78	0,08	10,10	6,23	2	-4	1	5
WD1202+608A	12 04 38.6	+60 32 08	2,25	0,08	-9,01	6,41	-48,84	-32,32	2,46	3,56
WD1202+608B	12 04 38.6	+60 32 08	2,25	0,08	-9,01	6,41	-95,93	-28,8	2,06	1,34
WD1204+450	12 06 47.7	+44 49 54	2,20	0,08	19,40	2,68	41,4	-22,7	6,1	6,4
WD1214+032	12 16 51.9	+02 58 05	1,19	0,08	-33,54	8,49	-644,74	267,28	4,97	5,66

WD1229-012	12 31 34.5	-01 32 08	1,89	0,08	2,75	2,15	-194,22	4,78	4,17	1,92
WD1241-010	12 44 28.9	-01 18 58	1,94	0,08	-13,80	1,83	-55,5	-177,7	1,37	1,77
WD1254+223	12 57 02.3	+22 01 52	1,87	0,08	-8,60	5,61	-35,83	-199,53	5,65	7,33
WD1257+037	13 00 09.0	+03 28 42	2,70	0,08	91,88	2,38	-429,35	-872,75	13,54	17,04
WD1300-098	13 03 17.0	-10 09 12	1,86	0,08	-20,82	5,66	-75,74	-17,16	7,12	5,85
WD1314-153	13 16 43.6	-15 35 58	1,93	0,08	85,22	3,00	-212,58	-675,9	5,3	2,6
WD1319-288	13 22 40.5	-29 05 35	2,09	0,08	-67,13	4,21	187	-142,75	3,21	1
WD1348-273A	13 51 23.2	-27 33 52	1,63	0,08	35,78	3,63	90,89	-166,65	7,28	8,66
WD1348-273B	13 51 23.2	-27 33 52	1,63	0,08	35,78	3,63	68,11	-210,69	2,14	5,89
WD1349+144	13 51 54.3	+14 09 45	1,96	0,08	-16	1,7	-94	-6	4	3
WD1350-090B	13 53 14.6	-09 16 23	2,08	0,08	43,39	1,81	324,42	-313,29	0,5	0,5
WD1412-109A	14 15 07.5	-11 09 22	2,07	0,08	0,20	5,16	16	74	8	6
WD1412-109B	14 15 07.5	-11 09 22	2,07	0,08	0,20	5,16	-16,7	-21,05	2,33	3,29
WD1415+132	14 17 40.2	+13 01 49	2,43	0,08	14,58	2,72	42	-10	4	10
WD1425-811	14 33 07.8	-81 20 14	1,24	0,08	-1,00	3,68	-142	-396	0,5	1
WD1428+373	14 30 42.6	+37 10 16	2,01	0,08	-32,29	2,70	16	-84	3	2
WD1436-216	14 39 12.6	-21 50 13	2,37	0,08	-12,52	4,52	16	-24	2	4
WD1449+168	14 52 11.8	16 38 01	2,00	0,08	32,11	3,67	6	64	13	14
WD1527+090B	15 29 50.8	+08 55 44	1,74	0,08	-6,54	4,01	56,66	21,43	2,99	1,97
WD1541-381	15 45 11.0	-38 18 52	1,57	0,08	23,45	2,51	130	-58	28	14
WD1544-377	15 47 30.1	-37 55 08	1,15	0,08	-11,58	3,87	-415	-214	0,5	0,5
WD1550+183B	15 52 26.4	+18 10 18	1,62	0,08	-32,37	5,86	-149,4	115,37	2,54	3,19
WD1615-154	16 17 55.2	-15 35 52	1,49	0,08	-22,16	4,12	-177,4	-161,06	13,01	14,7
WD1620-391	16 23 33.8	-39 13 46	1,16	0,08	16,41	3,26	81,4	1,78	8,14	2,47
WD1620-391p	16 23 33.8	-39 13 46	1,11	0,08	44,00	0,50	81,4	1,78	8,14	2,47
WD1643+143A	16 45 39.1	+14 17 44	2,26	0,08	-15,39	2,15	46	74	1	6
WD1643+143B	16 45 39.1	+14 17 44	2.08	0.08	-23.22	2.93	46	74	1	6
WD1646+062B	16 49 07.4	+06 08 55	2.23	0.08	-23.54	4.26	-4	-50	2	2
WD1704+481	17 05 31.0	+48 03 06	1,57	0,08	-26,94	2,69	18	-70	7	4
WD1713+332A	17 15 34.9	+33 13 04	1.95	0.08	10.38	1.78	101.87	-139.1	3.61	2.92
WD1713+332B	17 15 34.9	+33 13 04	1,99	0.08	9,41	1.87	101.87	-139.1	3.61	2,92
WD1755+194	17 57 39.0	+19 24 24	2.18	0.08	20.39	4.23	-21.8	-117.15	3.87	9.22
WD1802+213	18 04 24.0	+21 21 06	1.99	0.08	43.31	6.92	-74	-68	2	2
WD1844-654A	18 49 01.7	-65 25 22	2,50	0.08	17.05	1.39	0.8	-11	3.37	1.95
WD1844-654B	18 49 01 7	-65 25 22	2 60	0.08	17.05	1 39	64	26	36	.,00
WD1845+019Ao	18 47 37.0	+01 57 30	1.67	0.08	-39.11	3.18	-4.92	-85.17	4.04	4.64
WD1845+019Bo	18 47 37.0	+01 57 30	1,67	0.08	-39.11	3.18	-28.32	-60.72	3.38	7.25
WD1847-223i	18 47 56.6	-22 19 38	1.81	0.08	-26.09	5.98	78	-44	5	7
Fortsetzung auf de	er nächsten S	eite.	.,•.	0,00	_0,00	0,00				
Name	Rekta	Deklination	loa d	Δload	RV	ΔRV	pma	pmd	Δoma	Δpmd
WD1857+119	18 59 49.2	+11 58 41	1.67	0.08	-60,27	4,56	156.38	178.63	10,25	9,97
WD1914+094o	19 16 49.0	09 35 06	2,21	0,08	-19,09	5,17	-18,4	-60,33	2,73	5,89
WD1943+163	19 45 31.8	+16 27 39	1.69	0.08	9.02	3.50	-18.41	-300,42	9.97	10.8
WD1948-389	19 52 19.5	-38 46 21	2.04	0.08	-45.55	10.03	-2.43	-51,43	3.5	4.25
WD1950-432	19 53 47.0	-43 07 06	2.25	0.08	-57.44	6.66	96,19	-72.01	8.43	8.76
WD1953-011	19 56 29.2	-01 02 32	1.00	0.08	-23.79	11.51	-430.23	-703.34	8.95	8.79
WD2007-303	20 10 56.8	-30 13 07	1.20	0.08	43.65	3.49	-344.03	-251.13	1.94	4,99
WD2007-303p	20 10 56.8	-30 13 07	1.19	0.08	73.60	0.50	-344.03	-251.13	1.94	4.99
WD2009+622	20 10 44.0	+62 25 42	2,085	0.08	26.2	0.78	90	4	.,2	14
WD2020-425A	20 23 59.5	-42 24 25	1.75	0.08	-161.69	5.6	-92.3	-47.8	2.4	2.4
WD2020-425B	20 23 59.5	-42 24 25	1.52	0.08	-147.98	4.21	-92.3	-47.8	2.4	2.4
WD2020-425C	20 23 59.5	-42 24 25	1.93	0.08	-161.69	5.6	-92.3	-47.8	2.4	2.4
WD2020-425D	20 23 59.5	-42 24 25	1.69	0.08	-147.98	4.21	-92.3	-47.8	2.4	2.4
					-		-	-		

WD2039-202	20 42 34.7	-20 04 36	1,41	0,08	-20,36	2,31	355,62	-94,16	2,33	2,91
WD2039-202p	20 42 34.7	-20 04 36	1,32	0,08	-2,30	0,50	355,62	-94,16	2,33	2,91
WD2059+190	21 02 02.7	+19 12 58	1,37	0,08	-104,67	12,27	-130,2	-306,4	3,15	2,75
WD2105-820	21 13 15.9	-81 49 10	1,29	0,08	7,74	4,74	286	-430	23	34
WD2115-560	21 19 36.5	-55 50 14	1,44	0,08	-24,01	3,71	420	-200	20	11
WD2120+054	21 22 35.0	+05 42 36	2,44	0,08	-24,39	11,88	-18	-90	3	1
WD2146-433	21 49 39.0	-43 06 12	2,70	0,08	31,58	8,83	-17,67	-18,73	7,65	9,61
WD2149+021	21 52 25.4	+02 23 20	1,40	0,08	5,39	2,78	16	-300,28	4,71	3,03
WD2149+021p	21 52 25.4	+02 23 20	1,40	0,08	5,39	2,78	16	-300,28	4,71	3,03
WD2151-015A	21 54 06.5	-01 17 10	1,41	0,08	24,87	13,04	12,92	-274,93	2,24	7,82
WD2151-015B	21 54 06.5	-01 17 10	1,41	0,08	24,87	13,04	-2	-404	37	7
WD2152-045	21 54 41.2	-04 18 17	2,21	0,08	-0,96	2,04	45,07	-21,41	6,22	8,39
WD2153-419	21 56 35.0	-41 41 59	2,29	0,08	23,61	8,53	39	-29,35	2,64	4,19
WD2154-061	21 57 29.8	-05 51 56	2,20	0,08	30,58	9,38	6,7	-51,9	1,84	3,13
WD2159-414A	22 02 28.6	-41 14 31	2,47	0,08	-93,75	8,36	7,35	-45,65	6,14	3,41
WD2159-414B	22 02 28.6	-41 14 31	2,61	0,08	-85,40	7,53	7,35	-45,65	6,14	3,41
WD2159-754	22 04 20.9	-75 13 26	1,29	0,08	41,56	10,77	-516,85	69,26	9,41	7,48
WD2200-136	22 03 35.5	-13 26 48	2,15	0,08	2,52	2,90	-30	-40	2	3
WD2207+142	22 09 47.1	+14 29 47	1,43	0,08	-30,04	9,57	264	257,21	11,7	3,45
WD2211-495A	22 14 11.9	-49 19 27	1,76	0,08	10,02	2,31	7,46	-67,3	1,72	1,77
WD2211-495B	22 14 11.9	-49 19 27	1,76	0,08	17,83	1,61	7,46	-67,3	1,72	1,77
WD2211-495C	22 14 11.9	-49 19 27	1,76	0,08	-16,79	1,61	7,46	-67,3	1,72	1,77
WD2211-495D	22 14 11.9	-49 19 27	1,76	0,08	16,64	1,65	7,46	-67,3	1,72	1,77
WD2211-495E	22 14 11.9	-49 19 27	1,76	0,08	24,45	0,95	7,46	-67,3	1,72	1,77
WD2211-495F	22 14 11.9	-49 19 27	1,76	0,08	-10,17	0,95	7,46	-67,3	1,72	1,77
WD2220+133	22 23 12.0	+13 38 54	1,72	0,08	-30,58	6,34	-5,77	-146,8	14,17	13,89
WD2235+082B	22 37 35.5	+08 28 50	2,17	0,08	-2,11	5,32	-90	-48	4	2
WD2240-045	22 42 44.6	-04 14 15	2,28	0,08	-96,69	5,84	198,06	21,94	3,3	5,98
WD2253+0540	22 55 56.8	+05 45 18	2,34	0,08	38,77	1,81	355,12	-272,21	1,53	1,84
WD2303+017	23 06 12.0	+01 58 48	2,30	0,08	18,16	5,34	40	2	2	4
WD2308+050B	23 11 17.8	+05 19 28	2,38	0,08	10,05	5,35	28	26	2	2
WD2309+105A	23 12 23.1	+10 47 04	1,85	0,08	-42,77	4,79	141,04	-18,77	5,02	5,1
WD2309+105B	23 12 23.1	+10 47 04	1,88	0,08	-41,16	4,63	141,04	-18,77	5,02	5,1
WD2309+105C	23 12 23.1	+10 47 04	1,85	0,08	-33,74	3,32	141,04	-18,77	5,02	5,1
WD2309+105D	23 12 23.1	+10 47 04	1,88	0,08	-32,13	3,16	141,04	-18,77	5,02	5,1
Fortsetzung auf de	er nächsten S	eite.								
Name	Rekta	Deklination	log d	∆logd	RV	ΔRV	pma	pmd	∆pma	∆pmd
WD2312-356	23 15 34.8	-35 24 52	1,82	0,08	-6,00	3,25	42,51	13,06	8,19	8,98
WD2331+290A	23 34 20.9	+29 18 38	2,33	0,08	-25,08	4,50	-72,5	-122,6	2,29	1,35
WD2331+290B	23 34 20.9	+29 18 38	2,33	0,08	-36,08	5,70	-72,5	-122,6	2,29	1,35
WD2336-187	23 38 53.0	-18 26 18	1,59	0,08	-31,07	5,35	81,8	-142,78	5,91	7,84
WD2353+026B	23 56 27.8	+02 57 03	2,53	0,08	-17,94	7,99	-46	-50	3	6

Tabelle B1: Alle Eingabedaten der DA Weißen Zwerge.

Name: Der Katalogname des Weißen Zwerges (s. Anhang α). Die Großbuchstaben (A-F) am Ende wurden benutzt um verschiedene Varianten zu unterscheiden. Bei einigen Sternen war nämlich die Zuordnung der Helligkeit oder der Eigenbewegungen nicht ganz eindeutig. In diesen Fällen halte ich Version A für die wahrscheinlichste. Der Großbuchstabe "P" markiert einen Stern von Pauli⁽¹²⁾ und Pauli et al.⁽⁵⁸⁾, der noch mal ausgewertet wurde, nachdem bekannt wurde, dass er kein Einzel-, sondern ein Doppelstern ist. Die Kleinbuchstaben "m" und "o" markieren Sterne die <u>mit oder ohne</u> Extinktion gerechnet wurden, wenn ihre Entfernung durch die Extinktionskorrektur

unter 200pc fiel (s. Kapitel 4.4.1). Der Kleinbuchstabe "p" markiert einen Stern, dessen Parallaxe bekannt war und der deshalb einmal mit spektrometrischer Entfernung und einmal mit Parallaxenentfernung klassifiziert wurde. Die Kleinbuchstaben "a", "b" und "j", sowie die Endungen ".1" und ".2" sind tatsächlich Teil des Namens und beziehen sich auf meist zwei Sterne, die zum Zeitpunkt der Benennung, bei den gleichen Koordinaten zu finden waren. "j" gibt dabei an dass der Stern nach 2000er Koordinaten benannt wurde.

Rekta: Die Rektaszension in Stunden

Deklination in Grad

logd und Δ logd: Der Logarithmus der Entfernung in pc und ihres Fehlers. Dabei ist für alle Sterne die weiter als 200pc entfernt sind die Extinktion nach Schlegel, Finkenbeiner und Davis⁽¹⁾ schon berücksichtigt.

RV und Δ RV: Die Radialgeschwindigkeit und ihr Fehler werden in km/s angegeben. Bei negativen Werten bewegt sich der Stern auf uns zu, bei positiven von uns weg.

pma, pmd, Δ pma und Δ pmd: Die Eigenbewegungen in Rektaszension und Deklination und ihre jeweiligen Fehler werden in mas/a (Millibogensekunden/Jahr) angegeben.

B2) Weitere Daten aus der Spektroskopie

Name	Av	mv	М	T _{eff}	log g	V _G
EC13349-3237	0,166	16,34	0,42	48116	6,99	7768
HE0016-4340A	0,025	16,24	0,43	23792	7,406	12688
HE0016-4340B	0,025	15,20	0,43	23792	7,406	12688
HE0031-5525	0,083	15,94	0,59	11505	7,992	29181
HE0130-2721	0,057	16,20	0,56	21397	7,892	25338
HE0131+0149		14,84	0,52	15358	7,832	22786
HE0205-2945	0,044	16,14	0,37	10425	7,453	12424
HE0211-2824	0,060	15,27	0,64	13061	8,073	33363
HE0219-4049	0,042	16,18	0,49	14885	7,79	21075
HE0221-0535A	0,083	15,59	0,6	24413	7,948	27974
HE0221-0535B	0,083	15,70	0,6	24413	7,948	27974
HE0221-2642	0,043	15,69	0,55	32261	7,8	22587
HE0225-1912	0,092	16,19	0,41	16900	7,53	14291
HE0255-1100	0,199	15,99	0,54	20827	7,836	23328
HE0256-1802	0,085	16,41	0,54	26003	7,823	22981
HE0303-2041	0,089	16,26	0,47	9976	7,735	19374
HE0305-1145	0,156	15,40	0,53	26606	7,785	21793
HE0315-0118	0,249	14,82	0,51	12413	7,841	22801
HE0320-1917	0,147	16,00	0,29	13552	7,06	6996
HE0325-4033	0,037	16,36	0,56	16086	7,913	25958
HE0331-3541A	0,042	14,98	0,44	44311	7,12	9234
HE0331-3541B	0,042	14,98	0,5	31372	7,7	19194
HE0344-1207	0,231	16,06	0,77	11466	8,283	46603
HE0409-3233	0,051	16,04	0,5	18516	7,784	21143
HE0410-1137	0,164	16,08	0,47	17410	7,696	18523
HE0414-4039	0,052	15,88	0,52	20599	7,807	22140
HE0416-3852	0,028	16,03	0,55	24247	7,836	23543
HE0417-3033	0,154	16,56	0,55	18679	7,87	24482
HE0423-2822		16,57	0,56	10858	7,942	26839
HE0523-3856	0,075	16,18	0,46	19402	7,642	17221
HE0532-5605	0,212	16,12	0,88	11340	8,451	60452
HE1247-1130	0,154	14,97	0,52	27813	7,774	21314
HE1258+0123	0,080	16,55	0,67	11264	8,112	35703
HE1310-0337	0,095	16,32	0,53	18541	7,826	22846
HE1333-0622	0,094	16,09	0,47	21053	7,672	18019
HE1340-0530	0,085	16,34	0,59	33379	7,885	25799
HE1346-0632A	0,097	16,33	0,37	24548	7,116	8429
HE1346-0632B	0,097	16,20	0,37	30194	6,94	6883
HE1414-0848A		16,20	0,55	8900	8,17	34582
HE1414-0848B		16,20	0,71	10790	8,17	39292
HE1429-1209		15,5	<0,26	15441	6,38	<3028
HE1511-0448	0,380	15,41	0,48	52475	7,484	14665
HE1522-0410	0,407	16,43	0,63	10398	8,063	32722
HE2123-4446		16,12	0,39	19757	7,389	11850
HE2147-1405	0,159	15,87	0,38	25140	7,147	8852
HE2148-3857	0,091	16,31	0,6	25711	7,934	27526
HE2155-3150	0,086	16,12	0,56	15935	7,912	25928
HE2159-1649	0,107	15,77	0,5	18820	7,787	21216
HE2200-1341	0,144	15,31	0,48	24486	7,66	17959
Fortsetzung auf der	nächste	en Seite.				

Name	Av	mv	М	Teff	log g	VG
HE2203-0101	0.385	15.82	0.51	17313	7.813	22078
HE2209-1444A	-)	15.32	0.58	8490	7.97	28209
HE2209-1444B		15.32	0.58	7140	7.97	28209
HE2238-0433	0.145	14.28	0.74	16916	8.213	42149
HE2241-3235	0.047	16.01	0.61	33135	7,934	27755
HE2246-0658	0.139	14.13	0.56	16475	7,901	25602
HE2315-0511	0.163	15.57	0.53	33316	7.74	20692
HE2345-4810	0,.00	15.94	0.42	29485	7.262	10624
HS0002+1635	0.128	15.31	0.58	25826	7,893	25816
HS0047+1903	0.137	15.54	0.52	16497	7.84	22997
HS0130+0156	0.077	16.04	0.64	41590	7.94	28626
HS0200+2449	0.369	15.61	0.57	23161	7.9	25799
HS0213+1145	0.463	15.53	0.56	17073	7.9	25572
HS0237+1034	0.447	16.01	0.58	17254	7.938	27189
HS0309+1001	1.868	15.64	0.51	18763	7,795	21625
HS0329+1121	1.241	15.79	0.58	17007	7.938	27189
HS0401+1454		16.27	0.66	12375	8.1	34950
HS0424+0141	0.695	15.64	0.61	45524	7.869	25754
HS0503+0154	0.248	15.14	0.58	62556	7.691	20459
HS0507+0434a	0,2.0	14.3	0.94	14674	8.53	68428
HS0507+0434b		15.6	0.79	13268	8.31	48695
HS0926+0828	0.166	16.14	0.64	11643	8.058	32792
HS0931+0712	0.130	16.52	0.54	39513	7.744	20983
HS0933+0028	0 150	15.94	0.74	32891	8 172	40206
HS0937+0130	0,286	16 45	0.8	18805	8 312	49115
HS0949+0823	0 149	16 19	0.57	14298	7 926	26583
HS1003+0726	0 070	15,10	0.64	9578	8 065	33057
HS1102+0032	0.150	14,71	0.32	16053	7.215	8785
HS1102+0934	0,.00	16 48	0.35	16485	7 297	10097
HS1115+0321	0.237	15.40	0.51	12558	7.841	22801
HS1136+0326		16.19	0.52	13490	7.841	23024
HS1136+1359	0.124	15.98	0.53	24213	7.807	22352
HS1243+0132	0.057	15.69	0.5	21057	7.75	20331
HS1249+0426	0.135	15.79	0.63	11523	8.05	32236
HS1308+1646	0.063	15.57	0.71	10717	8.191	40253
HS1334+0701A	0.102	15.04	0.28	15319	7.075	6994
HS1334+0701B	0.102	15.04	0.34	16190	7.3	9986
HS1606+0153	- , -	15.00	0.28	18214	6.945	6022
HS1609+1426	0,146	16,03	0,58	12483	7,955	27726
HS2046+0044	0,326	15,81	0,54	27026	7,797	22303
HS2056+0721	0,237	15,32	0,84	27127	8,347	52398
HS2059+0208	0.300	16,47	0,5	18124	7,785	21167
HS2108+1734	0.367	15.19	0.88	28898	8,424	58602
HS2216+1551		15.80	0.52	15958	7.827	22656
HS2220+2146	0.169	15.14	0.78	18228	8.275	46475
HS2220+2146b	0.169	15.12	0.78	18206	8.267	46049
HS2244+0305		16.22	0.62	61411	7.802	24036
HS2244+2103	0,172	15.68	0.6	24026	7,938	27653
MCT0111-3806	-, -=	15.45	0.48	76009	7.05	8898
MCT0136-2010	0,047	16.49	1	8767	8.642	80292
MCT2352-1249	,	16.43	0.6	39366	7,882	25927
Fortsetzung auf der	nächste	en Seite.	,			

Name	Av	mv	М	T _{eff}	log g	V _G
PG0026+136	0,251	15,74	0,36	7226	7,475	12570
PN2155-308	0,301	15,60	0,56	94488	7,214	11608
WD0017+061	0,084	14,75	0,54	28165	7,798	22329
WD0024-556	0,040	15,14	1,01	10223	8,648	81252
WD0027-636	0,046	15,00	0,7	60002	7,986	31566
WD0028-474	0,055	14,70	0,45	16683	7,639	16974
WD0032-317	0,070	15,62	0,43	36934	7,151	9460
WD0034-211		14,53	0,45	17180	7,627	16741
WD0037-006		14,85	0,56	16521	7,911	25898
WD0048-544		15,29	0,61	17292	7,992	29671
WD0050-332		13,36	0,63	36002	7,936	28271
WD0058-044		15,38	0,6	16578	7,993	29461
WD0102-185	0,054	17,00	0,5	22678	7,754	20425
WD0106-358	0,052	14,66	0,56	29086	7,825	23457
WD0107-192	0.051	16.23	0.5	12982	7.82	22037
WD0112-195	,	16.16	0.49	36153	7.599	16915
WD0114-034A	0,141	16,20	0.83	10377	8,38	54102
WD0114-034B	0,141	16,20	0.55	18874	7,869	24454
WD0128-387	0,062	15,32	0,9	27615	8,45	61065
WD0129-205		14,64	0,52	19088	7,815	22345
WD0131-163	0,061	13,98	0,57	46385	7,761	21984
WD0133-116		14,16	0,59	12093	7,987	29013
WD0135-052		12.84	0.47	7470	7.8	20880
WD0136+768		14.85	0.47	18500	7.68	18185
WD0137-349A	0.059	15.33	0.33	16085	7.25	9288
WD0137-349B	0.059	15.33	0.39	16500	7.44	12566
WD0158-227	0.052	16,75	0.53	75758	7,386	13766
WD0205+1330	0,302	14,76	0,55	59507	7,611	18170
WD0216+143		14,53	0,54	26888	7,809	22614
WD0220+222		15,83	0,54	15835	7,866	24147
WD0239+1090	0,537	16,18	0,6	45148	7,836	24589
WD0257+080		15,9	0,78	22489	8,26	45679
WD0315-332	0,064	16,53	0,51	50586	7,582	16922
WD0326-273		13,56	0,51	9322	7,87	23575
WD0328+008	0,473	16,80	0,59	34951	7,867	25270
WD0330-009	0,419	15,20	0,55	34279	7,775	21946
WD0343-007o	0,551	14,91	0,56	59686	7,641	18979
WD0344+073	0,835	16,20	0,48	10470	7,774	20478
WD0347-137	0,235	14,91	0,47	16417	7,694	18481
WD0352+018	1,172	15,20	0,49	21467	7,737	19828
WD0352+049		16,31	1,07	36559	8,707	89509
WD0406+169		15,35	0,79	14147	8,308	48583
WD0407+179		14,14	0,59	12304	7,992	29181
WD0410+117		13,86	0,53	20716	7,82	22689
WD0421+162		14,23	0,63	19419	8,016	30999
WD0425+168		13,92	0,65	23970	8,028	31925
WD0426+106		16,50	0,81	10217	8,345	51335
WD0430+1360	1,583	16,40	0,52	47512	7,619	17831
WD0443-037jo	0,160	16,22	1	71545	8,538	71232
WD0446-789		13,47	0,49	23258	7,694	18870
WD0453-295		15,12	0,43	27186	7,393	12500
Fortsetzung auf der	nächste	en Seite.				

Name	Av	mv	М	Toff	loa a	Vo
WD0507+045.2	V	15.36	0.8	11740	8.323	49741
WD0518-105		15.60	1.08	32100	8.732	92552
WD0605-483i	0 152	15,90	0.55	34374	7 78	22073
WD0621-376	0,:01	12.08	0.49	57944	7 423	13812
WD0628-020	2 4 5 1	15.00	0.3	42369	5 215	851
WD0630-050	1 633	15 53	0.84	41810	8.324	51028
WD0648-253i	0 441	14 50	0,55	27664	7 822	23166
WD0659-063	0,111	16.2	<0.26	25836	4.18	<241
WD0723-277i	1.211	14.52	0.55	37044	7.756	21471
WD0752-676	.,	14.09	0.77	5820	8.3	47525
WD0810-728	0.625	15.10	0.64	30833	7,983	30079
WD0830-535	0.934	14 50	0.58	29880	7 881	25462
WD0839+231	0 127	14 42	0.49	25988	7,695	18892
WD0841+033i	0 103	14 48	0.54	38922	7,35	20767
WD0902-041i	0 105	15.45	0.51	23601	7 768	20963
WD0916+064	0 158	16.00	0.55	44569	7 732	20886
WD0922+162a	0 124	16,00	0,00	24198	8 264	45890
WD0922+162b	0 124	16 10	0.78	23674	8 272	46315
WD0922+183	0,121	16,43	0.77	24123	8.24	44352
WD0928-713		15.44	0.78	8642	8.298	47722
WD0933+025		16.01	0.52	21513	7.802	22013
WD0945+245A		14.32	1.02	14500	8.661	82884
WD0945+245B		14.32	1.04	35709	8,661	83693
WD0950+185A		15.35	0.46	32393	7 462	13998
WD0950+185B		15.35	0.5	31790	7 68	18757
WD0956+045		15.95	0 49	18391	7 754	20220
WD0957-6660	0 713	14 60	0.37	30000	6.95	6963
WD1001+203	0.087	15.35	0.54	8721	7.899	25082
WD1013-010PA	-,	15.39	0.71	8786	8.19	40207
WD1013-010PB		15.39	0.44	8786	8.19	31652
WD1013-050	0.146	14.30	0.58	59577	7.685	20318
WD1017-138	0.349	14.58	0.58	32190	7,865	24997
WD1022+050P	0,010	14 18	0.389	14481	7 48	13142
WD1023+009	0 168	16.23	0.61	39787	7 894	26506
WD1031+063	0,100	16,20	0.51	20629	7 776	21157
WD1031-114		13 00	0.55	25230	7 831	23407
WD1042-690		13.09	0.551	21380	7.86	24224
WD1049+103		15.83	0.47	20072	7.647	17507
WD1056-384	0,352	14,10	0,61	27665	7,936	27819
WD1058-129		15,11	0,99	23336	8,598	75943
WD1115+166	0,067	15,10	0,41	34549	7,12	8914
WD1121+216		14,32	0,82	7771	8,365	52854
WD1123+189		14,07	0,49	60483	7,335	12482
WD1124-018		16,24	0,48	24424	7,656	17877
WD1125+175AB	0,084	15,95	0,67	62151	7,93	28954
WD1125+175CD	0,084	15,95	0,58	55030	7,72	21154
WD1129+071	0,164	15,37	0,56	12740	7,934	26593
WD1141+077		14,11	0,49	59375	7,381	13160
WD1147+255		15,55	0,69	10065	8,146	37679
WD1149+057	0,044	15,16	0,73	11242	8,206	41527
WD1201-049		16,34	0,46	56587	7,193	10270
Fortsetzung auf der	nächste	en Seite.				

