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A B S T R A C T

The detection and classification of fundamental structures of the inter-
stellar medium (ISM) is tedious but tremendously important work for
astronomers. Structures like supernova remnants (SNRs) shape and
drive the ISM and have a big impact on evolving galaxies. Those fun-
damental structures are of bubble-like shape. Finding these bubble-
like structures is therefore crucial in the study of galaxy evolution and
of the universe in general. Currently, the detection of those bubble-
like structures is done mainly by eye, by manually examining astro-
nomical images. In the era of machine learning algorithms, however,
this process can be automized. In this thesis, we present an automated
detection and classification pipeline for bubble-like structures based
on multi-wavelengths images.

The pipeline is called BScan and makes use of two neural net-
works: a convolutional neural network (CNN) is used for detecting
the bubble-like structures in the images and a fully connected neu-
ral network (FCNN) is used to classify the detected structures. Both
networks are used and combined by classical algorithms. The CNN is
part of the nested boxes detection algorithm (NBDA), which scans the
available images, and the FCNN then uses the output of the NBDA.
The configuration is done via a configuration file where all hyperpa-
rameters can be set.

In areas of isolated structures or less crowded regions, BScan per-
forms relatively well by localizing already cataloged sources with an
average distance of 36 arcsec to the source center given by the catalog.
The radius of the detected strucutre, however, is systematically over-
estimated. In highly crowded regions BScan may detect multiple but
separated structures as one single structure. BScan also shows some
inconsistencies in detecting similar bubble-like structures in images
of similar or even the same resolution. The classification has a small
estimated error of around 1 per 1000 instances (0.1%) but is heavily
dependent on the NBDA.

There are different approaches using different techniques to ad-
dress the idea of automated structure detection, but yet there has
been no attempt to combine the detection and classification aspect
in one process. With some further developments and improvements,
the idea of BScan could set new standards in detecting fundamental
structures of the ISM and could be a great tool for astronomy in the
future.
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Z U S A M M E N FA S S U N G

Die Erkennung und Klassifikation fundamentaler Strukturen des In-
terstellaren Mediums (ISM) ist eine mühsame, aber für Astronomen
extrem wichtige Aufgabe. Strukturen wie Supernova Überreste (SNRs)
formen und beeinflussen das ISM und tragen daher maßgeblich zur
Entwicklung von Galaxien bei. Solch fundamentale Strukturen haben
meist eine blasenartige Form. Das Finden solcher Strukturen ist ent-
scheidend um die Entwicklung von Galaxien und somit die Evolution
des gesamten Universums besser zu verstehen. Diese blasenartigen
Strukturen werden derzeit hauptsächlich manuell durch das Scan-
nen astronomischer Bilder entdeckt. Im Zeitalter des maschinellen
Lernens kann dieser Prozess jedoch automatisiert werden. In dieser
Arbeit entwickeln wir eine automatisierte Erkennungs- und Klassifi-
zierungspipeline für blasenartige Strukturen, basierend auf Multiwel-
lenlängendaten.

Die Pipeline heißt BScan und nutzt zwei neuronale Netze, ein Con-
volutional Neural Network (CNN) zur Erkennung der blasenartigen
Strukturen in den Bildern und ein einfaches Fully Connected Neural
Network (FCNN), um die erkannten Strukturen anschließend zu klas-
sifizieren. Beide Netzwerke werden durch klassische Algorithmen er-
gänzt. Das CNN ist beispielsweise Teil des Nested Boxes Detection Al-
gorithmuses (NBDA), welcher die astronomischen Bilder durchmus-
tert. BScans Konfiguration erfolgt über eine Konfigurationsdatei, in
der alle Hyperparameter festgelegt werden können.

In Gebieten mit isolierten Strukturen oder weniger chaotischen Re-
gionen kann BScan bereits katalogisierte Strukturen mit einer mittle-
ren Distanz von 36 Bogensekunden zum tatsächlichen Zentrum lo-
kalisieren. Die Ausdehnung der Struktur wird jedoch systematisch
größer geschätzt. In chaotischen Regionen erkennt BScan räumlich
getrennte Strukturen möglicherweise als eine einzige Struktur. BScan
zeigt auch einige Schwächen bei der Erkennung ähnlicher blasenar-
tiger Strukturen in Bildern mit ähnlicher oder sogar gleicher Auflö-
sung. Die Klassifizierung weist eine geschätzte Fehlerrate von etwa
1 pro 1000 Klassifizierungen (0.1%) auf, ist jedoch erheblich von den
Ergebnissen des NBDAs abhängig.

Es gibt unterschiedliche Herangehensweisen, um Strukturen in as-
tronomischen Bilder zu detektieren, aber keine davon kombiniert die
Detektion mit der instantanen Klassifikation. Die Idee von BScan könn-
te durch Weiterentwicklung und kontinuierlicher Verbesserung einen
neuen Standard für die Detektion von fundamentaler Strukturen des
Interstellaren Mediums und zukünftig ein großartiges Werkzeug in
der Astronomie werden.
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L I S T O F F I G U R E S

Figure 1.1 Image of the dark cloud Barnard 68 observed
in six different wavelengths. The extinction
decreases with increasing wavelength. Credit:
ESO. 6

Figure 1.2 Illustration of a molecular cloud with ongo-
ing star formation and subgroups of massive
stars compressing the surroundings and trig-
ger new star formation. From Ward-Thompson
et al. (2011). 7

Figure 1.3 This plot shows the temperature dependency
of the cooling rate coefficient. Up to tempera-
tures of T ≈ 104K cooling is dominated by sin-
gle ionized carbon. For higher temperatures,
the more effective cooling via the Lyman α

emission of excited hydrogen atoms sets in.
The steep increase of the cooling rate coeffi-
cient is referred to as the Lyman α wall. From
Williams (2021). 8

Figure 1.4 Illustration of a shock front propagating with
velocity U through the gas in front of the shock
(index 1). The medium behind the shock is
denoted by the index 2. The pressure p, den-
sity ρ, temperature T and velocity is shown.
In the rest frame of the shock, the gas in front
of the shock moves with v1 = |U| towards the
shock. The shocked gas moves with velocity
v2 away from the shock front. From Longair
(2011). 10

Figure 1.5 A schematic structure of a stellar bubble with
its different regions. The stellar wind (a) ex-
pands freely till R1. The stellar wind starts to
interact with the ISM. At a distance Rc from
the star, a reverse shock is formed heating up
the gas inside (b). A shock wave propagates
outwards sweeping up material (c) of the am-
bient gas and, thus, forming a thin dense shell
at R2. From Weaver et al. (1977). 14
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Figure 1.6 The Helix Nebula. The white dwarf (small
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white dwarf and is glowing therefore. Credit:
NASA, NOAO, ESA, the Hubble Helix Neb-
ula Team, M. Meixner (STScI), and T.A. Rector
(NRAO) 15

Figure 1.7 The supernova classification scheme from Vink
(2020). 16

Figure 1.8 (a) An illustration of the SNR with the forward
and revers shock heating up the gas (tempera-
ture is color coded). The initial ejected mass is
indicated by the arrows in the center. (b) Struc-
ture of a composite SNR with a pulsar (cross)
and the pulsar wind nebula (PWN, blue) em-
bedded in the SNR. From Vink (2020). 17

Figure 1.9 This plot shows an example of an SNR evolu-
tion. The solid line represents the expansion
(radius) of the remnant and the dashed line
the velocity with which the remnant expands
into the ISM. The light gray region marks the
time of the Sedov-Taylor phase. From Williams
(2021) 18

Figure 1.10 A schematic image of the fractional ISM within
the host galaxy. Molecular clouds and cold
gas can be found near the galactic plane, sur-
rounded by the WNM and WIM. Superbub-
bles are blown into the HIM, which covers a
large fraction of the galaxy. From Williams
(2021) 20

Figure 1.11 The Large Magellanic Cloud (a) and the Small
Magellanic Cloud (b) in Hα line emission. The
structures of different size and brightness are
visible in both galaxies Smith C. (2000) 21

Figure 2.1 A scheme of a neural network. Nl
n denotes

the n-th neuron in the layer l. Its basic compo-
nents are the input (l = 0) and output (l = 3)
layer. Layers between the input and output
layer are called hidden layers. The neurons
(circles) are connected with each other, indi-
cated by arrows (weights). 24
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Figure 2.2 Illustration of a neural network and its acti-
vated neurons. Each neuron represents a gray
value. To predict the mean gray value of the
three input neurons on the left, the network
finds a generalized representation to predicted
mean gray value in the output layer on the
right. 25

Figure 2.3 A look into a neural network, showing how the
activation of a single neuron is calculated. All
weights wl−1

mn , activations al−1
n of every neu-

ron of the previous layer and the bias has an
influence on the activation al

m of the consid-
ered layer. 27

Figure 2.4 The plots show the ReLU (a) and sigmoid (b)
activation function. ReLU activation functions
are mainly used for hidden layers, whereas
sigmoid activation functions are used in the
output layer to interpret the output as a prob-
abilistic value. Plots are taken from Michelucci
(2018). 28

Figure 2.5 This plot shows the principle of gradient de-
scent on a 2D surface in the x1-x2 plane (con-
tours). The black points show the evolution
of the loss function after each iteration of the
gradient descent. After each iteration the step
size in the direction of the steepest descent gets
smaller. The gradient descent algorithm con-
verges after 181 iterations and finds a local min-
imum. 31

Figure 2.6 Illustration how momentum helps to acceler-
ate the optimization algorithm to converge fa-
ster. Without momentum, more iterations are
needed because of oscillations (red). Introduc-
ing momentum in gradient descent helps to
implement bigger steps towards the steepest
gradient descent (green) leading to fewer iter-
ations needed. Adopted from Ruder (2016).
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Figure 2.7 Comparing the loss of a training batch (solid
line) and a test batch, over- and underfitting
can be spotted. While a significant higher but
steadily decreasing validation loss indicates-
that the training suffers from underfitting (dash-
ed line), an increasing validation loss after reach-
ing a local minimum hints overfitting (dotted
line). 34
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Figure 2.8 Illustration of convolve a 2D input image I with
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age and calculating the scalar product (dark
gray) the feature map F is created. In order to
keep the dimension of the input image, pad-
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are disconnected temporarily by removing con-
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the LMC recorded by XMM-Newton (a) and
eROSITA after eRASS4 (b). Credit: ESA, MPE
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Ustamujic S. et al. at the INAF. 58

Figure 4.4 KST applied on the entire data set of the Large
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blocks fully connected layers of 128, 64, 32 and
3 neurons are used. 68

Figure 5.4 The step (a) and the exponential (b) decay func-
tion to control the learning rate during train-
ing with an initial learning rate of LR = 0.001.
The step decay is initialized with a step size
of E ′ = 25 epochs and a step decay rate of
S = 0.75. For the exponential decay a decay
rate of k = 0.01 is used. 69
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the maximum box size Λ into account. Its size
is defined by the stride factor γ and the min-
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on the grid as indicated by the arrows till the
end position (xρ,yρ) is reached. The spacing
ds between the nested boxes depends on the
number of nested boxes and the minimum and
maximum box size. 72

Figure 5.6 If there are several single detections at differ-
ent positions (dashed, light grey) detecting the
same source (S), the single detections are clus-
tered and merged (M). The merged cluster is
then considered as final detection of the source.
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Figure 5.7 Training history of the SCNN71-TRS. (a) Dur-
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and the loss (orange) is decreasing steadily with
epochs. The maximum precision is 0.98. There
is no sign of overfitting. (b) The validation
of the training progress shows similar behav-
ior but bigger fluctuations in precision (green)
and loss (blue). For validation the precision
reaches a maximum of 0.99. 78

Figure 5.8 This plot shows the maximum precision for
the trained networks of type SCNNij-TRS (num-
ber of convolutional blocks i ∈ [3, 9], num-
ber of convolutional layers within a block j ∈
[1, 3]). The maximum precision forms a plateau
for networks with i ∈ [6, 8]∧ j = 1. For j = 2

the maximum precision reaches its peak at i =
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nearly constant. 83
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tects more structures than V0 in each one. De-
tected structures in (b) marked with A, B, C
and D are fainter compared to other structures
and need further investigation. 113

Figure 7.5 The faint source detected in region A. The de-
tection in Hα is clearly visible and has an even
fainter counterpart in [SII]. 114

Figure 7.6 The faint source detected in region B. The de-
tection in [OIII] (blue) is clearly visible. The
two shell-like counterparts in Hα and [SII] are
not detected. This is because of the relatively
high threshold typed parameters, the RSF and
τ. 114

Figure 7.7 The faint source detected in region C. The de-
tection in [OIII] (blue) is again visible. The ex-
tremely faint counterpart in the Hα image is
not detected. 115

Figure 7.8 The faint source detected in region D. The de-
tection in [OIII] (blue) is most likely part of a
filament with higher local intensity. The fil-
ament is part of the large shell-like structure
seen in Rg2. 115

Figure 7.9 This figure shows region B again, but with re-
sults of BScan version V1 using a relative streng-
th factor of RSF = 0 and a threshold of τ = 0.5.
With these low thresholds the two shell-like
counterparts of the [OIII] in Hα only has three
detections related to the two structures. 116

Figure 7.10 This figure shows the results of BScan version
V0 (a) and V1 (b) in the region Rg3. The region
is located in the SMC at RA= 11.76◦, DEC=

−73.20◦ with a radius of R2 = 0.56◦. This
corresponds to a 2016px× 2016px image. The
region marked with X is a multiple detection
region where more than one bubble-like struc-
tures are detected as one single structure. 117
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Figure 7.11 This Figure shows region X marked in Figure
7.10. Multiple structures are detected in one
single detection region in Hα (red) and [OIII]
(blue). 117

Figure 7.12 In this figure the fraction of detected and char-
acterized bubble-like structures M matching
with catalog sources in the LMC Nc = 92 is
shown. Only 16% of the detected bubble-like
structures which are labeled as SNRc (green)
have counterparts in the catalog. While a small
fraction of 4% and 2% is labeled as likely (yel-
low) and candidates (orange), respectively, the
majority (17%) of matched bubble-like struc-
tures are labeled as unlikely (red). Structures
which could not be classified as an SNR-like
structure but have a counterpart in the catalog
are labeled as other (magenta) and HII regions
(blue). 120

Figure 7.13 Separation ∆ between the center coordinates
for each ID. The median separation is ∆m =

36 arcsec. 121

Figure 7.14 Ratio between the radius R of the bubble-like
structure and the given radius rc of the matched
catalog source. Results are plotted for each
ID. 121