Name	Av	mv	М	T _{eff}	log g	VG
WD1202+608		13,61	0,40	58300	7,15	9114
WD1204+450		14,80	0,46	31000	7,45	13805
WD1210+140A	0.110	14.76	0.23	32244	6.99	5748
WD1210+140B	0.110	14.76	0.34	31930	7.03	7318
WD1214+032	-, -	14.90	0.94	7397	8.549	69942
WD1218-198		16.29	0.67	35358	8.025	32301
WD1229-012		14.44	0.43	19066	7.519	14451
WD1237-230	0.304	16.50	0.46	120698	5.415	1326
WD1241-010	0,001	14.00	0.4	22646	7,337	11303
WD1247-176		16.13	0.55	20307	7.869	24454
WD1254+223		13.40	0.57	40000	7.804	23100
WD1257+037	0.082	15.90	0.55	79690	7.405	14334
WD1300-098	0.151	16.16	0.74	13012	8,234	43181
WD1314-153	0.306	15.50	0.51	15977	7.809	21976
WD1319-288	0,000	15,99	0.5	18012	7 77	20805
WD1348-273		15.00	0.5	9853	7 831	22318
WD1349+144		15.34	0.48	16620	7.68	18378
WD1350-090A	0.123	14.60	0.43	23157	7.448	13317
WD1350-090B	0 123	14 60	0.41	23794	7 34	11483
WD1403-077A	0,120	15.80	0.64	47500	7 919	27942
WD1403-077B		15.80	0.51	50190	7 59	17079
WD1412-109		15.27	0.54	25762	7 82	22902
WD1415+132		15.22	0.43	34249	7 205	10067
WD1425-811	0 743	13.00	0,68	12283	8 127	36595
WD1428+373	0,7 10	15 40	0.348	14010	7.36	10826
WD1436-216	0 276	15.66	0 43	27397	7 331	11639
WD1449+168	0.087	15.39	0.52	21658	7 789	21686
WD1527+090A	0,007	14.29	0.53	20499	7.823	22767
WD1527+090B		14 29	0.63	21520	8.02	31142
WD1541-381		14.60	0.49	9917	7,785	20954
WD1544-377		12.80	0.63	10493	8.062	32685
WD1544-377K		12.80	0.77	10840	8.27	45911
WD1547+015		15.95	0.59	75557	7.602	18625
WD1550+183A		14.83	0.86	13666	8.415	57335
WD1550+183B		14.83	0.76	14260	8.25	44574
WD1615-154		12.40	0.65	29384	8.007	31162
WD1620-391		11.00	0.6	24645	7.936	27590
WD1625+093A		15.55	<0.26	28601	4.61	<395
WD1625+093B		15,55	<0.26	32560	4.82	<503
WD1643+143A	0,252	15,38	0,45	27537	7,451	13670
WD1643+143B	0,252	15,38	0,51	24818	7,79	21501
WD1646+062Ao	0,482	15,84	0,49	30698	7,64	17733
WD1646+062B	0.370	16,03	0.63	29940	7,98	29740
WD1704+481	,	14,45	0.39	9000	7,53	13938
WD1713+332A		14,46	0.35	22120	7,43	11768
WD1713+332B		14,49	0,41	22120	7,43	12737
WD1755+194		16,00	0,56	24511	7,856	24309
WD1802+213		15,50	0,45	16335	7,664	17469
WD1821-131		15,5	0,49	122206	6	2684
WD1824+040	1,680	13,90	0,428	14795	7,61	16010
WD1844-654A	0,298	15,71	0,46	44211	7,297	11576
Fortsetzung auf der	nächste	en Seite.				

Name	Av	mv	М	T_{eff}	log g	V _G
WD1844-654B	0,298	16,23	0,46	44211	7,297	11576
WD1845+019		12,96	0,56	29627	7,83	23592
WD1847-223j	1,081	14,00	0,72	32055	8,13	37787
WD1857+119		15,52	0,63	9888	8,059	32572
WD1914+094		15,43	0,55	32324	7,804	22691
WD1943+163		13,99	0,54	19495	7,86	23981
WD1948-389	0,273	14,63	0,65	37851	7,984	30348
WD1950-432		14,90	0,49	40571	7,585	16644
WD1952-584		15,90	0,53	33539	7,735	20574
WD1953-011		13,69	0,98	8166	8,618	77319
WD2007-303		12,18	0,61	15325	8	29946
WD2009+622		15,15	0,489	25870	7,7	18981
WD2020-425A	0,181	13,99	0,72	28412	8,15	38667
WD2020-425B	0,181	13,69	0,54	14473	7,87	24259
WD2020-425C		14,87	0,72	28412	8,15	38667
WD2020-425D		14,57	0,54	14473	7,87	24259
WD2032+188P		15,34	0,406	18540	7,48	13426
WD2039-202		12,34	0,47	18784	7,674	18060
WD2051-208		15,06	1,22	20393	8,973	129823
WD2059+190		16,40	1,15	7470	8,881	113376
WD2105-820		13,50	0,64	10368	8,073	33363
WD2105-820K		13,62	0,76	10660	8,26	45090
WD2115-560		14,28	0,58	9652	7,967	28112
WD2115-560K		14,28	0,79	9740	8,3	48138
WD2120+054A	0,302	16,38	0,54	36052	7,747	21056
WD2120+054B	0,302	16,38	0,56	35860	7,8	22791
WD2146-433	0,056	15,65	0,48	70128	7,179	10323
WD2149+021		12,73	0,52	17243	7,833	22813
WD2150+021		16,40	0,56	41601	7,769	21992
WD2151-015		14,41	0,62	9070	8,036	31468
WD2152-045	0,146	15,79	0,4	19777	7,423	12480
WD2153-419	0,053	15,70	0,7	47240	8,038	33514
WD2154-061	0,100	15,00	0,52	36816	7,711	19823
WD2159-414A		15,83	0,58	56229	7,74	21646
WD2159-414B		15,83	0,49	57173	7,39	13298
WD2159-754		15,05	1,1	9200	8,789	99740
WD2159-754K		15,06	1,17	9040	8,95	123813
WD2200-136	0,144	15,36	0,48	25140	7,627	17290
WD2207+142		15,61	0,86	7909	8,427	58133
WD2211-495ABC	0,051	11,70	0,53	63321	7,521	16081
WD2211-495DEF	0,051	11,70	0,53	63983	7,06	9458
WD2220+133	0,267	14,59	0,8	22418	8,304	48665
WD2235+082A		15,31	0,57	36840	7,826	23692
WD2235+082B		15,31	0,65	35540	7,98	30208
WD2240-045	0,140	15,23	0,56	43839	7,745	21393
WD2253+054		11,22	0,42	87269	6,2099	3164
WD2303+017	0,251	15,76	0,58	42028	7,809	23436
WD2308+050A	0,392	15,66	0,54	36592	7,759	21349
WD2308+050B	0,392	15,66	0,49	35950	7,58	16549
WD2309+105AC	0,135	12,95	0,63	55593	7,859	25873
WD2309+105BD	0,135	12,95	0,62	58700	7,81	24259
Fortsetzung auf der	nächste	en Seite.				

Name	Av	mv	М	T _{eff}	log g	V _G
WD2312-356	0,053	15,57	0,56	12480	7,931	26501
WD2313-330		15,68	0,44	45902	7,156	9625
WD2330-212		17,11	0,45	26631	7,461	13829
WD2331+290A	0,365	15,85	0,44	27320	7,48	13977
WD2331+290B	0,365	15,85	0,44	27320	7,48	13977
WD2336-187		15,6	0,58	8222	7,978	28470
WD2353+026A		15,76	0,69	65216	7,948	29998
WD2353+026B		15,76	0,55	60970	7,6	17941

Tabelle B2: Mit spektroskopischen Daten für alle Weißen Zwerge.

In dieser Tabelle befinden sich auch Werte von Sternen, die nicht ausgewertet werden konnten, da zum Beispiel keine Eigenbewegungsmessungen vorlagen.

Name: Der Katalogname des Weißen Zwerges (s. Anhang α). Die Großbuchstaben (A-F) am Ende wurden benutzt um verschiedene Varianten zu unterscheiden. Bei einigen Sternen war nämlich die Zuordnung der Helligkeit oder der Eigenbewegungen nicht ganz eindeutig. In diesen Fällen halte ich Version A für die wahrscheinlichste. Der Großbuchstabe "P" markiert einen Stern von Pauli⁽¹²⁾ und Pauli et al.⁽⁵⁸⁾, der noch mal ausgewertet wurde, nachdem bekannt wurde, dass er kein Einzel-, sondern ein Doppelstern ist. "K" benutzt die Werte von Kawka et al.⁽⁴⁶⁾. "sK" gibt an das die Sterne nicht teil des SPY Projektes waren. Die Kleinbuchstaben "a", "b" und "j", sowie die Endungen ".1" und ".2" sind tatsächlich Teil des Namens und beziehen sich auf meist zwei Sterne, die zum Zeitpunkt der Benennung, bei den gleichen Koordinaten zu finden waren. "j" gibt dabei an dass der Stern nach 2000er Koordinaten benannt wurde.

 A_V : Der Wert der Extinktion in Magnituden nach Schlegel, Finkenbeiner und Davis⁽¹⁾. Für Sterne mit weniger als 200pc Entfernung in Z-Richtung wurde nicht immer eine Extinktion ermittelt.

m_{V:} Scheinbare Visuelle Helligkeit in Magnituden.

M: Masse in Sonnenmassen, aus log g und T_{eff} ermittelt (s. Kapitel 4.3), der Fehler ist kleiner als 0,05 Sonnenmassen.

T_{eff}: Effektivtemperatur in K, der Fehler ist kleiner als 500K

log g: Logarithmus der Schwerebeschleunigung an der Oberfläche des Weißen Zwerges in cm/s², der Fehler liegt bei 0,05

v_G: Gravitationsrotverschiebung in m/s, der Fehler ist kleiner als 10%.

	einige Werte				Klassifikationen:				gesamt
Name	V (km/s)	U (km/s)	e	J.,	V-U	e-J-	Orbit	Ast	Klasse
HE0031-5525	204.3	20.1	0.10	-1732.2	-1	-1	-1	1	dünn
HE0130-2721	180.9	17.8	0.19	-1541	-1	-1	-1	1	dünn
HE0205-2945	216.7	33.7	0.11	-1846.2	-1	-1	-1	2	dünn
HE0211-2824	192.2	21.6	0.14	-1636.3	-1	-1	-1	1	dünn
HE0219-4049	207.9	-9.5	0.06	-1770.2	-1	-1	-1	2	dünn
HE0221-0535A	231.1	11.4	0.07	-1978.8	-1	-1	-1	2	dünn
HE0221-0535B	235.8	33	0.07	-2018.9	-1	-1	-1	2	dünn
HE0221-2642	193.9	30.8	0.15	-1656.6	-1	-1	-1	1	dünn
HE0225-1912	228.9	75.6	0.25	-1957 1	-1	-1	-1	2	dünn
HE0255-1100	223.9	45.9	0.15	-1918 7	-1	-1	-1	2	dünn
HE0256-1802	209.7	80.6	0.26	-1799.8	-1	-1	-1	2	dünn
HE0303-2041	197.2	17	0,20	-1683.9	-1	-1	-1	1	dünn
HE0305-1145	189.3	-14.7	0.15	-1623 7	-1	-1	-1	1	dünn
HE0315-0118	215.5	-11 9	0,10	-1839 3	-1	-1	-1	2	dünn
HE0325-4033	185.3	24.4	0,04	-1578.4	-1	-1	-1	1	dünn
HE0344-1207	205.3	15 /	0,10	-1752 7	_1	_1	-1	2	dünn
HE0/1/-/039	165.5	13.9	0,00	-1/11 7	_1	_1	-1	1	dünn
HE0/16-3852A	196.6	-2.8	0,23	-1673 /	_1	_1	-1	1	dünn
HE0416-3852R	185.7	-2,0	0,11	-1073,4	-1	-1	-1	1	dünn
HE0417 2022	171.0	42.5	0,10	1476.5	-1	-1	-1	1	dünn
HE0417-3033	200.5	-43,5	0,25	-1470,5	-1	-1	-1	2	dünn
HE0002-0000	209,5	0,1	0,00	-1701,7	-1	-1	-1	2	dünn
	211,0	14,0	0,00	-1769,7	-1	-1	-1	2	dünn
HE1230+0123	107 5	10,0	0,00	-1943,9	-1	-1	-1	- 2	dünn
	107,0	-10,4	0,15	-1364,7	-1	-1	-1	1	dünn
HE1340-0530	107.4	21.7	0,12	-1701	-1	-1	-1	1	dünn
HE1346-0632A	197,4	26.2	0,13	-1042	-1	-1	1	1	dünn
HE1340-0032D	190,4	20,3	0,12	-1010,9	-1	-1	1	1	dünn
	210,0	50,4	0,13	-1000,7	-1	-1	-1	2	dünn
HE1322-0410	221,7	20.2	0,04	-10/1,0	-1	-1	-1	2	dünn
	220,7	39,2	0,13	-1919,2	-1	-1	-1	2	dünn
	231,2	-7,5	0,06	-1951,7	-1	-1	-1	2	dünn
ПЕ2203-0101 ПЕ2228 0422	220,0	17,5	0,05	-1007,1	-1	-1	-1	2	dünn
HE2230-0433	227,7	2,0	0,04	-1933,3	-1	-1	-1	2 1	dünn
HE2241-3233	202,4	-42,0	0,10	-1/01,4	-1	-1	-1	1	dünn
HE2240-0000	105.0	20	0,09	-1977,9	-1	-1	-1	- 2	dünn
	195,9	00,9	0,21	-1003,4	-1	-1	-1	1	dünn
HS0002+1635	197	-20,4	0,14	-1077,3	-1	-1	-1	1	dünn
HS0047+1903	216,1	9,9	0,03	-1844,8	-1	-1	-1	2	dunn dünn
HS0200+2449	237	-13,3	0,09	-2032,7	-1	-1	-1	2	dunn dünn
HS0213+1145	203,2	-58,6	0,2	-1/36,4	-1	-1	-1	2	dunn dünn
HS0237+1034	240,6	-30,2	0,14	-2061,6	-	-	-	2	aunn
HS0309+1001	221	-43,4	0,14	-1896	-1	-1	-	2	aunn
HS0329+1121	228,4	21,6	0,08	-1959,4	-1	-1	-1	2	dunn
HS0401+1454	197,3	0,7	0,1	-1690,8	-1	-1	-1		aunn
HS0424+0141	213,2	-44	0,14	-1853,2	-1	-1	-1	2	aunn
⊢ortsetzung auf de	er nachstei	n Seite.						. .	
	V (KM/S)		e		V-U	e-J _z	Orbit	Ast	Klasse
HS0503+0154	196,6	35,7	0,16	-1/15,6	-1	-1	-1	1	aunn
HS0507+0434a	206,1	-18,6	0,09	-1757,4	-1	-1	-1	2	dünn

B3) Die komplette Klassifikation

HS0507+0434b	194,1	-20,1	0,13	-1659,7	-1	-1	-1	1	dünn
HS0926+0828	207,3	-20,8	0,09	-1771,9	-1	-1	-1	2	dünn
HS0931+0712	182,5	52,7	0,25	-1573,1	-1	-1	-1	1	dünn
HS0933+0028	219	-0,2	0,01	-1878,1	-1	-1	-1	2	dünn
HS0937+0130	230,1	13.6	0,07	-1966,8	-1	-1	-1	2	dünn
HS0949+0823	165.5	5.1	0.24	-1414	-1	-1	-1	1	dünn
HS1003+0726	204.4	12.9	0.08	-1740.6	-1	-1	-1	1	dünn
HS1102+0032A	177.4	-83.3	0.32	-1514.8	-1	1	-1	1	dünn
HS1102+0032AB	178.6	-86	0.32	-1525.5	-1	1	-1	1	dünn
HS1102+0032B	180	-87.6	0.32	-1537.5	-1	1	-1	1	dünn
HS1115+0321	217,8	-21	0.07	-1854,1	-1	-1	-1	2	dünn
HS1136+1359	215.6	-24.7	0.08	-1838.3	-1	-1	-1	2	dünn
HS1243+0132	205.7	0.8	0.06	-1743.3	-1	-1	-1	2	dünn
HS1249+0426	227.2	13.2	0.06	-1928	-1	-1	-1	2	dünn
HS1308+1646	205.1	6	0.07	-1741.4	-1	-1	-1	1	dünn
HS1609+1426	211 7	-18.5	0.07	-1787 7	-1	-1	-1	2	dünn
HS2046+0044	227.5	-18.7	0.08	-1909.3	-1	-1	-1	2	dünn
HS2056+0721	222.2	-17.5	0.07	-1878	-1	-1	-1	2	dünn
HS2059+0208	238.4	-14.9	0.1	-2004 2	-1	-1	-1	2	dünn
HS2108+1734	214 1	0.6	0.03	-1813	-1	-1	-1	2	dünn
HS2220+2146	201.2	5.4	0,00	-1709.5	-1	-1	-1	1	dünn
HS2220+2146b	212.9	49	0.04	-1809	-1	-1	-1	2	dünn
HS2244+2103	224.1	24.3	0.07	-1906.5	-1	-1	-1	2	dünn
MCT0111-3806	201 3	7.5	0,07	-1706.2	-1	-1	-1	1	dünn
MCT0136-2010	225.6	-44.2	0,00	-1919 3	-1	-1	-1	2	dünn
MCT2352-1249	223,0	12 2	0,14	-1313,3	_1	_1	_1 _1	2	dünn
PG0026+126	203,2	10.2	0,14	-1801.8	_1	_1	_1	2	dünn
PN2155-3084	217.8	-1 1	0,00	-1031,0	_1	_1	_1 _1	2	dünn
WD0017+061B	378.7	-24.8	0,00	-3225	3	3	3	2	halo
WD0017+061A	214.2	38.2	0.12	-1827	-1	-1	-1	2	dünn
WD0024-556	191.8	71.4	0.26	-1628.4	-1	-1	-1	1	dünn
WD0027-636A	235.6	24.8	0,20	-1985 5	_1	-1	_1	2	dünn
WD0027-636B	237.5	129,0	0,17	-2000 4	_1	_1	_1	2	dünn
WD0027-030D	207,5	-52.8	0,17	-2000,4	_1	_1	_1	1	dünn
WD0040-344	200,0	-52,0	0,19	2019 5	-1	-1	-1	2	dünn
WD0050-332	207,0	_33	0,03	-2010,5	-1	-1	-1	2	dünn
WD0102-185	161.2	-55	0,11	-1377 3	-1	- 1	-1	1	dick
WD0102-165	202.6	24.0	0,33	1720.9	- 1	1	-1	1	dünn
WD0100-358	202,0	24,9 56.6	0,11	-1720,0	-1	-1	-1	1 2	dünn
WD0107-192	210,0	-20	0,10	-1880.9	-1	-1	-1	2	dünn
WD0112-195	205.4	18.9	0,07	-1749.9	-1	-1	0	2	dünn
WD0114-034B	206,4	-2	0.05	-1766.2	-1	-1	-1	2	dünn
WD01128-387	200,0	-60.8	0,00	-1750.2	_1	_1	_1 _1	2	dünn
WD0120-205	100.3	-30 0	0,2	-1696.9	_1	_1	-1	1	dünn
WD0123-116	176.5	-54.4	0.25	-1501.8	-1	-1	-1	1	dünn
WD0158-227	295 /	-34,4	0,20	-2571.9	2 - 1	- I	-1	2	halo
Fortsetzung auf de	ar nächstor	n Soito	0,00	2071,0	0	0	I	~	naio
Name	V (km/e)	II (km/e)	0	I	V-11	0- I	Orbit	Act	Klasso
WD0216+1/2	258.3	43	0 22	-2211 Q	_1	_1	1	2	dünn
WD0220+740	178 1	-6/ 1	0,22	-1522	_1	1	_1	1	dünn
WD0239+1090	-206.6	17.6	0,20	1797 2	3	3	3	1	halo
WD0257±080Δ	<u>41</u> 5	-138	0.81	-353 1	2	े २	2	1	halo
WD0257+000A	1/6 7	_2Q 1	0,04	-1256 5	1	1	_1	1	dick
1000D	140,7	-30,1	0,00	-1200,0			- 1		hin

WD0257+080C	215,9	-15,6	0,06	-1850,8	-1	-1	-1	2	dünn
WD0315-332	259,3	-55,6	0,26	-2249,6	-1	-1	-1	2	dünn
WD0328+008	223,8	14,4	0,05	-1944,1	-1	-1	-1	2	dünn
WD0330-009	224,9	46	0,15	-1937,8	-1	-1	-1	2	dünn
WD0343-007o	201,9	10,6	0,09	-1750,4	-1	-1	-1	2	dünn
WD0344+073	220,8	2,2	0,01	-1892	-1	-1	-1	2	dünn
WD0352+018	183,3	-55,3	0,24	-1572,9	-1	-1	-1	1	dünn
WD0406+169	205,5	-38,1	0,14	-1756,4	-1	-1	-1	2	dünn
WD0407+179	210,2	-21,3	0,08	-1793,3	-1	-1	-1	2	dünn
WD0410+117	201,5	-14,7	0,1	-1721,6	-1	-1	-1	1	dünn
WD0421+162A	204,8	-38,6	0,14	-1750	-1	-1	-1	2	dünn
WD0421+162B	205	-45	0,16	-1751,5	-1	-1	-1	2	dünn
WD0421+162C	243,4	-40,3	0,17	-2080,1	-1	-1	-1	2	dünn
WD0425+168	206	-35,2	0,13	-1761,2	-1	-1	-1	2	dünn
WD0426+106A	235,5	-26,4	0,11	-2015,2	-1	-1	-1	2	dünn
WD0426+106B	225,7	-24,2	0,08	-1931,6	-1	-1	-1	2	dünn
WD0443-037jo	174,6	-76,4	0,3	-1518,3	-1	1	0	1	dick
WD0446-789	222,2	19,3	0,07	-1884,5	-1	-1	-1	2	dünn
WD0507+045.2	214,1	31,2	0,11	-1827,6	-1	-1	-1	2	dünn
WD0518-105	191	-7,7	0,14	-1636,5	-1	-1	-1	1	dünn
WD0605-483jA	196,9	-53,1	0,19	-1693,4	-1	-1	-1	1	dünn
WD0605-483jB	196,6	-4,3	0,11	-1681,4	-1	-1	-1	1	dünn
WD0621-376	199	6,9	0,1	-1696,3	-1	-1	-1	1	dünn
WD0630-050	228,7	40,6	0,14	-1966,3	-1	-1	-1	2	dünn
WD0648-253j	199,2	-28,8	0,13	-1705,4	-1	-1	-1	1	dünn
WD0723-277j	226,4	28,1	0,11	-1934,5	-1	-1	0	2	dünn
WD0752-676	185,2	92,2	0,33	-1573,3	-1	+1	-1	1	dünn
WD0810-728	203,7	-8,3	0,08	-1726	-1	-1	-1	1	dünn
WD0830-535	211,1	75,9	0,25	-1787,5	-1	-1	-1	2	dünn
WD0839+231	191,8	27,8	0,16	-1642,1	-1	-1	-1	1	dünn
WD0841+033j	220,6	-1	0,02	-1893,8	-1	-1	-1	2	dünn
WD0902-041j	239,2	13,1	0,1	-2048	-1	-1	-1	2	dünn
WD0916+0640	267,2	-20,3	0,22	-2317,8	-1	-1	-1	2	dünn
WD0928-713	199,7	14,2	0,1	-1695,2	-1	-1	-1	1	dünn
WD0945+245A	210,5	2,1	0,05	-1792,7	-1	-1	-1	2	dünn
WD0945+245B	210,6	2,4	0,05	-1793,3	-1	-1	-1	2	dünn
WD0956+045	130,5	39,8	0,43	-1113,5	1	1	-1	1	dick
WD1013-050A	155	-76,5	0,37	-1333,5	1	1	-1	1	dick
WD1013-050B	154,9	-81,1	0,38	-1334	1	1	-1	1	dick
WD1017-138	205,7	-13,5	0,07	-1753,6	-1	-1	-1	2	dünn
WD1023+009	195,5	-15,9	0,11	-1679,3	-1	-1	-1	1	dünn
WD1031-114	196,8	-45	0,17	-1675,4	-1	-1	-1	1	dünn
WD1031+063	202,6	33,3	0,13	-1729,1	-1	-1	-1	2	dünn
Fortsetzung auf de	er nächstei	n Seite.							
Name	V (km/s)	U (km/s)	е	J_z	V-U	e-J _z	Orbit	Ast	Klasse
WD1056-384A	199,4	-36,5	0,14	-1694,9	-1	-1	-1	1	dünn
WD1056-384B	211,7	10,1	0,05	-1796,3	-1	-1	-1	2	dünn
WD1121+216	193,9	-55,1	0,21	-1649,1	-1	-1	-1	1	dünn
WD1129+071A	251	-0,3	0,14	-2135,3	-1	-1	-1	2	dünn
WD1129+071B	298,2	54,7	0,4	-2534,9	3	3	1	2	halo
WD1141+077	180,3	-8,3	0,18	-1535,5	-1	-1	-1	1	dünn
WD1147+255	171,6	-43,7	0,26	-1460,2	-1	-1	-1	1	dünn
WD1149+057	209,5	37,7	0,13	-1780,5	-1	-1	-1	2	dünn

WD1201-049	214,2	21,7	0,11	-1798,1	-1	-1	-1	2	dünn
WD1214+032	231,6	-44,5	0,16	-1969	-1	-1	-1	2	dünn
WD1254+223	159,6	37,9	0,3	-1355,7	-1	1	-1	1	dünn
WD1314-153	-41,1	82	0,8	351,3	3	3	3	1	halo
WD1348-273A	198,3	53,7	0,2	-1678,6	-1	-1	-1	1	dünn
WD1348-273B	190,3	52,3	0,21	-1611,4	-1	-1	-1	1	dünn
WD1349+144	198,1	-24,4	0,13	-1678,3	-1	-1	-1	1	dünn
WD1350-090A	202,6	220,8	0,66	-1701,7	3	3	3	2	halo
WD1350-090B	200,9	244,8	0,72	-1684	3	3	3	2	halo
WD1412-109A	260,6	1,1	0,19	-2196,2	-1	-1	-1	2	dünn
WD1412-109B	210,8	7,9	0,05	-1776,4	-1	-1	-1	2	dünn
WD1425-811	218,2	-15	0,05	-1852,7	-1	-1	-1	2	dünn
WD1527+090A	241	15,5	0,11	-2039,3	-1	-1	-1	2	dünn
WD1527+090B	238,1	9,8	0,09	-2015,9	-1	-1	-1	2	dünn
WD1544-377	201,7	-13,8	0,09	-1711,7	-1	-1	-1	1	dünn
WD1550+183A	206,3	-40,3	0,14	-1749	-1	-1	-1	2	dünn
WD1550+183B	210	-37,3	0,13	-1779,6	-1	-1	-1	2	dünn
WD1615-154	190,5	-12,8	0,14	-1613,8	-1	-1	-1	1	dünn
WD1620-391	223,7	27,1	0,09	-1898,5	-1	-1	-1	2	dünn
WD1755+194	182,7	88,4	0,31	-1543,9	-1	1	-1	1	dünn
WD1845+019A	188,8	-12,3	0,15	-1597,3	-1	-1	-1	1	dünn
WD1845+019B	190,8	-14	0,14	-1614,3	-1	-1	-1	1	dünn
WD1847-223j	216,9	-19,2	0,06	-1829,8	-1	-1	-1	2	dünn
WD1857+119	220,2	-68,3	0,22	-1862,2	-1	-1	-1	2	dünn
WD1914+094	177,1	29,8	0,21	-1488,2	-1	-1	-1	1	dünn
WD1943+163	193,2	65,2	0,23	-1639,4	-1	-1	-1	1	dünn
WD1948-389	197,6	-32,2	0,14	-1660,4	-1	-1	-1	1	dünn
WD1950-432	186,6	-87,7	0,31	-1558	-1	1	-1	1	dick
WD1953-011	181	17,8	0,19	-1537	-1	-1	-1	1	dünn
WD2007-303	209,9	62,1	0,2	-1781,8	-1	-1	-1	2	dünn
WD2020-425A	212,8	-110,7	0,37	-1798,9	1	1	3	2	dick
WD2020-425B	219,3	-104,7	0,35	-1858,3	1	1	3	2	dick
WD2020-425C	204,8	-104,3	0,35	-1726,4	1	1	3	2	dick
WD2020-425D	214,5	-101,0	0,34	-1814,5	-1	1	3	2	dick
WD2039-202	210,9	-29,2	0,1	-1788,3	-1	-1	-1	2	dünn
WD2105-820	189,8	-22,7	0,15	-1611,7	-1	-1	-1	1	dünn
WD2115-560	204,2	-50,2	0,17	-1732,3	-1	-1	-1	2	dünn
WD2120+054A	125,6	83,9	0,48	-1069	1	1	-1	1	dick
WD2120+054B	127	79,5	0,47	-1080,1	1	1	-1	1	dick
WD2146-433	183,9	64,3	0,27	-1502,5	-1	-1	-1	1	dünn
Fortsetzung auf de	er nächstei	n Seite.							
Name	V (km/s)	U (km/s)	е	J_z	V-U	e-J _z	Orbit	Ast	Klasse
WD2149+021	202,5	28,8	0,12	-1720,1	-1	-1	-1	1	dünn
WD2152-045	208,6	-8,4	0,06	-1758,7	-1	-1	-1	2	dünn
WD2153-419	193,4	-1,3	0,12	-1620,3	-1	-1	-1	1	dünn
WD2154-061	210,4	37,2	0,12	-1777,1	-1	-1	-1	2	dünn
WD2159-414A	160,7	-47,4	0,27	-1337,5	-1	-1	1	1	dünn
WD2159-414B	135,8	-42,8	0,37	-1121,5	1	1	1	1	dick
WD2159-754	214,7	72,8	0,23	-1822,1	-1	-1	-1	2	dünn
WD2200-136	205,7	37,6	0,13	-1737,2	-1	-1	-1	2	dünn
WD2204p071P	258,3	49 <u>,</u> 3	0,23	-2189,8	-1	-1	-1	2	dünn
WD2207+142	213,7	-42,4	0,14	-1814,3	-1	-1	-1	2	dünn
WD2211-495A	205,2	15,3	0,08	-1737,4	-1	-1	-1	1	dünn

WD2211-495B	204,2	19,9	0,1	-1728,9	-1	-1	-1	1	dünn
WD2211-495C	209,4	-0,5	0,04	-1773,1	-1	-1	-1	2	dünn
WD2211-495D	204,5	19,2	0,09	-1730,8	-1	-1	-1	1	dünn
WD2211-495E	203,3	23,8	0,11	-1720,6	-1	-1	-1	1	dünn
WD2211-495F	208,4	3,4	0,05	-1764,4	-1	-1	-1	2	dünn
WD2220+133	179,8	25,5	0,2	-1527,9	-1	-1	-1	1	dünn
WD2235+082A	221,1	90,5	0,28	-1883,9	-1	1	-1	2	dünn
WD2235+082B	217	80,9	0,25	-1847,5	-1	-1	-1	2	dünn
WD2240-045	140,9	-177,8	0,62	-1171	1	1	-1	1	dick
WD2253+054	-53,2	-159,9	0,68	474,8	3	3	3	1	halo
WD2303+017	224,1	-25,9	0,1	-1894,5	-1	-1	-1	2	dünn
WD2308+050A	237	-26	0,12	-2006,7	-1	-1	-1	2	dünn
WD2308+050B	241,5	-31,4	0,15	-2043,2	-1	-1	-1	2	dünn
WD2309+105A	175,1	-29,6	0,22	-1486,7	-1	-1	-1	1	dünn
WD2309+105B	174,9	-32,3	0,23	-1484,7	-1	-1	-1	1	dünn
WD2309+105C	181,7	-29,4	0,2	-1542,7	-1	-1	-1	1	dünn
WD2309+105D	181	-32,3	0,21	-1536,2	-1	-1	-1	1	dünn
WD2312-356	224,4	-5,3	0,03	-1901,6	-1	-1	-1	2	dünn
WD2353+026A	189,3	92,6	0,31	-1625,6	-1	1	-1	1	dünn
WD2353+026B	189,9	116	0,37	-1640	1	1	-1	1	dick

Tabelle B3: die Klassifikation aller Einzelsterne vom Spektraltyp DA.