Figure 7.15 Total number of detected bubble-like structures
N and the corresponding labels. The struc-
tures with matches in the catalog are colored
in dark blue and unmatched structures are col-
ored in teal. Most detected structures are la-
beled as unlikely or other. For both classes the
vast majority is not matched to a catalog source.
124

Figure 7.16 The five catalog sources which are not detected
with the default BScan configuration. (a) and
(b) show sources listed in (Bozzetto et al., 2017),
(c) show a source listed in (Yew et al., 2021)
and (d) and (e) show sources listed in (Maggi
et al., 2016). The sources are present within the
blue circles. 131
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Figure 7.17 NBDA results of the five selected catalog sour-
ces using the alternative configuration AC1.
The AC1 uses the default configuration but a
stride factor of γ = 0.5. While the sources in
(a), (c), (d) and (e) are not detected in any im-
age, the source (blue) in (b) is detected in Hα

and radio (black). 132

Figure 7.18 NBDA results of the five selected catalog sour-
ces using the alternative configuration AC2.
The AC2 uses the default configuration but a
stride factor of γ = 0.5 and a RSF = 0. Each
source (blue) from (a) to (e) is detected (black)
in at least two of the five images. In addition
to the detected sources the NBDA detects ex-
tremely faint and point-like structures or in-
tensity fluctuations in large scale emission ar-
ound the central source 133

Figure 7.19 NBDA results of the five selected catalog sour-
ces using the alternative configuration AC3.
The AC3 uses the default configuration but
a stride factor of γ = 0.5, a RSF = 0 and
a primary threshold of τ = 0.5. Each sour-
ce (blue) from (a) to (e) is detected (black) at
least in two of the five images. The AC3 re-
sults in even more detections around the cen-
tral sources. The AC3 is not recommended.
134

Figure 8.1 The relative frequency of detected features for
each classification label evaluated for every bub-
ble-like structure detected in the LMC. 143

Figure 8.2 Total number of feature vectors responsible for
the classification of all detected and labeled
bubble-like structures in the LMC. The given
ID is the feature vector ID as presented in the
look-up table 6.2 in section 6.2.1. 144

Figure 8.3 The BScan detection results for the LMC (a)
and zoomed-in region (b). White circles show
bubble-like structures as detected by BScan. The
blue box in (a) shows the location and size of
the zoomed-in region. The colored circles in
(b) show some examples of X-ray background
sources: (cyan) An active galactic nucleus, (red)
unlabeled X-ray source of the 1RXS and (green)
unlabeled X-ray source of the 2XMM catalog.
145
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Figure 8.4 Different morphology types of SNRs: (a) A
shell-type SNR (G299.2-2.9) as seen in X-ray
(orange) and infrared (red, green, blue). Credit:
NASA, CXC, U. Texas at Arlington, S.Park et
al, ROSAT; 2MASS, UMass, IPAC-Caltech, NA-
SA, NSF. (b) The well known mixed-morpholo-
gy SNR W44 observed in X-ray (cyan) and in-
frared (red, green, blue). Credit: NASA, CXC,
University of Georgia, R.Shelton and NASA,
CXC, GSFC, R. Petre; NASA, JPL-Caltech. (c)
A composite SNR (G11.2 − 0.3) in the X-ray
regime with its central PWN (blue, 2.5− 8keV)
and the SNR (red 0.5− 1.5keV, green 1.5− 2.5-
keV). Credit: NASA, CXC, Eureka Scientific,
M.Roberts et al. (d) The well known Crab Neb-
ula, a pulsar wind nebula as seen in the X-
ray (blue), optical (red, yellow) and infrared
(purple). Credit: NASA, CXC, SAO, F.Seward;
NASA, ESA, ASU, J.Hester and A.Loll; NASA,
JPL-Caltech, Univ. Minn., R.Gehrz. 150

Figure 8.5 This images shows superbubbles inside the neb-
ula N44. (blue) Chandra X-ray data showing
hot gas heated by winds and shocks driven
by stars and supernovae. (red) Infrared data
from the Spitzer Space Telescope which high-
light dust and cooler gas. (yellow) Optical data
from the 2.2m Max-Planck-ESO telescope show-
ing hot, young stars which are responsible for
the nebula to glow due to ultraviolet radiation.
Credit: NASA, CXC, U.Mich., S.Oey; NASA,
JPL; ESO, WFI 151

Figure A.1 This figure shows the multi wavelength plot
of ID0 at RA = 81.98◦, Dec = −65.84◦ and
R = 0.104◦. The detected structure is clas-
sified as SNRc (green) and is detected in all
bands except of X-ray (black). The matched
SNR J0527− 6550 is shown in blue. 155

Figure A.2 This figure shows the multi wavelength plot
of ID1 at RA = 73.93◦, Dec = −68.66◦ and
R = 0.077◦. The detected structure is clas-
sified as SNRc (green) and is detected in all
bands except of [OIII] (black). The matched
SNR J0455− 6839 is shown in blue. 155
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Figure A.3 This figure shows the multi wavelength plot
of ID2 at RA = 72.11◦, Dec = −67.01◦ and
R = 0.074◦. The detected structure is clas-
sified as SNRc (green) and is detected in all
bands except of X-ray (black). The matched
SNR J0448− 6700 is shown in blue. 155

Figure A.4 This figure shows the multi wavelength plot
of ID3 at RA = 83.02◦, Dec = −71.01◦ and
R = 0.056◦. The detected structure is clas-
sified as SNRc (green) and is detected in all
bands except of Hα (black). The matched SNR
J0531− 7100 is shown in blue. 156

Figure A.5 This figure shows the multi wavelength plot
of ID4 at RA = 84.39◦, Dec = −66.46◦ and
R = 0.066◦. The detected structure is classified
as SNRc (green) and is detected in all bands
except of Hα and [OIII] (black). The matched
SNR J0537− 6628 is shown in blue. 156

Figure A.6 This figure shows the multi wavelength plot
of ID5 at RA = 81.50◦, Dec = −66.08◦ and
R = 0.026◦. The detected structure is classified
as SNRc (green) and is detected in all bands
except of Hα and [OIII] (black). The matched
SNR J0526− 6605 is shown in blue. 156

Figure A.7 This figure shows the multi wavelength plot
of ID6 at RA = 86.80◦, Dec = −69.69◦ and
R = 0.054◦. The detected structure is classified
as SNRc (green) and is detected in Radio and
X-ray only (black). The matched SNR J0547−
6941 is shown in blue. 156

Figure A.8 This figure shows the multi wavelength plot
of ID7 at RA = 81.36◦, Dec = −65.99◦ and
R = 0.084◦. The detected structure is classified
as SNRc (green) and is detected in Radio and
X-ray only (black). The matched SNR J0525−
6559 is shown in blue. 157

Figure A.9 This figure shows the multi wavelength plot
of ID8 at RA = 79.94◦, Dec = −69.44◦ and
R = 0.059◦. The detected structure is classified
as SNRc (green) and is detected in Radio and
X-ray only (black). The matched SNR J0519−
6926 is shown in blue. 157
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Figure A.10 This figure shows the multi wavelength plot
of ID9 at RA = 83.50◦, Dec = −69.91◦ and
R = 0.069◦. The detected structure is classified
as SNRc (green) and is detected in Radio and
X-ray only (black). The matched SNR J0534−
6955 is shown in blue. 157

Figure A.11 This figure shows the multi wavelength plot
of ID10 at RA = 81.25◦, Dec = −69.64◦ and
R = 0.058◦. The detected structure is classified
as SNRc (green) and is detected in Radio and
X-ray only (black). The matched SNR J0525−
6938 is shown in blue. 157

Figure A.12 This figure shows the multi wavelength plot
of ID11 at RA = 85.05◦, Dec = −69.34◦ and
R = 0.039◦. The detected structure is classified
as SNRc (green) and is detected in Radio and
X-ray only (black). The matched SNR J0540−
6920 is shown in blue. 158

Figure A.13 This figure shows the multi wavelength plot of
ID12 at RA = 84.56◦, Dec = −69.36◦ and R =

0.039◦. The detected structure is classified as
SNRc (green) and is detected in Radio and X-
ray only (black). Although, the X-ray emission
is off. The matched SNR J0538− 6921 is shown
in blue. 158

Figure A.14 This figure shows the multi wavelength plot
of ID13 at RA = 84.02◦, Dec = −70.63◦ and
R = 0.039◦. The detected structure is classified
as SNRc (green) and is detected in Radio and
X-ray only (black). The matched SNR J0536−
7039 is shown in blue. 158

Figure A.15 This figure shows the multi wavelength plot of
ID14 at RA = 83.51◦, Dec = −70.57◦ and R =

0.039◦. The detected structure is classified as
SNRc (green) and is detected in Hα, [SII] and
X-ray (black). The matched SNR J0534− 7033

is shown in blue. 158

Figure A.16 This figure shows the multi wavelength plot
of ID15 at RA = 82.65◦, Dec = −70.11◦ and
R = 0.074◦. The detected structure is classified
as likely (yellow) and is detected in Hα and
Radio (black). The matched SNR J0530− 7008

is shown in blue. 159
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Figure A.17 This figure shows the multi wavelength plot
of ID16 at RA = 78.32◦, Dec = −69.20◦ and
R = 0.098◦. The detected structure is classified
as likely (yellow) and is detected in [SII] and
Radio (black). The matched SNR J0513− 6912

is shown in blue. 159

Figure A.18 This figure shows the multi wavelength plot
of ID17 at RA = 86.97◦, Dec = −70.41◦ and
R = 0.039◦. The detected structure is classified
as likely (yellow) and is detected in Hα and X-
ray (black). The matched SNR J0547− 7025 is
shown in blue. 159

Figure A.19 This figure shows the multi wavelength plot
of ID18 at RA = 74.97◦, Dec = −70.19◦ and
R = 0.115◦. The detected structure is classified
as likely (yellow) and is detected in Hα and
Radio (black). The matched SNR J0459− 7008

is shown in blue. 159

Figure A.20 This figure shows the multi wavelength plot
of ID19 at RA = 72.67◦, Dec = −70.83◦ and
R = 0.103◦. The detected structure is classified
as candidate (orange) and is detected in [OIII]
and Radio (black). The matched SNR J0450−
7050 is shown in blue. 160

Figure A.21 This figure shows the multi wavelength plot
of ID20 at RA = 72.34◦, Dec = −69.34◦ and
R = 0.049◦. The detected structure is classified
as candidate (orange) and is detected in Hα,
[OIII] and Radio (black). The matched SNR
J0449− 6920 is shown in blue. 160

Figure A.22 This figure shows the multi wavelength plot
of ID21 at RA = 83.62◦, Dec = −70.55◦ and
R = 0.059◦. The detected structure is classified
as unlikely (red) and is detected in Hα and
[SII] (black). The matched SNR J0534− 7033 is
shown in blue. 160

Figure A.23 This figure shows the multi wavelength plot
of ID22 at RA = 76.69◦, Dec = −70.44◦ and
R = 0.039◦. The detected structure is classi-
fied as unlikely (red) and is detected in X-ray
only (black). The matched SNR J0506− 7026 is
shown in blue. 160
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Figure A.24 This figure shows the multi wavelength plot
of ID23 at RA = 77.15◦, Dec = −69.47◦ and
R = 0.059◦. The detected structure is classified
as unlikely (red) and is detected in Hα and
[SII] (black). The matched SNR J0508− 6928 is
shown in blue. 161

Figure A.25 This figure shows the multi wavelength plot
of ID24 at RA = 79.69◦, Dec = −69.65◦ and
R = 0.020◦. The detected structure is classi-
fied as unlikely (red) and is detected in Radio
only (black). The matched SNR J0518− 6939 is
shown in blue. 161

Figure A.26 This figure shows the multi wavelength plot
of ID25 at RA = 84.45◦, Dec = −69.17◦ and
R = 0.020◦. The detected structure is classi-
fied as unlikely (red) and is detected in Radio
only (black). The matched SNR J0537− 6910 is
shown in blue. 161

Figure A.27 This figure shows the multi wavelength plot
of ID26 at RA = 75.51◦, Dec = −67.66◦ and
R = 0.049◦. The detected structure is classified
as unlikely (red) and is detected in Hα and
[SII] (black). The matched SNR J0502− 6739 is
shown in blue. 161

Figure A.28 This figure shows the multi wavelength plot
of ID27 at RA = 78.10◦, Dec = −67.12◦ and
R = 0.026◦. The detected structure is classi-
fied as unlikely (red) and is detected in Radio
only (black). The matched SNR J0512− 6707 is
shown in blue. 162

Figure A.29 This figure shows the multi wavelength plot
of ID28 at RA = 82.46◦, Dec = −66.91◦ and
R = 0.079◦. The detected structure is classi-
fied as unlikely (red) and is detected in X-ray
only (black). The matched SNR J0529− 6653 is
shown in blue. 162

Figure A.30 This figure shows the multi wavelength plot
of ID29 at RA = 81.12◦, Dec = −66.39◦ and
R = 0.079◦. The detected structure is classi-
fied as unlikely (red) and is detected in Radio
only (black). The matched SNR J0524− 6624 is
shown in blue. 162
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Figure A.31 This figure shows the multi wavelength plot
of ID30 at RA = 73.69◦, Dec = −66.43◦ and
R = 0.030◦. The detected structure is classi-
fied as unlikely (red) and is detected in Radio
only (black). The matched SNR J0454− 6626 is
shown in blue. 162

Figure A.32 This figure shows the multi wavelength plot
of ID31 at RA = 76.54◦, Dec = −65.70◦ and
R = 0.098◦. The detected structure is classi-
fied as unlikely (red) and is detected in Radio
only (black). The matched SNR J0506− 6541 is
shown in blue. 163

Figure A.33 This figure shows the multi wavelength plot
of ID32 at RA = 76.53◦, Dec = −68.26◦ and
R = 0.126◦. The detected structure is classi-
fied as unlikely (red) and is detected in Radio
only (black). The matched SNR J0506− 6815 is
shown in blue. 163

Figure A.34 This figure shows the multi wavelength plot
of ID33 at RA = 83.40◦, Dec = −72.05◦ and
R = 0.020◦. The detected structure is classi-
fied as unlikely (red) and is detected in Radio
only (black). The matched SNR J0533− 7202 is
shown in blue. 163

Figure A.35 This figure shows the multi wavelength plot
of ID34 at RA = 85.79◦, Dec = −71.07◦ and
R = 0.020◦. The detected structure is classi-
fied as unlikely (red) and is detected in Radio
only (black). The matched SNR J0542 − 7104

is shown in blue. However, the detected ra-
dio emission is at the edge of J0542− 7104 and
comes most likely from another source. 163

Figure A.36 This figure shows the multi wavelength plot
of ID35 at RA = 87.69◦, Dec = −68.39◦ and
R = 0.059◦. The detected structure is classi-
fied as unlikely (red) and is detected in Radio
only (black). The matched SNR J0550− 6823 is
shown in blue. 164

Figure A.37 This figure shows the multi wavelength plot
of ID36 at RA = 85.44◦, Dec = −66.99◦ and
R = 0.079◦. The detected structure is classi-
fied as unlikely (red) and is detected in X-ray
only (black). The matched SNR J0541− 6659 is
shown in blue. 164
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Figure A.38 This figure shows the multi wavelength plot
of ID37 at RA = 75.225◦, Dec = −65.20◦ and
R = 0.079◦. The detected structure is classi-
fied as other (brown) and is detected in Hα

only (black). The matched SNR J0500− 6512 is
shown in blue. 164

Figure A.39 This figure shows the multi wavelength plot
of ID38 at RA = 74.41◦, Dec = −67.653◦ and
R = 0.039◦. The detected structure is classified
as other (brown) and is detected in Hα and
[SII] (black). The matched SNR J0457− 6739 is
shown in blue. 164

Figure A.40 This figure shows the multi wavelength plot of
ID39 at RA = 84.04◦, Dec = −67.56◦ and R =

0.039◦. The detected structure is classified as
other (brown) and is detected in [OIII] (black).
The matched SNR J0536 − 6735 is shown in
blue. 165

Figure A.41 This figure shows the multi wavelength plot of
ID40 at RA = 82.06◦, Dec = −67.44◦ and R =

0.059◦. The detected structure is classified as
other (brown) and is detected in [SII] (black).
The matched SNR J0528 − 6727 is shown in
blue. 165

Figure A.42 This figure shows the multi wavelength plot of
ID41 at RA = 80.78◦, Dec = −67.88◦ and R =

0.039◦. The detected structure is classified as
other (brown) and is detected in [SII] (black).
The matched SNR J0523 − 6753 is shown in
blue. 165

Figure A.43 This figure shows the multi wavelength plot of
ID42 at RA = 76.72◦, Dec = −65.16◦ and R =

0.108◦. The detected structure is classified as
other (brown) and is detected in [SII] (black).
The matched SNR J0506 − 6509 is shown in
blue. 165

Figure A.44 This figure shows the multi wavelength plot of
ID43 at RA = 80.40◦, Dec = −65.70◦ and R =

0.039◦. The detected structure is classified as
other (brown) and is detected in [SII] (black).
The matched SNR J0521 − 6543 is shown in
blue. 166
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Figure A.45 This figure shows the multi wavelength plot
of ID44 at RA = 83.89◦, Dec = −66.04◦ and
R = 0.118◦. The detected structure is classi-
fied as HII (cyan) and is detected in Hα and
X-ray (black). The matched SNR J0535− 6602

is shown in blue. 166

Figure B.1 This figure shows the detected bubble-like struc-
ture classified as candidate (orange) at RA =

85.00± 0.01◦, Dec = −69.79± 0.01◦ and radius
of R = 0.020◦. It is detected in Hα, [OIII] and
radio (black). There is a YSO within a radius
of 0.01◦. 167

Figure B.2 This figure shows the detected bubble-like struc-
ture classified as candidate (orange) at RA =

84.18± 0.01◦, Dec = −66.41± 0.01◦ and radius
of R = 0.020◦. It is detected in [OIII] and radio
(black). Although, the detection in radio is at
a different position and much larger compared
to the one in [OIII]. It is likely that in radio an-
other emission is detected. Within a radius of
0.01◦ there are some infrared sources. 167

Figure B.3 This figure shows the detected bubble-like struc-
ture classified as candidate (orange) at RA =

81.59± 0.01◦, Dec = −66.25± 0.01◦ and radius
of R = 0.043◦. It is detected in [OIII] and radio
(black). In radio, however, the larger structure
is detected. There is an HII region within in
the reach of 0.01◦ named L−253. 168

Figure B.4 This figure shows the detected bubble-like struc-
ture classified as unlikely (red) at RA = 72.91±
0.01◦, Dec = −67.10± 0.01◦ and radius of R =

0.115◦. It is detected in Hα and [SII] (black).
168

Figure B.5 This figure shows the detected bubble-like struc-
ture classified as unlikely (red) at RA = 72.82±
0.01◦, Dec = −67.45± 0.01◦ and radius of R =

0.075◦. It is detected in Hα and [SII] (black).
168

Figure B.6 This figure shows the detected bubble-like struc-
ture classified as other (brown) at RA = 74.94±
0.01◦, Dec = −67.92± 0.01◦ and radius of R =

0.177◦. It is detected in [OIII] only (black).
168
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Figure B.7 This figure shows the detected bubble-like struc-
ture classified as other (brown) at RA = 73.88±
0.01◦, Dec = −67.14± 0.01◦ and radius of R =

0.186◦. It is detected in Hα only (black). 168

Figure C.1 J0451 − 6717: This new eROSITA SNR candi-
date (blue) is located next to structures visible
in the optical images. Indeed, BScan detects
the bubble-like structure closest to the SNR can-
didate in Hα and [OIII]. However, no clear bub-
ble-like structure can be seen at the location of
the candidate. In X-ray there is some emission
coming from the considered region, but is not
detected by BScan, unfortunately. 169

Figure C.2 J0456 − 6830: For this SNR candidate (blue)
there is no clear bubble-like structure visible
in any image used for this work. Therefore,
BScan does not detect this newly detected can-
didate. 169

Figure C.3 J0507 − 7143: There is no emission visible in
the optical images for this SNR candidate (blue).
The point source seen in the non-thermal ra-
dio and X-ray image is an active galactic nu-
cleus (Zangrandi et al. 2023, in prep.). In the
X-ray image there may be some emission com-
ing from the SNR candidate, but it is too faint
to be detected by BScan. 169

Figure C.4 J0510 − 6853: In this region of the new SNR
candidate (blue) a shell-like structure is visible
in the optical images (except of [OIII]). This
structure is partly detected in the Hα image
(black). In radio and X-ray there is also some
faint emission but is not detected by BScan.
170

Figure C.5 J0521− 6853: This eROSITA candidate (blue) is
located within a bigger complex optical struc-
ture where some subregions show an enhanced
[SII]/Hα ratio. There may be some enhanced
X-ray emission too, but such faint emission is
hardly possible to detect by BScan. 170

Figure C.6 J0521− 6936: For this SNR candidate no clear
structure can be seen in all five images used.
However, there could be faint emission within
the candidate (blue) in the X-ray image. This
emission is not detected by BScan. 170
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Figure C.7 J0523−6804: This candidate (blue) is extremely
faint in images used in this work. Consequently,
BScan is not able to detect J0523 − 6804 de-
tected by Zangrandi et al. (2023, in prep.) 170

Figure C.8 J0525 − 6621: This eROSITA SNR candidate-
(blue) is located in between some bubble-like
structure in the optical and radio band. In the
non-thermal radio image BScan detects one of
those structures in the south. In the X-ray im-
age a faint diffuse emission within the candi-
date’s region is visible indeed, but not detected
by BScan. 171

Figure C.9 J0528 − 6719: For this SNR candidate (blue)
a faint but visible shell-like emission can be
spotted in the X-ray image. Unfortunately, it is
not detected by BScan. In the the optical and
radio band no bubble-like structures are visi-
ble. 171

Figure C.10 J0532 − 6554: For this SNR candidate no op-
tical and radio emission is visible. In X-ray a
very faint diffuse emission ca be seen within
the blue circle. BScan does not detect this can-
didate. 171

Figure C.11 J0549 − 7001: This SNR candidate is not de-
tected by BScan. It is located next to a bright
and complex region in the optical band. No
non-thermal radio emission which is correlated
with the SNR candidate can be spotted. In X-
ray a faint diffuse and irregular shape is visible
in the region of the remnant (blue). 171

Figure C.12 J0456− 6533: For this SNR no structure is vis-
ible in the optical and radio band. In X-ray,
however, a faint diffuse emission can be spot-
ted within the blue circle. This source is not
detected by BScan. 172

Figure C.13 J0506− 7009: This confirmed SNR (blue) is de-
tected in the X-ray regime (black). According
to Zangrandi et al. (2023, in prep.) the SNR is
brightest in the mid X-ray range, which sup-
ports a thermonuclear supernova scenario, and
faint shell is visible in [SII]. Zangrandi et al. (2023,
in prep.) also spotted a non-thermal radio semi-
shell. However, BScan does not detect any struc-
ture in optical or radio. 172



Figure C.14 J0543− 6624: An eROSITA SNR (blue) with an
irregular shape brightest in soft X-rays (Zan-
grandi et al. 2023, in prep.). A shell-like struc-
ture is visible in [SII] but not detected by BScan.
172

L I S T O F TA B L E S

Table 1.1 This table summarizes the three phases of the
Interstellar Medium and give typical tempera-
tures and structures (McKee et al., 1977). 4

Table 2.1 This table gives an overview of the possible
outcome of a prediction. A positive predic-
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1
T H E I N T E R S T E L L A R M E D I U M

After the discovery of atomic hydrogen (H) clouds in the 1950s, astro-
nomical observations were performed to study the interstellar med-
ium (ISM) which is all barionic matter filling the space between stars
of a galaxy. It consists of a mixture of gas and dust in the atomic,
molecular or ionized state. H is the most abundant element in the ISM,
contributing around 74% of the total mass followed by helium (He)
at roughly 25%. The remaining 1% consists of heavier elements. This
chapter is mainly based on Williams (2021) and Dopita et al. (2003) if
not stated otherwise.

To get an idea of the scale of the ISM, consider a galaxy containing
mainly H, with a particle density of nH ≈ 1cm−3, and an average
distance of ≈ 1016m between stars. The estimated time between colli-
sions of two H particles is then tcoll ≈ 1010s ≃ 103yrs. In comparison,
the average time between collisions for air at sea level can be esti-
mated to tcoll ≈ 10−9s. This illustrates how rare collision events are
in the ISM. In fact, the probability that an excited element in the ISM

is de-excited via collision is so low, it is more likely that the particle
emits its excess energy via radiation, making it possible to observe
emission lines not observable in earth based laboratories.

The ISM is highly affected by the activity of stars as it hosts dense
molecular clouds which are regions of intense star formation. The
radiation, e. g. , from massive stars ionize their vicinity by photoion-
ization. Stellar winds cause shocks and can ionize the surrounding
medium as well. If a dying star explodes in a supernova (SN), it shocks
its surroundings and enriches the ISM with new elements. The result-
ing supernova remnant (SNR) expands into the ISM. In short, stars in a
galaxy influence the surrounding ISM which in turn causes the galaxy
to evolve.

Thus, the ISM is a unique laboratory for astronomy studying star
formation, evolution and their interaction with the ISM itself by study
the shocks and remnants of the above-mentioned events. In section
1.1 three phases of the ISM are discussed, while in section 1.2 the for-
mation of some bubble-like structures are explained. The Magellanic
Clouds are well suited to study these bubble-like structures. Section
1.3 shows why.

1.1 three phased ism

McKee et al. (1977) developed the model of a three-phased ISM con-
sisting of gas and dust. The ISM can be divided into a cold neutral
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(section 1.1.1), warm partially ionized (section 1.1.2) and a hot diffuse
and ionized gas (section 1.1.3).

The different phases can be understood as a dynamic ISM which un-
dergoes heating and cooling processes. A phase is considered stable
if it is in thermal equilibrium, that means

N2Λ(T) = NΓ(T) , (1)

where N is the gas number density and Λ and Γ are the cooling and
heating rate coefficients, respectively. The heating and cooling mech-
anisms contributing to Λ or Γ vary with temperature T . Therefore,
each phase has a characteristic temperature. Table 1.1 summarizes
the typical temperatures and structures that can exist in each phase.

phase typical T [K] typical structures

cold 102 molecular clouds

warm 102 − 104 HII regions

hot > 106 supernova remnants

Table 1.1: This table summarizes the three phases of the Interstellar Medium
and give typical temperatures and structures (McKee et al., 1977).

Different phases can coexist if there is pressure equilibrium. The
pressure in each phase is given by

p = NkBT (2)

where kB the Boltzmann constant. Comparing the wide range of typ-
ical phase temperatures in Table 1.1 leads to the conclusion of a wide
range of densities, assuming thermal and pressure equilibrium.

1.1.1 Cold Phase

A small fraction of the ISM volume is made out of cold neutral gas, the
cold neutral medium (CNM), and dense molecular clouds. It can be
observed within the galactic plane. In total, the CNM occupies just 2−
4% of the entire ISM volume (McKee et al., 1977) and mostly consists
of atomic hydrogen. The cold dense clouds consist of dust and gas
with densities from 102cm−3 up to 103cm−3. In these high density
environments molecules can be formed on the surface of dust grains.

Cold Neutral Medium

In areas of high densities, the CNM consists mainly of atomic hydro-
gen (HI). There are a few other elements like carbon, nitrogen and
oxygen present in the neutral medium but because of the dominat-
ing abundance of hydrogen, the gas is referred to as hydrogen gas
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or HI-gas. HI exists mostly in its ground state, with the quantum
number n = 1, but can still be detected via transitions of the hyper-
fine structure. It originates from a change in spin orientation of the
electron and proton. The probability of a change in the spin state is
so low, that it takes about 11Myr for the transition to occur. Because
of the high number of neutral hydrogen atoms in the ISM, a small
fraction decay via spontaneous emission and emit photons of a wave-
length λ ≈ 21cm = λ21. The λ21 emission line cannot be observed on
earth since the decay is extremely rare and a large tcoll is required. It
was thought to be impossible to detect the λ21 emission till proper
instruments where engineered. That is why it is called a forbidden
emission line. Since molecular clouds form predominantly alongside
dense atomic hydrogen gas, the λ21 emission line is used as tracking
tool for molecular clouds.

The temperature of an atomic gas in the ISM depends on the num-
ber of photoelectrons and their kinetic energy. Kinetic energy trans-
fer between these electrons and other particles within the gas will
increase its temperature. A fraction of the electrons excite atoms,
which leads to radiative losses and, therefore, to lower temperatures.
If the kinetic energy is high enough to excite the atomic hydrogen gas
the cooling process via the Lyman α (transition of quantum number
n = 2 → 1) emission occurs. Because of the high number of hydro-
gen this cooling mechanism is very effective. Observations revealed
temperatures of atomic hydrogen gas from T ∼ 100K to roughly
8000K which is evidence for a two-phased neutral medium: a cold
and a warm neutral medium. The warm neutral medium (WNM) is
discussed in section 1.1.2.