		!	Klassifikationen:				gesamt		
Name	V (km/s)	U (km/s)	е	J_z	V-U	e-J _z	Orbit	Ast	Klasse
HE0320-1917	206,4	-13,8	0,07	-1773	-1	-1	-1	2	dünn
HE1414-0848A	230,8	-14,3	0,07	-1955,2	-1	-1	-1	2	dünn
HE1414-0848B	226,8	-10,3	0,05	-1919	-1	-1	-1	2	dünn
HE1511-0448	230,6	-13,8	0,08	-1911,2	-1	-1	-1	2	dünn
HE2147-1405	236,2	-17,2	0,1	-1972,6	-1	-1	-1	2	dünn
HE2209-1444A	213,5	-51,4	0,17	-1810,4	-1	-1	-1	2	dünn
HE2209-1444B	209,6	-41,2	0,14	-1778,2	-1	-1	-1	2	dünn
HS1334+0701A	229,2	24,7	0,1	-1938,7	-1	-1	-1	2	dünn
HS1334+0701B	230,1	20,4	0,09	-1947,1	-1	-1	-1	2	dünn
HS1606+0153	194,4	34,1	0,14	-1630,2	-1	-1	1	1	dünn
PNG2119+226	162,5	-12,9	0,25	-1468,1	-1	-1	0	1	dünn
WD0028-474	220,7	-6,3	0,02	-1872,1	-1	-1	-1	2	dünn
WD0135-052	196,5	-6,4	0,11	-1671	-1	-1	-1	1	dünn
WD0326-273	172,8	-66,9	0,3	-1470,4	-1	1	-1	1	dünn
WD0453-295	245,3	-62,2	0,23	-2113,2	-1	-1	-1	2	dünn
WD1013-010PB	198,3	-49,2	0,18	-1687,8	-1	-1	-1	1	dünn
WD1013-010PA	201,3	-60,1	0,21	-1715,1	-1	-1	-1	2	dünn
WD1022+050P	206,5	-29,8	0,11	-1759,9	-1	-1	-1	2	dünn
WD1042-690A	184,4	-1,8	0,16	-1565	-1	-1	-1	1	dünn
WD1042-690B	191,6	4,2	0,12	-1626	-1	-1	-1	1	dünn
WD1042-690C	178,3	-20,5	0,2	-1513,5	-1	-1	-1	1	dünn
WD1058-129A	226,3	12,2	0,06	-1923,4	-1	-1	-1	2	dünn
WD1058-129B	223,5	8,3	0,04	-1899,9	-1	-1	-1	2	dünn
WD1115+166	190,3	-52	0,21	-1634,8	-1	-1	-1	1	dünn
WD1210+140A	187,8	-35	0,18	-1599,3	-1	-1	-1	1	dünn
WD1210+140B	184,9	-39	0,2	-1575	-1	-1	-1	1	dünn
WD1229-012	188,4	-52,7	0,22	-1600,6	-1	-1	-1	1	dünn
WD1241-010	163,1	25,5	0,27	-1382,9	-1	-1	-1	1	dünn
WD1349+144	198,7	-30,4	0,13	-1683,5	-1	-1	-1	1	dünn
WD1449+168	254,8	7	0,17	-2153,5	-1	-1	-1	2	dünn
WD1736+052	246,3	49,5	0,2	-2087,4	-1	-1	-1	2	dünn
WD1824+040A	246,2	37,9	0,17	-2084,6	-1	-1	-1	2	dünn
WD1824+040B	175,5	78,4	0,31	-1487,5	-1	1	-1	1	dünn
WD2032+188P	204,8	73,6	0,23	-1737,8	-1	-1	-1	2	dünn

Tabelle B4: Alle DA Weißen Zwerge, die in Doppelsternsystemen vorlagen und deren Systemgeschwindigkeit bekannt war.

		einige	Werte		K	lassifi	kationen		gesamt
Name	V (km/s)	U (km/s)	е	J_z	V-U	e-J _z	Orbit	Ast	Klasse
EC13349-3237	188,7	40,6	0,22	-1512,1	-1	-1	1	1	dünn
HE0016-4340A	233	43,4	0,16	-1964,4	-1	-1	-1	2	dünn
HE0016-4340B	223,7	18,2	0,07	-1892,7	-1	-1	-1	2	dünn
HE0131+0149	205,2	5,9	0,07	-1749,2	-1	-1	-1	2	dünn
HE0331-3541A	63,2	115,2	0,78	-525,5	3	3	1	1	halo
HE0331-3541B	150,2	54,7	0,36	-1279,6	1	1	-1	1	dick
HE0409-3233	236,9	86,6	0,29	-2020,2	-1	1	-1	2	dünn
HE0410-1137	237,3	-79,7	0,27	-2041,8	-1	-1	-1	2	dünn
HE0423-2822	178,4	-39,7	0,22	-1526,2	-1	-1	-1	1	dünn
HE0523-3856	156	-98,9	0,41	-1347,5	1	1	-1	1	dick
HE1333-0622	210,1	-4,8	0,04	-1770,5	-1	-1	-1	2	dünn
Fortsetzung auf der nächsten Seite.									

Name	V (km/s)	U (km/s)	е	J_z	V-U	e-J _z	Orbit	Ast	Klasse
HE2155-3150	222	22,6	0,07	-1873,3	-1	-1	-1	2	dünn
HE2200-1341	226,1	55	0,18	-1911,3	-1	-1	-1	2	dünn
HE2345-4810	232,2	-70,4	0,24	-1953,4	-1	-1	1	2	dünn
HS0130+0156	222	0,5	0,02	-1908	-1	-1	-1	2	dünn
HS1334+0701	212	58,3	0,19	-1792,2	-1	-1	0	2	dünn
HS2216+1551	199,9	2,7	0,09	-1695,9	-1	-1	-1	1	dünn
WD0032-317	204,4	-7,5	0,08	-1730,3	-1	-1	-1	1	dünn
WD0034-211	214	113,8	0,36	-1820,3	1	1	-1	2	dick
WD0037-006	203,2	17,8	0,08	-1729,9	-1	-1	-1	2	dünn
WD0131-163	226	-4,1	0,04	-1927,4	-1	-1	-1	2	dünn
WD0137-349	215,1	45,2	0,15	-1828,8	-1	-1	-1	2	dünn
WD0205+1330	184,9	-7,1	0,16	-1595,9	-1	-1	-1	1	dünn
WD0347-137A	198,7	-38,8	0,15	-1699,1	-1	-1	-1	1	dünn
WD0347-137B	244,8	-14,7	0,12	-2092,6	-1	-1	-1	2	dünn
WD0430+1360	244,4	16,8	0,13	-2163,8	-1	-1	-1	2	dünn
WD0922+162a	202,7	-31,7	0,12	-1739,8	-1	-1	-1	2	dünn
WD0933+025	204,5	37,6	0,15	-1748,8	-1	-1	-1	2	dünn
WD1001+203	209,2	-10	0,06	-1782,9	-1	-1	-1	2	dünn
WD1300-098	216,4	-16,9	0,06	-1834,3	-1	-1	-1	2	dünn
WD1319-288	290,1	81,8	0,48	-2439,7	3	3	3	2	halo
WD1415+132	250,4	60,8	0,24	-2100,3	-1	-1	-1	2	dünn
WD1436-216	223,1	20,4	0,08	-1850,7	-1	-1	-1	2	dünn
WD1541-381	224,6	40,2	0,13	-1901,3	-1	-1	-1	2	dünn
WD1643+143A	285,9	-35,6	0,32	-2389,7	1	1	-1	2	dick
WD1643+143B	259,2	-29,0	0,2	-2179,4	-1	-1	-1	2	dünn
WD1646+062Ao	190,1	23,5	0,15	-1591	-1	-1	-1	1	dünn
WD1646+062B	185,9	14,1	0,16	-1556,2	-1	-1	-1	1	dünn
WD1802+213	222	64,6	0,21	-1877,2	-1	-1	-1	2	dünn
WD1844-654A	204,6	13,8	0,09	-1685,3	-1	-1	-1	1	dünn
WD1844-654B	305,1	22,5	0,45	-2491	3	3	3	2	halo
WD2020-425A	211,2	-109,5	0,37	-1784,6	1	1	3	2	dick
WD2020-425B	218,9	-104,4	0,35	-1854,2	1	1	3	2	dick
WD2020-425C	202,2	-91,1	0,31	-1703,2	-1	1	3	2	dick
WD2020-425D	213,8	-100,4	0,33	-1807,9	-1	1	3	2	dick
WD2059+190	117,3	2,2	0,47	-996,1	1	1	-1	1	dick
WD2151-015A	214,8	35,7	0,12	-1824,3	-1	-1	-1	2	dünn
WD2151-015B	203,5	44,3	0,16	-1727,9	-1	-1	-1	2	dünn
WD2336-187	187,4	3,1	0,14	-1591,3	-1	-1	-1	1	dünn

Tabelle B5: Alle spektroskopischen Doppelsternsysteme, in denen ein Weißer Zwerg vom Typ DA und ein Begleiter vorkommen (z.B. DA+dM) und die keine Radialgeschwindigkeitsveränderlichkeit zeigten.

	einige Werte			Klassifikationon:				accomt	
		einige	vverte		r	lassii	kalioner	1:	gesam
Name	V (km/s)	U (km/s)	е	J_z	V-U	e-J _z	Orbit	Ast	Klasse
WD0136+768	203,4	-47,1	0,17	-1734,7	-1	-1	-1	2	dünn
WD0957-6660	241,8	9,3	0,14	-2037,4	-1	-1	1	2	dünn
WD1202+608A	180,8	-14,7	0,19	-1548,1	-1	-1	-1	1	dünn
WD1202+608C	165	-50,3	0,3	-1410,4	-1	1	-1	1	dünn
WD1204+450	228,2	38,7	0,13	-1951,3	-1	-1	-1	2	dünn
WD1428+373	191,3	40	0,18	-1624,6	-1	-1	-1	1	dünn
WD1704+481	203,1	16,7	0,09	-1725,5	-1	-1	-1	1	dünn
WD1713+332A	231,3	72	0,24	-1961,1	-1	-1	-1	2	dünn
WD1713+332B	230,5	77,5	0,25	-1954,1	-1	-1	-1	2	dünn
WD2009+622	259	-21,6	0,2	-2202,4	-1	-1	-1	2	dünn
WD2234+222Ao	137	-386,6	0,92	-1015,9	3	3	3	1	halo
WD2234+222A	137,6	-381,9	0,92	-1024,4	3	3	3	1	halo
WD2234+222Bo	135,9	-400,6	0,93	-996	3	3	3	1	halo
WD2234+222B	137,7	-382,6	0,92	-102 <u>4</u> ,1	3	3	3	1	halo
WD2331+290Ao	184,5	136	0,43	-1601,3	3	1	1	1	dick
WD2331+290Bo	175,5	137,5	0,44	-1524,9	3	1	1	1	dick

 Tabelle B6: Alle DA Sterne die nicht bei SPY waren, deren Daten aber vollständig vorlagen.

		einige Werte					Klassifikationen			
Name	V (km/s)	U km/s	е	J_Z	V-U	e-J _Z	Orbit	Ast	Klasse	
EC12489-2750	185,9	19,7	0,18	-1542,0	-1	-1	-1	1	dünn	
EC13123-2523	208,8	-13,7	0,06	-1724,9	-1	-1	-1	1	dünn	
HE1215+0227	187,8	-17,5	0,15	-1591,7	-1	-1	-1	1	dünn	
HE1328-05350	193,7	-26,3	0,14	-1627,6	-1	-1	-1	1	dünn	
HE1328-0535m	195,0	-24,7	0,13	-1639,6	-1	-1	-1	1	dünn	
HE2334-1355	198,0	32,4	0,14	-1678,4	-1	-1	-1	1	dünn	
HS1204+0159	205,1	14,2	0,09	-1739,6	-1	-1	-1	1	dünn	
MCT0031-3107	200,7	48,3	0,18	-1699,0	-1	-1	-1	2	dünn	
MCT0105-1634	162,7	33,0	0,28	-1391,7	-1	1	-1	1	dünn	
MCT0110-1617	232,8	-3,6	0,11	-1991,3	-1	-1	-1	2	dünn	
MCT2349-3627	155,5	13,7	0,29	-1305,8	-1	1	-1	1	dünn	
WD0138-236	197,5	15,8	0,11	-1689,2	-1	-1	-1	1	dünn	
WD0205-136j	215,2	22,9	0,08	-1850,5	-1	-1	-1	2	dünn	
WD0205-365	205,3	13,4	0,09	-1756,7	-1	-1	-1	2	dünn	
WD0208-263o	190,4	-31,5	0,16	-1630,2	-1	-1	-1	1	dünn	
WD0208-263m	191,2	-30,9	0,16	-1636,3	-1	-1	-1	1	dünn	
WD1328-152	240,1	6,7	0,10	-2001,6	-1	-1	-1	2	dünn	
WD2311-260	187,7	2,3	0,14	-1570,7	-1	-1	-1	1	dünn	
WD2354-151	212,2	27,3	0,09	-1801,1	-1	-1	-1	2	dünn	

 Tabelle B7: Paulisterne mit Extinktion, weitere Daten können online im VizieR Service erhalten werden.

Name: Der Katalogname des Weißen Zwerges (s. Anhang α). Die Großbuchstaben (A-F) am Ende wurden benutzt um verschiedene Varianten zu unterscheiden. Bei einigen Sternen war nämlich die Zuordnung der Helligkeit oder der Eigenbewegungen nicht ganz eindeutig. In diesen Fällen halte ich die Version A für die wahrscheinlichste. Der Großbuchstabe "P" markiert einen Stern von Pauli⁽¹²⁾ und Pauli et al.⁽⁵⁸⁾, der noch mal ausgewertet wurde, nachdem bekannt wurde, dass er kein Einzel-, sondern ein Doppelstern ist. Die Kleinbuchstaben "m" und "o" markieren Sterne die <u>m</u>it oder <u>o</u>hne Extinktion gerechnet wurden, wenn ihre Entfernung durch die Extinktionskorrektur unter 200pc fiel (s. Kapitel 4.4.1). Die Kleinbuchstaben "a", "b" und "j", sowie die Endungen ".1" und ".2" sind tatsächlich Teil des Namens und beziehen sich auf meist zwei Sterne, die zum Zeitpunkt der Benennung, bei den gleichen Koordinaten zu finden waren. "j" gibt dabei an dass der Stern nach 2000er Koordinaten benannt wurde.

V, U, e und J_Z beziehen sich auf die Kinematische Daten (s. Kapitel 3.3 und 3.4).

Die ersten drei Spalten der Klassifikationen geben die Ergebnisse der verschiedenen kinematischen Messmethoden an. "-1" bezeichnet die Dünne Scheibe, "1" die Dicke Scheibe und "3" den Halo. Die Orbitklassifikation "0" gibt an, dass sich der Stern in einem Übergangsbereich zwischen Dünner und Dicker Scheibe befindet. Die Astklassifikation bezieht sich auf die Zugehörigkeit zu einem der "beiden" Äste im e- J_Z Diagramm (s. Kapitel 6.3.3).

Die Gesamtklassifikation gibt die endgültige Klasse dieses Sterns an.

C) Daten der DB und DBA Weißen Zwerge

C1) Alle Eingabedaten

Name	Rekta.	Deklination	log d	∆logd	RV	ΔRV	pma	pmd	∆pma	∆pmd
EC12438-1346	12 46 30.4	-14 02 39	2,1	0,08	-2,10	2,48	-16	12	1	1
HE0215-0225	02 17 32.8	-02 11 14	1,97	0,08	48,50	2,67	60	-27,95	1,58	2,12
HE0308-5635	03 09 48.0	-56 23 50	1,63	0,08	38,04	3,64	156	66	16	4
HE0413-3306	04 15 20.6	-32 59 10	2,13	0,08	19,24	2,67	28	-28	18	5
HE0417-5357	04 19 10.0	-53 50 46	1,83	0,08	-30,12	4,00	-40	-124	18	4
HE0420-4748	04 22 11.4	-47 41 42	2,21	0,08	51,42	1,77	-69,35	5,15	3,69	8,35
HE0423-1434	04 25 51.9	-14 27 55	2,16	0,08	33,68	2,41	80	-56	2	4
HE0429-1651	04 32 13.8	-16 45 09	1,97	0,08	19,03	4,59	50	-16	4	8
HE1349-2305	13 52 44.0	-23 20 07	2,23	0,08	-23,91	2,81	6	-18	2	2
HE1409-1821	14 11 48.7	-18 35 06	2,1	0,08	0,17	3,25	16	-12	6	7
HE2334-4127	23 37 38.7	-41 10 32	1,82	0,08	13,03	3,35	115,02	-118,99	5,45	4,09
MCT0149-2518	01 51 59.6	-25 03 19	2,17	0,08	39,88	2,83	24	-26	3	5
WD0119-004A	01 21 47.6	-00 10 55	2,04	0,08	-29,36	2,72	-141,71	-136,85		
WD0119-004B	01 21 47.6	-00 10 55	2,04	0,08	-29,36	2,72	-96,95	-132	6,41	2,81
WD0125-236	01 27 44.6	-23 24 49	1,86	0,08	26,24	2,99	299,46	53,64	6,63	4,07
WD0158-160	02 00 56.0	-15 46 06	2,08	0,08	39,14	1,97	128,40	20,34		
WD0249-052	02 52 15.7	-05 02 32	1,95	0,08	23,66	2,96	72,25	72,8	2,25	1,3
WD0503+147	05 06 15.7	14 48 29	1,53	0,08	-2,31	3,35	2,03	-84,4	3,21	2,81
WD0615-591	06 16 14.5	-59 12 28	1,5	0,08	-17,31	3,40	-46	-316		
WD0845-188	08 47 29.4	-18 59 50	1,95	0,08	63,07	2,64	-181,73	38,59	5,03	4,43
WD0853+163	08 56 19.0	16 11 06	1,97	0,08	-56,42	5,64	-31,26	-31,25	1,74	2,07
WD0900+142	09 03 31.2	+14 00 49	1,99	0,08	7,76	4,17	-3,6	8	2,16	2,77
WD0921+091	09 23 55.3	08 57 17	2,01	0,08	14,32	3,70	-24	-42	2	1
WD0948+013	09 51 02.2	01 04 32	1,91	0,08	3,87	2,71	-70,17	-29,18	1,09	2,32
WD1004-178	10 07 07.9	-18 05 26	2	0,08	20,80	1,57	-172,56	90,79	3,29	8,3
WD1046-017	10 48 32.6	-02 01 12	1,48	0.08	-113,55	9,46	-9,85	-122,25	2,17	3.03
WD1134+073	11 36 54.3	07 03 36	2,14	0,08	24,41	3,81	34	-72	4	2
WD1144-084	11 46 54.1	-08 45 48	1,9	0,08	-32,07	3,52	-24,15	126,95	1,64	3,36
WD1149-133	11 51 50.5	-13 37 10	1,88	0,08	-15,16	6,50	29,75	-105,4	1,58	2,27
WD1252-289	12 54 55.3	-29 11 55	2,05	0,08	-11,87	3,42	22	-6	6	8
WD1311+129	13 13 51.2	12 40 12	1,89	0,08	-52,84	5,35	78,25	-154,3	8,64	6,95
WD1326-037	13 29 16.5	-03 58 52	1,83	0,08	-0,02	4,54	43,95	-14,9	2,14	1,87
WD1336+123	13 39 13.7	12 08 34	1,75	0,08	-32,07	3,25	126	-132	3,67	4,33
WD1338-220	13 41 17.3	-22 19 42	1,87	0,08	-61,25	7,53	-52	4	2	12
WD1403-010	14 06 20.0	-01 19 33	1,92	0,08	-48,36	3,70	-249,13	-74,6	12,5	8,17
WD1421-011	14 24 29.2	-01 22 17	2,1	0,08	14,16	3,29	32	-40	3	6
WD1428-125	14 31 39.6	-12 48 53	2,01	0,08	-3,57	4,20	-36	-26	4	5
WD1444-096	14 47 37.0	-09 50 05	1,73	0,08	43,91	2,64	41,1	-160,3	2,53	2,02
WD1445+152	14 48 14.5	15 04 53	2,1	0,08	-55,14	3,27	-2	24	25	6
WD1456+1030	14 58 32.7	10 08 19	2,43	0,08	-24,16	1,88	-24	-10	4	3
WD1456+103m	14 58 32.7	10 08 19	2,41	0,08	-24,16	1,88	-24	-10	4	3
WD1542+182	15 44 19.6	18 06 42	1,79	0,08	-19,20	3,73	2,9	-125,03	2,18	3,2
WD1557+192	15 59 21.0	19 04 06	1,86	0,08	-20,09	4,49	-4	-44	1	2
WD1612-111	16 15 24.0	-11 18 32	1,94	0,08	-4,31	3,44	38,65	-102,3	1,36	1,26
WD1654+160A	16 56 57.2	15 56 29	2,26	0,08	-62,02	2,39	-30	36	21	13
WD1654+160B	16 56 57.2	15 56 29	2,26	0,08	-62,02	2,39	-10	356	16	29
WD1709+230	17 11 55.7	23 01 05	1,7	0,08	0,23	4,87	13,3	-167,03	2,74	3,58
Fortsetzung auf d	er nächsten S	Seite.								

Name	Rekta.	Deklination	log d	∆logd	RV	ΔRV	pma	pmd	Δpma	Δpmd
WD2130-047	21 33 34.8	-04 32 25	1,76	0,08	-21,67	2,96	242,38	15,28	7,01	3,69
WD2142-169	21 45 27.6	-16 43 08	1,81	0,08	-48,29	3,45	74	-28	4	2
WD2154-437	21 58 01.7	-43 28 02	1,58	0,08	-3,06	3,19	129,3	-171,73	0,01	2,67
WD2229+139	22 31 45.3	+14 11 10	1,8	0,08	-99,16	9,93	4	-42	2	1
WD2234+064	22 36 42.0	06 40 20	2,05	0,08	-33,35	3,87	22	0	3	4
WD2253-062	22 55 47.5	-06 00 48	1,92	0,08	-0,43	2,56	71,65	-11,25	1,44	1,61
WD2354-305	23 56 37.2	-30 16 24	2,12	0,08	-9,60	3,57	-108	-60	3	6
WD2354+159	23 56 34.8	16 15 43	1,94	0,08	-24,59	5,14	-22,95	-61,3	1,53	2,71

Tabelle C1: Eingabedaten aller DB und DBA Sterne.

Name: Der Katalogname des Weißen Zwerges (s. Anhang α). Die Großbuchstaben (A-C) am Ende wurden benutzt um verschiedene Varianten zu unterscheiden. Bei einigen Sternen war nämlich die Zuordnung der Helligkeit oder der Eigenbewegungen nicht ganz eindeutig. In diesen Fällen halte ich die Version A die wahrscheinlichste. Die Kleinbuchstaben "m" und "o" markieren Sterne die <u>mit</u> oder <u>ohne Extinktion</u> gerechnet wurden, wenn ihre Entfernung durch die Extinktionskorrektur unter 200pc fiel (s. Kapitel 4.8).

Rekta: Die Rektaszension in Stunden

Deklination in Grad

logd und Δ logd: Der Logarithmus der Entfernung in pc und ihres Fehlers. Dabei ist für alle Sterne die weiter als 200pc entfernt sind die Extinktion nach Schlegel, Finkenbeiner und Davis⁽¹⁾ schon berücksichtigt.

RV und Δ RV: Die Radialgeschwindigkeit und ihr Fehler werden in km/s angegeben. Bei negativen Werten bewegt sich der Stern auf uns zu, bei positiven von uns weg. pma, pmd, Δ pma und Δ pmd: Die Eigenbewegungen in Rektaszension und Deklination und ihre jeweiligen Fehler werden in mas/a (Millibogensekunden/Jahr) angegeben.

C2) Weitere Daten aus der Spektroskopie

Name	Av	mv	М	T _{eff}	log g	V _G			
EC12438-1346		16,39	0,58	16960	7,95	27694			
HE0025-0317		15,51	0,98	19602	8,59	74866			
HE0215-0225		15,82	0,62	16778	8,02	30823			
HE0308-5635		14,07	0,57	18915	7,92	26400			
HE0413-3306		16,61	0,50	16600	7,80	21536			
HE0417-5357		15,27	0,69	18785	8,13	36991			
HE0420-4748		15,34	0,72	24731	8,16	39115			
HE0423-1434		16,65	0,50	16904	7,79	21387			
HE0429-1651		16,03	0,45	15659	7,66	17369			
HE1349-2305		17,07	0,58	16770	7,95	27567			
HE1409-1821		16,47	0,55	18400	7,88	24766			
HE2237-0509		16,51	0,81	13300	8,34	51041			
HE2334-4127		15,15	0,64	18275	8,04	32156			
MCT0149-2518		16,86	0,74	16900	8,21	42004			
WD0119-004		16,14	0,76	16330	8,25	44318			
WD0125-236		15,36	0,66	16796	8,08	34194			
WD0158-160		14,80	0,57	25518	7,88	25067			
WD0249-052		15,73	0,61	17908	7,99	29671			
WD0503+147		13,80	0,63	15996	8,04	31977			
WD0615-591		13,65	0,74	16874	8,22	42490			
WD0845-188		15,68	0,6	17566	7,97	28658			
WD0853+163		15,66	0,87	26128	8,40	56420			
WD0900+142		16,39	0,74	16142	8,22	42246			
WD0921+091		16,12	0,59	18691	7,95	27835			
WD0948+013		15,48	0,61	17022	8,00	29911			
WD1004-178		15,60	0,47	16357	7,70	18609			
WD1046-017		15,14	0,88	15671	8,44	59554			
WD1134+073		16,97	0,81	18227	8,33	50514			
WD1144-084		15,68	0,58	16385	7,95	27630			
WD1252-289		15,85	0,61	19802	7,99	29740			
WD1311+129		15,94	0,66	18823	8,07	33686			
WD1326-037		15,35	0,63	22645	8,00	30398			
WD1336+123		14,85	0,77	16869	8,26	45386			
WD1338-220		16,38	1,06	14924	8,72	90017			
WD1352+004		15,66	1,01	15348	8,64	80879			
WD1403-010		15,85	0,64	16023	8,06	32981			
WD1421-011		16,60	0,64	16884	8,05	32416			
WD1428-125		15,98	0,69	19750	8,13	36991			
WD1444-096		14,58	0,85	17417	8,39	55384			
WD1445+152		16,07	0,54	18638	7,85	23761			
WD1542+182		14,77	0,55	18959	7,88	24823			
WD1557+192		15,4	0,67	18724	8,10	35214			
WD1612-111		15,33	0,66	22143	8,07	33880			
WD1654+160		16,15	0,56	25447	7,85	24031			
WD1709+230		14,74	0,73	19296	8,19	40863			
WD2130-047		14,78	0,54	17658	7,87	24315			
WD2142-169		15,42	0,54	39138	7,74	20815			
WD2154-437		14,00	0,62	17213	8,02	30929			
WD2229+139		16,33	0,72	15390	8,19	40303			
Fortsetzung auf der nächsten Seite.									