Dust

The presence of dust grains lead to wavelength dependent extinction
A(λ) ∼ λ−1.7. Observations show that dust grains in the ISM are a
few µm in size. Although there are more small than large dust grains,
most of the mass is in larger grains. Extinction is mainly caused by
smaller dust grains at shorter wavelengths and are effective absorbers
of optical and ultraviolet (UV) photons. Whereas larger grains domi-
nate at longer wavelength. Thus, depending on the number density
in the line of sight, dust absorbs most of the visible light from stars
in the background (see Figure 1.1). Dust also works like a protec-
tion shield against UV emission. Far-ultraviolet photons (λ < 200nm),
e. g. , can destroy molecules by breaking the chemical bonds. This
process is called photodissociation. Consequently, the inner regions
of cold, dark clouds consist of molecules and are called molecular
clouds (Ward-Thompson et al., 2011). While absorbing photons, the
temperature of dust grains increases. Since dust grains are solid par-
ticles, they emit photons over a continuous spectrum in the infrared
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range and, therefore, cool down again. Typical temperatures of dust
are around T ∼ 10K.

Figure 1.1: Image of the dark cloud Barnard 68 observed in six differ-
ent wavelengths. The extinction decreases with increasing wave-
length. Credit: ESO.

Molecular Clouds

The most abundant molecule in the ISM is molecular hydrogen (H2).
Its symmetry prevents rotational transitions and because of the ab-
sence of charge separation, H2 has no dipole moment. However, it
can be excited by collisions. The resulting vibrational modes can lead
to detectable emission from molecular hydrogen. The lowest state can
only be excited in warm regions with temperatures of T > 500K. In
molecular clouds, with temperatures in the range between 10− 30K,
molecular hydrogen is in its ground state and, therefore, not observ-
able. Other molecules, like carbon monoxide (CO), are far less com-
mon but have an asymmetric charge and mass distribution leading to
a dipole moment and a variety of rotational transitions possible. Al-
though these types of molecules are rare compared to H2, they emit a
detectable amount of photons with a wavelength of a few millimeters.
CO is therefore used as a tracer of molecular clouds.

The size of molecular clouds can range from 0.1pc to roughly 100pc,
where the largest clouds are called giant molecular clouds (GMC).
Within these clouds, the gas density can reach a critical level such
that self-gravity forces the gas to collapse and form even denser re-
gions which are known as new star forming regions. Usually, stars are
born in a group of a few tens to 107 members. Particularly interest-
ing are so-called OB associations, a group of young massive stars with
spectral types O and B. The environment of the OB association is dis-
solved by the OB-stars because of their stellar winds and UV emission
creating an expanding HII region (see section 1.2.1). The subgroup



1.1 three phased ism 7

of newborn stars become optically visible. In a cosmological sense,
OB-stars are short-lived stars resulting in SN explosions. The remnant
expands into the ISM and compresses the surrounded medium, form-
ing new high density regions which can trigger star formation again
(see Figure 1.2). Therefore, several subgroups at different evolution
times can be observed in relatively proximity to each other (Ward-
Thompson et al., 2011). Molecular Clouds are not only sites of star
formation, they drive the evolution of the ISM and consequently their
host galaxy.

Figure 1.2: Illustration of a molecular cloud with ongoing star formation
and subgroups of massive stars compressing the surroundings
and trigger new star formation. From Ward-Thompson et al.
(2011).

1.1.2 Warm Phase

The warm phase is made of warm, partially photoionized material
surrounding the cold dense clouds, also called the „intercloud medi-
um“. It occupies a much larger volume, but includes much less mass
(McKee et al., 1977).

Warm Neutral Medium

As stated in section 1.1.1 the temperature of the neutral atomic hydro-
gen gas depends on the number of photoelectrons and their kinetic
energy. In fact, the energy of the first state of hydrogen is relatively
high and the kinetic energy of the photoelectrons usually present in
the ISM is not sufficient to excite this level. Therefore, photoelectrons
transfer some of their kinetic energy to other particles via collisions
and heating up the gas. The next largest component of the neutral
medium is carbon (C) which can be partially ionized by the elec-
trons. Indeed, the single ionized carbon (CII) with the emission line
at λ = 158µm in the far-infrared is the dominant cooling mechanism
in HI-gas. Because of the small ratio between C- and H-atoms, the
heating process mentioned before is more efficient up to tempera-
tures, above which hydrogen atoms can be excited. At this point, the
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gas cools via the Lyman α line emission. This point is referred to
as the Lyman α wall and sets an upper limit for the temperature of
the atomic hydrogen gas (Figure 1.3). During the heating process, the
WNM can reach a temperature of T ∼ 8000K with densities of around
1cm−3.

Figure 1.3: This plot shows the temperature dependency of the cooling rate
coefficient. Up to temperatures of T ≈ 104K cooling is dominated
by single ionized carbon. For higher temperatures, the more ef-
fective cooling via the Lyman α emission of excited hydrogen
atoms sets in. The steep increase of the cooling rate coefficient is
referred to as the Lyman α wall. From Williams (2021).

Warm Ionized Medium

Ionization is a single-body process involving photons with sufficient
energy to ionize the available atoms. The photoionization rate of a
neutral hydrogen gas therefore depends on the number of photons.
Massive young stars, like in the aforementioned OB associations, emit
photons of sufficient energy isotropically into the ISM. In fact, older
and hotter stars emit more ionizing photons than younger ones. As
hydrogen is the most abundant element, the ionization process

H + γ→ H+ + e− (3)

is quite common. This process is compromised by the recombination
of free electrons and protons. Recombination is therefore a two-body
process. If a proton captures an electron, a hydrogen atom in an ex-
cited state (n ⩾ 2) is created, in the relevant cases. It can then ra-
diate energy. In the case that the electron recombines in the ground
state, the resulting photon can ionize other hydrogen atoms again,
meaning the electron-proton population in the hydrogen gas remains
the same. Recombination depends on the availability of free electrons
and protons and, therefore, on the hydrogen density. Since the ISM is
not homogeneous, and stars tend to be formed in molecular clouds,
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the density decreases rapidly with increasing distance from the star.
Thus, the ionization process can be faster than the recombination of
electrons and protons. Observations in the radio and optical bands,
for example, show that a large fraction of the ISM volume is occupied
by ionized gas, the warm ionized medium (WIM).

The heating and cooling of the ionized gas is controlled by pho-
toionization, electrons with high kinetic energy, and radiation losses,
which are dominated by forbidden lines of abundant elements like
oxygen, e. g. the double ionized oxygen line [OIII]. A small amount of
energy is carried away via Bremsstrahlung. For sufficiently low den-
sities where NΛ(T) < Γ(T) the gas is effectively heated. This is typi-
cally the case till the gas reaches a temperature of about T ≈ 8000K.
With increasing temperature the heating rate coefficient Γ(T) becomes
smaller and cooling becomes more efficient. Above temperatures of
8000K cooling processes take over leading to temperatures similar to
the WNM with similar densities (see above).

1.1.3 Hot Phase

Components of the hot phase fills about 70− 80% of the ISM volume
and is by far the most dominant phase of the ISM. Furthermore, the
material in this phase is permanently shocked. Shock fronts originat-
ing from different sources influence the ISM (McKee et al., 1977). Stars
of OB associations are similar in age evolutionary stages. At the end
of their lifetime, these types of stars have strong stellar winds and
explode as supernovae (SNe), driving shocks into the ISM. While the
volume affected by the strong winds is relatively small, the SNe driven
shock fronts expand into a much larger fraction of the ISM ionizing
the material with speeds ⩾ 200km s−1. It is estimated that around two
SNe per century occur in our galaxy, leading to ∼ 2× 104 SNRs. Most
of which are obscured and therefore not detected yet. The progenitor
stars of these SNRs are locally grouped as well. Consequently, SNRs

expand not only into the ISM but can merge, exchange energy and
evolve into superbubbles (see section 1.2.6) maintaining the hot inter-
cloud medium (HIM). Shocks expand until the temperature decreases
and the pressure starts to balance with the surrounding medium. At
this point the temperature reaches values of 106K and a number den-
sity around 10−2cm−1. Because of these low densities, two-body pro-
cesses like collisions and recombination are extremely rare. Conse-
quently, cooling via emission is very inefficient in the HIM and lasts
for a comparably long time. Indeed, diffuse low-intensity X-ray emis-
sion was found along the galactic plane originating from highly ion-
ized gas and is evidence for an existing hot phase of the ISM. This
phase is critical for the evolution of the ISM and galaxies alike and
leads to the co-existence of the three characteristic phases of the ISM.
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Interstellar Shocks

Energetic events like stellar winds from, e. g. , OB-stars or SNe, cause
pressure perturbations which propagate with a certain velocity away
from their origin and, therefore, expand spherically into the ISM. If
the velocity is greater than the speed of sound in the medium, a dis-
continuity occurs between the regions that have already been affected
by the perturbation and those that have not. This discontinuity is re-
ferred to as a shock wave (Longair, 2011).

Figure 1.4: Illustration of a shock front propagating with velocity U through
the gas in front of the shock (index 1). The medium behind the
shock is denoted by the index 2. The pressure p, density ρ, tem-
perature T and velocity is shown. In the rest frame of the shock,
the gas in front of the shock moves with v1 = |U| towards the
shock. The shocked gas moves with velocity v2 away from the
shock front. From Longair (2011).

The HIM is created and maintained by strong shock waves propa-
gating through the ISM. Figure 1.4 shows a simplified shock situation
in the rest frame of the shock. In this frame, the unshocked gas ahead
of the shock moves with velocity v1 towards the shock, has a pressure
p1, density ρ1 and a temperature of T1. Behind the shock the shocked
gas has velocity v2, pressure p2, density ρ2 and temperature T2. In the
literature the compressible gas is considered as a fluid. While the gas
in the unshocked region passes the shock, mass is conserved. There-
fore, the mass flux before and after the shock is balanced according
to

ρ1v1 = ρ2v2. (4)
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In standard fluid dynamics, the energy flux through a surface with
normal vector n and v ∥ n is given by ρv

(
1/2v2 +w

)
, with w being

the enthalpy per unit mass. Considering a plane shock wave, perpen-
dicular to v, a continuous energy flux and conservation of energy

ρ1v1

(
1

2
v21 +w1

)
= ρ2v2

(
1

2
v22 +w2

)
(5)

follows. In the shock scenario described here, the momentum flux
p+ ρv2 is considered as continuous and is balanced before and after
the shock as follows

p1 + ρ1v
2
1 = p2 + ρ2v

2
2. (6)

These three conditions, resulting from conservation of mass, energy
and momentum, are referred to as shock conditions (Longair, 2011).

To see how the shock influences the ISM, the shock wave is consid-
ered in an ideal gas, where the enthalpy can be calculated as

w =
γpV

(γ− 1)
(7)

where V is the specific volume, γ = 1+ 2/nf the specific heat capac-
ity of the gas components (with nf the degrees of freedom). In Lon-
gair (2011) the pressure, density and temperature ratio between the
shocked and unshocked region are derived to be

p2

p1
=

2γM2
1 − (γ− 1)

γ+ 1
, (8)

ρ2
ρ1

=
v1
v2

=
γ+ 1

(γ− 1) + 2
M2

1

and (9)

T2
T1

=

(
2γM2

1 − (γ− 1)
) (

2+ (γ− 1)M2
1

)
(γ+ 1)2M2

1

(10)

where M1 = v1/c1 is the Mach number and c1 =
√

γp1/ρ1 is the speed
of sound in the unshocked region. As previously stated, the HIM is
created by strong shocks, which have shock velocities v1 ≫ c1 and,
therefore, M1 ≫ 1. In this case equation 9 can be written as

ρ2
ρ1

∼
γ+ 1

γ− 1
. (11)

Consequently, the density ratio is constant. For a monoatomic gas,
like hydrogen, where nf = 3 and γ = 5/3, the density behind the
shock is limited to ρ2 = 4ρ1. In the considered scenario the pressure
ratio

p2

p1
∝M2

1 (12)
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and temperature ratio

T2
T1
∝M2

1 (13)

still depend on the shock velocity via M2
1. Theoretically, the gas be-

hind the shock can reach arbitrarily large temperatures (Longair, 2011).

1.2 bubble-like structures

Bubble-like structures in the ISM originate from massive stars and
are formed by HII regions (section 1.2.1), stellar winds (section 1.2.2),
planetary nebulae (PNe) (section 1.2.3) or SNRs (section 1.2.4). These
structures emit photons with energies across the electromagnetic spec-
trum which can be observed and used to identify the type of structure
that emitted them. The types of emission coming from those bubble-
like structures are described in section 1.2.5. Most models of bubbles
in the ISM, e. g. , Weaver et al. (1977), are based on some simplify-
ing assumptions, for example that the environment is homogeneous.
The reality, however, is quite the opposite. Section 1.2.6 gives a brief
overview of a more realistic ISM.

1.2.1 HII Regions

Sources of ionizing photons are embedded in gas clouds called HII
regions which are often fully ionized. One example of a photoioniz-
ing source is a massive star of spectral type O. There are about 104

young O-star clusters in our galaxy and, therefore, at least the same
number of HII regions in the ISM.

Since the most abundant element in the ISM is hydrogen, the pho-
toionizing photons produced by an O-type star need at least an en-
ergy of Eph ⩾ 13.6eV to fuel the ionization process given by equation
3. Consequently, the number density in the ionized gas will increase
by a factor of two, since the ionization of one hydrogen atom results in
a proton and electron. The pressure and temperature of the ionized
gas increase drastically and the HII region expands supersonically
into the neutral medium forming a strong shock and an ionization
front. In contrast to the photoionization, electrons can be captured by
protons recombining to any excited state of hydrogen while emitting
a photon. If the excited hydrogen atom undergoes a cascade of tran-
sitions to lower states, photons are emitted for every transition until
the hydrogen atom is in its ground state. Therefore, HII regions can
be observed mainly via radiative recombination. One dominant tran-
sition is the Hα emission line which originates from a de-excitation
from state n = 3 to n = 2. Since recombination is inversely propor-
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tional to the electron temperature, recombination is a slow process in
hot gas (Tielens, 2005). In the case that the degree of ionization is

x =
np

np +nH
∼ 1, (14)

i. e. , the gas is almost fully ionized, the radius of the HII region would
be the Strömgren radius

RS =

(
3Ṅph

4πn2
Hβ

) 1
3

. (15)

Here np is the number density of protons, nH the number density
of hydrogen, Ṅph is the rate of photoionizing photons and β is the
recombination rate (Tielens, 2005).

If the ionization rate decreases below the rate of hydrogen atoms
crossing the ionization front, the ionization front separates from the
shock. The shock propagates further but without ionizing the neutral
medium. Consequently, the material which is swept up by the shock
forms a dense shell of neutral gas. With larger radii the density de-
creases and eventually reaches a similar density as the surrounding
ISM. At this point the expansion of the HII regions stops.

1.2.2 Stellar Bubbles

Hot, massive stars have strong stellar winds that blow stellar bubbles
into the ISM by constantly transporting mass and momentum. The
photons, produced by the star, are scattered several times within the
atmosphere of the star, transferring momentum to the surrounding
gas. This momentum transfer drives winds with up to 3000kms−1

(Tielens, 2005) into the ISM. The stellar wind expands freely until it
starts to interact with the material surrounding the star. This free
expansion phase is indicated by R1 enclosing the area (a) in Figure
1.5. The pressure of the stellar wind decreases with the radius. At the
point where the pressure is lower than the pressure of the ambient
gas (Figure 1.5, area d), a shock wave is created and propagates into
the interstellar gas, sweeping up material. A thin dense shell at R2

is formed. A reverse shock heats up the gas located within Rc to
high temperatures. The heated gas has a lower density and cannot
cool down like the dense shell. Therefore, Rc divides the two shocked
regions. The resulting bubble consists of a central hot gas and a dense
but cooler shell.

1.2.3 Planetary Nebulae

Stars produce elements throughout their evolution. Starting from a
main sequence star, characterized by hydrogen burning (nuclear fu-
sion of hydrogen atoms), the star produce helium in its core. If there
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Figure 1.5: A schematic structure of a stellar bubble with its different re-
gions. The stellar wind (a) expands freely till R1. The stellar wind
starts to interact with the ISM. At a distance Rc from the star, a
reverse shock is formed heating up the gas inside (b). A shock
wave propagates outwards sweeping up material (c) of the ambi-
ent gas and, thus, forming a thin dense shell at R2. From Weaver
et al. (1977).

is no hydrogen left to fuel hydrogen burning, the star starts burn-
ing helium. The following evolution of a star depends heavily on its
mass. Stars with a mass less than 3M⊙ cannot reach core tempera-
tures high enough to reach the next stage of burning, namely carbon
burning. Consequently, the core of the star is enriched with carbon.
Hydrogen and helium burning continues in shells around the core.
At the end of the stars live it expels the hydrogen and helium layers
which expands into the ISM (Karttunen et al., 2003). A white dwarf
is formed in the center, and it is ionizing the expelled material due
to its UV-radiation. The ejected helium and hydrogen shells create a
so-called planetary nebula. Figure 1.6 shows the Helix Nebula, a well
known planetary nebula with its white dwarf star clearly visible in
the center.

1.2.4 Supernova Remnants

Supernova remnants (SNRs) originate from stellar explosions, and give
rise to the progenitor star and explosion mechanisms. One distin-
guish between two explosion mechanisms: The core collapse (CC) and
thermonuclear supernova (Karttunen et al., 2003). A more detailed
classification is based on optical spectra and so-called light curves
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Figure 1.6: The Helix Nebula. The white dwarf (small white dot in the cen-
ter) is surrounded by the ejected material. The ejecta is ionized by
the white dwarf and is glowing therefore. Credit: NASA, NOAO,
ESA, the Hubble Helix Nebula Team, M. Meixner (STScI), and
T.A. Rector (NRAO)

(Vink, 2020). Figure 1.7 shows the classification scheme for SNe. De-
pending on the hydrogen abundances SNe are divided by Type I and
Type II supernovae. Each type has sub-categories as seen in Figure
1.7. The explosion mechanisms are marked with a dashed blue and
red box which represent thermonuclear and core collapse SNe, respec-
tively. Note that a thermonuclear SN is exclusively classified as Type
Ia while there are many sub-categories of CC supernovae.

Type Ia supernovae are based on the same systems of close bi-
nary stars and therefore have the same or at least very similar ex-
plosion mechanisms. These systems are a topic of themselves and
are not discussed in detail. In a common case, however, one of the
stars is a white dwarf (a product of a dying low mass star) reaching
the Chandraseka mass, because of mass transfer from its companion,
and ends up in a thermonuclear SN. The thermonuclear explosion of
the white dwarf sets in if nuclear reactions are triggered within the
carbon-oxygen core (Vink, 2012). This trigger mechanism is not yet
understood properly and therefore still part of discussion.

Core collapse supernovae have typically progenitor stars with mas-
ses of M > 8M⊙. Those stars can produce heavier elements up to
iron in their cores via nuclear fusion (nuclear burning). Before the
explosion, the star consist of different layers, starting with hydrogen
and helium at the outer layers to iron in the central region of the star.
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Figure 1.7: The supernova classification scheme from Vink (2020).

Layers between the outer and inner layers consist of layers filled with
products from burning processes of elements, for example, carbon
and oxygen. The burning process stops with iron in the core, since
nuclear fusion of iron does not lead to an energy gain, and the core
collapses. As a result either a neutron star or a black hole can be
formed depending on the progenitor mass (Vink, 2012). Depending
on the initial mass and therefore on the evolution of the massive star,
core collapse SNe can have a variety of characteristics leading to the
sub-categories shown in Figure 1.7. In case of a fast rotating neutron
star as a stellar remnant, a so-called pulsar, a pulsar wind nebula
(non-thermal plasma embedded inside the SNR) can be formed. In
this case the remnant is called a composite SNR (Figure 1.8, b).

In general, SNe inject a large amount of energy ESN 1051ergs and
mass Mej into the ISM in a short time. They enrich their environment
with elements produced inside the progenitor star during its evolu-
tion or during the explosion itself. The resulting SNRs expand into the
ISM and evolve in three different phases. Assuming a homogeneous
atomic gas surrounding the progenitor star, the three phases can be
characterized as follows.

In the first phase, the remnant expands freely into the ISM because
of the overwhelming mass ejected with high energy (Figure 1.8, a).
The expanding remnant is heating and sweeping up surrounded ma-
terial. Therefore, this phase depends on the initial conditions of the
SN explosion and the ISM. As soon as the mass of the swept up mate-
rial is Msw ∼ Mej, the free expansion stops after a relatively short time
and a thin shell of ∆R = RS/12 has formed. At this point of evolution,
a reverse shock (Figure 1.8, a) propagated inwards heating up the gas
even further to temperatures of T ∼ 106K (Tielens, 2005). The gas is
almost fully ionized and, therefore, cooling is inefficient.

In the second, so-called adiabatic or Sedov-Taylor phase of the SNR,
the pressure of the hot gas is high, driving the forward shock (Fig-
ure 1.8, a) into the ISM. Because more and more material is swept up,
and no additional energy is injected, the expansion speed v ∝ t

−3/5
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(a) SNR (b) comoposite SNR

Figure 1.8: (a) An illustration of the SNR with the forward and revers shock
heating up the gas (temperature is color coded). The initial
ejected mass is indicated by the arrows in the center. (b) Structure
of a composite SNR with a pulsar (cross) and the pulsar wind
nebula (PWN, blue) embedded in the SNR. From Vink (2020).

is slowing down with time. This phase can typically last for about
104yr to 105yr and the remnants can reach radii of some ten of par-
secs depending on the initial SN parameter (Tielens, 2005; Williams,
2021). If v reaches values of around 200kms−1 and the corresponding
temperature falls below T = 106K radiative cooling processes become
more relevant introducing the third phase.

In the radiative phase, recombination becomes possible radiating
away energy and cooling the gas. Assuming a constant density of the
not yet affected medium, the remnant slows down further with v ∝
t
−3/4 because of piling up more material at the edge, and is therefore

called snowplow phase. The expansion continues due to the higher
pressure of the shocked and heated material inside the SNR. At the
end, the velocity of the remnant is similar to the thermal velocity of
the WNM. As a result, the remnant merge into the ISM. Figure 1.9
shows the three different phases of the SNR by plotting the radius
over the time.

The expansion of the remnant into the ISM can lead to complex
morphologies, depending on the density of the ISM. In case of a ho-
mogeneous ISM the morphology of the SNR is typically shell-like. An
inhomogeneous ISM is reflected in a more asymmetric shape. A more
specific remnant is the mixed-morphology (or thermal-composite)
SNR which has a bright shell-like structure in radio but show cen-
ter filled X-ray emission. In most cases, mixed-morphology remnants
are found in a more inhomogeneous ISM (Ustamujic et al., 2021a) and
interact with dense molecular clouds in the vicinity of the SN explo-
sion (Okon et al., 2020). Those clouds survived the forward shock but
evaporate inside the hot after-shock medium (White et al., 1991).
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Figure 1.9: This plot shows an example of an SNR evolution. The solid line
represents the expansion (radius) of the remnant and the dashed
line the velocity with which the remnant expands into the ISM.
The light gray region marks the time of the Sedov-Taylor phase.
From Williams (2021)

1.2.5 Emission from bubble-like Structures

From lower energy photons, e. g. , from dust in the infrared regime,
to high energetic X-ray photons, the bubble-like structures described
above emit photons in a wide range of the electromagnetic spectrum.
The reason for that is the variety of emission processes which typ-
ically occur in these structures under different physical conditions
like different temperatures.

An important emission process is called Bremsstrahlung or free-
free emission. Bremsstrahlung occurs if a charged particle, e. g. a light
particle (an electron), is accelerated in the Coulomb field of another
charged particle (an ion). Depending on the particle population, the
emitted photon energies can range from the infrared to the X-ray
regime. Bremsstrahlung is an important emission process in the ion-
ized gas of HII regions. It produces a continuum emission from ra-
dio to infrared wavelengths. The heated gas in SNRs, in contrast, can
have much higher temperatures and can produce photons in the X-
ray regime (Vink, 2020).

Relativistic charged particles produce synchrotron radiation, if they
are deflected in strong magnetic fields. Such strong magnetic fields
can be found in SNRs or pulsar wind nebulae. Electrons are effectively
radiating synchrotron photons due to their low mass. That is why
they are responsible for most synchrotron radiation in the aforemen-
tioned bubble-like structures. Synchrotron emission can be detected
in the radio band but also in X-ray or even γ-ray bands. Structures
which emit high energy synchrotron photons need to actively acceler-
ate particles (Vink, 2020).

Another radiation process can be found in each region with a pop-
ulation of electrons and a photon field present. In those regions a
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photon can collide with an electron. This process is known as Comp-
ton scattering in which both particles can either gain or lose energy. If
the photon gains energy, i. e. , it is up-scattered, the process is referred
to as inverse Compton scattering (ICS). This process is a common radi-
ation mechanism in SNRs and pulsar wind nebulae (PWNe) to produce
γ-ray emission (Vink, 2020).

In contrast to the processes described above, which produce contin-
uum emission, another type of observable radiation leads to distinct
photon energies called emission lines. Those emission lines originate
from discrete atomic transitions.

There are recombination lines produced by electron capture of an
ion. In these processes, electrons of discrete energies can be captured,
resulting in multiple possible energy levels and, therefore, a variety
of radiative transitions to lower energy levels can occur, e. g. , to the
ground state is reached. This cascade of radiative transitions produces
photons of different and discrete energies. These transitions follow a
nomenclature which indicate the final state n ∈N , also labeled with
capital letters K (n = 1), L (n = 2), M (n = 3) etc., and the energy
of the emitted photon, or the number of levels ∆n skipped to reach
n. The first two spectral series are the Lyman (n = 1) and the Balmer
(n = 2) series. The skipped levels are denoted by Greek letters α

(∆n = 1), β (∆n = 2), γ (∆n = 3) and so on. A prominent example is
the Hα emission line in HII regions (H stands for the Balmer series).

Collisional lines can also be observed if an excited atom is de-
excited by collision. In the environment of bubble-like structures the
kinetic energy of the gas is not sufficient to excite hydrogen or he-
lium, the two most abundant elements. However, it is sufficient to
excite heavier elements. The de-excitation via collision depends on
the number density and the temperature of the gas.

In the hot gas of young SNRs, for example, a high fraction of alpha-
elements like oxygen (O) or sulfur (S) are in a hydrogen-like or helium-
like ionization states. That means corresponding line emission in-
volves the K-level of the atom. Line emission from those elements
emit photons in the 0.5keV − 10keV range (Vink, 2020) and lie there-
fore in the X-ray regime. Emission lines from OVII and OVIII, oxy-
gen which is six- and seven-times ionized, respectively, have energies
around 0.6keV (Winkler et al., 1981). Elements from the iron-group
can have emission lines between 0.7keV − 1.5keV or even higher en-
ergies between 6keV and 8keV (Vink, 2020). Prominent iron lines
around 1keV, the Fe-L complex, are typically observed for Type Ia
SNe and is therefore be used to discriminate between the two general
types of SNe explosions (Vink, 2020).

In bubble-like structures with ionized gas, but lower temperatures,
optical line emission can be produced by elements like oxygen and
sulfur with lower ionization states. This is the case in HII regions or in
the shell of older SNRs. In environments of low density, optical emis-
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sion from forbidden lines like the [OIII] (two-times ionized) or/and
[SII] (singly ionized) can be observed. The corresponding emission
line positions are at [OIII] λλ 495.9nm, 500.7nm and [SII] λλ 671.7nm,
673.1nm (Long, 2017).

According to observations, the [SII] lines observed in shells of SNRs

are about the same strength as the Hα lines. In HII regions, how-
ever, [SII] line emission is an order of magnitude less prominent.
Mathewson et al. (1973) used the ratio [SII]/Hα to distinguish between
SNRs and HII regions for the first time. For isolated SNRs the ratio is
[SII]/Hα > 0.4. SNRs embedded in HII regions can be contaminated by
photoionizing photons, therefore, the ratio of [SII]/Hα > 0.67 is used
(Fesen et al., 1985; Kavanagh et al., 2016; Mathewson et al., 1973).

1.2.6 Bubbles and the inhomogeneous ISM

The bubble-like structures discussed in section 1.2.1, 1.2.2, 1.2.3 and
1.2.4 are considered as single structures in a homogeneous and, there-
fore, simplified ISM. However, in reality, the ISM is highly inhomoge-
neous and influenced by all energetic events, especially SNe and SNRs

shape the ISM. A detailed analysis of the ISM is far beyond the scope
of this thesis, but the complexity that current research is investigat-
ing is worth noting. Figure 1.10 shows a more detailed, edge-on view
of a galaxy with the different phases of the ISM. The CNM and GMCs

are spread within the galactic plane while the WNM and WIM extends
further out and are surrounded by the HIM.