Name	A_{V}	mv	Μ	T _{eff}	log g	V _G
WD2234+064		16,17	0,64	20890	8,04	31935
WD2253-062		15,50	0,64	17598	8,05	32528
WD2354+159		16,00	0,65	18832	8,06	33047
WD2354-305		16,66	0,55	18006	7,88	24852

Tabelle C2: Spektroskopische Daten für alle DB und DBA Weißen Zwerge.

In dieser Tabelle befinden sich auch Sterne, die nicht kinematisch untersucht werden konnten, da z.B. keine Eigenbewegungsmessungen vorlagen.

Name: Der Katalogname des Weißen Zwerges (s. Anhang α).

 A_V : Der Wert der Extinktion in Magnituden nach Schlegel, Finkenbeiner und Davis⁽¹⁾. Für Sterne mit weniger als 200pc Entfernung in Z-Richtung wurde nicht immer eine Extinktion ermittelt.

m_{V:} Scheinbare Visuelle Helligkeit in Magnituden.

M: Masse in Sonnenmassen, aus log g und T_{eff} ermittelt (s. Kapitel 4.3), der Fehler ist kleiner als 0,05 Sonnenmassen.

T_{eff}: Effektivtemperatur in K, der Fehler ist kleiner als 500K

log g: Logarithmus der Schwerebeschleunigung an der Oberfläche des Weißen Zwerges in cm/s², der Fehler liegt bei 0,05

v_G: Gravitationsrotverschiebung in m/s, der Fehler ist kleiner als 10%.
DB		einige W	/erte		K	assifik	ationer	1	gesamt
Name	V (km/s)	U (km/s)	е	J_Z	V-U	e-J _z	Orbit	Ast	Klasse
HE0215-0225	204,6	-27,5	0,11	-1748,9	-1	-1	-1	2	dünn
HE0308-5635	186,1	-17,9	0,16	-1582	-1	-1	-1	1	dünn
HE0417-5357	243,4	54,8	0,21	-2067,4	-1	-1	-1	2	dünn
HE0420-4748	225,3	13	0,08	-1920,9	-1	-1	1	2	dünn
HE0423-1434	150,8	-3,1	0,31	-1297	-1	1	-1	1	dick
HE0429-1651	198,4	-3,7	0,1	-1698,9	-1	-1	-1	1	dünn
HE1409-1821	226,6	19	0,07	-1906,3	-1	-1	-1	2	dünn
MCT0149-2518	196	0,5	0,1	-1672,6	-1	-1	-1	1	dünn
WD0119-004A	206,3	115	0,36	-1765,9	1	1	-1	2	dick
WD0119-004B	194,6	94,1	0,31	-1664,9	-1	1	-1	1	dünn
WD0158-160	187,2	-63,9	0,25	-1599,2	-1	-1	-1	1	dünn
WD0249-052	227,9	-39,2	0,13	-1949,1	-1	-1	-1	2	dünn
WD0615-591	245,1	57,2	0,22	-2082,3	-1	-1	-1	2	dünn
WD0845-188	184,1	-75,5	0,28	-1577,6	-1	1	-1	1	dick
WD0853+163	237,5	44,7	0,17	-2032,4	-1	-1	-1	2	dünn
WD0900+142	225	2,4	0,03	-1927,3	-1	-1	-1	2	dünn
WD1004-178	216,7	-84,9	0,26	-1854,1	-1	-1	-1	2	dünn
WD1046-017	284,1	40	0,36	-2416	3	1	3	2	halo
WD1144-084	273,2	-23,5	0,25	-2322,1	-1	-1	-1	2	dünn
WD1252-289	238,7	15,3	0,1	-2014,8	-1	-1	-1	2	dünn
WD1326-037	230,3	23,3	0,09	-1950,3	-1	-1	-1	2	dünn
WD1336+123	221,3	46,2	0,15	-1876,7	-1	-1	-1	2	dünn
WD1428-125	205,7	0,6	0,07	-1734	-1	-1	-1	1	dünn
WD1445+152	227,9	-26,4	0,11	-1922,7	-1	-1	-1	2	dünn
WD1542+182	194,4	25,1	0,14	-1646,3	-1	-1	-1	1	dünn
WD1612-111	202,4	25,2	0,11	-1704,7	-1	-1	-1	1	dünn
WD1654+160A	199,5	-59,6	0,22	-1665,2	-1	-1	-1	1	dünn
WD1654+160B	387,6	-251,4	0,87	-3222,2	3	3	3	2	halo
WD2130-047	211,4	-52,3	0,17	-1788,5	-1	-1	-1	2	dünn
WD2234+064	199,1	-6,7	0,1	-1687,4	-1	-1	-1	1	dünn
WD2354-305	220,6	84,6	0,27	-1869,5	-1	1	-1	2	dünn
WD2354+159	197,7	34,4	0,14	-1685,3	-1	-1	-1	1	dünn

C3) Die komplette Klassifikation

Tabelle C3: Klassifikation der DB Weißen Zwerge.

DBA		einige W	/erte		KI	1	gesamt		
Name	V (km/s)	U (km/s)	е	J_Z	V-U	e-J _Z	Orbit	Ast	Klasse
EC12438-1346	225,8	-1,8	0,03	-1909,5	-1	-1	-1	2	dünn
HE0413-3306	193,2	11,5	0,13	-1652,4	-1	-1	-1	1	dünn
HE1207-2349	226,4	41,3	0,14	-1916,8	-1	-1	-1	2	dünn
HE1349-2305	231,4	2,8	0,06	-1942,3	-1	-1	-1	2	dünn
HE2334-4127	175,3	-4,4	0,2	-1486,5	-1	-1	-1	1	dünn
WD0125-236	177	-87,7	0,33	-1507,1	1	1	-1	1	dick
WD0503+147	214,2	15,5	0,06	-1827,8	-1	-1	-1	2	dünn
WD0921+091	199,8	1,6	0,09	-1710,2	-1	-1	-1	1	dünn
WD0948+013	211	-7,3	0,04	-1801,6	-1	-1	-1	2	dünn
WD1134+073	184,8	50,1	0,23	-1570,1	-1	-1	-1	1	dünn
WD1149-133	217,1	34,9	0,12	-1841,3	-1	-1	-1	2	dünn
WD1311+129	204,4	53,6	0,18	-1733,3	-1	-1	1	2	dünn
WD1338-220	246,8	-40	0,18	-2088,9	-1	-1	-1	2	dünn
WD1403-010	149,5	-72,2	0,38	-1265,7	1	1	-1	1	dick
WD1421-011	217,7	42,7	0,14	-1833,9	-1	-1	-1	2	dünn
WD1444-096	193,6	62,5	0,23	-1637,8	-1	-1	-1	1	dünn
WD1456+1030	192,6	-13,9	0,13	-1607,7	-1	-1	-1	1	dünn
WD1456+103m	194,4	-13,4	0,12	-1624,4	-1	-1	-1	1	dünn
WD1557+192	206,8	8,7	0,06	-1749,6	-1	-1	-1	1	dünn
WD1709+230	204,7	42,1	0,15	-1735,3	-1	-1	-1	2	dünn
WD2142-169	195,1	-31,5	0,15	-1650,5	-1	-1	-1	1	dünn
WD2154-437	191	-8	0,13	-1618,6	-1	-1	-1	1	dünn
WD2229+139	139,2	0,9	0,35	-1182,3	1	1	0	1	dick
WD2253-062	213,1	-12,3	0,05	-1806,8	-1	-1	-1	2	dünn

Tabelle C4: Klassifikation der DBA Sterne.

Name: Der Katalogname des Weißen Zwerges (s. Anhang α). Die Großbuchstaben "A" und "B" am Ende wurden benutzt um verschiedene Varianten zu unterscheiden. Bei einigen Sternen war nämlich die Zuordnung der Helligkeit oder der Eigenbewegungen nicht ganz eindeutig. In diesen Fällen halte ich die Version A für die wahrscheinlichste. Die Kleinbuchstaben "m" und "o" markieren Sterne die <u>mit</u> oder <u>ohne Extinktion (nach Schlegel, Finkenbeiner und Davis⁽¹⁾) gerechnet wurden, wenn ihre Entfernung durch die Extinktionskorrektur unter 200pc fiel (s. Kapitel 4.4.1).</u>

V, U, e und J_Z beziehen sich auf Kinematische Daten (s. Kapitel 3.3 und 3.4).

Die ersten drei Spalten der Klassifikationen geben die Ergebnisse der verschiedenen kinematischen Messmethoden an. "-1" bezeichnet die Dünne Scheibe, "1" die Dicke Scheibe und "3" den Halo. Die Orbitklassifikation "0" gibt an, dass sich der Stern in einem Übergangsbereich zwischen Dünner und Dicker Scheibe befindet. Die Astklassifikation bezieht sich auf die Zugehörigkeit zu einem der "beiden" Äste im e- J_Z Diagramm (s. Kapitel 6.3.3).

Die Gesamtklassifikation gibt die Endgültige Klasse dieses Sterns an.

D) Daten der unterleuchtkräftigen Sterne

D1) Alle Eingabedaten

Name	Rekta	Deklination	logd	Δ logd	RV	ΔRV	pma	pmd	∆pma	Δpmd
[CW83]1419-09	14 22 40.33	+09 17 21.2	2,6	0,021	42,3	0,3	-8,73	-40,9	2,79	3,95
BAL90100001	23 15 21.3	+26 05 01	2,44	0,06	-57,2	3	12,88	-16	2,08	0,8
BD+48 2721	18 34 09.2	+48 27 40	2,17	0,06	-187,6	1,5	20	68,3	5,83	1,02
BPS CS 22169-001	03 56 23.1	+15 09 23	2,71	0,023	2,5	0,3	-5,9	3,5	1,46	1,54
CBS115	09 59 32.3	+36 18 26	2,62	0,06	-36,3	2	-8,14	-13,96	3,76	1,42
CD-24 731	01 43 48.4	-24 05 09.7	2,43	0,02	34,5	0,5	82,6	-47,98	5,15	1,7
CD-35 15910	23 44 22	-34 27 00	2,45	0,06	21	2	-21,58	-4,3	4,3	2,55
CD-38 222A	00 42 58.3	-38 07 37	2,37	0,06	-33,3	2	0,02	0	8,4	8,13
CD-38 222B	00 42 58.3	-38 07 37	2,37	0,06	-33,3	2	42,13	-5,12	4,07	4,97
CD-38 222C	00 42 58.3	-38 07 37	2,37	0,06	-33,3	2	23,3	-11,4	2,9	2,9
CD-38 222D	00 42 58.3	-38 07 37	2,37	0,06	-33,3	2	-5,4	-5	6,1	6,2
CD-48106	00 31 41.7	-47 25 20.1	2,81	0,02	-42,9	2	21,9	-27,92	1,82	2,01
CPD-64 481	05 47 59.3	-64 23 03.1	2,37	0,02	94,1	0,3	-0,9	-28,4	2,77	3,59
EC11349-2753	11 37 29.2	-28 09 44	2,97	0,08	14,94	1	-10,1	15,55	1,51	0,86
EC14345-1729	14 37 20.5	-17 42 25	2,89	0,08	-31	2	-16,03	8,53	1,86	2,49
EC15103-1557	15 13 10.2	-16 08 21	2,69	0,08	36,7	2	-12,47	-34,43	1,18	1,17
FEIGE108	23 26 12.5	-01 50 35	2,68	0,06	45,8	2	-1,85	-15,95	5,45	5,47
FEIGE38	11 16 49.4	+06 59 34	2,79	0,08	6,08	1,33	-10,46	-8,95	4,21	3,9
FEIGE49A	11 47 29.4	-16 05 38	3,03	0,08	67,11	2,33	-32,17	-7,41	1,04	1,08
FEIGE49B	11 47 29.4	-16 05 38	3,03	0,08	67,11	2,33	-29,7	-23,5	5	5
FEIGE65	12 35 51.1	+42 22 40	2,55	0,06	53,5	2	4,1	-13	1,62	2,67
FEIGE86	13 38 24.8	+29 21 56	2,65	0,08	-27,6	2	-14,22	-110,3	2,96	3,11
GD108	10 00 47.4	-07 33 31	2,84	0,08	115,5	2	-48,21	-3	4,29	3,98
HD149382	16 34 23.33	-04 00 52	1,51	0,06	22,6	2	-7,73	-5,75	4,67	2,39
HD171858	18 37 56.7	-23 11 35	2,01	0,06	62,5	0,1	-16,16	-23,43	3,76	1,54
HD188112	19 54 31.42	-28 20 20.7	1,79	0,034	26,7	0,2	33,97	20,56	2,15	1,25
HD205805	21 39 10.6	-46 05 52	2,41	0,02	-69	2	76,4	-9,9	5	5
HD4539	00 47 29.2	+09 58 56	2,3	0,03	-3,82	1,64	3,7	24,21	1,15	2,53
HD76431	08 56 11.2	+01 40 38	2,47	0,06	47,8	1	-32	-22,94	2,23	6,35
HE0001-2443	00 04 31.0	-24 26 21	2,84	0,08	-3,02	0,25	11,3	-27,6	2,45	1,22
HE0007-2212	00 09 45.91	-21 56 14.4	3,13	0,079	-7,35	2,08	2,29	7,95	3,6	3,22
HE0016+0044	00 18 43.59	+01 01 22.5	3,21	0,079	-19,47	2,55	4,15	-8,77	4,1	3,98
HE0016-3212	00 18 53.22	-31 56 01.7	3,1	0,08	143,54	1,59	0,47	-22,2	3,04	5,46
HE0019-5545	00 21 27.68	-55 29 12.3	3,33	0,079	84,7	3,1	0	0	0,5	0,5
HE0031-5607	00 34 07.0	-55 51 05	3,01	0,08	5,45	0,62	24	6	6	4
HE0101-2707	01 03 43.73	-26 51 53.8	3,07	0,079	21,46	2,99	-1,28	-9,61	4,25	2,55
HE0111-1526	01 13 38.4	-15 10 57	2,80	0,08	7,18	0,36	11,5	-0,55	2,04	3,56
HE0123-3330	01 25 22.46	-33 15 11.4	3,19	0,079	48,93	2,98	13,8	1,7	3,8	3,8
HE0135-6150	01 37 30.08	-61 34 57.8	3,43	0,079	26,86	1,6	-1,7	-5,47	7,35	5,71
HE0136-2758	01 39 14.46	-27 43 21.7	3,43	0,079	-98,3	3,27	19,51	-18,93	2,63	4,43
HE0151-3919	01 53 11.18	-39 04 18.2	3,27	0,079	-50,5	2	-15,76	-49,57	6,7	5,44
HE0155-3710	01 58 01.4	-36 56 21	3,16	0,08	-29,5	0,59	9,05	7,1	2,34	1,45
HE0207+0030	02 10 14.97	+00 45 02.1	3,13	0,079	0	2	2,44	-7,26	7,5	8,24
HE0230-4323	02 32 54.7	-43 10 27.8	2,93	0,04	16,6	1	-9,18	-8,56	7,09	3,59
HE0301-3039	03 03 44.0	-30 27 48	3,14	0,08	107,09	2,25	12,2	-7,5	1,35	2,26
HE0321-0918	03 23 45.85	-09 08 15.6	3,11	0,079	30,09	1,98	3,14	-7,08	5,1	4,81
Fortsetzung auf d	ler nächsten S	eite.			•		•	•	•	

Name	Rekta	Deklination	logd	Δ logd	RV	ΔRV	pma	pmd	∆pma	Δpmd
HE0342-1702	03 44 58.82	-16 52 42.2	3,09	0,08	53,38	1,20	-9,75	-5,8	2,72	2,77
HE0414-5429	04 15 30.0	-54 21 58	3,12	0,08	16,77	0,91	2,2	9,7	5,4	5,6
HE0415-2417	04 17 31.49	-24 09 50.7	3,72	0,079	0	2	4,79	-5,31	5,62	5,4
HE0447-3656	03 45 34.6	+02 47 55	2,02	0,06	187,4	2	-21,4	-45,01	1,88	1,43
HE0513-2354	05 15 15.13	-23 51 09.5	3,36	0,079	73,76	3,79	0	0	0,5	0,5
HE0532-4503	05 33 40.51	-45 01 35.3	3,42	0,079	8,5	0,2	2,87	-8,34	4,09	4,73
HE0539-4246	05 41 06.71	-42 45 31.9	3,05	0,079	45,16	2,12	6,59	2,12	3,76	4,12
HE0914-0341	09 17 15.6	-03 53 57	3,14	0,08	59,87	0,91	-3,15	-13,75	2,37	2,58
HE0929-0424	09 32 02.15	-04 37 37.8	3,26	0,079	41,4	0,2	-5,8	-1,8	10	10
HE0952+0227	09 58 50.5	+01 47 24	3,31	0,08	31,43	0,71	66	0	2	2
HE0958-1151	10 00 42.6	-12 05 59	3,03	0,08	36,18	0,87	-5,64	4	3,06	5,99
HE1021-0255	10 24 18.06	-03 10 38.8	3,2	0,079	78,94	1,84	-9,77	6,26	3,13	3,04
HE1033-2353	10 36 07.23	-24 08 35.4	3,37	0.079	28,14	3,2	0.58	-8,04	3,42	5.06
HE1038-2326	10 40 36.97	-23 42 39.4	3,52	0.079	73,52	4,44	14,3	3.5	5	5.1
HE1047-0436	10 50 26.93	-04 52 35.8	3.09	0.079	0	2	-9.29	0.63	11.21	11.46
HE1047-0637A	10 50 28.79	-06 53 25.9	3.55	0.08	303.58	0.13	-10.95	-11.95	2.68	3.00
HE1047-0637B	10 50 28.79	-06 53 25.9	3.56	0.08	303.58	0.13	-10.95	-11.95	2.68	3.00
HE1050-0630	10 53 26.52	-06 46 15.6	2.93	0.079	-24.5	2.08	-1.58	-8.16	3.5	3.27
HE1059-2735	11 01 24.95	-27 51 42.9	3.31	0.08	-44.7	0.6	0.55	-19.4	9.15	8.89
HE1106-0942	11 09 08.2	-09 58 49	3.14	0.08	115.12	0.42	-4.55	0.25	1.93	2.71
HE1115-0631	11 18 11.69	-06 47 33.2	3.06	0.08	87.1	1.3	2.84	5.53	8.52	14.42
HE1136-1641	11 38 54.7	-16 58 11	3.22	0.08	81.45	2.12	0	-10	3	1
HE1142-2311	11 52 22 0	-23 28 18	3.22	0.08	-5.00	1 23	-6	16	6	3
HE1200-0931	12 03 21 77	-09 48 06 6	3.33	0.079	45.82	3.81	-6.3	-11.8	5	5
HE1200-1924	12 02 40 1	-19 41 08	3.05	0.08	3 95	0.58	-16.05	8.3	3 14	3.07
HE1203-1048	12 05 56 8	-11 05 25	3 33	0,00	-30 35	1 57	26	-3.63	4 53	2.63
HE1221-2618A	12 24 32 72	-26.35.17.1	3 14	0.079	-13.31	6.05	-2	-6	,00	2,00
HE1221-2618B	12 24 32 72	-26 35 17 1	3 14	0.079	-13 31	6.05	-19.8	-36	48	48
HE1220-0536	12 22 58 96	-05 53 04 8	3.09	0.08	-19.64	2,33	-10.65	6.4	3.84	2 65
HE1237-1408	12 39 56 64	-14 24 48 4	3 61	0.08	58.38	0.34	-9.7	-19	5	5
HE1238-1745	12 41 01 16	-18 01 59 0	3 11	0.08	-5 54	1.08	-26	-0.5	14	14
HE1251+0159	12 54 08 1	+01 43 25	3.04	0,00	37 12	0.78	59	-23.4	1 04	2 16
HE1254-1540	12 57 19 36	-15 56 22 8	3 15	0,00	23.22	1 17	-2 75	-20,4	13.67	8.57
HE1210-2722	12 12 50 65	-77 40 03 1	2 21	0,073	20,22	1 1 2	-2,75	-10,0	10,07	0,07
HE1316-183/	13 12 30.03	-27 49 03.1	3,51	0,00	_0.80	1,10	-0,5	-28.1	4,0	4,0
HE1318-2111	13 21 15 66	-10 49 40	3,50	0,00	-9,09 /8 Q	0.7	-4,00	-20,1	7.24	5.8
HE1340-2320	13 52 15 0	-21 27 10.5	3,10	0,00	40,9 55.65	0,7	-10,95	-7,52	2 22	1 / 2
HE1349-2320	13 55 26 67	-23 34 37	3,01	0,00	-46.08	1 72	-20,2	-0,05	0.5	1,43
HE1355-0622	13 57 54 3	-10 42 09.4	2 21	0,079	-40,00	0.61	-19.5	-4	1 70	1 70
HE1356-1613A	13 59 12 52	-16 28 01 8	3 33	0,00	180.52	3 23	-13,5	-22	1,73	5
HE1356-1613B	13 59 12.52	-16 28 01 8	3 34	0,00	180.52	3.23		-22	2	5
HE1407:0033	14 10 20 73	10 18 54 6	3 36	0,00	100,52	0,20	-6 11	12.00	26.06	23.06
HE1415 0200	14 10 20.73	+00 10 34.0	2.44	0,079	0	2	-0,11	0.07	20,00	20,00
HE1415-0309	14 18 20.93	-03 22 34.1	3,44	0,079	70.05	0.75	-5,96	-0,37	0,07	5,02
HE1419-1205	14 22 02.17	-12 19 30.9	3,35	0,079	-72,65	2,/5	0	0	0,5	0,5
	14 24 08.81	10.05.01.0	3,22	0,079	-86,2	1,1	-3,3	-7,07	3,66	3,24
HE1422-1851	14 24 48.65	-19 05 01.3	3,63	0,079	66,53	3,86	8-	2	2	2
HE1430-0815	14 39 36.9	-08 28 25	3,68	0,08	-83,47	1,69	-11	-3,3	5	5
ПЕ 1441-0558A	14 44 12.11		2,99	0,079	2,/1	2,12	-10	-6	2	2
HE1441-0558B	14 44 12.11	-06 10 44.7	2,99	0,079	2,/1	2,12	-23	-0,5	/,9	8
HE1446-1058	14 49 24.3		3,17	0,08	59,35	2,58	-2,1	-9,7	2,1/	2,/6
HE1448-0510	14 51 13.13	<u> -05 23 16.9</u>	3,13	0,079	-45,5	0,8	-6,94	-2,91	7,37	5,01
Fortsetzung auf d	ler nächsten S	eite.								

Name	Rekta	Deklination	logd	Δ logd	RV	ΔRV	pma	pmd	∆pma	Δpmd
HE1450-0957	14 53 24.19	-10 09 21.9	3,17	0,079	-76,93	3,27	-5,04	-11,85	3,65	2,91
HE1459-0234A	15 02 12.29	-02 46 00.9	3,28	0,079	-34,78	6,55	-1,5	-16	7,82	9,93
HE1459-0234B	15 02 12.29	-02 46 00.9	3,28	0,079	-34,78	6,55	-346	-406	35	40
HE1502-1019A	15 05 22.68	-10 31 26.0	3,49	0,08	86,19	1,63	4,2	-6,53	5	4,18
HE1502-1019B	15 05 22.68	-10 31 26.0	3,41	0,08	86,19	1,63	4,2	-6,53	5	4,18
HE1519-0708	15 21 53.2	-07 19 23.6	3,3	0,079	2,93	3,9	0,19	-5,11	5,25	6,6
HE2135-3749	21 38 44.18	-37 36 15.1	2,82	0,079	45	0,5	24,53	0,67	2,16	3,5
HE2150-0238	21 52 35.81	-02 24 31.6	3,17	0,079	-32,5	0,9	-20,26	6,35	13,33	14,18
HE2151-1001	21 54 31.49	-09 47 30.5	3,32	0,079	-10,95	3,17	14,43	-3,8	3,97	3,4
HE2156-3927A	21 59 35.53	-39 13 15.3	3,03	0,079	-72,5	4,85	10,7	8,6	5,1	4,9
HE2156-3927B	21 59 35.53	-39 13 15.3	3,03	0,079	-72,5	4,85	-0,9	8	4,9	4,9
HE2201-0001	22 04 18.27	+00 12 36.7	3,39	0,079	-79,2	2	1,11	-2,04	5,18	6,83
HE2203-2210	22 06 29.3	-21 55 59	2,89	0,08	45,43	1,49	11,75	-4,45	2,14	2,72
HE2205-1155	23 08 30.1	-11 38 49	2,93	0,08	-33,78	2,85	-5,25	-6,85	2,43	2,88
HE2208+0126	22 10 45.47	+01 41 35.4	3,12	0,079	-2,7	0,9	4,72	5,1	13,44	4,42
HE2218-2026	22 21 13.1	-20 11 16	3.02	0.08	-279,0	0,73	20	-4	4	1
HE2222-3738	22 24 56.5	-37 23 30.7	3,1	0,079	-8,5	1,29	10,58	0	1,32	3,24
HE2237+0150	22 40 14.38	+02 06 31.3	3,37	0,079	-82,75	3,38	3,46	-1,56	3,31	3,44
HE2238-1455	22 41 38.27	-14 39 39.5	3,45	0,079	-96,24	2,49	3,07	-0,24	3,34	3,49
HE2307-0340	23 10 24.09	-03 24 02.3	3,3	0,079	-27,12	2,25	-10,1	-1,49	3,82	7,63
HE2322-0617A	23 25 31.91	-06 01 12.1	3,31	0,079	22,77	3,93	10	10	1	3
HE2322-0617B	23 25 31.91	-06 01 12.1	3,31	0,079	22,77	3,93	9,2	-1,7	8,9	7,3
HE2347-4130	23 50 19.8	-41 14 04	3,19	0.08	-5,63	1,09	-22	-12	6	7
HE2349-3135	23 51 43.63	-31 18 52.9	3,41	0.079	200,84	2,99	8,29	-0,38	2,96	2,93
HS1530+0542	15 33 10.74	+05 32 26.8	3,23	0.079	27.6	3,66	-21,95	-6,2	7,57	5,58
HS1710+1614	17 13 03.18	+16 10 42.8	3.33	0.079	11.13	2.37	0	0	0.5	0.5
HS2033+0821	20 35 29.34	+08 31 51.7	2.94	0.079	-3.82	2.81	8.2	-0.5	5.2	5.2
HS2125+1105	21 27 32.17	+11 18 17.1	3,35	0.079	-1,1	2,29	0	0	0.5	0.5
HS2216+1833	22 18 30.6	+18 48 09.4	3	0.079	43.86	4.49	-16.8	-20.3	9.5	5.74
HS2224+2618	22 24 56.8	+26 18 09	2.95	0.03	-305.7	2.7	-18.5	-9.7	3.17	6.24
HS2224+2618	22 27 17.5	+26 33 29	2.95	0.03	-306	2	-18.5	-9.7	3.17	6.24
HS2357+2201	00 00 18.41	+22 18 03	2.86	0.079	20.05	2.66	4	-8	4	4
JL36	20 01 52.2	-71 57 25.2	2,82	0.03	-20,1	2	24,12	-43,75	0.08	1,07
JL82	21 36 10.2	-72 48 26.6	2.7	0.02	-1.6	0.8	11.47	-17.2	1.27	0.96
JL87	21 48 37.3	-76 20 44.8	2.88	0.02	-8	2	-1.39	8.45	0.49	0.32
LB1516	23 01 56	-48 03 46	2.81	0.02	16.7	2	1.6	1.75	2.26	2.47
PB5333	23 19 55.4	+04 52 35	2.59	0.06	-95.3	2	25.35	-22,95	5.58	6.17
PB7352	22 55 43.2	-06 59 39	2.74	0.02	-2.1	0.3	-0.7	2.85	2.35	1.11
PG0001+275	00 03 55.7	+27 48 37	2.72	0.16	-44.7	0.5	4	-19.9	0.46	2.96
PG0011+283	00 14 22.2	+28 36 57	2.68	0.06	1.18	2	2.8	-22.95	2.58	3.06
PG0133+114	01 36 26.1	+11 39 33	2.48	0.06	-0.3	0.2	19.83	-28,15	1.39	7.42
PG0342+026	03 45 34.6	+02 47 55	2.02	0.06	13.9	2	-21.4	-45.01	1.88	1.43
PG0839+399A	08 43 12.7	+39 44 49	2,92	0.08	23.3	1.1	4	-2	1	0.5
PG0839+399B	08 43 12.7	+39 44 49	2.92	0.08	23.3	1.1	1.4	-17.1	5	5
PG0849+319	08 52 54.3	+31 43 41	3.16	0.08	64	2.1	4.9	-13.1	-3.5	2.8
PG0850+170	08 53 24	+16 49 30	3,13	0.08	32.2	2.8	-0.2	-7	52	5.8
PG0907+123	09 10 26	+12 08 24	3.02	0.08	56.3	11	-4.5	4	27	1.5
PG0909+164	09 12 07	+16 13 24	2.95	0.08	51 7	8.9	-0.5	0 14	2.5	21
PG0909+276	09 12 51 7	+27 20 32	2.54	0.05	19.6	2,0	3 73	0.5	1 74	0.81
PG0918+029	09 21 28	+02 46 06	2.62	0.08	104 4	1.7	-25.1	-21.9	44	3.5
PG0919+273	09 22 39 9	+27 02 26	2.53	0.08	-69 1	11.4	25.5	-25.1	27	3.
Fortsetzung auf d	ler nächsten S	eite.	,00	2,00	50,1	, .	_0,0	, ,	_,·	5
i onseizung auf u	iei naunsten 3	ธ ์เธ.								

PG1017-086A 10 20 14.7 -08 53 44 3 0.08 -9.1 1.3 -4 12 2 4 PG1032-406B 10 35 16.7 +40 21 14 2.38 0.08 24.5 0.5 -83.5 -39.7 1.7 1.7 PG1032-406B 10 35 16.7 +40 21 14 2.38 0.08 24.5 0.5 -112.9 37.7 0.9 0.7 PG1039-4219A 10 41 52.8 +21 40 35 2.78 0.08 -3.3 3.3 -8 -2 1 1 PG1039-4216A 10 43 40 +23 09 10 3.04 0.08 9.7 1.7 -22.4 2.28 2.83 3.6 PG1043-760B 10 47 05 +75 44 23 2.94 0.08 24.8 1.4 -33.6 -8.8 3 1.1 1.1 PG1043-760B 10 65 02.9 +00 00 3.19 0.08 -18.7 2.9 -6.5 1.3 1.8 PG1114-073A 11 16 49.4 +06 59 33 2.63 0.08 -18.2 1.1 -17.1 -4 2.7 2.3 PG1	Name	Rekta	Deklination	logd	Δ logd	RV	ΔRV	pma	pmd	∆pma	Δpmd
PG1017-068B 10 20 14.7 068 53 44 3 0.08 -9.1 1.3 -1.3 20.8 3.6 3.8 PG1032+406A 10 35 16.7 +40 21 14 2.38 0.08 24.5 0.5 -13.2 -3.7.7 0.9 0.7 PG1032+406B 10 41 52.8 +21 40 35 2.78 0.08 -3.3 3.3 -15.7 -8.6 3 2.6 PG1040+234 10 43 40 +23 90 10 3.04 0.08 -7.1 7.22.4 -22.8 3.6 6.6 3.8 9.9 2.5 PG1040+234 10 43 40 +23 90 10 3.04 0.08 24.8 1.4 -7.3 -8.3 1.1 1.1 1.1 PG1047+00A 10 47 05 +75 44 23 2.94 0.08 24.8 1.4 -7.3 -8.3 1.1 1.1 1.1 PG1047+073A 11 16 49.4 +06 59 33 2.63 0.08 9 1.9 -15.6 4.8 2.2 1.6 9.9 2.4 2.5 1.6 2.8 2.92 0.8 -6.3 1.1 1.6 <t< td=""><td>PG1017-086A</td><td>10 20 14.7</td><td>-08 53 44</td><td>3</td><td>0,08</td><td>-9,1</td><td>1,3</td><td>4</td><td>12</td><td>2</td><td>4</td></t<>	PG1017-086A	10 20 14.7	-08 53 44	3	0,08	-9,1	1,3	4	12	2	4
PG1032+406A 10 35 16.7 +40 21 14 2.38 0.08 24.5 0.5 -83.5 -39.7 1.7 1.7 PG1032+406B 10 35 16.7 +40 21 14 2.38 0.08 -24.5 0.5 -112.9 -37.7 0.9 0.7 PG1039+219B 10 41 52.8 +21 40 35 2.78 0.08 -3.3 3.3 -15.7 -8.6 3 3.6 PG1043-760A 10 47 05 +75 44 23 2.94 0.08 2.4.8 1.4 -7.3 -8.8 1.1 1.1 PG1043-760A 10 47 05 +75 44 23 2.94 0.08 2.4.8 1.4 -33.6 -8.8 9.9 2.71 PG1051+501 10 50 02.9 +75 54 23 2.94 0.08 -12.8.7 2.9 -2.6 -7.5 2.7 3.3 PG1101+021 11 16 49.4 +06 59 33 2.63 0.08 9 1.9 -5.5 4.8 2.8 2.8 2.8 2.6 7.5 2.7 2.3 PG1124+073A 11 16 49.4 +06 59 33 2.63 0.08 -1.9 -1	PG1017-086B	10 20 14.7	-08 53 44	3	0,08	-9,1	1,3	-13	20,8	3,6	3,8
PG1032+406B 10 35 16.7 +40 21 14 2,38 0,08 24,5 0,5 -112.9 -37.7 0.9 0,7 PG1039+219A 10 41 52.8 +21 40 35 2,78 0,08 -3.3 3.3 -15.7 -8.6 3 2.6 PG1039+219B 10 41 452.8 +21 40 35 2,74 0,08 -3.3 3.3 -15.7 -8.6 2.2 1 1 PG1043+760A 10 47 05 +75 44 23 2.94 0,08 24.8 1.4 -7.3 -8.3 1.1 1.1 PG1043+760A 10 47 05 +75 44 23 2.94 0,08 -4.8 1.4 -7.3 -8.3 1.5 5.99 2.71 PG1047+003 10 50 02.9 +00 03 5 2.71 0,06 -9.8 3 -22.8 -35.5 5.99 2.71 PG11047+073 11 16 49.4 +06 59 33 2.63 0,08 9 1.9 -5.5 -4.8 2.2 1.6 PG1114+073A 11 16 49.4 +06 59 33 2.63 0,08 -0.2 1.1 1.71.4 4.2 7.3 <td>PG1032+406A</td> <td>10 35 16.7</td> <td>+40 21 14</td> <td>2,38</td> <td>0,08</td> <td>24,5</td> <td>0,5</td> <td>-83,5</td> <td>-39,7</td> <td>1,7</td> <td>1,7</td>	PG1032+406A	10 35 16.7	+40 21 14	2,38	0,08	24,5	0,5	-83,5	-39,7	1,7	1,7
PG1039+219A 10 41 52.8 +21 40 35 2.78 0.08 -3.3 3.3 -15.7 -8.6 3 2.6 PG1039+219B 10 41 52.8 +21 40 35 2.78 0.08 -3.3 3.3 -8 -2 1 1 PG1040+234 10 43 40 +23 0910 3.04 0.08 9.71 7.7 -22.4 -22.8 3.6. PG1040+2760B 10 47 05 +75 44 23 2.94 0.08 24.8 1.4 -7.3 -8.3 1.1 1.1 PG1041+2031 10 50 02.9 +00 00 35 2.71 0.06 -9.8 3 -2.6 -7.5 2.7 3.3 PG1114+073A 11 16 49.4 +06 59 33 2.63 0.08 9 1.9 -1.5. -4.8 2.2 1.6 PG1114+073A 11 1 19 4.4 +06 59 33 2.63 0.08 -0.2 1.1 -17.1 -4 2.7 2.3 PG12242136 12 35 18.8 +13 50 92 2.74 0.024 <td< td=""><td>PG1032+406B</td><td>10 35 16.7</td><td>+40 21 14</td><td>2,38</td><td>0,08</td><td>24,5</td><td>0,5</td><td>-112,9</td><td>-37,7</td><td>0,9</td><td>0,7</td></td<>	PG1032+406B	10 35 16.7	+40 21 14	2,38	0,08	24,5	0,5	-112,9	-37,7	0,9	0,7
PG1039+219B 10 41 52.8 +21 40 35 2.78 0.08 -3.3 3.3 -8 -2 1 1 PG1043+760B 10 43 40 +23 09 10 3.04 0.08 9.7 1.7 -22.8 2.8 3.6 PG1043+760B 10 47 05 +75 44 23 2.94 0.08 24.8 1.4 -7.3 -8.3 1.1 1.1 PG1043+760B 10 50 02.9 +00 00 35 2.71 0.06 -9.8 3 -22.6 -7.5 2.7 7.33 PG110+294 11 13 04.4 +29 07 46 2.89 0.08 9 1.9 -13.6 -8.3 2.62 2.7 3.3 PG1114+073A 11 16 49.4 +06 59 33 2.63 0.08 9 1.9 -15.5 -4.8 2.2 1.6 PG1114+073B 11 16 49.4 +06 59 33 2.63 0.08 9 1.9 -13.6 -8.3 2.6 2.9 PG128 2.1 1.6 PG1282-138 1.8 1.8 2.1 1.8 2.2 1.6 PG1284-164A 12 50 50.2 +16 10 04 <td< td=""><td>PG1039+219A</td><td>10 41 52.8</td><td>+21 40 35</td><td>2,78</td><td>0.08</td><td>-3,3</td><td>3.3</td><td>-15,7</td><td>-8.6</td><td>3</td><td>2.6</td></td<>	PG1039+219A	10 41 52.8	+21 40 35	2,78	0.08	-3,3	3.3	-15,7	-8.6	3	2.6
PG1040+234 10 43 40 +23 09 10 3,04 0,08 9,7 1,7 -22,4 -22,8 2,8 3,6 PG1043+760A 10 47 05 +75 44 23 2,94 0,08 24,8 1,4 -73,3 -8,3 1,1 1,1 PG1047+003 10 50 02.9 +00 00 35 2,71 0,06 -9,8 3 -22,8 -35,5 5,99 2,71 PG1051+501 10 54 18 +49 50 00 3,19 0,08 +128,7 2,9 -2,6 -7,5 2,7 3,3 PG1114-073A 11 16 49.4 +06 59 33 2,63 0,08 9 1,9 -15,5 -4,8 2,2 1,6 PG1114+073B 11 16 49.4 +06 59 33 2,63 0,08 -0,2 1,1 -17,1 -4 2,7 2,3 PG1223-132 12 39 39.3 +12 57 44 2,93 0,08 -16,2 1,3 8,9 +3,7 6,8 6,7 PG1228-130A 13 01 09.9 -03 16 48 3,31	PG1039+219B	10 41 52.8	+21 40 35	2,78	0,08	-3,3	3.3	-8	-2	1	1
PG1043+760A 10 47 05 +75 44 23 2.94 0.08 24.8 1.4 -7.3 -0.3 1.1 1.1 PG1043+760B 10 47 05 +75 44 23 2.94 0.08 24.8 1.4 -33.6 -8.8 9.9 2.5 PG1051+501 10 50 02.9 +00 00 35 2.71 0.06 -9.8 3 -22.8 -35.5 5.99 2.7.7 3.3 PG1114+073A 11 16 49.4 +06 59 33 2.63 0.08 9 1.9 -5.5 -4.8 2.2 1.6 PG1114+073B 11 16 49.4 +06 59 33 2.63 0.08 -0.2 1.1 -17.1 -4 2.7 2.3 PG1124073B 11 16 49.4 +29 51 53 2.92 0.08 -6.2 1.1 -17.1 -4 2.7 2.3 PG1232-136 12 35 18.8 +13 55 09 2.74 0.024 4.1 0.3 43.2 2.15 1.86 6.7 PG1248+164B 12 50 50.2 +16 10 04	PG1040+234	10 43 40	+23 09 10	3,04	0,08	9,7	1,7	-22,4	-22,8	2.8	3.6
PG1043+760B 10 47 05 +75 44 23 2,94 0,08 24,8 1,4 -33,6 -8,8 9,9 2,5 PG1047+003 10 50 02.9 +00 00 35 2,71 0,06 -9,8 3 -22,6 -7,5 2,7 3,3 PG110+294 11 13 04.4 +29 07 46 2,89 0,08 -15,2 0,9 -8,7 -6,5 1,3 1,8 PG1114+073A 11 16 49.4 +06 59 33 2,63 0,08 9 1,9 -13,6 -8,3 2,6 2,9 PG1114+073B 11 16 49.4 +06 59 33 2,63 0,08 -0,2 1,1 -17,1 -4 2,7 2,3 PG1232-136 12 35 18.8 +13 55 09 2,74 0,024 4,1 0,3 -43,2 2,15 1,85 2,18 PG1248+164B 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 1,8 -4 2 3 PG1248+164B 12 50 50.2 +16 10 04 2,93	PG1043+760A	10 47 05	+75 44 23	2,94	0,08	24,8	1,4	-7,3	-8,3	1,1	1,1
PG1047+003 10 50 02.9 +00 00 35 2,71 0,06 -9.8 3 -22.8 -35.5 5.99 2,71 PG1051+501 10 54 18 +49 50 00 3,19 0,08 +128,7 2.9 -2.6 -7.5 2,7 3,3 PG1114+073A 11 16 49.4 +290 746 2,89 0,08 -15,2 0,9 -8,7 -6,5 1,3 1,8 PG1114+073B 11 16 49.4 +06 59 33 2,63 0,08 9 1,9 -5,5 -4,8 2,2 1,6 PG1114+073B 11 16 49.4 +06 59 33 2,63 0,08 -0,2 1,1 -17,1 -4 2,7 2,3 PG1232-136 12 35 18.8 +13 55 09 2,74 0,024 4,11 0,3 -43,2 2,15 1,85 2,18 PG1248+164A 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 1,8 -4 2 3 1,98 2,11 PG1258-030B 13 0 10.9.9	PG1043+760B	10 47 05	+75 44 23	2,94	0,08	24,8	1,4	-33,6	-8,8	9,9	2,5
PG1051+501 10 54 18 +49 50 00 3,19 0,08 -128,7 2,9 -2,6 -7,5 2,7 3,3 PG11110+294 11 13 04.4 +29 07 46 2,89 0,08 -15,2 0,9 -8,7 -6,5 1,3 1,8 PG1114+073A 11 16 49.4 +06 59 33 2,63 0,08 9 1,9 -5,5 -4.8 2,2 1,6 PG1114-073B 11 16 49.4 +06 59 33 2,63 0,08 -0,2 1,1 -17,1 -4 2,7 2,3 PG1232-136 12 35 18.8 +13 55 09 2,74 0,024 4,11 0,3 -43,2 2,15 1,85 2,18 PG1232-136 12 35 18.8 +13 55 09 2,74 0,024 4,11 0,3 -43,2 2,15 1,85 2,18 PG1248+164B 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 1,8 -4 2 3 PG1248+164B 12 50 50.2 +16 10 04 2,93	PG1047+003	10 50 02.9	+00 00 35	2,71	0,06	-9,8	3	-22,8	-35,5	5,99	2,71
PG1110+294 11 13 04.4 +29 07 46 2,89 0,08 -15,2 0,9 -8,7 -6,5 1,3 1,8 PG1114+073A 11 16 49.4 +06 59 33 2,63 0,08 9 1,9 -13,6 -8,3 2,6 2,9 PG1114+073B 11 16 49.4 +06 59 33 2,63 0,08 9 1,9 -5,5 -4,8 2,2 1,6 PG1126+301 11 90.49 +29 51 53 2,92 0,08 -0,2 1,1 -17,1 -4 2,7 2,3 PG1232-136 12 35 18.8 +13 55 09 2,74 0,024 4,1 0,3 -43,2 2,15 1,85 2,18 PG1248+164B 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 18 -4 2 3 PG1248+164B 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 18 -4 2 3 PG1248+164B 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 18 -18 3 2 3 16,8	PG1051+501	10 54 18	+49 50 00	3,19	0,08	-128,7	2,9	-2,6	-7,5	2,7	3,3
PG1114+073A 11 16 49.4 +06 59 33 2,63 0,08 9 1,9 -13,6 -8,3 2,6 2,9 PG1114+073B 11 16 49.4 +06 59 33 2,63 0,08 9 1,9 -13,6 -8,3 2,6 2,9 PG1116+301 11 19 04.9 +29 51 53 2,92 0,08 -0,2 1,1 -17,1 -4 2,7 2,3 PG1232+136 12 35 18.8 +13 55 09 2,74 0,024 4,1 0,3 -43,2 2,15 1,8 2,15 5 2,18 PG1237+132 12 39 39.3 +12 57 44 2,93 0,08 -16,2 1,3 8,9 -13,7 6,8 6,7 PG1248+164A 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 18 -4 2 3 146 6.5 PG1258-030B 13 01 09.9 -03 16 48 3,31 0,08 29.8 3 188 -18 46 5 PG1309-077 13 06 04 +09 24 30 2,96 0,08 30,8 3,2 -4 -18	PG1110+294	11 13 04.4	+29 07 46	2,89	0,08	-15,2	0,9	-8,7	-6,5	1,3	1,8
PG1114+073B 11 16 49.4 +06 59 33 2,63 0,08 9 1,9 -5,5 -4,8 2,2 1,6 PG1116+301 11 19 04.9 +29 51 53 2,92 0,08 -0,2 1,1 -17,1 -4 2,7 2,3 PG1232-136 12 35 18.8 +13 55 09 2,74 0,024 4,1 0,3 -43,2 2,15 1,85 2,18 PG1248+164A 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 18 -4 2 3 PG1248+164B 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 18 -4 2 3 PG1258-030A 13 01 09.9 -03 16 48 3,31 0,08 29,8 3 188 -18 46 5 PG1303-077 13 02 42.2 +27 40 46 2,97 0,08 3,08 3,2 -4 -18 3 2 PG1303-077 13 06 04 +09 24 30 2,96 0,08 <t< td=""><td>PG1114+073A</td><td>11 16 49.4</td><td>+06 59 33</td><td>2.63</td><td>0.08</td><td>9</td><td>1.9</td><td>-13.6</td><td>-8.3</td><td>2.6</td><td>2.9</td></t<>	PG1114+073A	11 16 49.4	+06 59 33	2.63	0.08	9	1.9	-13.6	-8.3	2.6	2.9
PG1116+301 11 19 04.9 +29 51 53 2.92 0.08 -0.2 1.1 -17.1 -4 2.7 2.3 PG1232-136 12 35 18.8 +13 55 09 2.74 0.024 4.1 0.3 -43.2 2.15 1.85 2.18 PG1237+132 12 39 39.3 +12 57 44 2.93 0.08 -16.2 1.3 8.9 -13.7 6.8 6.7 PG1248+164A 12 50 50.2 +16 10 04 2.93 0.08 -16.2 1.3 18 -4 2 3 PG1258-030A 13 01 09.9 -03 16 48 3.31 0.08 29.8 3 -14.04 -4.49 3.08 2.1 PG1300+279 13 02 42.2 +27 40 46 2.97 0.08 -3.1 0.9 -3.7 -5.2 2.4 4 1.8 3 2 PG1303+097 13 06 4 +09 24 30 2.96 0.08 30.8 3.2 -4 -18 3 2 PG1315-077 13 17 37 -07 57 49 3.15 0.08 116 1 -7.08 -8.87 7.76 0.83 3	PG1114+073B	11 16 49.4	+06 59 33	2.63	0.08	9	1.9	-5.5	-4.8	2.2	1.6
PG1232-136 12 35 18.8 +13 55 09 2.74 0.024 4.1 0.3 -43.2 2.15 1.85 2.18 PG1237+132 12 39 39.3 +12 57 44 2.93 0.08 -36.3 6.1 -15.1 -9.9 2.4 2.5 PG1248+164A 12 50 50.2 +16 10 04 2.93 0.08 -16.2 1.3 8.9 -13.7 6.8 6.7 PG1258-030A 13 01 09.9 -03 16 48 3.31 0.08 29.8 3 148 -4 2 3 PG1258-030B 13 01 09.9 -03 16 48 3.31 0.08 29.8 3 188 -18 46 5 PG1300+279 13 02 42.2 +27 40 46 2.97 0.08 -3.1 0.9 -3.7 -5.2 2.4 2.1 PG1303+097 13 06 04 +09 24 30 2.96 0.08 30.8 3.2 -4 -18 3 2 PG1329+159B 13 31 53.6 +15 41 18 2.83 0.08 <td>PG1116+301</td> <td>11 19 04.9</td> <td>+29 51 53</td> <td>2.92</td> <td>0.08</td> <td>-0.2</td> <td>1.1</td> <td>-17.1</td> <td>-4</td> <td>2.7</td> <td>2.3</td>	PG1116+301	11 19 04.9	+29 51 53	2.92	0.08	-0.2	1.1	-17.1	-4	2.7	2.3
PG1237+132 12 39 39.3 +12 57 44 2,93 0,08 -36,3 6,1 -15,1 -9,9 2,4 2,5 PG1237+132 12 39 39.3 +12 57 44 2,93 0,08 -16,2 1,3 8,9 -13,7 6,8 6,7 PG1248+164B 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 18 -4 2 3 PG1258-030A 13 01 09.9 -03 16 48 3,31 0,08 29,8 3 188 -4 2 3 PG1258-030B 13 01 09.9 -03 16 48 3,31 0,08 29,8 3 188 -18 46 5 PG1303+097 13 06 04 +09 24 30 2,96 0,08 30,8 3,2 -4 -18 3 2 PG1329+159A 13 15 3.6 +15 41 18 2,83 0,08 -22 1,2 -25,1 -1,9 1,9 1,9 PG1329+159A 13 31 53.6 +15 41 18 2,83 0,08	PG1232-136	12 35 18.8	+13 55 09	2.74	0.024	4.1	0.3	-43.2	2.15	1.85	2.18
PG1248+164A 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 8,9 -13,7 6,8 6,7 PG1248+164B 12 50 50.2 +16 10 04 2,93 0,08 -16,2 1,3 18 -4 2 3 PG1258-030A 13 01 09.9 -03 16 48 3,31 0,08 29,8 3 -14,04 -4,49 3,08 2,1 PG1258-030B 13 01 09.9 -03 16 48 3,31 0,08 29,8 3 188 -18 46 5 PG1300+279 13 02 42.2 +27 40 46 2,97 0,08 -3,1 0,9 -3,7 -5,2 2,4 2,1 PG1303+097 13 06 04 +09 24 30 2,96 0,08 30,8 3,2 -4 -18 3 2 PG1329+159A 13 31 53.6 +15 41 18 2,83 0,08 -22 1,2 -9,3 -16,9 1,8 2 PG1329+159B 13 31 53.6 +15 41 18 2,83 0,08	PG1237+132	12 39 39.3	+12 57 44	2.93	0.08	-36.3	6.1	-15.1	-9.9	2.4	2.5
PG1248+164B 12 50 50.2 +16 10 04 2.93 0.08 -16.2 1.3 18 -4 2 3 PG1248+164B 12 50 50.2 +16 10 04 2.93 0.08 29.8 3 -14.04 -4.49 3.08 2.1 PG1258-030B 13 01 09.9 -03 16 48 3.31 0.08 29.8 3 -14.04 -4.49 3.08 2.1 PG1300+279 13 02 42.2 +27 40 46 2.97 0.08 -3.1 0.9 -3.7 -5.2 2.4 2.1 PG1303+097 13 06 04 +09 24 30 2.96 0.08 30.8 3.2 -4 -163 2.06 1.48 PG1329+159A 13 31 53.6 +15 41 18 2.83 0.08 -22 1.2 -9.3 -16.9 1.8 2 PG1329+159B 13 31 53.6 +15 41 18 2.83 0.08 -22 1.2 -9.3 -16.9 1.8 2 PG1329+159B 13 38 48.2 -02 01 49 2.82	PG1248+164A	12 50 50.2	+16 10 04	2.93	0.08	-16.2	1.3	8.9	-13.7	6.8	6.7
PG1258-030A 13 01 09.9 -03 16 48 3,31 0,08 29,8 3 -14,04 -4,49 3,08 2,1 PG1258-030B 13 01 09.9 -03 16 48 3,31 0,08 29,8 3 188 -18 46 5 PG1258-030B 13 01 09.9 -03 16 48 3,31 0,08 29,8 3 188 -18 46 5 PG1300+279 13 02 42.2 +27 40 46 2,97 0,08 -3,1 0,9 -3,7 -5,2 2,4 2,1 PG1303+097 13 06 04 +09 24 30 2,96 0,08 30,8 3,2 -4 -18 3 2 PG1325+159A 13 31 53.6 +15 41 18 2,83 0,08 -22 1,2 -9,3 -16,9 1,8 2 PG1326-018 13 38 48.2 -02 01 49 2,82 0,06 37,9 5 -7,98 8,87 7,76 0,83 PG1417+257 14 20 07.9 +25 29 19 2,95 0,08 -2 4 -3,1 -14,5 4,9 3,3 PG1505+074 </td <td>PG1248+164B</td> <td>12 50 50.2</td> <td>+16 10 04</td> <td>2.93</td> <td>0.08</td> <td>-16.2</td> <td>1.3</td> <td>18</td> <td>-4</td> <td>2</td> <td>3</td>	PG1248+164B	12 50 50.2	+16 10 04	2.93	0.08	-16.2	1.3	18	-4	2	3
PG1258-030B 13 01 09.9 -03 16 48 3,31 0,08 29,8 3 188 -18 46 5 PG1300+279 13 02 42.2 +27 40 46 2,97 0,08 -3,1 0,9 -3,7 -5,2 2,4 2,1 PG1303+097 13 06 04 +09 24 30 2,96 0,08 30,8 3,2 -4 -18 3 2 PG1315-077 13 17 37 -07 57 49 3,15 0,08 116 1 -7,08 -1,63 2,06 1,48 PG1329+159B 13 31 53.6 +15 41 18 2,83 0,08 -22 1,2 -9,3 -16,9 1,8 2 PG1336-018 13 38 48.2 -02 01 49 2,82 0,06 37,9 5 -7,98 -8,87 7,76 0,83 PG1432+004 14 35 19.8 +00 13 53 2,83 0,08 -32 4 -3,1 -14,5 4,9 3,3 PG1432+004 14 35 19.8 +00 13 53 2,83 0,08 -3,7 1,3 9,2 -39,66 3,85 3,7 7 6	PG1258-030A	13 01 09.9	-03 16 48	3.31	0.08	29.8	3	-14.04	-4.49	3.08	2.1
PG1300+279 13 02 42.2 +27 40 46 2.97 0.08 -3.1 0.9 -3.7 -5.2 2.4 2.1 PG1303+097 13 06 04 +09 24 30 2.96 0.08 30.8 3.2 -4 -18 3 2 PG1315-077 13 17 37 -07 57 49 3.15 0.08 116 1 -7.08 -1.63 2.06 1.48 PG1329+159A 13 31 53.6 +15 41 18 2.83 0.08 -22 1.2 -25.1 -21.9 1.9 1.9 PG1329+159B 13 31 53.6 +15 41 18 2.82 0.06 37.9 5 -7.98 -8.87 7.76 0.83 PG1336-018 13 38 48.2 -02 01 49 2.82 0.06 37.9 5 -7.98 -8.87 7.76 0.83 PG1329+159A 14 25 19.8 +00 13 53 2.83 0.08 -3.7 1.3 9.2 -39.66 3.85 3.7 PG1505+074 15 08 21 +07 13 15 2.79	PG1258-030B	13 01 09.9	-03 16 48	3.31	0.08	29.8	3	188	-18	46	5
PG1303+097 13 06 04 +09 24 30 2.96 0.08 30.8 3.2 -4 -18 3 2 PG1303+097 13 17 37 -07 57 49 3.15 0.08 116 1 -7.08 -1.63 2.06 1.48 PG1329+159A 13 31 53.6 +15 41 18 2.83 0.08 -22 1.2 -25.1 -21.9 1.9 1.9 PG1329+159B 13 31 53.6 +15 41 18 2.83 0.08 -22 1.2 -9.3 -16.9 1.8 2 PG1336-018 13 38 48.2 -02 01 49 2.82 0.06 37.9 5 -7.98 -8.87 7.76 0.83 PG1432+004 14 35 19.8 +00 13 53 2.83 0.08 -2.9 1 -42.5 -0.6 3.4 5 PG1505+074 15 08 21 +07 13 15 2.79 0.05 -1.2 3.3 0.8 -8.8 2.4 0.14 PG1519+640A 15 20 31.3 +63 52 07 2.65 0.02	PG1300+279	13 02 42.2	+27 40 46	2.97	0.08	-3.1	0.9	-3.7	-5.2	2.4	2.1
PG1315-077 13 17 37 -07 57 49 3,15 0,08 116 1 -7,08 -1,63 2,06 1,48 PG1315-077 13 17 37 -07 57 49 3,15 0,08 -22 1,2 -25,1 -21,9 1,9 1,9 1,9 PG1329+159B 13 31 53.6 +15 41 18 2,83 0,08 -22 1,2 -9,3 -16,9 1,8 2 PG1336-018 13 38 48.2 -02 01 49 2,82 0,06 37,9 5 -7,98 -8,87 7,76 0,83 PG1432+004 14 35 19.8 +00 13 53 2,83 0,08 -3,7 1,3 9,2 -39,66 3,85 3,7 PG1505+074 15 08 21 +07 13 15 2,79 0,05 -1,2 3,3 0,8 -8,8 2,4 0,14 PG1519+640A 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 29,36 42,84 1,73 2,07 PG15519+640A 15 20 31.3 +63 52 07	PG1303+097	13 06 04	+09 24 30	2.96	0.08	30.8	3.2	-4	-18	3	2
PG13029+159A 13 31 53.6 +15 41 18 2,83 0,08 -22 1,2 -25,1 -21,9 1,9 1,9 1,9 PG1329+159B 13 31 53.6 +15 41 18 2,83 0,08 -22 1,2 -9,3 -16,9 1,8 2 PG1336-018 13 38 48.2 -02 01 49 2,82 0,06 37,9 5 -7,98 -8,87 7,76 0,83 PG1417+257 14 20 07.9 +25 29 19 2,95 0,08 -2 4 -3,1 -14,5 4,9 3,3 PG1432+004 14 35 19.8 +00 13 53 2,83 0,08 -3,7 1,3 9,2 -39,66 3,85 3,7 PG1505+074 15 08 21 +07 13 15 2,79 0,05 -1,2 3,3 0,8 -8.8 2,4 0,14 PG1512+244 15 14 32.5 +24 10 41 2,71 0,08 -2.9 1 -42,5 -0,6 3,4 5 PG1519+640A 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 29,36 42,84 1,73 2,07	PG1315-077	13 17 37	-07 57 49	3 15	0.08	116	1	-7 08	-1 63	2 06	1 48
PG1329+159B 13 31 53.6 +15 41 18 2,83 0,08 -22 1,2 -9,3 -16,9 1,8 2 PG1329+159B 13 31 53.6 +15 41 18 2,83 0,08 -22 1,2 -9,3 -16,9 1,8 2 PG1336-018 13 38 48.2 -02 01 49 2,82 0,06 37,9 5 -7,98 -8,87 7,76 0,83 PG1432+004 14 35 19.8 +00 13 53 2,83 0,08 -2 4 -3,1 -14,5 4.9 3,3 PG1505+074 15 08 21 +07 13 15 2,79 0,05 -1,2 3,3 0,8 -8,8 2,4 0,14 PG1512+244 15 14 32.5 +24 10 41 2,71 0,08 -2,9 1 -42,5 -0,6 3,4 5 PG1519+640A 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 29,36 42,84 1,73 2,07 PG1553+273A 15 55 37.9 +27 06 49 3,16 0,08 75,6 3,2 -9,3 -21,6 2,1 2,2	PG1329+159A	13 31 53 6	+15 41 18	2.83	0.08	-22	12	-25.1	-21.9	19	1.9
PG1326-1080100 11 001110120100110120110120110120110120110120110120110120110120110120110120110120110110120110110120110110120110110120110 <th< td=""><td>PG1329+159B</td><td>13 31 53 6</td><td>+15 41 18</td><td>2.83</td><td>0.08</td><td>-22</td><td>12</td><td>-9.3</td><td>-16.9</td><td>1.8</td><td>2</td></th<>	PG1329+159B	13 31 53 6	+15 41 18	2.83	0.08	-22	12	-9.3	-16.9	1.8	2
PG1407+25714 20 07.9+25 29 192,950,08-24-3,1-14,54,93,3PG1432+00414 35 19.8+00 13 532,830,08-3,71,39,2-39,663,853,7PG1505+07415 08 21+07 13 152,790,05-1,23,30,8-8,82,40,14PG1512+24415 14 32.5+24 10 412,710,08-2,91-42,5-0,63,45PG1519+640A15 20 31.3+63 52 072,650,020,1229,3642,841,732,07PG1519+640B15 20 31.3+63 52 072,650,020,1265,542,11,751PG1553+273A15 55 37.9+27 06 493,160,0875,63,2-9,3-21,62,12,2PG1553+273B15 55 37.9+27 06 493,160,0875,63,2-6,7-12,51,51,8PG1607+17416 09 55+17 14 572,790,0623,72,7-7,3-10,641,660,66PG1616+14416 18 23+14 16 182,680,08-48,41,63,9-17,53,63PG1633+13116 55 42.7+13 01 503,040,085.91,6-2,8-4,14,85,3PG1701+359A17 03 22+35 48 472,850,08-119,61,8-52,721,76,713,4PG1701+359B17 03 22+35	PG1336-018	13 38 48 2	-02 01 49	2 82	0,00	37.9	.,_	-7 98	-8.87	7 76	0.83
PG1432+004 14 35 19.8 +00 13 53 2,83 0,08 -3,7 1,3 9,2 -39,66 3,85 3,7 PG1505+074 15 08 21 +07 13 15 2,79 0,05 -1,2 3,3 0,8 -8,8 2,4 0,14 PG1512+244 15 14 32.5 +24 10 41 2,71 0,08 -2,9 1 -42,5 -0,6 3,4 5 PG1519+640A 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 29,36 42,84 1,73 2,07 PG1519+640B 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 65,5 42,1 1,75 1 PG1553+273A 15 55 37.9 +27 06 49 3,16 0,08 75,6 3,2 -6,7 -12,5 1,5 1,8 PG1607+174 16 09 55 +17 14 57 2,79 0,06 23,7 2,7 -7,3 -10,64 1,66 0,66 PG1616+144 16 18 23 +14 16 18 2,68	PG1417+257	14 20 07.9	+25 29 19	2.95	0.08	-2	4	-3.1	-14.5	4.9	3.3
PG11021001 10010010 10010000 1000000000000000000000000000000000000	PG1432+004	14 35 19 8	$+00\ 13\ 53$	2.83	0.08	-37	13	92	-39.66	3 85	37
PG1512+244 15 14 22.5 12.70 0,08 -2.9 1 -42.5 -0.6 3.4 5 PG1512+244 15 14 32.5 +24 10 41 2.71 0,08 -2.9 1 -42.5 -0.6 3.4 5 PG1519+640A 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 29.36 42.84 1,73 2,07 PG1519+640B 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 65.5 42.1 1,75 1 PG1553+273A 15 55 37.9 +27 06 49 3,16 0,08 75,6 3,2 -9,3 -21,6 2,1 2,2 PG1607+174 16 09 55 +17 14 57 2,79 0,06 23,7 2,7 -7,3 -10,64 1,66 0,66 PG1617+444 16 18 23 +14 16 18 2,64 0,08 -52,5 <t< td=""><td>PG1505+074</td><td>15 08 21</td><td>+07 13 15</td><td>2,79</td><td>0.05</td><td>-1.2</td><td>3.3</td><td>0.8</td><td>-8.8</td><td>2.4</td><td>0.14</td></t<>	PG1505+074	15 08 21	+07 13 15	2,79	0.05	-1.2	3.3	0.8	-8.8	2.4	0.14
PG1519+640A 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 29,36 42,84 1,73 2,07 PG1519+640B 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 29,36 42,84 1,73 2,07 PG1519+640B 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 65,5 42,1 1,75 1 PG1553+273A 15 55 37.9 +27 06 49 3,16 0,08 75,6 3,2 -9,3 -21,6 2,1 2,2 PG1607+174 16 09 55 +17 14 57 2,79 0,06 23,7 2,7 -7,3 -10,64 1,66 0,66 PG1616+144 16 18 23 +14 16 18 2,68 0,08 -48,4 1,6 3,9 -17,5 3,6 3 PG1647+056 16 50 18.3 +05 32 53 2,9 0,08 -109,9 3,6 -0,5 -7,4 2,6 3 PG1653+131 16 55 42.7 +13 01 50 3,04 0,08 5,9 1,6 -2,8 -4,1 4,8 5,3	PG1512+244	15 14 32 5	+24 10 41	2 71	0.08	-2.9	1	-42.5	-0.6	34	5
PG15019160101 100 20 01.0 100 02 01 2,00 0,02 0,01 2 20,00 12,01 1,00 2,01 PG1519+640B 15 20 31.3 +63 52 07 2,65 0,02 0,1 2 65,5 42,1 1,75 1 PG1553+273A 15 55 37.9 +27 06 49 3,16 0,08 75,6 3,2 -9,3 -21,6 2,1 2,2 PG1553+273B 15 55 37.9 +27 06 49 3,16 0,08 75,6 3,2 -6,7 -12,5 1,5 1,8 PG1607+174 16 09 55 +17 14 57 2,79 0,06 23,7 2,7 -7,3 -10,64 1,66 0,66 PG1616+144 16 18 23 +14 16 18 2,68 0,08 -48,4 1,6 3,9 -17,5 3,6 3 PG1619+522 16 20 38.7 +52 06 09 2,64 0,08 -52,5 1,1 -2,7 9,6 1,2 1,6 PG1647+056 16 50 18.3 +05 32 53 2,9 0,08 -109,9 3,6 -0,5 -7,4 2,6 3 <	PG1519+640A	15 20 31 3	+635207	2 65	0.02	0.1	2	29.36	42 84	1 73	2 07
PG160101010D 100 20 0110 100 02 01 2,00 0,02 0,01 12 000,0 12,1 1,10 11,10	PG1519+640B	15 20 31 3	+635207	2 65	0.02	0,1	2	65.5	42 1	1,75	<u>,0</u> ,
PG160012701 10 00 0710 127 00 40 0,10 0,00 10,0 0,12 0,0 21,0 2,1 1,1 2,1 1,0 2,1 1,1 2,1 1,5 1,8 1,6 0,08 75,6 3,2 -6,7 -12,5 1,5 1,8 1,6 0,06 21,7 -7,3 -10,64 1,66 0,66 0,66 0,66 0,66 1,2 1,6 3,9 -17,5 3,6 3 9 0,16 1,2 1,6 0,66 1,2 1,6 0,66 1,2 1,6 0,66 1,2 1,6 1,2 1,6 1,2 1,6 1,2 1,6 1,2 1,6 1,2 1,6 1,2 1,6 1,2	PG1553+273A	15 55 37 9	+27 06 49	3 16	0.08	75.6	32	-9.3	-21.6	21	22
PG16001210D 10 00 0110 121 00 10 0,10 0,00 10,0 0,00 <	PG1553+273B	15 55 37 9	+27 06 49	3 16	0.08	75,6	3.2	-6.7	-12.5	1.5	1.8
PG160011114 10 00 00 111 14 01 2,10 0,00 20,00 20,11 10,01 1,00 0,00 0,00 PG1616+144 16 18 23 +14 16 18 2,68 0,08 -48,4 1,6 3,9 -17,5 3,6 3 PG1619+522 16 20 38.7 +52 06 09 2,64 0,08 -52,5 1,1 -2,7 9,6 1,2 1,6 PG1647+056 16 50 18.3 +05 32 53 2,9 0,08 -109,9 3,6 -0,5 -7,4 2,6 3 PG1653+131 16 55 42.7 +13 01 50 3,04 0,08 5,9 1,6 -2,8 -4,1 4,8 5,3 PG1701+359A 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -59,8 -0,1 5,1 2,7 PG1701+359B 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -52,7 21,7 6,7 13,4 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3 <t< td=""><td>PG1607+174</td><td>16 09 55</td><td>+17 14 57</td><td>2 79</td><td>0,00</td><td>23.7</td><td>27</td><td>-7.3</td><td>-10.64</td><td>1 66</td><td>0.66</td></t<>	PG1607+174	16 09 55	+17 14 57	2 79	0,00	23.7	27	-7.3	-10.64	1 66	0.66
PG1619+522 16 20 38.7 +52 06 09 2,64 0,08 -52,5 1,1 -2,7 9,6 1,2 1,6 PG1647+056 16 50 18.3 +05 32 53 2,9 0,08 -109,9 3,6 -0,5 -7,4 2,6 3 PG1653+131 16 55 42.7 +13 01 50 3,04 0,08 5,9 1,6 -2,8 -4,1 4,8 5,3 PG1701+359A 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -59,8 -0,1 5,1 2,7 PG1701+359B 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -52,7 21,7 6,7 13,4 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3	PG1616+144	16 18 23	+14 16 18	2.68	0.08	-48.4	1.6	3.9	-17 5	3.6	3
PG1647+056 16 50 18.3 +05 32 53 2,9 0,08 -109,9 3,6 -0,5 -7,4 2,6 3 PG1653+131 16 55 42.7 +13 01 50 3,04 0,08 5,9 1,6 -2,8 -4,1 4,8 5,3 PG1701+359A 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -59,8 -0,1 5,1 2,7 PG1701+359B 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -52,7 21,7 6,7 13,4 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3	PG1619+522	16 20 38 7	+52 06 09	2 64	0.08	-52.5	11	-27	9.6	12	16
PG1653+131 16 55 42.7 +13 01 50 3,04 0,08 5,9 1,6 -2,8 -4,1 4,8 5,3 PG1701+359A 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -59,8 -0,1 5,1 2,7 PG1701+359B 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -52,7 21,7 6,7 13,4 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -52,7 21,7 6,7 13,4 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3 PG1710+490 17 12 18.7 +48 58 36 2,72 0,06 -52,2 2 9,98 -6,59 4,11 1,4	PG1647+056	16 50 18 3	+05 32 53	29	0.08	-109.9	3.6	-0.5	-7 4	2.6	3
PG1701+359A 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -59,8 -0,1 5,1 2,7 PG1701+359B 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -52,7 21,7 6,7 13,4 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -52,7 21,7 6,7 13,4 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3 PG1710+490 17 12 18.7 +48 58 36 2,72 0,06 -52,2 2 9,98 -6,59 4,11 1,4	PG1653+131	16 55 42 7	+13 01 50	3.04	0.08	5.9	1.6	-2.8	-4 1	4.8	53
PG1701+359B 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -52,7 21,7 6,7 13,4 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -52,7 21,7 6,7 13,4 PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3 PG1710+490 17 12 18.7 +48 58 36 2,72 0,06 -52,2 2 9,98 -6,59 4,11 1,4	PG1701+359A	17 03 22	+35 48 47	2 85	0.08	-119.6	1.8	-59.8	-0.1	5.1	27
PG1701+359C 17 03 22 +35 48 47 2,85 0,08 -119,6 1,8 -33,5 -13,9 3 3 PG1710+490 17 12 18.7 +48 58 36 2,72 0,06 -52,2 2 9,98 -6,59 4,11 1,4	PG1701+359B	17 03 22	+35 48 47	2,85	0.08	-119.6	1.8	-52.7	21.7	67	13.4
PG1710+490 17 12 18.7 +48 58 36 2,72 0,06 -52,2 2 9,98 -6,59 4,11 1,4	PG1701+359C	17 03 22	+35 48 47	2,85	0.08	-119.6	1.8	-33.5	-13.9	3	3
	PG1710+490	17 12 18 7	+48 58 36	2,00	0,00	-52.2	2	9 98	-6 59	4 11	14
$PG_{1716+426} = 17.18030 + 42.3413 + 2.961 + 0.081 + 3.9 + 0.81 + 121 + 221 + 31 + 0.51$	PG1716+426	17 18 03 9	+40 30 30	2,72	0,00	-32,2	0.8	12	-0,55	יו, ד 2	1,4
PG1722+286 17 24 12 1 +28 35 19 2 71 0 08 -38 8 4 5 -2 9 8 4 3 6 2 7	PG1722+286	17 24 12 1	+42 34 13	2,30	0,00	-38.8	15	_29	81	36	27
PG1725+252 17 27 57 4 +25 08 36 2 71 0.08 -60 0.6 -17 2 8 2.6 2.2	PG1725+252	17 27 57 4	+25 08 36	2,71	0,00	-50,0	4,5 0.6	-2,3	0, 4 8	2.6	2,7
PG1743+477 17 44 26 7 +47 41 46 2 92 0.08 -65 8 0.8 -2 16 4 2	PG1743±477	17 44 26 7	±47 41 46	2 02	0,00	-00- -65 ₽	0,0 0 R	<u>ے</u> , رہ۔ 2۔	16	2,0 ۸	<u>د</u> ,د ر
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PG2120-062	21 22 21 20	+06 21 55 5	2,32	0,00	-62 12	1 / 2		-07	5 2	5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PG2151+100	21 53 57 2	±10 17 38	2 7/	0,00	-02,13	1,42 2	12.4	-46 30	1 75	4 00
PHI 334 22 36 16 6 -31 42 13 2 86 0 08 -14 2 2 7 16 10 2 3	PHI 334	22 36 16 6	-31 42 13	2 86	0,02	2 1⊿ 2	27	16	10,09	1,75	ש,∪ש ק
Fortsetzung auf der nächsten Seite	Fortsetzung auf d	er nächsten S	eite	2,00	0,00	17,2	<u> </u>	10	10	<u> </u>	5