Figure 1.10: A schematic image of the fractional ISM within the host galaxy.
Molecular clouds and cold gas can be found near the galactic
plane, surrounded by the WNM and WIM. Superbubbles are
blown into the HIM, which covers a large fraction of the galaxy.
From Williams (2021)

Tielens (2005) analyzed the effect of small dense clouds embedded
in the expanding SNR. Evaporation of these clouds leads to mass, en-
ergy and momentum transfer and are affecting the evolution of the
SNR by slowing down the remnant locally. In general, the biggest im-
pact on the ISM comes from the most rare stars. OB-stars create HII re-
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gions and blow strong stellar winds into the ISM. Moreover, OB-stars
are usually formed in a group and create SN events. Consequently,
SNR can be embedded in HII regions, overlapping with each other
and transferring energy. A cluster of OB-stars can, therefore, produce
even larger bubble-like structure called superbubbles (Figure 1.10),
hot bubbles reaching hundreds of parsecs in size by breaking through
regions of lower pressure.

This emphasizes the need of detecting each bubble-like structure
in the ISM to grasp a bigger picture and a better understanding of the
evolution of the host galaxy.

1.3 the magellanic clouds

Among all satellite galaxies, orbiting our host galaxy, the Magellanic
Clouds (MCs) are the largest irregular dwarf galaxies. The Large Mag-
ellanic Cloud (LMC) is closer at a distance of 50kpc, compared to the
Small Magellanic Cloud (SMC) at around 62kpc (Graczyk et al., 2014;
van den Bergh, 1999). Thanks to their location on the sky, above the
galactic plane, the absorption along the line of sight is minimal. More-
over, the LMC and the SMC can be observed face-on revealing details
of their structures (Figure 1.11). These observation properties make
the MCs perfect laboratories to study the ISM.

(a) LMC (b) SMC

Figure 1.11: The Large Magellanic Cloud (a) and the Small Magellanic
Cloud (b) in Hα line emission. The structures of different size
and brightness are visible in both galaxies Smith C. (2000)

Hα emission line surveys show that the MCs host many HII regions
and bubble-like structures of different size (Davies et al., 1976; Henize,
1956). Therefore, the MCs are the subject of several studies investigat-
ing the properties and the origin of these bubbles, for example in
Bozzetto et al. (2023), Kavanagh et al. (2016), Maggi et al. (2019), and
Yew et al. (2021). According to observations, star formation is still
ongoing in the MCs leading to possible SN explosions. Bozzetto et al.



22 the interstellar medium

(2017) estimated a rate of SNe of around 1/yr in the LMC. This is evi-
dence for the presence of both young and older SNRs. Indeed, several
recent publications have confirmed the presence of a variety of SNRs,
for instance Bozzetto et al. (2023) and Yew et al. (2021) or Zangrandi
et al. (2023, in prep.) to name a few. With better telescopes and anal-
ysis techniques, faint structures are found. This includes SNRs at the
end of their evolution merging into a thin environment, making them
difficult to detect (Yew et al., 2021). To date, the MCs are one of the
best sites for astronomers to study the ISM.
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With every single existing and new telescope around, performing sin-
gle observations or entire surveys, more and more data are available
in astronomy. Therefore, data are growing in size and complexity. As
a result, algorithmic based detection methods will become important
in the future. Collischon et al. (2021) developed an automated de-
tection algorithm based on Minkowski tensors, to detect and narrow
down the origin of bubbles in the MCs. Meanwhile, machine learning
algorithms get widely used in astronomy as well including bubble-
like structures, e. g. , in Liu et al. (2020). Detecting bubble-like struc-
tures with machine learning methods is a hard task, because they are
of irregular shape.

In this chapter an intuitive approach of understanding neural net-
works, the general structure and the interplay of its different com-
ponents is presented. This includes the mathematical formalism to
describe all crucial parts of a neural network, starting from a single
neuron, its activation and how neurons are connected with each other.
Furthermore, the concepts of forward- and back propagation are in-
troduced, together with training procedures for neural networks and
methods to improve the training. A motivation, why to use neural
networks in this work is given at the end of the chapter.

2.1 fundamental components and concepts

This section mainly follows the description and notation given in
Michelucci (2018), unless otherwise stated.

2.1.1 About Neurons, Weights and Layers

Every neural network consists of three different types of layers Ll
(Figure 2.1), where l ∈ N0 denotes the number of the corresponding
layer. The input layer L0 can be considered as the receptor, the eye
of the neural network, receiving information. This information is pro-
cessed in a certain amount of hidden layers Ll, with 0 < l < Ω and
Ω ∈N, working on a generalized representation of the given input in-
formation. Last but not least, the output layer LΩ process the pattern
provided by the last hidden layer LΩ−1 to give the final result.

Each layer consists of several neurons Nl
n, with n ∈N0 the number

of the neurons in layer Ll (Figure 2.1). Neurons Nl
n of each layer Ll

are connected with neurons Nl−1
n and Nl+1

n of the layer Ll−1 and
Ll+1, respectively. These connections are called weights w ∈ R. The

23
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neurons in the first hidden layer L1 therefore are connected to the
neurons of the input layer L0 and the neurons of the last hidden layer
LΩ−1 are connected to neurons of the output layer LΩ. Consequently,
a net of neurons is created where neurons depend on the behavior of
the previous ones.

At this stage of understanding, neurons can be considered as a stor-
age of value a, where a is called the activation of the neuron. Imagine
a neuron fires if it is needed to represent the input information in the
generalized representation. The larger a the more important is the
neuron for processing the information.
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Figure 2.1: A scheme of a neural network. Nl
n denotes the n-th neuron in

the layer l. Its basic components are the input (l = 0) and out-
put (l = 3) layer. Layers between the input and output layer are
called hidden layers. The neurons (circles) are connected with
each other, indicated by arrows (weights).

2.1.2 Information Processing

Every single information provided at the input layer L0 passes the
network and is processed such that the network can resolve a certain
problem. Imagine a neural network which has to figure out the mean
gray value of three input values, stored in the three input neurons
(Figure 2.2). Depending on the gray value, the network must be able
to represent the given information in a generalized way in order to
be able to figure out the mean gray value at the output layer LΩ.
Consequently, the activation of neurons in the hidden layers have
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to be specific for every combination of gray values provided at the
input layer. This raises the question of how the network generates the
generalized representation of the input information?

The answer lies in the weights w connecting neurons of each layer
with each other. These weights can be adjusted, meaning weaken
or strengthen the connection between neurons. The combination of
weights and activation of neurons lead to a dynamic behavior of the
whole network, which is therefore able to react to the given input
information accordingly.

But why using several hidden layers for a neural network and con-
nect these layers with each other. With each additional layer, new
neurons and weights are added to the neural network. Imagine one
hidden layer is responsible for a set of patterns and every neuron is
representing one of these patterns. In the case of determine the mean

Figure 2.2: Illustration of a neural network and its activated neurons. Each
neuron represents a gray value. To predict the mean gray value
of the three input neurons on the left, the network finds a gener-
alized representation to predicted mean gray value in the output
layer on the right.

gray value in Figure 2.2, these patterns would be different gray values.
Because of more possible representations of the gray values at the in-
put layer, the network would be able to map more gray values to the
output layer. More layers and neurons results therefore in the ability
of the network to solve more complex problems, due to a more versa-
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tile neural network. A neural network with more than three hidden
layers is usually considered as a deep neural network (DNN).

In general, smaller neural networks might have a few hundred to
a few thousand neurons, while larger neural networks can have tens
of thousands or even millions of neurons. It is worth mentioning,
that having more neurons does not necessarily guarantee better per-
formance of the neural network, because it heavily depends on the
structure of the network.

In the end, the activation of neurons in the last hidden layer LΩ−1

has a certain pattern leading to fire a certain neuron in the output
layer LΩ. The output neuron in Figure 2.2 simply represents the mean
gray value of the input. This entire information processing is called
forward propagation. In some cases, the activation of the output neu-
rons can be considered as a probability of how certain the network is
in its answer.

Of course, if the network works as painted in a more simplistic
picture above, may be doubted. If one analyze each layer and its pa-
rameters, one will find that the network has a non-intuitive behavior.
This is because of the amount of parameter used in a neural network,
which makes it hard to grasp a clue on what actually is going on.
This approach provides at least an expectation of how a neural net-
work could work. With this expectation, let’s dive into a more formal
way to describe neural networks.

2.1.3 Forward Propagation

As already mentioned, weights do not only connect neurons of differ-
ent layers, they also influence the activation of the connected neurons
and, thus, the information which is fed forward within the network.
Let’s consider the activation al

m of neuron Nl
m (Figure 2.3). That

means one has to take into account every weight wmn, connecting
the considered neuron Nl

m with the neurons Nl−1
n . Remember that

the activation is a measure of how important the corresponding neu-
ron is for the generalized representation of the input information. By
introducing the so-called bias bl−1

n ∈ R, a neuron can be more or less
sensitive to the previous neuron. The connection between neuron m

and all connected neurons n can therefore be written as the weighted
sum

zlm =
∑
n

wl−1
mn · al−1

n + bl−1
m . (16)

There is just a linear connection between neurons so far. Consequently,
the network would not be able to learn non-linear and, therefore,
more complex correlations. Applying a non-linear function is essen-
tial for neural networks to find a generalized representation and mo-
del the input data. These non-linear functions are called activation
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functions σ(x). Some widely used activation functions, their charac-
teristics, advantages and disadvantages are discussed in section 2.1.4.
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Figure 2.3: A look into a neural network, showing how the activation of a
single neuron is calculated. All weights wl−1

mn , activations al−1
n of

every neuron of the previous layer and the bias has an influence
on the activation al

m of the considered layer.

Finally, the activation of a single neuron in the corresponding layer
can be calculated as

al
m = σ(zlm) = σ

(∑
n

wl−1
mn · al−1

n + bl−1
m

)
. (17)

In a neural network the activation of every single neuron within the
considered layer has to be calculated. Therefore, the activation al for
every neuron of layer Ll can be written in a more compact form

al = σ
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or for short

al = σ
(

Wl−1 · al−1 + bl−1
)

. (19)

Applying equation 19 to each layer is called forward propagation and
describes how input data is fed forward through the network. To en-
sure that the output of the network maps the input data correctly, the
parameters need to be adjusted such that the patterns in the input
data are represented as good as possible by the network. A measure-
ment is needed of how much off the output of the network is, to map
it to the input data. This reverse process is called back propagation,
but before diving into back propagation, let’s have a look at some
activation functions.
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2.1.4 Activation Functions

Activation functions determine the activation of a neuron. They are
used to introducing non-linearity, allow the network to perform more
complex computations and model a wider range of input information.
Common examples of activation functions are the sigmoid, rectified
linear unit (ReLU) and softmax functions. The choice of the activation
function depends on the specific task and architecture of the neural
network. More about architectures later in this chapter and in section
5.1.

The ReLU activation function (Figure 2.4 (a)) is defined as

σReLU(z
l
m) =

0 if zlm < 0

zlm if zlm ⩾ 0
(20)

and is often used because its beneficial properties. One of the main ad-
vantages of the ReLU is that it is computationally efficient. Using ReLU

activation functions allow deep neural networks with many neurons
to learn effectively. Due to these main reasons, the ReLU activation
function is commonly used in deep neural networks, in particular in
the hidden layers.

The sigmoid activation function (Figure 2.4 (b)) is defined as

σsig(z
l
m) =

1

1+ e−zlm
, (21)

and maps any input zlm to [0, 1]. Therefore, the activation can be inter-
preted as a probability. It is often used in the output layer of a neural
network and for binary classification tasks. The sigmoid function has
a characteristic s-shape, and it is differentiable.

(a) ReLU (b) sigmoid

Figure 2.4: The plots show the ReLU (a) and sigmoid (b) activation func-
tion. ReLU activation functions are mainly used for hidden lay-
ers, whereas sigmoid activation functions are used in the output
layer to interpret the output as a probabilistic value. Plots are
taken from Michelucci (2018).
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The softmax activation function is defined as

σsoft(z
l
m) =

ez
l
m∑

m ez
l
m

. (22)

Due to the normalization in the softmax function, the output is a
probability distribution over all classes. Thus, it is frequently used
in the output layer of a multi-class classification problem, where the
neuron with the highest probability represents the predicted class.

2.1.5 Back Propagation and Optimization

Till now, its discussed how information passes through a neural net-
work, assuming the network can handle the information given as
input. But the weights and biases usually are initialized randomly.
Therefore, it is unlikely that the network gives the desired output.
The network needs to learn to find the right output for the given in-
put information by finding proper values for the weights and biases.
In other words, the neural network needs to model the given input
data. In machine learning this is achieved by providing the desired
output, so-called labels or classes, to the network. The goal is that the
output of the network, its prediction, matches the given label. This is
referred to as supervised learning.

Every prediction comes with an error, or loss. This loss can be con-
sidered as the discrepancy between the true label, provided to the
network, and the label predicted by the network itself. According to
the loss, the parameters, the weights and biases, are updated in order
to reduce the loss of future predictions. This is achieved by propagat-
ing the loss backwards through the network. In literature this process
is called back propagation (Goodfellow et al., 2016; Michelucci, 2018)
To calculate the new weights and biases, optimization algorithms are
implemented.

The learning process, or training process, is often referred to as
an optimization problem. In machine learning the performance of a
network is measured with some metrics, e. g. the loss. By reducing
the loss the performance can be improved. That means the network
is fitted to a set of data, called training data. Therefore, in the core
of every training process, the so-called loss function L is optimized.
Loss functions are discussed in section 2.1.6. The training process
is, consequently, an indirect optimization problem (Goodfellow et al.,
2016). In the machine learning space the training data is organized in
batches. Batches are subsets of the data. An average loss is calculated
over an entire batch which is then used to update the parameters.

Training a network combines back propagation with an optimiza-
tion algorithm to define how to update parameters during training.
Mathematically speaking, back propagation means applying the chain
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rule to the loss function with respect to the parameters of the network.
Consequently, the back propagation for each layer is calculated as

∂L

∂Wl
=

∂L

∂al
· ∂al

∂zl
· ∂zl

∂Wl
(23)

for the weights and

∂L

∂bl
=

∂L

∂al
· ∂al

∂zl
· ∂zl

∂bl
(24)

for the biases (Goodfellow et al., 2016; Kochenderfer et al., 2019).
One widely used optimization algorithm, especially for neural net-

works, is Gradient Descent. It is used to minimize the loss function
by updating the weights and biases of the neural network. The gra-
dient descent algorithm leverages the negative gradient calculated in
back propagation to reach a local minimum (Ruder, 2016). The step
size towards the negative gradient is defined by the learning rate α.
The larger α the fewer iterations needed to reach the minimum. If α
is too large, the gradient descant algorithm can diverge. Figure 2.5
shows the principle of gradient descent to minimize the loss function.
The parameters of a neural network can be updated using gradient
descant as follows

Wl = Wl −α · ∂L

∂Wl
(25)

and

bl = bl −α · ∂L
∂bl

(26)

for the weights and biases. This is an iterative process of many it-
erations and, therefore, training the network means finding the best
values of the parameters. The goal is to generate a network which
is generalized properly. Generalization is the ability of the network
to deal with input information never seen before (Goodfellow et al.,
2016).

Gradient descent is the umbrella term of various types of optimiza-
tion algorithms. One of these algorithms is the adaptive movement
estimation algorithm (ADAM) introduced by Kingma et al. (2014). It
improves efficiency by using an adaptive learning rate and momen-
tum. As the name suggests, it changes the initial learning rate dur-
ing the process. Momentum helps to accelerate the algorithm along
the desired direction (Figure 2.6) of the negative gradient and damp-
ens oscillations (Ruder, 2016). The computational memory usage is
also better compared to other optimization algorithms (Kingma et al.,
2014). According to Goodfellow et al. (2016), ADAM is considered as
robust when it comes to the choice of hyperparameters. ADAM is used
for train the neural networks for this work as well.
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Figure 2.5: This plot shows the principle of gradient descent on a 2D sur-
face in the x1-x2 plane (contours). The black points show the
evolution of the loss function after each iteration of the gradi-
ent descent. After each iteration the step size in the direction of
the steepest descent gets smaller. The gradient descent algorithm
converges after 181 iterations and finds a local minimum.

2.1.6 Loss Functions

A loss function is used to measure the loss between the predicted
output of the neural network and the expected output. This loss is
essential for training a neural network. During training, the goal is
to minimize the value of the loss function (Goodfellow et al., 2016),
which is typically achieved by adjusting the parameter of the neural
network using an optimization algorithm like Gradient Descent. De-
pending on the task and type of data, different types of loss functions
can be used. In this section the focus is on the cross entropy as a loss
function.

Given a set of events or random values, cross entropy can measure
the difference between the two underlying probability distributions.
In machine learning the two distributions are given by the known
probability, or label, for a sample belonging to a certain class y. In
this work a one-hot encoded vector is used meaning the correspond-
ing vector elements are yj ∈ {0, 1}, and the probability of a sample be-
longing to a certain class predicted by the network p with pj ∈ [0, 1].
Therefore, cross entropy is commonly used in deep learning, espe-
cially for binary- or multi-classification problems. In Murphy (2012)
cross entropy is defined as

H(y,p) = −

C∑
j=0

yj · log(qj) (27)
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Figure 2.6: Illustration how momentum helps to accelerate the optimization
algorithm to converge faster. Without momentum, more itera-
tions are needed because of oscillations (red). Introducing mo-
mentum in gradient descent helps to implement bigger steps
towards the steepest gradient descent (green) leading to fewer
iterations needed. Adopted from Ruder (2016).

with C the number of classes. Considering a single sample with C ∈
{0, 1}, i. e. , a binary-classification problem, the cross entropy is

H(y,p) = y0 · log(p0) + (1− y0) · log(1− p0) (28)

with (1− y0) the label for C = 1 and (1− p0) the probability that the
sample belongs to the class with C = 1. In the training process there
are N samples in a batch. Taking all samples of the considered binary-
classification problem into consideration and calculate the average
loss over the entire batch, the so-called binary cross-entropy (BCE) is
calculated as follows

BCE = −
1

N

N∑
i=0

yi0 · log(pi0) + (1− yi0) · log(1− pi0). (29)

For a multi-classification problem the categorical cross-entropy (CCE)
is calculated

CCE = −
1

N

N∑
i=0

C∑
j=0

yi,j · log(pi,j). (30)

One disadvantage of the CCE loss function is that it is sensitive to an
imbalanced data set.

Both are established loss functions and considered as easy to opti-
mize with a probabilistic interpretation of the output.

2.1.7 Deep Neural Networks

Deep neural networks (DNNs) are neural networks with many hidden
layers. These layers are composed of interconnected neurons. Each
layer learns a different abstraction of hierarchical representations of
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input data as described above. While the first layers may learn some
representations of some features, e. g. edges, the deeper layers may
learn more complex features, e. g. shapes. This is what makes DNNs

powerful tools for various tasks. One of these tasks is image classifi-
cation.

DNNs can suffer from different effects which reduce the perfor-
mance of the network. In the following some important effects will
be discussed.

Overfitting is a common effect appearing during the training pro-
cess of a DNN. By learning the underlying features and noise of the
training data set in great detail, the network is not able to generalize
to data never seen before. Therefore, the performance of the network
on the training data set differs significantly from the performance
on a test data set. The test data set is a smaller data set organized
like the training data set but is not used for training. In practice,
a fraction of the training data set (∼ 10%) is used as the test data
set. Overfitting can therefore be spotted by evaluating each training
step (iteration) on a test data set by plotting the loss for each iter-
ation. Such a plot is shown in Figure 2.7. If overfitting occurs, the
network improves on the training data, but the performance on the
test data decreases (Goodfellow et al., 2016; Michelucci, 2018). Some
common techniques to prevent overfitting include using regulariza-
tion techniques such as dropout or early stopping of the training pro-
cess. More about dropout and early stopping below. Since large DNNs

trained on a relatively small training data sets tend to overfit, using
a simpler model with fewer parameters can also reduce overfitting.
Consequently, adding more data to the training data set can help to
reduce overfitting large DNNs and vise versa (Goodfellow et al., 2016).

Underfitting, in comparison, refers to a network which is not able
to model the training data nor is it able to generalize to new data.
This scenario is also shown in Figure 2.7. This said, the complexity of
the network and size of the training data set to train on need to be
properly balanced in order to match the complexity of the network to
the complexity of the considered problem.

A DNN consists of different layer types, each of which offers differ-
ent functionalities to the network. Some layer types can reduce the
risk of overfitting, for example, others can be trained to recognize
certain features in the input data. In the following paragraphs, some
layer types which are used in this work are introduced.

Convolutional layers are a special type of layers used in convolutio-
nal neural networks (CNNs). They are powerful tools for recognizing
features present in a two-dimensional input image, e. g. , lines, edges
or shapes. Convolutional layers apply filters, or so-called kernels K,
to an input image I (Figure 2.8). In the context of CNNs the operation

Fi’,j’ = (I ∗K)i,j =
∑
m

∑
n

Ii+m,j+nKm,n (31)
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overfitting

loss

underfitting

iteration
Figure 2.7: Comparing the loss of a training batch (solid line) and a test

batch, over- and underfitting can be spotted. While a significant
higher but steadily decreasing validation loss indicates that the
training suffers from underfitting (dashed line), an increasing
validation loss after reaching a local minimum hints overfitting
(dotted line).

is called convolution. Where m and n denotes the size of the used
kernel with m,n < i, j, the size of the input image. Fi,j is the result-
ing feature map, which indicates the locations and the dominance of
a certain feature in the given input image. By introducing a stride,
the kernel slides over the entire input image and the convolution for
each pixel is calculated. In order to maintain the dimension of the in-
put image, the so-called padding must be applied to the convolution.
Padding is a method in computer vision to extend the input image
with zeros, such that dim(Fi’,j’) = dim(Fi,j) (Figure 2.8).

0 0 0 0 0 0 0

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0
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K

=

1 2 2 1 0

1 2 3 2 1

0 1 3 3 1
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F = I ∗K

×0 ×1 ×0

×0 ×1 ×0

×0 ×1 ×0

Figure 2.8: Illustration of convolve a 2D input image I with a kernel K. By
sliding the kernel over the image and calculating the scalar prod-
uct (dark gray) the feature map F is created. In order to keep the
dimension of the input image, padding (light gray) is applied on
I.

Generally, CNNs can be applied on every kind of data, able to de-
fine a grid on, e. g. , time-series (Goodfellow et al., 2016). The power
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of convolutional layers unfolds by the fact, that several kernels can
be trained simultaneously. For every kernel, one feature map is gen-
erated. Consequently, several features can be detected in an image.
The kernel in Figure 2.8 is used for vertical edge detection, for exam-
ple. Those feature maps can be used as input for other layers. Differ-
ent level of features can be detected by stacking convolutional layers.
While the first convolutional layers extract more low-level features,
stacked convolutional layers are on a higher level of abstraction and
can extract more complex features. Increasing the depth of a CNN in-
creases the complexity of the network by adding more parameters to
train.

Pooling layers are commonly used in CNNs to apply down-sampling
to the feature maps. As stated above, these feature maps are not trans-
lation invariant. To improve the translation invariance against small
translations of the input, pooling is applied to the feature maps and
creates a new set of lower resolution feature maps. These maps can
than be used as a new input for the following convolutional layer
again. How the down-sampling is affecting the input depends on the
kernel size and stride of the pooling operation. There are two com-
mon pooling operations, the so-called average and maximum pooling.
While the average pooling operation returns the average value

AvP =

∑
ij Kij∑
ij 1

, (32)

maximum pooling returns the maximum value

MaP = max
ij

(
Kij

)
(33)

of the given input within the kernel (Goodfellow et al., 2016; Zhou
et al., 1988). Figure 2.9 demonstrate maximum pooling applying a
(2× 2) kernel and a stride of 2 on a (4× 4) matrix. In this example,
a kernel size of (2× 2) and a stride equal to the kernel size means a
down-sampling rate of two.

Dropout is the practice of pretending to train a large neural net-
work of different architectures in parallel by dropping out neurons
by cutting their connections for a training iteration temporarily (Sri-
vastava et al., 2014). Figure 2.10 the principle of dropout on a fully
connected neural network. Applying Dropout to a neural network
can be considered as training an ensemble of networks with a differ-
ent architecture (Ensemble Learning) but is computational cheaper.
It is shown, that Ensemble Learning reduces the risk of overfitting
(Goodfellow et al., 2016). Thus, dropout neurons during training is
an effective way to tackle overfitting. It is also more effective than
other standard regularization. Dropout can be beneficial, especially
for problems with a small training data set (Goodfellow et al., 2016).

Normalization layers are transforming the input to be on similar
scale. Some features in an image may be more dominant in an image,
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Figure 2.9: This Figure demonstrates the maximum pooling operation. A
(2× 2) kernel is applied on a (4× 4) matrix. The kernel hovers
over the matrix (gray, left) with a stride of 2. Maximum Pooling
returns the maximum value (gray, right) within the kernel.

e. g. , brighter compared to other features. In the machine learning
space, it is common use to scale the data that input values are between
[0, 1] or [−1, 1]. With this approach different features in an image are
on similar scale. In practice, normalizing data for training a neural
network is not trivial, because input values of each layer within the
network changes during training due to the change of parameters
after each batch. This is referred to as internal covariate shift (Ioffe
et al., 2015). Reducing internal covariate shift stabilizes the training
of neural networks by achieving a stable distribution of activation
values and speeds up the training (Ioffe et al., 2015). Therefore, Ioffe
et al. (2015) introduced batch normalization, a technique for normal-
izing layer inputs for each training batch. It is used before applying
none-linearity to increase the likelihood to get stable activation values
during training (Ioffe et al., 2015). The batch normalization operation
is denoted as

BNγ,β(xk) ≡ γ · x̂k +β, (34)

where γ and β are trainable parameter and x̂k the normalized input
values over a mini-batch k. The details of batch normalization can
be found in Ioffe et al. (2015). By implementing batch normalization
as part of the model architecture, the benefits range from allowing
higher learning rates, less need for careful parameter initialization,
to regularization and no need for dropout (Ioffe et al., 2015). There-
fore, natch normalization can increase the performance of the trained
neural network.

Augmentation layers are processing layers which can help the net-
work to generalize and reduce overfitting. By applying several aug-
mentation transformations to samples within the training data set,
it is enlarged artificially. Possible transformations range from trans-
lations, rotations, to vertical or horizontal flipping, scaling and re-
ducing or enhancing the contrast and brightness of a sample. A list
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Figure 2.10: If Dropout is applied during training, neurons are disconnected
temporarily by removing connections (light gray) to other neu-
rons of the network.

of basic and more advanced augmentation operations can be found
in Yang et al. (2022). Figure 2.11 shows four examples of augmenta-
tion operations. The choice of which transformation is used in the
augmentation depends on the task and data set. For example, using
horizontal flipping of a chess board, would result in an unnatural
upside down image (Figure 2.11 (d)), while vertical flipping would
change the perspective of the image (Figure 2.11 (c)) and add some
value to the training data set. Augmentation cannot transform a poor
training data set into a rich and diverse data set. It is but a technique
to increase diversity within a training data set (Shorten et al., 2019).
There is no quantitative standard of how to apply augmentation prop-
erly, it is mainly based on experience an experimenting with different
augmentation operations (Yang et al., 2022).

Early stopping is a simple technique to prevent overfitting by set-
ting up a schedule which terminates the training process if a cer-
tain criterion is fulfilled. Ending the training if the loss increases
more than an upper limit, after reaching a minimum, would be such
a schedule. However, the calculated loss fluctuates during training.
Finding a balanced upper limit is crucial, to not stop training because
of those loss fluctuations while the tendency is still towards lower
losses.
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2.2 fully connected neural networks

fully connected neural networks (FCNNs) are neural networks where
all neurons in layer Ll are connected to all the neurons in layer Ll+1

(e. g. Figure 2.2). Each neuron in layer Ll+1 receives an input from
every neuron in layer Ll. Therefore, FCNNs require many parameters
and are computational expensive to train. FCNNs tend to overfitting, in
particular if the training data set is limited. With an increasing num-
ber of parameters, the network becomes too complex and captures the
noise in the training data, rather than the underlying pattern. Never-
theless, FCNNs are used as a classifier on top of DNNs, because of their
ability to represent a variety of input data.

2.3 convolutional neural networks

The main building blocks of CNNs are convolutional layers. Due to
their capabilities of detecting features and patterns in 2D images,
CNNs are widely used for image classification. Image classification
is considered as the prediction of a certain structure in an image and
label it correctly. An example of image classification would be match-
ing handwritten digits to the correct number it is representing. In this
thesis, CNNs are used to detect bubble-like structures in astronomical
images.