Name	Rekta	Deklination	logd	Δ logd	RV	ΔRV	pma	pmd	∆pma	Δpmd
PHL382	22 43 06	-14 50 37	3,08	0,08	-9,8	4,1	9,81	-22,97	2,74	1,38
PHL44	21 35 13.3	-13 33 22	2,84	0,02	-25,6	2	16,24	-1,3	1,63	4,08
PHL932	00 59 56.67	+15 44 13.7	2,43	0,06	17,6	2	36,18	2,94	2,2	3,27
PHL932	00 59 56.67	+15 44 13.7	2,43	0,06	18	2	36,18	2,94	2,2	3,27
PNG027.6+16.9	17 41 41.00	+03 06 56.1	3,02	0,08	51,19	1,77	-4	-4	1	1
SB395	00 59 11.6	-18 18 00	3,25	0,08	17	3,4	-3,4	-5,8	2,3	2,42
TONS135	00 03 22.1	-23 38 57.9	2,93	0,02	3,7	2	0	17,7	5,2	3,65
TONS183	01 01 17.6	-33 42 45.4	2,75	0,07	50,5	0,8	-11,05	13,6	2,47	1,07
UVO0512-08	05 14 44	-08 48 06	2,38	0,05	10,2	2	-28,62	-24,6	1,31	1,45
UVO1505+07	15 08 21.1	+07 13 15	2,8	0,08	0,7	1,7	1,14	-8,72	1,9	2,24
UVO1735+22	17 37 26.5	+22 08 58	2,61	0,06	20,6	2	-23,3	0,18	0,94	0,46
UVO1758+36	18 00 19	+36 28 56	2,3	0,06	-30,7	2	-26,8	0,4	2,7	3,8
WD0021-234	00 23 59.35	-23 09 53.5	3,63	0,079	-12,2	2,62	6,9	-6,6	5,4	5
WD0031-274	00 33 53.88	-27 08 23.6	2,94	0,079	24,03	2,14	-2,3	-2,2	4,7	4,74
WD0048-202	00 51 03.97	-20 00 00.3	3,16	0,08	-26,5	0,4	0,12	-2,37	0,5	0,5
WD0109-264	01 12 11.65	-26 13 27.9	2,77	0,079	-24,6	3,58	4,1	0,98	7,57	4,48
WD0258+184	03 01 12.87	+18 40 54	3,23	0,079	21,02	4,75	0,9	-3,8	6,1	6,1
WD0447+176	04 50 13.5	17 42 06	2,45	0,08	-22,8	1,65	-7,05	6,8	2,58	2,86
WD0944-090	09 47 03.3	-09 19 49	3,06	0,08	63,95	4,24	-7,5	-6,1	5	5
WD1008-179A	10 10 33.5	-18 11 49	3,19	0,08	53,85	0,46	-34,8	3,3	13,3	13,3
WD1008-179B	10 10 33.5	-18 11 49	3,19	0,08	53,85	0,46	-12	18	3	5
WD1207-032A	12 09 36.04	-03 33 08	2,83	0,079	-10,94	1,34	0,88	-0,22	0,79	0,21
WD1207-032B	12 09 36.04	-03 33 08	2,83	0,079	-10,94	1,34	9,88	-7,49	5,23	6,2
WD1433-270	14 36 07.33	-27 13 14.3	3,11	0,079	23,33	2,56	-3,09	-7,99	3,08	2,45
WD1549-000	15 52 02.77	+00 04 39.4	3,17	0,079	-10,82	2,21	24,65	-9,72	11,72	10,82
WD1632+222	16 34 16.0	+22 11 36	3,08	0,08	0,32	0,32	-6,9	-6,4	6,3	6,2
WD2020-253	20 23 50.2	-25 08 28	3,21	0,08	119,87	1,22	-7,3	-16,95	1,7	2,91
WD2122+157	21 24 54.89	+15 59 03.6	3,23	0,079	-117,6	3,68	-8,25	-3,55	3,9	3,62
WD2204+070	22 07 16.20	+07 18 36.0	3,30	0,08	12,143	0,17	-42	-12	1	3
WD2258+155A	23 00 57.8	+15 48 40	3,03	0,08	-20,5	0,42	-9,45	-2,75	2,4	1,97
WD2258+155B	23 00 57.8	+15 48 40	3,03	0,08	-20,5	0,42	7,47	-14,07	-1,8	-3,2
WD2329-291	23 31 49.97	-28 52 53.1	2,89	0,079	-24,85	1,14	18,35	-0,85	5,5	5,91

Tabelle D1:Alle Eingabedaten der unterleuchtkräftigen Sterne

Name: Der Katalogname des unterleuchtkräftigen Sternes (s. Anhang α). Die Großbuchstaben (A-F) am Ende wurden benutzt um verschiedene Varianten zu unterscheiden. Bei einigen Sternen war nämlich die Zuordnung der Helligkeit oder der Eigenbewegungen nicht ganz eindeutig. In diesen Fällen halte ich die Version A für die wahrscheinlichste.

Rekta: Die Rektaszension in Stunden.

Deklination ist in Grad angegeben

logd und Δ logd: Der Logarithmus der Entfernung in pc und ihr Fehler. Dabei ist für alle Sterne die weiter als 200pc entfernt sind die Extinktion nach Schlegel, Finkenbeiner und Davis⁽¹⁾ schon berücksichtigt.

RV und $\triangle RV$: Die Radialgeschwindigkeit und ihr Fehler werden in km/s angegeben. Bei negativen Werten bewegt sich der Stern auf uns zu, bei positiven von uns weg.

pma, pmd, Δ pma und Δ pmd: Die Eigenbewegungen in Rektaszension und Deklination und ihre jeweiligen Fehler werden in mas/a (Millibogensekunden/Jahr) angegeben.

D2) Weitere Daten aus der Spektroskopie

Name	A _v	mv	T _{eff}	log g	VG
HE0016-3212	0,063	14,27	41673	5,6	1659
HE0342-1702	0,256	14,9	41926	5,79	2064
HE1047-0637	0,111	14,42	64000	4,93	767
HE1135-1134	0,113	15,45	40078	5,68	1819
HE1136-2504	0,151	14,11	41380	5,84	2186
HE1237-1408	0,17	16,29	39683	5,33	1215
HE1238-1745	0,137	14,59	38219	5,64	1737
HE1310-2733	0,226	14,47	39999	5,63	1717
HE1356-1613	0,353	16,18	55923	5,92	2397
HE1502-1019A	0,386	15,59	45605	5,26	1121
HE1502-1019B	0,386	15,17	45605	5,26	1121
HE2218-2026	0,099	14,66	38329	5,87	2263
PG2120+062	0,277	13,64	36322	4,27	357
PN G027.6+16.9	0,821	14,95	50755	5,82	2137
PN1259-470	0,272	11,83	33778	5,68	1819
PN G125.9-47.0		12,14	33778	5,68	1819
WD1008-179	0,173	14,75	52884	5,68	1819
WD1148-230		14,84	>50000	8	26286
HE0001-2443	0,065	13,85	40971	5,94	2453
HE0031-5607	0,053	15,45	41423	6,25	3505
HE0111-1526	0,113	14,59	38769	6,28	3628
HE0155-3710	0,06	15,08	41421	5,8	2088
HE0301-3039	0,062	15,57	40097	6,02	2690
HE0414-5429	0,034	14,60	44598	5,73	1926
HE0914-0341	0,159	14,93	45783	5,79	2064
HE0952+0227	0,069	15,60	46523	5,75	1971
HE0958-1151	0,269	13,81	44124	5,49	1461
HE1106-0942	0,186	15,94	78454	6,4	4166
HE1136-1641	0,14	15,36	44645	5,8	2088
HE1142-2311	0,296	15,37	54804	5,84	2186
HE1200-1924	0,132	14,45	45191	5,79	2064
HE1203-1048	0,274	16,01	45191	5,79	2064
HE1251+0159	0,068	14,84	48245	6,02	2690
HE1316-1834	0,244	16,29	42811	5,56	1584
HE1349-2320	0,219	15,44	42451	6,19	3253
HE1355-0622		13,68	70852	5,39	1302
HE1430-0815	0,205	15,98	61011	5,26	1121
HE1446-1058	0,321	15,21	44999	5,76	1994
HE1511-1103	0,356	15,12	42298	5,68	1819
HE2203-2210	0,121	14,64	47343	6,2	3309
HE2305-1155	0,117	15,47	41977	6,4	4166
HE2347-4130	0,049	15,16	44866	5,82	2137
WD0447+176	1,498	12,66	41343	5,68	1819
WD1632+222	0,159	15,75	39384	6,16	3160
WD2020-253	0,321	15,5	44622	5,8	2088
WD2204p070	0,354	15,66	40606	5,62	1697
WD2258+155	0,241	15,14	42082	6,03	2721
WD1349+144	1,262	15,19	16620	7,68	18568
WD1013-050	0,146	14,30	56400	7,74	19486
Fortsetzung auf de	r nächste	en Seite			

Name	Av	mv	T _{eff}	log g	V _G
WD0326-273	0,026	14,00	9363	7,89	23159
WD1210+140	0,110	14,67	32340	6,97	8030
WD0048-202	0,066	14,85	29960	5,5	1478
HE1059-2735	0,199	15,21	41200	5,39	1302
HE1115-0631	0,169	14,70	40400	5,8	2088
HE1318-2111	0,353	14,60	36400	5,41	1333
PNG2119+226	0,145	13,83	42000	5,8	2088

Tabelle D2: Verschieden Daten zu den unterleuchtkräftigen Sternen. Die Liste enthält nicht alle unterleuchtkräftigen Sterne dieser Arbeit, da die übrigen Sterne bereits mit Entfernungen veröffentlicht wurden und deshalb keine Temperaturen und Schwerebeschleunigungen ermittelt werden mussten.

Name: Der Katalogname des unterleuchtkräftigen Sternes (s. Anhang α). Die Großbuchstaben (A-F) am Ende wurden benutzt um verschiedene Varianten zu unterscheiden. Bei einigen Sternen war nämlich die Zuordnung der Helligkeit oder der Eigenbewegungen nicht ganz eindeutig. In diesen Fällen halte ich Version A für die wahrscheinlichste.

 A_V : Der Wert der Extinktion nach Schlegel, Finkenbeiner und Davis⁽¹⁾ in Magnituden. Für Sterne mit weniger als 200pc Entfernung in Z-Richtung wurde nicht immer eine Extinktion ermittelt.

m_{V:} Scheinbare Visuelle Helligkeit in Magnituden.

T_{eff}: Effektivtemperatur in K, der Fehler ist kleiner als 500K

log g: Logarithmus der Schwerebeschleunigung an der Oberfläche des Weißen Zwerges in cm/s², der Fehler liegt bei 0,05

v_G: Gravitationsrotverschiebung in m/s, der Fehler ist kleiner als 10%.

Name V (km/s) U (km/s) e J_ V-U e-J_ Orbit Ast Klasse [CW83] 1419-09 153.9 66 0.35 -1278.4 1 1 0 1 <th>sdB</th> <th></th> <th>einiae</th> <th>Werte</th> <th></th> <th>К</th> <th>lassifi</th> <th>kationen</th> <th>1</th> <th>aesamt</th>	sdB		einiae	Werte		К	lassifi	kationen	1	aesamt
ICW83 1419-09 153.9 63 0.35 -1278.4 1 1 0 1 dian BALCONN90100001 162.6 11.7 0.26 -1389.6 -1 -1 -1 1 dian BD+48 2721 67.8 67.3 0.73 563.7 1 3 1 1 dian CBS115 198.7 23.7 0.12 -1738.4 -1 -1 1 1 dian CD-24 731 110 -331 0.51 -941.4 1 -1 -1 2 dian CD-38 222B 200.4 -31.1 0.12 -1185.5 0.36 -1 -1 -1 2 dian CD-38 222C 205.7 -9.9 0.06 -1742.3 -1 -1 1 1 dian CD-38 222C 205.7 -9.9 0.06 -1742.3 -1 -1 1 2 dian CD-48 106 132 -18.5 0.36 <td>Name</td> <td>V (km/s)</td> <td>U (km/s)</td> <td>e</td> <td>J-</td> <td>V-U</td> <td>e-J-</td> <td>Orbit</td> <td>Ast</td> <td>Klasse</td>	Name	V (km/s)	U (km/s)	e	J-	V-U	e-J-	Orbit	Ast	Klasse
BALOONN90100001 162.6 11,7 0,26 -1380,6 -1 -1 1	[CW83] 1419-09	153.9	63	0.35	-1278,4	1	1	0	1	dick
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BALOONN90100001	162,6	11,7	0,26	-1389,6	-1	-1	-1	1	dünn
BPS CS 22169-0001 241,1 11,3 0,11 -2157,7 -1 -1 -1 1 dünn CBS115 198,7 23,7 0,12 -1738,4 -1 -1 1 dünn CD-24731 110 -391,0,51 -941,4 1 1 -1 1 1 dünn CD-38 222A 230 5,9 0,07 -1947,6 -1 -1 -1 2 dünn CD-38 222D 228,5 13,6 0,08 -11935 -1 -1 -1 2 dünn CD-48 106 132 -18,5 0,36 -1104,6 1 1 1 1 dick C11349-2753 223,3 -56,5 0,14 -1901 -1 -1 2 dünn EC15103-1557 140,6 45,5 0,39 -1132,7 1 1 -1 1 dick FEIGE38 190,4 -5,2 0,13 -1639,9 -1 -1 <	BD+48 2721	67,8	-77,3	0,73	-563,7	1	3	1	1	dick
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BPS CS 22169-0001	241,1	11,3	0,11	-2157,7	-1	-1	-1	2	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CBS115	198,7	23,7	0,12	-1738,4	-1	-1	-1	1	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CD-24 731	110	-39,1	0,51	-941,4	1	1	-1	1	dick
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CD-35 15910	232	43,3	0,15	-1954,1	-1	-1	-1	2	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CD-38 222A	230	5,9	0,07	-1947,6	-1	-1	-1	2	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CD-38 222B	200,4	-31,1	0,12	-1698,5	-1	-1	-1	1	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CD-38 222C	205,7	-9,9	0,06	-1742,3	-1	-1	-1	2	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CD-38 222D	228,5	13,6	0,08	-1935	-1	-1	-1	2	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CD-48 106	132	-18,5	0,36	-1104,6	1	1	1	1	dick
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CPD-64 481	147,1	46,9	0,36	-1239,2	1	1	-1	1	dick
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EC11349-2753	223,3	-56,5	0,14	-1901	-1	-1	1	2	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EC14345-1729	217,4	-59,5	0,18	-1741,2	-1	-1	-1	2	dünn
FEIGE108223,435,50,11 $-1898,6$ -1 -1 0 2dünnFEIGE38190,4 $-5,2$ 0,13 $-1639,9$ -1 -1 -1 1 dünnFEIGE49A $87,4$ $-106,7$ 0,61 $-812,8$ 1 1 0 1 dickFEIGE49B $45,7$ $-59,2$ $0,78$ $-428,8$ 1 3 3 1 haloFEIGE65220,6 $16,9$ $0,06$ $-1890,5$ -1 -1 1 2 dünnFEIGE86 $17,8$ $131,1$ $0,9$ $-158,7$ 3 3 3 1 haloGD108 110 -147 $0,6$ $-1037,2$ 1 1 0 1 dickHD17858223,2 $73,7$ $0,23$ $-1876,4$ -1 -1 2 dünnHD205805211,5 $-105,5$ $0,33$ $-1763,7$ 1 1 -1 2 dünnHD4539236,6 $-1,7$ $0,08$ $-2025,8$ -1 -1 1 d dünnHD76431 $172,1$ $-32,8$ $0,23$ $-1499,7$ -1 -1 1 d dünnHE0016+0044 $150,4$ $17,5$ $0,3$ $-1824,2$ -1 1 1 d d HE01707 $184,2$ $45,2$ $0,21$ $-1573,3$ -1 1 1 d d HE016+2047 $150,4$ $17,5$ $0,37$ $-158,4$ 3 3 <	EC15103-1557	140,6	45,5	0,39	-1135,7	1	1	-1	1	dick
FEIGE38 190,4 -5,2 0,13 -1639,9 -1 -1 -1 1 dünn FEIGE49A 87,4 -106,7 0,61 -812,8 1 1 0 1 dick FEIGE49B 45,7 -59,2 0,78 -428,8 1 3 3 1 halo FEIGE65 220,6 16,9 0,06 -1890,5 -1 -1 1 2 dünn FEIGE86 17,8 131,1 0,9 -158,7 3 3 3 1 halo GD108 110 -147 0,6 -1037,2 1 1 0 1 dick HD149382 223,2 73,7 0,23 -1876,4 -1 -1 1 2 dünn HD205805 211,5 -105,5 0,33 -1763,7 1 1 1 dück HD4539 286,6 -1,7 0,08 -2205,8 -1 -1 1	FEIGE108	223,4	35,5	0,11	-1898,6	-1	-1	0	2	dünn
FEIGE49A 87,4 -106,7 0,61 -812,8 1 1 0 1 dick FEIGE49B 45,7 -59,2 0,78 -428,8 1 3 3 1 halo FEIGE65 220,6 16,9 0,06 -1890,5 -1 1 2 dünn FEIGE86 17,8 131,1 0,9 -158,7 3 3 1 halo GD108 110 -147 0,6 -1037,2 1 1 0 1 dick HD149382 227,9 29,6 0,1 -1931,1 -1 -1 1 2 dünn HD17858 223,2 73,7 0,23 -1876,4 -1 -1 1 2 dünn HD26805 211,5 -106,5 0,33 -7163,7 1 -1 1 2 dünn HD76431 172,1 -32,8 0,23 -1499,7 -1 -1 1 1	FEIGE38	190,4	-5,2	0,13	-1639,9	-1	-1	-1	1	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FEIGE49A	87,4	-106,7	0,61	-812,8	1	1	0	1	dick
FEIGE65 220,6 16,9 0,06 -1890,5 -1 -1 1 2 dünn FEIGE86 17,8 131,1 0,9 -158,7 3 3 3 1 halo GD108 110 -147 0,6 -1037,2 1 1 0 1 dick HD149382 227,9 29,6 0,1 -1931,1 -1 -1 2 dünn HD17858 223,2 73,7 0,23 -1876,4 -1 -1 -1 2 dünn HD26805 211,5 -105,5 0,33 -1763,7 1 1 -1 2 dünn HD76431 172,1 -32,8 0,23 -1499,7 -1 -1 1 1 dick HE0016+0044 150,4 17,5 0,3 -1324,2 -1 1 1 1 dick HE0101-2707 184,2 45,2 0,21 -1573,3 -1 -1 <td< td=""><td>FEIGE49B</td><td>45,7</td><td>-59,2</td><td>0,78</td><td>-428,8</td><td>1</td><td>3</td><td>3</td><td>1</td><td>halo</td></td<>	FEIGE49B	45,7	-59,2	0,78	-428,8	1	3	3	1	halo
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FEIGE65	220,6	16,9	0,06	-1890,5	-1	-1	1	2	dünn
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	FEIGE86	17,8	131,1	0,9	-158,7	3	3	3	1	halo
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	GD108	110	-147	0,6	-1037,2	1	1	0	1	dick
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HD149382	227,9	29,6	0,1	-1931,1	-1	-1	-1	2	dünn
HD188112238,528,40,12 $-2014,2$ -1 -1 -1 2 dünnHD205805211,5 $-105,5$ 0,33 $-1763,7$ 11 -1 2dickHD4539236,6 $-1,7$ 0,08 $-2025,8$ -1 -1 -1 2dünnHD76431172,1 $-32,8$ 0,23 $-1499,7$ -1 -1 -1 2dünnHE0007-2212261,6 $-28,1$ 0,25 $-2183,2$ -1 -1 12dünnHE0016+0044150,417,50,3 $-1324,2$ -1 111dickHE0019-5545 $-71,5$ $-44,4$ 0,67518,43331haloHE0101-2707184,245,20,21 $-1573,3$ -1 11dünnHE0123-330137,7 -55 0,44 $-1193,7$ 111dickHE0135-6150187,979,10,47 $-1362,3$ -1 131dickHE0161-2758 -112 $-17,1$ 0,33993,83331haloHE027+003017263,80,27 $-1598,7$ -1 111dickHE0232-0918179,05,90,19 $-1653,0$ -1 -1 01dünnHE0322-0918179,8 $-34,1$ 0,15 $-1827,1$ -1 11dickHE0513-2354179,8 $-34,1$ <td>HD171858</td> <td>223,2</td> <td>73,7</td> <td>0,23</td> <td>-1876,4</td> <td>-1</td> <td>-1</td> <td>-1</td> <td>2</td> <td>dünn</td>	HD171858	223,2	73,7	0,23	-1876,4	-1	-1	-1	2	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HD188112	238,5	28,4	0,12	-2014,2	-1	-1	-1	2	dünn
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HD205805	211,5	-105,5	0,33	-1763,7	1	1	-1	2	dick
HD76431 172,1 -32,8 0,23 -1499,7 -1 -1 -1 1 dünn HE0007-2212 261,6 -28,1 0,25 -2183,2 -1 -1 1 2 dünn HE0016+0044 150,4 17,5 0,3 -1324,2 -1 1 1 1 dick HE0019-5545 -71,5 -44,4 0,67 518,4 3 3 3 1 halo HE0101-2707 184,2 45,2 0,21 -1573,3 -1 -1 1 1 dünn HE0135-6150 187,9 79,1 0,47 -1362,3 -1 1 3 1 dick HE0136-2758 -112 -17,1 0,33 993,8 3 3 3 1 halo HE0207+0030 172 63,8 0,27 -159,7 -1 1 1 1 dick HE0230-4323 221,3 58,9 0,23 -1877,6 -1 -1 0 2 dünn HE0321-0918 179,0 5,	HD4539	236,6	-1,7	0,08	-2025,8	-1	-1	-1	2	dünn
HE0007-2212 261,6 -28,1 0,25 -2183,2 -1 -1 1 2 dünn HE0016+0044 150,4 17,5 0,3 -1324,2 -1 1 1 1 dick HE0019-5545 -71,5 -44,4 0,67 518,4 3 3 3 1 halo HE0101-2707 184,2 45,2 0,21 -1573,3 -1 -1 1 1 dünn HE0123-3330 137,7 -55 0,44 -1193,7 1 1 1 1 dick HE0135-6150 187,9 79,1 0,47 -1362,3 -1 1 3 1 dick HE0136-2758 -112 -17,1 0,33 993,8 3 3 3 1 halo HE0207+0030 172 63,8 0,27 -1598,7 -1 1 1 dick HE0230-4323 221,3 58,9 0,23 -1877,6 -1	HD76431	172,1	-32,8	0,23	-1499,7	-1	-1	-1	1	dünn
HE0016+0044 150,4 17,5 0,3 -1324,2 -1 1 1 1 dick HE0019-5545 -71,5 -44,4 0,67 518,4 3 3 3 1 halo HE0101-2707 184,2 45,2 0,21 -1573,3 -1 -1 1 1 dünn HE0123-3330 137,7 -55 0,44 -1193,7 1 1 1 1 dünn HE0135-6150 187,9 79,1 0,47 -1362,3 -1 1 3 1 dick HE0136-2758 -112 -17,1 0,33 993,8 3 3 1 halo HE0207+0030 172 63,8 0,27 -1598,7 -1 1 1 dick HE0230-4323 221,3 58,9 0,23 -1877,6 -1 -1 0 2 dünn HE0321-0918 179,0 5,9 0,19 -1653,0 -1 -1 <	HE0007-2212	261,6	-28,1	0,25	-2183,2	-1	-1	1	2	dünn
HE0019-5545 -71,5 -44,4 0,67 518,4 3 3 1 halo HE0101-2707 184,2 45,2 0,21 -1573,3 -1 -1 1 1 dünn HE0123-3330 137,7 -55 0,44 -1193,7 1 1 1 1 dünn HE0135-6150 187,9 79,1 0,47 -1362,3 -1 1 3 1 dick HE0136-2758 -112 -17,1 0,33 993,8 3 3 1 halo HE0207+0030 172 63,8 0,27 -1598,7 -1 1 1 dick HE0230-4323 221,3 58,9 0,23 -1877,6 -1 -1 0 2 dünn HE0415-2417 -45,1 148,3 0,4 917,5 3 3 1 halo HE0447-3654 204,1 -121,5 0,41 -1752 1 1 1 2 <tdi< td=""><td>HE0016+0044</td><td>150,4</td><td>17,5</td><td>0,3</td><td>-1324,2</td><td>-1</td><td>1</td><td>1</td><td>1</td><td>dick</td></tdi<>	HE0016+0044	150,4	17,5	0,3	-1324,2	-1	1	1	1	dick
HE0101-2707 184,2 45,2 0,21 -1573,3 -1 -1 1 1 dünn HE0123-3330 137,7 -55 0,44 -1193,7 1 1 1 1 dick HE0135-6150 187,9 79,1 0,47 -1362,3 -1 1 3 1 dick HE0136-2758 -112 -17,1 0,33 993,8 3 3 3 1 halo HE0151-3919 7,6 412,6 0,97 170,7 3 3 3 1 halo HE0207+0030 172 63,8 0,27 -1598,7 -1 1 1 dick HE0321-0918 179,0 5,9 0,19 -1653,0 -1 -1 0 2 dünn HE0415-2417 -45,1 148,3 0,4 917,5 3 3 1 halo HE0447-3654 204,1 -121,5 0,41 -1752 1 1 1 2 dick HE0532-4503 171,8 106,7 0,54 -13	HE0019-5545	-71,5	-44,4	0,67	518,4	3	3	3	1	halo
HE0123-3330 137,7 -55 0,44 -1193,7 1	HE0101-2707	184,2	45,2	0,21	-1573,3	-1	-1	1	1	dünn
HE0135-6150 187,9 79,1 0,47 -1362,3 -1 1 3 1 dick HE0136-2758 -112 -17,1 0,33 993,8 3 3 3 1 halo HE0151-3919 7,6 412,6 0,97 170,7 3 3 3 1 halo HE0207+0030 172 63,8 0,27 -1598,7 -1 1 1 1 dick HE0207+0030 172 63,8 0,27 -1598,7 -1 1 1 1 dick HE0230-4323 221,3 58,9 0,23 -1877,6 -1 -1 0 2 dünn HE0321-0918 179,0 5,9 0,19 -1653,0 -1 -1 0 1 dünn HE0415-2417 -45,1 148,3 0,4 917,5 3 3 1 halo HE0447-3654 204,1 -121,5 0,41 -1752 1 1 1 dück HE0513-2354 179,8 -34,1 0,15 -18	HE0123-3330	137,7	-55	0,44	-1193,7	1	1	1	1	dick
HE0136-2758 -112 -17,1 0,33 993,8 3 3 3 1 halo HE0151-3919 7,6 412,6 0,97 170,7 3 3 1 halo HE0207+0030 172 63,8 0,27 -1598,7 -1 1 1 dick HE0230-4323 221,3 58,9 0,23 -1877,6 -1 -1 0 2 dünn HE0321-0918 179,0 5,9 0,19 -1653,0 -1 -1 0 1 dünn HE0415-2417 -45,1 148,3 0,4 917,5 3 3 1 halo HE0447-3654 204,1 -121,5 0,41 -1752 1 1 2 dick HE0513-2354 179,8 -34,1 0,15 -1827,1 -1 1 1 dünn HE0532-4503 171,8 106,7 0,54 -1352,9 1 1 1 dück HE0539-4246 174 -15,9 0,2 -1555,5 -1 -1 1	HE0135-6150	187,9	79,1	0,47	-1362,3	-1	1	3	1	dick
HE0151-3919 7,6 412,6 0,97 170,7 3 3 3 1 halo HE0207+0030 172 63,8 0,27 -1598,7 -1 1 1 1 dick HE0230-4323 221,3 58,9 0,23 -1877,6 -1 -1 0 2 dünn HE0321-0918 179,0 5,9 0,19 -1653,0 -1 -1 0 1 dünn HE0415-2417 -45,1 148,3 0,4 917,5 3 3 1 halo HE0447-3654 204,1 -121,5 0,41 -1752 1 1 1 2 dick HE0513-2354 179,8 -34,1 0,15 -1827,1 -1 -1 1 1 dünn HE0532-4503 171,8 106,7 0,54 -1352,9 1 1 1 dück HE0539-4246 174 -15,9 0,2 -1555,5 -1 -1 -1 1 dünn HE0929-0424 179,3 -36,7 0,29	HE0136-2758	-112	-17,1	0,33	993,8	3	3	3	1	halo
HE0207+0030 172 63,8 0,27 -1598,7 -1 1	HE0151-3919	7,6	412,6	0,97	170,7	3	3	3	1	halo
HE0230-4323 221,3 58,9 0,23 -1877,6 -1 -1 0 2 dünn HE0321-0918 179,0 5,9 0,19 -1653,0 -1 -1 0 1 dünn HE0415-2417 -45,1 148,3 0,4 917,5 3 3 1 halo HE0447-3654 204,1 -121,5 0,41 -1752 1 1 1 2 dick HE0513-2354 179,8 -34,1 0,15 -1827,1 -1 -1 1 1 dünn HE0532-4503 171,8 106,7 0,54 -1352,9 1 1 1 dick HE0539-4246 174 -15,9 0,2 -1555,5 -1 -1 -1 1 dünn HE0929-0424 179,3 -36,7 0,29 -1719 -1 1 1 dick HE1021-0255 190 -96,9 0,27 -1807,4 1 1 1 dick	HE0207+0030	172	63,8	0,27	-1598,7	-1	1	1	1	dick
HE0321-0918 179,0 5,9 0,19 -1653,0 -1 -1 0 1 dünn HE0415-2417 -45,1 148,3 0,4 917,5 3 3 1 halo HE0415-2417 -45,1 148,3 0,4 917,5 3 3 1 halo HE0447-3654 204,1 -121,5 0,41 -1752 1 1 1 2 dick HE0513-2354 179,8 -34,1 0,15 -1827,1 -1 -1 1 1 dünn HE0532-4503 171,8 106,7 0,54 -1352,9 1 1 1 dick HE0539-4246 174 -15,9 0,2 -1555,5 -1 -1 -1 1 dünn HE0929-0424 179,3 -36,7 0,29 -1719 -1 1 1 dick HE1021-0255 190 -96,9 0,27 -1807,4 1 1 1 dick HE1033-2353 164,7 63,4 0,44 -1283 -1 1	HE0230-4323	221,3	58,9	0,23	-1877,6	-1	-1	0	2	dünn
HE0415-2417 -45,1 148,3 0,4 917,5 3 3 3 1 halo HE0447-3654 204,1 -121,5 0,41 -1752 1 1 1 2 dick HE0513-2354 179,8 -34,1 0,15 -1827,1 -1 -1 1 1 dünn HE0532-4503 171,8 106,7 0,54 -1352,9 1 1 1 dick HE0539-4246 174 -15,9 0,2 -1555,5 -1 -1 1 1 dünn HE0929-0424 179,3 -36,7 0,29 -1719 -1 1 1 dick HE1021-0255 190 -96,9 0,27 -1807,4 1 1 1 dick HE1033-2353 164,7 63,4 0,44 -1283 -1 1 1 dick	HE0321-0918	179,0	5,9	0,19	-1653,0	-1	-1	0	1	dünn
HE0447-3654 204,1 -121,5 0,41 -1752 1 1 1 2 dick HE0513-2354 179,8 -34,1 0,15 -1827,1 -1 -1 1 1 dünn HE0532-4503 171,8 106,7 0,54 -1352,9 1 1 1 1 dick HE0539-4246 174 -15,9 0,2 -1555,5 -1 -1 -1 1 dünn HE0929-0424 179,3 -36,7 0,29 -1719 -1 1 1 dick HE1021-0255 190 -96,9 0,27 -1807,4 1 1 1 dick HE1033-2353 164,7 63,4 0,44 -1283 -1 1 1 dick	HE0415-2417	-45,1	148,3	0,4	917,5	3	3	3	1	halo
HE0513-2354 179,8 -34,1 0,15 -1827,1 -1 -1 1 1 dünn HE0532-4503 171,8 106,7 0,54 -1352,9 1 1 1 1 dick HE0539-4246 174 -15,9 0,2 -1555,5 -1 -1 -1 1 dünn HE0929-0424 179,3 -36,7 0,29 -1719 -1 1 1 dick HE1021-0255 190 -96,9 0,27 -1807,4 1 1 1 dick HE1033-2353 164,7 63,4 0,44 -1283 -1 1 1 dick	HE0447-3654	204,1	-121,5	0,41	-1752	1	1	1	2	dick
HE0532-4503 171,8 106,7 0,54 -1352,9 1 1 1 1 dick HE0539-4246 174 -15,9 0,2 -1555,5 -1 -1 -1 1 dünn HE0929-0424 179,3 -36,7 0,29 -1719 -1 1 1 dick HE1021-0255 190 -96,9 0,27 -1807,4 1 1 1 dick HE1033-2353 164,7 63,4 0,44 -1283 -1 1 1 dick	HE0513-2354	179,8	-34,1	0,15	-1827,1	-1	-1	1	1	dünn
HE0539-4246 174 -15,9 0,2 -1555,5 -1 -1 1 1 dünn HE0929-0424 179,3 -36,7 0,29 -1719 -1 1 1 1 dick HE1021-0255 190 -96,9 0,27 -1807,4 1 1 1 1 dick HE1033-2353 164,7 63,4 0,44 -1283 -1 1 1 1 dick	HE0532-4503	171,8	106,7	0,54	-1352,9	1	1	1	1	dick
HE0929-0424 179,3 -36,7 0,29 -1719 -1 1 1 1 dick HE1021-0255 190 -96,9 0,27 -1807,4 1 1 1 1 dick HE1033-2353 164,7 63,4 0,44 -1283 -1 1 1 1 dick	HE0539-4246	174	-15,9	0,2	-1555,5	-1	-1	-1	1	dünn
HE1021-0255 190 -96,9 0,27 -1807,4 1 1 1 1 dick HE1033-2353 164,7 63,4 0,44 -1283 -1 1 1 1 dick	HE0929-0424	179,3	-36,7	0,29	-1719	-1	1	1	1	dick
HE1033-2353 164,7 63,4 0,44 -1283 -1 1 1 dick	HE1021-0255	190	-96,9	0,27	-1807,4	1	1	1	1	dick
	HE1033-2353	164,7	63,4	0,44	-1283	-1	1	1	1	dick

Die komplette Klassifikation der unterleuchtkräftigen Sterne **D3**)

ung a

Name	V (km/s)	U (km/s)	е	Jz	V-U	e-J _z	Orbit	Ast	gesamt
HE1038-2326	243,4	164,8	0,7	-1611,6	3	3	3	2	halo
HE1050-0630	217,8	24,5	0,14	-1862,9	-1	-1	0	2	dünn
HE1200-0931	91,8	17,1	0,59	-729,8	1	1	2	1	dick
HE1200-1924*	207,1	-84,1	0,21	-1777,4	-1	-1	0	2	dünn
HE1221-2618A	210	8,7	0,13	-1674,5	-1	-1	0	1	dünn
HE1221-2618B	159,8	-97,7	0,31	-1382,9	1	1	1	1	dick
HE1254-1540	159	31,1	0,4	-1239,5	-1	1	1	1	dick
HE1352-1827	312,5	114,4	0,66	-1987,1	3	3	3	2	halo
HE1419-1205	246,9	-36,6	0,19	-1762,8	-1	-1	1	2	dünn
HE1421-1206	194	-42,7	0,12	-1460,1	-1	-1	1	1	dünn
HE1422-1851	121,5	-64,3	0,37	-786,2	1	1	3	1	dick
HE1441-0558A	173,7	-5,7	0,2	-1365,1	-1	-1	-1	1	dünn
HE1441-0558B	151,8	-55	0,34	-1201,4	1	1	1	1	dick
HE1448-0510	187,7	-40,1	0,21	-1429,7	-1	-1	1	1	dünn
HE1450-0957	153,7	-35,7	0,25	-1152,5	-1	-1	1	1	dünn
HE1459-0234A	106,3	46,2	0,54	-760,4	1	1	3	1	halo
HE1459-0234B	-4629,1	-148,7	1	33085,8	3	3	3	1	halo
HE1519-0708	191,2	31,5	0,25	-1325,4	-1	-1	1	1	dünn
HE2135-3749	224,1	-18,9	0,11	-1804,5	-1	-1	1	2	dünn
HE2150-0238	255,7	90,2	0,49	-2092	3	3	3	2	halo
HE2151-1001	169,2	-91,3	0,47	-1164,6	1	1	3	1	halo
HE2156-3927A	259,4	-83,4	0,34	-2030,6	1	1	1	2	dick
HE2156-3927B	264	-35	0,28	-2066,7	-1	1	1	2	dick
HE2201-0001	152,7	-15,8	0,39	-1128,8	-1	1	3	1	halo
HE2208+0126	241,9	-32,5	0,28	-1916,1	-1	1	1	2	dick
HE2222-3738	211.6	-48	0.18	-1650.5	-1	-1	1	2	dünn
HE2237+0150	148,7	-32,6	0,37	-1133,3	-1	1	1	1	dick
HE2238-1455	174,4	-58,7	0,32	-1235,8	-1	1	3	1	dick
HE2307-0340	231,6	94,5	0,35	-1994,9	-1	1	3	2	halo
HE2322-0617A	279	-119,3	0,53	-2177,7	3	3	3	2	halo
HE2322-0617B	189.8	-61.5	0.4	-1502.1	-1	1	3	1	dick
HE2349-3135	188.3	-28.2	0.4	-1485.9	-1	1	3	1	halo
HS1530+0542	72.5	-29.3	0.61	-526.2	1	1	3	1	dick
HS1710+1614	231	17.9	0.11	-1634,9	-1	-1	1	1	dünn
HS2033+0821	225	-11.3	0.11	-1792.3	-1	-1	-1	2	dünn
HS2125+1105	224.3	9.6	0.14	-1726.3	-1	-1	1	2	dünn
HS2216+1833	228.5	135.8	0.37	-2025.8	3	1	1	2	dick
HS2224+2618	-47.9	82.9	0.7	338.9	3	3	3		halo
HS2357+2201	220.5	5.4	0.05	-1915	-1	-1	-1	2	dünn
JL36	136.2	-114.9	0.48	-1135	1	1	-1	1	dick
JL82	189.2	-23.7	0.14	-1557.6	-1	-1	-1	1	dünn
JL87	255.1	18.3	0.19	-2049.6	-1	-1	-1	2	dünn
L B1516	226	12.5	0.07	-1850.6	-1	-1	-1	2	dünn
PB5333	119.3	-15.5	0.45	-1007.3	1	1	-1	1	dick
PB7352	230.6	7.6	0.06	-1930 7	-1	-1	-1	2	dünn
PG0001+275	163.1	34.3	0.26	-1427	-1	-1	-1	1	dünn
PG0011+283	199.6	23.9	0.09	-1736.8	-1	-1	-1	1	dünn
PG0133+114	180.4	3.8	0.18	-1560.8	-1	-1	-1	1	dünn
PG0342+026	214 5	13.8	0.05	-1841	-1	-1	1	2	dünn
PG0839+399A	215.2	1 2	0.01	-1972 R	-1	_1		2	dünn
PG0839+399R	155.8	-6.8	0.29	-1427 8	-1	1		1	dünn
Fortsetzung auf der n	acheton So	ite	0,20	1427,0					Junn
i onsoizung au uel II	00131011 00								

Name	V (km/s)	U (km/s)	е	Jz	V-U	e-J _z	Orbit	Ast	gesamt
PG0849+319	123,8	-8,9	0,41	-1188,9	1	1	1	1	dick
PG0850+170	169,8	-0,5	0,23	-1609,5	-1	-1	0	1	dünn
PG0907+123	215,2	-49,1	0,13	-2001,3	-1	-1	0	2	dünn
PG0909+164	203,5	-25,6	0,09	-1858,5	-1	-1	0	2	dünn
PG0909+276	221,3	0.3	0.02	-1934,8	-1	-1	-1	2	dünn
PG0918+029	124.2	-61.2	0.46	-1099.9	1	1	-1	1	dick
PG0919+273	204.1	95.3	0.32	-1773.9	-1	1	-1	2	dünn
PG1017-086A	273.2	-3.2	0.27	-2392	-1	1	1	2	dick
PG1017-086B	283.6	-90.1	0.39	-2548.9	1	1	1	2	dick
PG1032+406A	158	-74.4	0.36	-1362.4	1	1	-1	1	dick
PG1032+406B	151.1	-104.5	0.44	-1303.4	1	1	-1	1	dick
PG1039+219A	191.7	-17.7	0.13	-1679.3	-1	-1	-1	1	dünn
PG1039+219B	215.2	-6	0.02	-1882.6	-1	-1	-1	2	dünn
PG1040+234	80.6	-50.9	0.63	-735.8	1	1	1	1	dick
PG1043+760A	204.9	-31.7	0.16	-1819.2	-1	-1	-1	2	dünn
PG1043+760B	174.3	-123.8	0.46	-1496 7	1	1	0	1	dick
PG1047+003	150.6	6.8	0,40	-1294.6	-1	1	1	1	dick
PG1051+501	145.3	66	0.35	-1363.4	1	1	3	1	dick
PG1110+294	194.1	-4	0,00	-1702 4	-1	-1	-1	1	dünn
PG1114+073A	198.2	-74	0.1	-1702,4	-1	-1	-1	1	dünn
PG1114+073R	209.3	7, 1 33	0.05	-1793.4	-1	-1	-1	2	dünn
PG1116+301	186.9	-42 9	0,00	-1643.9	-1	-1	0	1	dünn
PG1232-136	171.2	-80	0,10	-1459.9	1	1	0	1	dick
PG1227,122	169	-09	0,04	1410.0	1	1	1	1	dünn
PG1237+132	200.7	-20	0,22	-1419,9	-1	-1	0	- I - O	dünn
PG1240+104A	200,7	70	0,20	-1079,2	-1	-1	1	2	diak
PG1240+104D	102.0	75 /	0,32	-2127,0	-1	1	1	2 1	dick
PG1256-030A	1115 5	-75,4	0,51	-674,9	1	1	1	1	UICK
PG1200-030B	106 5	1024,4	0.1	-0012,4	د ۱	3 1	3	2 1	dünn
PG1300+279	196,5	40.7	0,1	-1664,7	- 1	-	0	1	dunn
PG1303+097	140,4	43,7	0,30	-1206,8	1	1	0	1	dick
PG1315-077	140,9	22,6	0,28	-1101,6	1		3		dick
PG1329+159A	123,1	81-	0,44	-1027,2	1		- 1		dick
PG1329+159B	165,1	12,1	0,24	-13/5,/	-1	-1	-1	1	dunn
PG1336-018	1/8,/	20,5	0,2	-1464,5	-1	-1	-1	1	dunn
PG1417+257	171,3	42,2	0,24	-1419,7	-1	-1	-1	1	dünn
PG1432+004	150,4	88,3	0,41	-1213,4	1	1	1	1	dick
PG1505+074	207,4	25	0,09	-1686,2	-1	-1	-1	1	dünn
PG1512+244	154,8	-45	0,32	-1274,2	-1	1	1	1	dick
PG1519+640A	294,5	-34,6	0,39	-2509,1	1	1	1	2	dick
PG1519+640B	344,9	6,3	0,59	-2952,3	3	3	3	2	halo
PG1553+273A	126,7	136,3	0,47	-1083,6	3	1	3	1	dick
PG1553+273B	176,2	94,9	0,25	-1441,7	1	-1	3	1	dick
PG1607+174	199,8	39	0,13	-1631,1	-1	-1	-1	1	dünn
PG1616+144	185,9	7,5	0,14	-1521,5	-1	-1	-1	1	dünn
PG1619+522	190,4	-17	0,15	-1603,1	-1	-1	-1	1	dünn
PG1647+056	165,6	-62	0,31	-1284,6	-1	1	1	1	dick
PG1653+131	204,8	25,3	0,1	-1589,1	-1	-1	-1	1	dünn
PG1701+359A	23,6	-72	0,9	-159	3	3	3	1	halo
PG1701+359B	68,1	-134,7	0,79	-491,1	1	3	3	1	halo
PG1701+359C	56,3	-15,7	0,77	-455,1	1	3	1	1	dick
PG1710+490	194,7	18,6	0,1	-1641,4	-1	-1	-1	1	dünn
Fortsetzung auf der n	ächsten Se	ite.							

Name	V (km/s)	U (km/s)	е	Jz	V-U	e-J _z	Orbit	Ast	gesamt
PG1716+426	221,8	104,5	0,29	-1896	-1	1	1	2	dick
PG1722+286	205	-28,9	0,14	-1675,4	-1	-1	-1	1	dünn
PG1725+252	172,9	-44	0,27	-1401,8	-1	1	-1	1	dünn
PG1743+477	179,6	-68,1	0,33	-1442,8	-1	1	-1	1	dünn
PG2151+100	120	29,5	0,43	-1011,9	1	1	1	1	dick
PHL334	243,5	-53,3	0,22	-1978,9	-1	-1	-1	2	dünn
PHL382	90,6	12,7	0,58	-739,1	1	1	1	1	dick
PHL44	205,5	-42,3	0,18	-1651,4	-1	-1	-1	1	dünn
PHL932	211,5	-37	0,14	-1814,8	-1	-1	-1	2	dünn
PN1259-470A	206	-49,8	0,19	-1769,4	-1	-1	-1	2	dünn
PN1259-470B	205,9	-49,6	0,19	-1769	-1	-1	-1	2	dünn
PNG2119+226	162,5	-12,9	0,25	-1468,1	-1	-1	0	1	dünn
SB395	202,6	59,6	0,19	-1774,6	-1	-1	1	2	dünn
TONS135	288,8	-22,7	0,34	-2419,8	1	1	1	2	dick
TONS183	266	16	0,24	-2254,8	-1	-1	1	2	dünn
UVO0512-08	219,7	22,3	0,08	-1906,6	-1	-1	-1	2	dünn
UVO1505+07	208,1	27	0,1	-1690,2	-1	-1	-1	1	dünn
UVO1735+22	214,6	21,2	0,05	-1774,5	-1	-1	0	2	dünn
UVO1758+36	188,1	-1,7	0,14	-1583	-1	-1	-1	1	dünn
WD0021-234	35,4	-45,2	0,68	-270,2	1	1	3	1	halo
WD0028-274*	119,2	226,4	0,72	-1018,5	3	3	3	1	halo
WD0031-274	223,4	23,9	0,11	-1888,1	-1	-1	0	2	dünn
WD0048-202	208,3	19,9	0,07	-1793,7	-1	-1	1	2	dünn
WD0109-264	221,7	1,4	0,07	-1894,8	-1	-1	0	2	dünn
WD0258+184	204,3	-2,7	0,18	-2006,3	-1	-1	1	2	dünn
WD1207-032A	231,7	11,5	0,09	-1946,2	-1	-1	-1	2	dünn
WD1207-032B	228,8	48,1	0,2	-1908,7	-1	-1	-1	2	dünn
WD1433-270	172,9	23	0,24	-1290	-1	-1	-1	1	dünn
WD1549-000	287,1	106,5	0,57	-2126,8	3	3	3	2	halo
WD2122+157	113,3	34,8	0,42	-947,2	1	1	1	1	dick
WD2329-291	193,5	-55,1	0,22	-1597,9	-1	-1	-1	1	dünn

Tabelle D3: Die gesamte Klassifikation der sdB.

sdO	einige Werte				Klassifikationen:				gesamt
Name	V (km/s)	U (km/s)	е	Jz	V-U	e-J _z	Orbit	Ast	Klasse
HE0111-1526	204,1	-18,4	0,1	-1757,9	-1	-1	-1	2	dünn
HE1047-0637A	-172,6	-91,3	0,54	1331,6	3	3	3	1	halo
HE1047-0637B	-176,0	-92,2	0,54	1354,8	3	3	3	1	halo
HE1059-2735	193,2	107,7	0,53	-1414,6	1	1	3	1	dick
HE1106-0942	135,6	-22,7	0,33	-1185,6	1	1	1	1	dick
HE1115-0631	195,4	4,1	0,26	-1668,2	-1	-1	3	1	dick
HE1135-1134	291	-82,4	0,47	-2542,9	3	3	3	2	halo
HE1136-2504	158,3	14,2	0,29	-1310,5	-1	1	-1	1	dünn
HE1237-1408	66,6	-114,4	0,6	-765,8	1	1	3	1	dick
HE1238-1745	143,1	-127,7	0,48	-1257,7	1	1	1	1	dick
HE1310-2733	180,8	-6	0,18	-1421,4	-1	-1	0	1	dünn
HE1318-2111	120,5	-11,8	0,45	-943,6	1	1	1	1	dick
HE1356-1613A	-44,2	131,4	0,79	428,3	3	3	3	1	halo
HE1356-1613B	-47,8	131,3	0,77	455,5	3	3	3	1	halo
HE1356-1613C	-46,5	132,4	0,78	446,1	3	3	3	1	halo
HE1356-1613D	-49,5	132	0,77	468,2	3	3	3	1	halo
HE1502-1019A	183,5	144,4	0,56	-1062,8	3	1	1	1	dick
HE1502-1019B	187,3	131,4	0,5	-1175,2	1	1	2	1	dick
HE2218-2026	93,1	-193,1	0,66	-677,4	3	1	3	1	halo
PG2120+062	61	111,2	0,55	-753,3	3	1	3	1	halo
PN G027.6+16.9	222,8	63,6	0,16	-1724,4	-1	-1	-1	2	dünn
WD0944-090	150,8	-25,3	0,31	-1365,2	-1	1	-1	1	dünn
WD1008-179A	148,6	-224,4	0,61	-1610,8	3	3	3	1	halo
WD1008-179B	149,7	-124,9	0,46	-1488	1	2	1	1	dick
WD2204+070	222,6	392,3	0,92	-2351,2	3	3	3	2	halo
Tabelle D4: Die gesamte Klassifikation der sdO.									

	Tabelle D4: Die	gesamte	Klassifikation	der	sdO
--	-----------------	---------	----------------	-----	-----

He-sdx		einige Werte			Klassifikationen:				gesamt	
Тур	Name	V (km/s)	U (km/s)	е	J_z	V-U	e-J _z	Orbit	Ast	Klasse
He-sdO	he0001-2443	128,1	20	0,42	-1078,8	1	1	-1	1	dick
He-sdO	HE0016-3212	105,2	92,6	0,44	-874,0	1	1	3	1	dick
He-sdB	he0031-5607	185,2	-101,9	0,32	-1558,4	1	1	0	1	dick
He-sdO	he0155-3710	229,6	-66,8	0,20	-2010,6	-1	-1	1	2	dünn
He-sdB	he0301-3039	101,1	-33,8	0,52	-922,1	1	1	1	1	dick
He-sdO	he0342-1702	225,5	32,3	0,16	-2068	-1	-1	1	2	dünn
He-sdO	he0414-5429	222,4	-52,7	0,15	-1964,4	-1	-1	1	2	dünn
He-sdO	he0914-0341	119,4	11,8	0,47	-1083,2	1	1	0	1	dick
He-sdO	he0952+0227	291,8	500,5	0,98	-2064,9	3	3	3	2	halo
He-sdO	he0958-1151	204,7	-35	0,11	-1832,4	-1	-1	-1	2	dünn
He-sdO	he1136-1641	121,6	57,2	0,53	-938,7	1	1	1	1	dick
He-sdO	he1142-2311	269,9	-87,1	0,4	-2310,3	1	1	1	2	dick
He-sdO	he1203-1048	231,3	44,8	0,3	-1821,3	-1	1	1	2	dick
He-sdO	HE1220-0536	230,9	-65,4	0,19	-1951,3	-1	-1	1	2	dünn
He-sdO	HE1251+0159	135,4	106,1	0,51	-1072,3	1	1	0	1	dick
He-sdO	he1316-1834	-62,7	94,6	0,59	589,6	3	3	3	1	halo
He-sdO	he1349-2320	100,9	-38,9	0,53	-817,1	1	1	0	1	dick
He-sdO	he1355-0622	158	-134,7	0,44	-1274,1	1	1	1	1	dick
He-sdO	he1430-0815	26,8	-179,4	0,67	-349,9	3	1	3	1	halo
He-sdO	he1446-1058	153,7	67,3	0,37	-1124,1	1	1	0	1	dick
He-sdO	he1511-1103	230,1	65	0,26	-1674,5	-1	-1	1	2	dünn
He-sdO	he2203-2210	217,1	4,1	0,05	-1757,6	-1	-1	1	2	dünn
He-sdO	he2305-1155	194,8	32,9	0,13	-1628,2	-1	-1	0	1	dünn
He-sdO	he2347-4130	216,7	182,7	0,61	-1707,3	3	3	3	2	halo
He-sdO	wd0447+176	239,3	32	0,14	-2099,2	-1	-1	-1	2	dünn
He-sdB	wd1632+222	179,6	26,8	0,18	-1415,6	-1	-1	0	1	dünn
He-sdO	wd2020-253	125,1	159,1	0,56	-971,3	3	1	2	1	halo
He-sdO	wd2258+155A	216,5	58,4	0,13	-1882,6	-1	-1	0	2	dünn
He-sdO	wd2258+155B	157,8	12,9	0,26	-1346,8	-1	-1	0	1	dünn

Tabelle D5: Die gesamte Klassifikation der He-sdB und He-sdO

In diesem Anhang befinden sich drei Tabellen. Je eine Tabelle der sdB und sdO sowie eine gemeinsame Tabelle für He-sdB und He-sdO.

Name: Der Katalogname des unterleuchtkräftigen Sternes (s. Anhang α). Die Großbuchstaben (A-F) am Ende wurden benutzt um verschiedene Varianten zu unterscheiden. Bei einigen Sternen war nämlich die Zuordnung der Helligkeit oder der Eigenbewegungen nicht ganz eindeutig. In diesen Fällen halte ich die Version A für die wahrscheinlichste. Die mit "*" markierten sdB sind Doppelsterne sdB+MS. Die "PN" sind Planetarische Nebel mit einem sdB oder sdO im Zentrum.

V, U, e und J_Z beziehen sich auf Kinematische Daten (s. Kapitel 3.3 und 3.4).

Die ersten drei Spalten der Klassifikationen geben die Ergebnisse der verschiedenen kinematischen Messmethoden an. "-1" bezeichnet die Dünne Scheibe, "1" die Dicke Scheibe und "3" den Halo. Die Orbitklassifikation "0" gibt an, dass sich der Stern in einem Übergangsbereich zwischen Dünner und Dicker Scheibe befindet, "2" gibt an, dass er sich im Übergangsbereich zwischen Dicker Scheibe und Halo befindet. Die Astklassifikation bezieht sich auf die Zugehörigkeit zu einem der "beiden" Äste im e-J_Z Diagramm (s. Kapitel 6.3.3).

Die Gesamtklassifikation gibt die endgültige Klasse dieses Sterns an.

E) Kataloge der Eigenbewegungen

- AGK3 Catalogue; W. Dieckvoss und O. Heckmann; Hamburg-Bergedorf (1975)
- All-sky Compiled Catalogue of 2.5 Million Brightest Stars; E. Hog, C. Fabricius, V.V. Makarov et al.; Astron Astrophys. 355, L27 (2000)
- Astrographic Catalogue Reference Stars; T.E. Corbin, S.E. Urban und W.H. Warren Jr.; NASA, NSSDC 91-10 (1991)
- Carlsberg Meridian Catalogs Number 1-11; Copenhagen University Obs., Royal Greenwich Obs., and Real Instituto y Observatorio de la Armada en San Fernando; Observations of positions of stars and planet, May 1984 to May 1998
- Catalogue of Positions and Proper Motions South; U. Bastian und S. Roeser; Astronomisches Rechen-Institut, Heidelberg (1993)
- Catalogue of Positions and Proper Motions; S. Roeser und U. Bastian; Astron. Astrophys. Suppl. Ser. 74, 449 (1988)
- FOCAT-S: Pulkovo photographic Catalogue of Southern Hemisphere (Version 1993 March); N.F. Bystrov, D.D. Polojentsev, H.I. Potter et al.; Bull. Inf. CDS 44, 3 (1994)
- FON Astrographic Catalogue, Version 1.0; V. Kislyuk, A. Yatsenko, G. Ivanov et al.; Main Astronomical Observatory of National Academy of Science of Ukraine (1999)
- Hipparcos and Tycho Catalogues; ESA 1997; ESA, 1997, The Hipparcos Catalogue, ESA SP-1200, ESA, 1997, The Tycho Catalogue, ESA SP-1200
- Lick Northern Proper Motion Program: NPM1 Catalog; A.R. Klemola, R.B. Hanson und B.F. Jones; Astron. J. 94, 501 (1987)
- NOMAD Catalog; N. Zacharias, D.G. Monet, S.E. Levine et al.; 2004 AAS, 205, 4815
- Proper Motions of Stars in the Zone Catalogue -40 to -52 degrees of 20843 Stars for 1900; H. Spencer Jones and J. Jackson; His Majesty's Stationery Office, London (1936)
- SAO and Supplementary Data; Ochsenbein F.; Bull. Inf. CS 19, 74 (1980)
- Smithsonian Astrophysical Observatory Star Catalog; SAO Staff; Smithsonian Astrophysical Observatory (1966)
- The ACT Reference Catalog; S.E. Urban, T.E. Corbin und G.L. Wycoff; U.S. Naval Observatory, Washington D.C. (1997)
- Tycho Reference Catalogue; E. Hog, A. Kuzmin, U. Bastian et al.; Astron. Astrophys. 335, L65 (1998)
- UCAC2: The Second U.S. Naval Observatory CCD Astrograph Catalog; N. Zacharias, S.E. Urban, M. I. Zacharias et al.; Astron. J. 127, 3043 (2004)
- USNO-B Catalog; D.G. Monet, S.E. Levine, B. Casian et al.; Astron. J. 125, 984 (2003)
- XZ Catalog of Zodiacal Stars (Version XZ80Q); D. Herald; Canberra, Australia (August 2003)
- Yale/San Juan Southern Proper Motion Program: -20 to -40 zones including the South Galactic Pole Region; I. Platais, T.M. Girard, V. Kozhurina-Platais et al.; Astron. J. 116, 2556 (1998)
- Yale Zone Catalogues Integrated Version; Yale University; Trans. Astron. Obs., Yale Univ. 11-32 (1936-1983) (see Source References)

F) Literaturverzeichnis

- (1) D.J. Schlegel, D.P. Finkenbeiner and M. Davis; 1998; Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foreground; The Astrophysical Journal, 500:525-553, 1998 June 20
- (2) G. Nelemans, R. Napiwotzki, C. Karl et al.; 2005; Binaries discovered by the SPY project IV. Five single-lined DA double white dwarfs; A&A 440, 1087-1095 (2005)
- (3) J. Farihi, D. W. Hoard und S. Wachter; 2006; White dwarf red dwarf systems resolved with the Hubble Space Telescope; arXiv:astro-ph/0603747
- (4) R.A. Saffer, J. Liebert und E.W. Olszewski; 1988; Discovery of a close detached binary DA white dwarf system; The Astrophysical Journal, 334:947-957, 1988 November 15
- (5) P. Bergeron, F. Wesemael, G. Fontaine und J. Liebert, 1989, Determination of the atmospheric parameters of the binary DA white dwarf L870-2 (EG 11); The Astronomical Journal, 345:L91-L94, 1989 October 15
- (6) P.F.L. Maxted, M.R. Burleigh, T.R. Marsh und N.P. Bannister, 2002, PG1115+166
 a long-period DA+DB binary; Mon. Not. R. Astron. Soc. 334, 833-839 (2002)
- (7) R. Napiwotzki, D. Koester, G. Nelemans et al.; 2002; Binaries discovered by the SPY project II. He1414-0848: A double degenerate with a mass close to the Chandrasekhar limit; A&A 386, 957-963 (2002)
- (8) P.F.L. Maxted, T.R. Marsh und C.K.J. Moran; 2002; The mass ratio distribution of short-period double degenerate stars; Mon. Not. R. Astron. Soc. 332, 745-753 (2002)
- (9) J.B. Holberg, Rex A. Saffer, R. W. Tweedy et al.; 1995; The binary doubledegenerate nature of the bright DAO white dwarf FEIGE 55; The Astrophysical Journal, 452:L133-L136, 1995 October 20
- (10) P.F.L. Maxted, T.R. Marsh, C.K.J. Moran und Z. Han, 1999, The triple degenerate star WD 1704+481; Mon. Not. R. Astron. Soc. 314, 334-337 (2000)
- (11) C. Karl; 2004; White dwarf and hot subdwarf binaries as possible progenitors of type Ia Supernovae; Doktorarbeit, FAU Erlangen-Nürnberg
- (12) E. Pauli; 2004; 3D kinematics of white dwarfs from the SPY project; Doktorarbeit, FAU Erlangen-Nürnberg
- (13) J. Löbl; 2006; 3-D Kinematik von unterleuchtkräftigen B-Sternen; Zulassungsarbeit, FAU Erlangen-Nürnberg
- (14) T.R. Marsh, V.S. Dhillon und S.R. Duck; 1995; Low-mass white dwarfs need friends: five new double-degenerate close binary stars; Mon. Not. R. Astron. Soc. 275, 828-840 (1995)
- (15) L. Morales-Rueda, T.R. Marsh, P.F.L. Maxted et al.; 2005; Six detached whitedwarf close binaries; Mon. Not. R. Astron. Soc. 359, 648-662 (2005)
- (16) T. Lisker, U. Heber, R. Napiwotzki et al.; 2005; Hot subdwarfs from the ESO Supernova Ia Progenitor Survey I. Atmospheric parameters and cool companions of sdB stars; A&A 430, 223-243 (2005)
- (17) P.F.L. Maxted, U. Heber, T.R. Marsh und R.C. North; 2001; The binary fraction of extreme horizontal branch stars; Mon. Not. R. Astron. Soc. 326, 1391-1402 (2001)
- (18) L. Morales-Rueda, P.F.L. Maxted, T.R. Marsh et al.; 2003; Orbital periods of 22 subdwarf B stars; Mon. Not. R. Astron. Soc. 338, 752-764 (2003)
- (19) H. Edelmann, U. Heber, M. Altmann et al., 2005, High resolution spectroscopy of bright subdwarf B stars I. Radial velocity variables; A&A 442, 1023-1030 (2005)
- (20) P.F.L. Maxted, T.R. Marsh, U. Heber et al; 2002; Photometry of four binary subdwarf B stars and the nature of their unseen companion stars; Mon. Not. R. Astron. Soc. 333, 231-240 (2002)

- (22) V. Weidemann, 2000, Revision of the initial-to-final mass relation; Astron. Astrophys. 363, 647-656 (2000)
- (24) A. Ströer, U. Heber, T. Lisker et al.; 2006; Hot subdwarfs from the ESO Supernova Ia Progenitor Survey II. Atmospheric parameters of subdwarf O stars; Astronomy & Astrophysics manuscript no. stroeer05'v5.1 April 7,2006
- (25) A. Kawka, S. Vennes et al. and N.M. Silvestri; 2006; LP 400-22, A very low-mass and high-velocity white dwarf; arXiv:asto-ph/0604470
- (26) D. Koester, R. Napiwotzki, N. Christlieb et al., 2001, High-resolution UVES/VLT spectra of white dwarfs observed for the ESO SN Ia progenitor survey (SPY). I.; A&A 378, 556-568 (2001)
- (27) M. Altmann; 2002; Kinematics and population membership of BHB and EHB stars; Doktorarbeit, Rheinische Friedrich-Wilhelms-Universität Bonn
- (28) V. Kostov; 2006; Mass Distribution of Spiral Galaxies in a Thin Disk Model with Velocity Curve Extrapolation; arXiv:astro-ph/0604395
- (29) S.D. Kawaler, I. Novikov und G. Srinivasan; 1997; Stellar Remnants; ISBN 3-540-61520-2 Springer-Verlag Berlin Heidelberg New York, 1997
- (30) R. Kuzio de Naray, S.S. McGaugh, W.J.G. De Blok, A. Bosma; 2006; High resolution optical velocity fields of 11 low surface brightness galaxies; arXiv:astro-ph/0604576
- (31) M.R. Hartoog und A.P. Cowley, 1978, The Helium-3 Stars; The Astrophysical Journal, 228:229-239, 1979 February 15
- (32) T.V. Nykytyuk und T.V. Mishenina, 2006, The Galactic thick and thin disks: differences in evolution; Astronomy & Astrophysics manuscript no. nikmish, May 21, 2006
- (33) M.R. Hartoog, 1979, Helium-3 in the horizontal-branch Star Feige86; The Astrophysical Journal, 231:161-163, 1979 July 1
- (34) C. A. Karl, R. Napiwotzki, U. Heber et al., 2005, Rotation velocities of white dwarfs III. DA stars with convective atmospheres.; A&A 434, 637-647 (2005)
- (35) M. Haywood, A.C. Robin und M. Creze; 1997; The evolution of the Milky Way disc II. Constraints from star counts at the galactic poles; Astron. Astrophys. 320, 440-459 (1997)
- (36) D.J. Eisenstein, J. Liebert, D. Koester et al., 2006, Hot DB White Dwarfs from the Sloan Digital Sky Survey; arXiv:astro-ph/0606702
- (37) S.C. Novati, F. De Luca und Ph. Jetzer; 2006; Microlensing towards LMC: a study of the LMC halo contribution; arXiv:astor-ph/0607358
- (38) T.R. Marsh; 1995; The discovery of a short-period double-degenerate binary star.; Mon. Not. R. Astron. Soc, L1-L5 (1995)
- (39) E. Berti und V. Cardoso; 2006; Supermassive Black Holes or Boson Stars? Hair counting with gravitational wave detectors.; arXiv:gr-qc/0605101
- (40) O. Gerhard; 2006; Mass Distribution and Bulge Formation in the Milky Way Galaxy; arXiv:astro-ph/0608343
- (41) T. Siegfried; 2006; WIMP versus MACHO has turned into EROS versus MACHOS; Science 21 July 2006: Vol. 313. no. 5785, p. 287
- (42) S.O. Kepler, 2006, The White Dwarf Mass Distribution and New ZZ Ceti Stars; Mündlicher Vortrag auf dem "15th workshop on White Dwarfs" in Leicester 2006
- (43) P. Tisserand, L. Guillou, C. Afonso, et al., 2006, Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds; arXiv:astroph/0607207
- (44) R. Canal, J. Isern and P. Ruiz-Lapuente; 1997; Further Constraints on White Dwarf Galactic Halos; The Astrophysical Journal, 488:L35-L38, 1997 October 10

- (45) M.R. Burleigh, E. Hogan, P.D. Dobbie et al.; 2006; A near-infrared spectroscopic detection of the brown dwarf in the post common envelope binary WD 0137-349; arXiv:astro-ph/0609366
- (46) A. Kawka, S. Vennes, G.D. Schmidt et al.; 2006; Spectropolarimetric Survey of Hydrogen-rich White Dwarf Stars; arXiv:astro-ph/0609273
- (47) J. Liebert, C.C. Dahn und D.G. Monet; 1989; in Proceedings of IAU Colloquium 114th (Hanover, NH: Springer-Verlag), p.15
- (48) D.S. Finley, D. Koester und G. Basri; 1997; ApJ, 488, 375
- (49) J. Liebert, P. Bergeron und J.B. Holberg; 2005; The formation rate and mass luminosity functions of DA white dwarfs from the Palomar Green survey; Astrophys. J. Suppl. Ser., 156, 47-68 (2005)
- (50) E. Zackrisson, N. Bergvall und G. Östlin; 2006; The red Halo Phenomenon; arXiv:astro-ph/0606218
- (51) R. Napiwotzki, H. Edelmann, U. Heber et al.; 2001; Binaries discovered by the SPY project I. HE1047-0436: A subdwarf B + white dwarf system; A&A 378, L17-L20 (2001)
- (52) R. Napiwotzki, N. Christlieb und H. Drechsel et al.; 2001; Astronomische Nachrichten, 322, 411
- (53) B. Wolff, D. Koester, M.H. Montgomery et al.; 2002; Is the helium in the variable DB white dwarfs ³He?; A&A 388, 320-325 (2002)
- (54) D. Merritt, Julio F. Navarro, Aaron Ludlow et al.; 2005; A Universal Density Profile for dark and Luminous Matter; The Astrophysical Journal, 624: L85-L88, 2005 May 10
- (55) J.F. Navarro; 1996; The Structure of cold dark Mater Halos; 1996IAUS..171..255N
- (56) B. Aschenbach; 2006; Overlooked Effect of General Relativity Applied to the Galactic Center Black Hole Sgr A^{*}; arXiv:astro-ph/0603193
- (57) Clemens, Ap. J., 295, 422, 1985
- (58) E. Pauli, R. Napiwotzki, U. Heber et al.; 2006; 3D kinematics of white dwarfs from the SPY project. II.; A&A 447, 173-184 (2006)
- (59) Barth, Mühlbauer, Nikol, Wörle; 1992 ;Mathematische Formeln und Definitionen; Bayerischer Schulbuch-Verlag, J. Lindauer Verlag (Schaefer)
- (60) Aladin Sky Atlas; <u>http://aladin.u-strasbg.fr</u>
- (61) P.M. Kowalski und D. Saumon; 2006; Found: The missing blue opacity in atmosphere models of cool hydrogen white dwarfs; arXiv:astro-ph/0609720
 (62) NASA Science Telescience Telescience (Construction)
- (62) NASA Spitzer Space Telescope; http://www.spitzer.caltech.edu/spitzer/index.shtml
- (63) H. Balasin und D. Grumiller; 2006; Significant reduction of galactic dark matter by general relativity; arXiv:astro-ph/0602519
- (64) R. Buser; 2000; The Formation and Early Evolution of the Milky Way Galaxy; Science: 287, No. 5450,69-74 (2000)
- (65) M. Odenkirchen, P. Brosche; 1992; Orbits of galactic globular clusters; Astron. Nachr. 313 (1992) 2, 69-81
- (66) P. Brosche, M. Odenkirchen, H.-J. Tucholke et al.; 1995; Motions of Globular Clusters; 1995IAUS..166..259B
- (67) M. Odenkirchen, P. Brosche, M. Geffert et al.; 1997; Globular cluster orbits based on HIPPARCOS proper motions; New Astronomy 2 (1997) 477-499
- (68) C. Allen, A. Santillán; 1993; New Galactic Orbits and Tidal Radii for Globular Clusters; Mexicana Astron. Astrof., 25, 39-50 (1993)

- (69) C. Allen, A. Santillán; 1991; An Improved Model of the Galactic mass Distribution for Orbit Computations; Rev. Mexicana Astron. Astrof., 22, 255-263 (1991)
- (70) D.K. Ojha, O. Bienaymé, V. Mohan und A.C. Robin; 1999; New surveys of UBV photometry and absolute proper motions at intermediate latitude; A&A, 351, 945
- (71) B. Chen;1997; Comparison of a Galactic Kinematic Model with Two Proper-Motion Surveys in the Vicinity of the North Galactic Pole; ApJ, 491, 188
- (72) M. Haywood, A.C. Robin und M. Creze; 1997; The evolution of the Milky Way disc. I. Vertical structure and local constraints.; A&A, 320, 428-439
- (74) P. Kroupa; 1992; The Apparent Galactic Disk Scale Height; In: Proc. IAU
 Colloq. 135, Complementary Approaches to Double and Multiple Star Research, Pine mountain, GA, USA, 5-10 April 1992; H.A. McAllister, W.I. Hartkopf (eds.),
 Astronomical Society of the Pacific Conference Series Vol. 32, San Francisco, p. 228
- (75) P.C. Frisch und J.D. Slavin; 2006; The Sun's Journey Through the Local Interstellar Medium: The PaleoLISM and Paleoheliosphere; arXiv:astro-ph/0606743
- (76) K. Fuhrmann; 2004; ; Astronomische Nachrichten, 325, 3
- (77) B. Voss; 2006; Ph.D. thesis, Univ. Kiel
- (78) B. Edvardsson, J. Andersen, B. Gustafsson et al. 1993, A&A, 275, 101
- (79) S. Chandrasekar; 1931; The Maximum Mass of Ideal White Dwarfs; 1931ApJ, 74, 81
- (80) M.A. Wood; 1995; in Proceedings of the 9th European Workshop on White Dwarfs, NATO ASI Series, edited by D. Koester and K. Werner (Springer, Berlin), p.41
- (81) I.N. Reid, K.C. Sahu und S.L. Hawley; 2001; High-Velocity White Dwarfs: Thick Disk, Not Dark Matter; 2001ApJ, 559, 942
- (82) T. Driebe, D. Schönberner, T. Blöcker et al.; 1998; The evolution of helium white dwarfs. I. The companion of the millisecond pulsar PSR J1012+5307; Astronomy and Astrophysics, v. 339, p. 123-133 (1998)
- (83) B.R. Oppenheimer, N.C. Hambly, A.P. Digby et al.; 2001; Direkt Detection of Galactic Halo Dark Matter; Science, 292, 698
- (84) G.J. Harris, A.E. Lynas-Grey, S. Miller et al.; 2004; The Role of HeH⁺ in Cool Helium-rich White Dwarfs; ApJ, 617L, 143H

G) Erklärung

Hiermit erkläre ich, Roland Bernhard Josef Richter, diese Diplomarbeit selbstständig bearbeitet und verfasst zu haben, sowie nur die im Literaturverzeichnis angegebenen Quellen verwendet zu haben.

Erlangen, 27.10.06