2.4 training

The training of a neural network is a learning process which ends
with the ability of the network to predict the correct label of the given
input data. In general one distinguish between supervised and unsu-
pervised learning. Supervised learning provides labels for each given
input. The network learns to match these label-input pairs to predict
the right label for an unknown input. Unsupervised learning is used
to learn structure the data inherently without providing labels. There-
fore, unsupervised learning algorithms can be used for clustering or
for detecting anomalies, for example. In the following the focus is on
supervised learning.

The input for training a CNN can be in the form of a 2D image.
Predictions for an image classification problem are then the hopefully
correct labels of the given images, Neural networks can be trained
on a variety of tasks and depending on the task, a proper training
routine has to be developed to achieve a well-trained network able to
solve the defined task. In this section methods and parameters for the
training routine are discussed.
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predicted positive predicted negative

positive True Positive (TP) False Negative (FN)

negative False Positive (FP) True Negative (TN)

Table 2.1: This table gives an overview of the possible outcome of a predic-
tion. A positive prediction indicates that the corresponding sam-
ple belongs to a certain label, where a negative prediction indi-
cates that the sample does not belong to this label.

The training progress can be tracked with different type of metrics.
One of these metrics is the accuracy. It calculates the ratio of the total
number of true predictions and the total number of predictions

accuracy =
1

N

∑
C

(TP (C) + TN (C)) (35)

with N the total number of predictions. If the network predicts the
correct class C TP (C) = 1, a so-called true positive (TP) prediction,
otherwise TP (C) = 0. If the network predicts that the sample does
not belong to a considered class C correctly TN (C) = 1, this is called
a true negative (TN) prediction. The sum of (TP (C) + TN (C)) is there-
fore one or zero, depending of the outcome of the prediction and
the true class of a sample. Table 2.1 gives an overview of possible
outcomes of a prediction including false positive (FP) and false nega-
tive (FN) predictions.

For imbalanced data sets, that means different classes are repre-
sented by significantly different numbers of samples, the accuracy is
heavily biased towards the classes with the largest number of sam-
ples. This is because the accuracy takes just the TP and TN predictions
into account. Although, the network is not able to predict samples
of a minority class correctly, the network could still reach a high ac-
curacy of ∼ 99% (He, 2013). Consequently, the accuracy metric is not
well suited to measure the quality of the training process with an
imbalanced training data set. The precision

precision =

∑
C TP (C)∑

C (TP (C) + FP (C))
(36)

is taking FP predictions into account as well, and is therefore better
suited for an imbalanced data set. If the network predicts the wrong
class of a sample FP (C) = 1, otherwise FP (C) = 0.

To avoid training on an imbalanced training set, a common method
is to calculate class weights for each class in the training data set.
These weights ensure that samples of a minority class are of same
importance as samples of a majority class. Calculating class weights
is therefore recommended.

A second metric to track the quality of the training process is the
loss. The loss is calculated from the loss function (e. g. Equation 30).
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While metrics like accuracy and precision should increase, the loss
should steadily decrease during the training. Decreasing losses indi-
cate less parameter changes after each training iteration and, there-
fore, a converging network. A rising loss function, after forming a
global minimum, indicates overfitting. Tracking the loss can help there-
fore to reduce the risk of overfitting by introducing checkpoints. At
these checkpoints the training status of the network is saved. The
common used rule of a checkpoint is to save the parameters of the
network, if the loss of the current training iteration is smaller than
the loss of the previous iteration. Thus, if overfitting occurs the saved
network parameters are not affected.

Each training iteration is called a batch. The training data set is
divided into batches, which are sub-data sets with a certain amount
of samples, namely the batch size. After each batch, the entire set
of trainable parameters is adjusted. How much the parameters are
adjusted depends on the loss and on the so-called learning rate (LR).
A smaller LR means a finer adjustment of parameters. The LR is a
hyperparameter for the training algorithm used.

The main goal of train a neural network is to avoid over- and un-
derfitting the network and create a well generalized network. Going
through the training data set once is not sufficient. Instead, each sam-
ple of each class is shown to the network several times. These repeti-
tions are called epochs.

Beside the basic training procedure for a neural network, there are
different training methods. Some of those methods are sketched and
the idea behind them is explained in the following.

Pre-Training

The network can be pre-trained on a related data set to initialize the
weights and biases of the network. A related data set show similar
features like the training data set. To stay in the example of train a
CNN to recognize handwritten digits, a related data set could be a
set of circles, arcs, horizontal and vertical lines which are related to
different parts of digits. Instead of randomly initializing parameters,
train the network on a related data set and task, can help to improve
the performance of the network on the task it is actually built for. The
quality of the related data set is of similar importance like the actual
training data set. Note, that the degree of relationship between these
two data set is crucial for achieving high precision networks on the
desired task.

Transfer-Learning

Using a pre-trained network as a starting point for training the net-
work on the desired task is generally referred to as transfer-learning.
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The idea behind this type of training is to utilize the related informa-
tion in the related data set for the actual defined problem (Goodfellow
et al., 2016). While cats and dogs are two distinct animals, the overall
appearance of these two pets are evidently. Therefore, they are con-
sidered as related. Whereas, a cat and a fish cannot be considered as
related in general. The concept of transfer-learning can therefore be
applied to expand the abilities of the network. For example, a CNN

trained on recognizing cats and dogs is pre-trained for recognizing
wolves. All three classes have some characteristics in common, e. g. ,
four legs and fur, but differ in size and color, for example.

Within the scope of transfer-learning, there are a variety of ap-
proaches one can take. Freezing layers within the network is one
additional method to avoid parameter changes during training for
those layers. How many layers are frozen is an experimental task
or an educated guess and therefore a question of experience. Just
an amount of certain layers of the pre-trained network are used for
transfer-learning sometimes, while a set of new initialized layers are
put on top. In this case, the newly initialized layers are trained on
the output of the pre-trained layers, whereas the pre-trained layers
are not effected during training. There is no strict rule of how to ap-
proach transfer-learning.

Fine-Tuning

If the accuracy of the network reaches an appropriate level, the net-
work can be fine-tuned in a niche of the defined problem. Having a
network able to recognize cats and dogs, trying to classify a bear with
the same network will result in a FP prediction of one of the classes
cat or dog. Since the features of bears are similar to the features of cats
and dogs, fine-tuning can be used to extend the task of the network
to recognize cats, dogs and bears.

Similar to transfer-learning, there is no right or wrong for fine-
tuning a network. It is again an experimental task to figure out what
works best. The methods used for fine-tuning are also similar to
transfer-learning: Not affecting parameters during training by freez-
ing certain layers is one shared method. In addition, a smaller LR can
be used, applying fine adjustments to parameter which are not frozen.
One more hyperparameter to use for fine-tuning is the batch size. A
larger batch size reduces the number of parameter adjustments by
averaging over more samples during training. Combining different
methods in a way that improves the performance of a network in a
niche can be useful and time saving by no need to train a network
from scratch.
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(a) rotation (b) crop (c) vertical flip (d) horizontal flip

Figure 2.11: A set of four augmentation operations applied on an origi-
nal image. With augmentation the original image is transform-
ed in a different image preserving the characteristics of the
original. Augmentation operations could be (a) rotations, (b)
cropping, (c) vertical and (d) horizontal flipping. In this ex-
ample of a chess board, (d) does not preserve the characteris-
tics of the original image because of the unnatural scenario of
an upside down chess board and should therefore be avoided
for augmentation. The image was generated using Midjourney
(https://www.midjourney.com).

https://www.midjourney.com
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2.5 motivation

The amount and complexity of data is permanently increasing in the
future. This is also true for astronomy, where data from different
ground and space based instruments are collected and shared. This
will lead to the unprecedented opportunity to develop new ways of
analyzing data. Machine learning algorithms play an important and
increasing role in this regard. Neural networks become more and
more popular among astronomers to develop automated routines to
extract information from large data sets, for example to identify and
classify galaxies, stars and exoplanets (G et al., 2023; Walmsley et al.,
2022; Zhao et al., 2023).

In this work we develop a pipeline for automated detection and
classification of fundamental structures of the ISM in several wave-
length regimes simultaneously. This pipeline is called BScan. It lever-
ages machine learning algorithms to detect and characterize bubble-
like structures with the focus on SNRs and HII regions. The final goal
is to provide BScan with a set of images and get a list of detections as
a result. BScan is written in the programming language Python and
consists of parts which will be explained in part ii of this thesis.
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Part II

D E T E C T I O N A N D C L A S S I F I C AT I O N O F
B U B B L E - L I K E S T R U C T U R E S





3
D ATA

We use multi-wavelength data from different instruments and sur-
veys to detect and characterize bubble-like structures introduced in
section 1.2. The data are astronomical images of the MCs and the
Milky Way (MW), our own host galaxy. The performance of BScan
is heavily depending on high quality data. Details of these data are
given in the following.

3.1 infrared

The Spitzer Space Telescope is an infrared observatory in an earth-
trailing solar orbit (Werner et al., 2004). It was decommissioned in
2020 and provided data to study, e. g. , dust and dust formation in
SNRs (Matsuura et al., 2022; Rho et al., 2009). With its imaging capa-
bilities in the range of (3− 180)µm (Caltech, 2023), Spitzer images of
the Milky Way and the LMC are well suited for training porposes.

Figure 3.1: This Figure shows the cross-section of the Spitzer Space Tele-
scope with all hardware parts. From Werner et al. (2004).

The multiband imaging photometer (MIPS) is one of three instru-
ments of the Spitzer Space Telescope. It has a high sensitivity and a
large imaging field at 24µm, 70µm and 160µm with bandwidths of
5µm, 19µm, and µm, respectively (Rieke et al., 2004). With the survey
of the inner galactic disk with MIPS (MIPSGAL)1 the inner 248deg2 of
the Milky Way’s galactic plane was imaged. The images are taken at

1 https://irsa.ipac.caltech.edu/data/SPITZER/MIPSGAL/overview.html
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24µm and 70µm with a resolution of 6 arcsec and 18 arcsec, respec-
tively. In total MIPSGAL covers the galactic latitudes of −1◦ < b < 1◦

and longitudes of l < 69◦ and 292◦ < l. More information about
MIPSGAL can be found in Carey et al. (2009).

The infrared array camera (IRAC) is the second imaging instrument
beside the MIPS. It has a four-channel camera able to take broadband
images at wavelength of 3.6µm, 4.5µm, 5.8µm and 8.0µm. The res-
olution measured as the full width half maximum (FWHM) at these
wavelengths is 1.66 arcsec, 1.72 arcsec, 1.88 arcsec and 1.98 arcsec, re-
spectively. With its large field of view (FOV) and high sensitivity, IRAC

provides high quality images (Fazio et al., 2004). The galactic legacy
infrared midplane survey extraordinaire (GLIMPSE) I2 was taken by
the IRAC instrument, for example. It covers roughly 220deg2 of the
Milky Way’s galactic plane. The observations range between a lat-
itude of −1◦ < b < 1◦ and longitude of −65◦ < l < 10◦ and
10◦ < l < 65◦. In addition to the already mentioned surveys, the
surveying the agents of a galaxy’s evolution (SAGE) survey was take
by the MIPS and IRAC instruments and include approximately (7− 8)◦

of the LMC3 and ≈ 30deg2 of the SMC4. Figure 3.2 shows mosaic im-
ages of the LMC created from SAGE observations.

(a) IRAC: 8µm (b) MIPS: 24µm

Figure 3.2: The LMC recorded by the IRAC (a) and MIPS (b) instrument of
the Spitzer Space Telescope. Credit: Fazio et al. (2004) and Rieke
et al. (2004)

3.2 optical

The UM/CTIO magellanic cloud emission-line survey (MCELS) is a
deep imaging multiple emission-line survey of the MCs in the optical
regime (Smith C., 2000). As described in chapter 1.3, the MCs provide

2 irsa.ipac.caltech.edu/data/SPITZER/GLIMPSE/overview.html
3 irsa.ipac.caltech.edu/data/SPITZER/SAGE/overview.html
4 irsa.ipac.caltech.edu/data/SPITZER/SAGE-SMC/overview.html
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a unique laboratory to identify and classify structures of the ISM and
allow detailed studies of SNRs, for example. The MCELS images cover
the central (8× 8)◦ of the LMC (Figure 3.3 a) and (3.5× 3.5)◦ of the
SMC (Figure 3.3 b). Therefore, the vast majority of the gaseous extent
of these dwarf galaxies is visible (Smith C., 2000).

(a) LMC (b) SMC

Figure 3.3: The Large (a) and Small (b) Magellanic Cloud observed at the
optical emission lines Hα (red), [SII] (green) and [OIII] (blue).
Credit: Smith C. (2000)

In order to accomplish a resolution of (3− 4)" and a FOV of around
1◦, the survey leveraged the ground based Curtis Schmidt telescope
at Cerro Tololo inter-American observatory (CTIO) in La Serena, Chile
(see Figure 3.4). The narrowband images were taken with filters cen-
tered on the Hα (λc = 6563Å, ∆λ = 30Å), [SII] (λc = 6724Å, ∆λ =

40Å) and [OIII] (λc = 5007Å, ∆λ = 40Å) emission lines. In addition,
two continuum band images with filters centered at λc = 6850Å and
λc = 5130Å were taken to subtract the stellar background (Smith C.,
2000). Since the recording, these data were used by optical and multi-
wavelength studies to gain knowledge about the ISM in the MCs, see
e. g. Bozzetto et al. (2023), Maggi et al. (2019), and Yew et al. (2021).

Figure 3.4: This picture shows the Cerro Tololo Inter-American Observatory
at sunset. Credit: NOAO/NSF/AURA
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3.3 radio

In the radio regime a 120deg2 continuum image of the LMC from the
Australian square kilometre array pathfinder (ASKAP) is used. ASKAP

is a radio telescope, located in Australia, made out of 36 radio dish
antennas, each with a diameter of 12m (see Figure 3.5). A single dish
has a wide FOV of 13.9 × 12.1arcsec2. The array of antennas is ar-
ranged in two dimensions with a maximum baseline of 6km. With
this setup ASKAP is able to perform surveys in the frequency range of
700− 1800MHz (CSIRO, 2023). The data were taken at 888MHz and a
bandwidth of 288MHz with a spatial resolution of 13.9× 12.1arcsec2

(Figure 3.6 a). Further information about observing and data process-
ing can be found in Pennock et al. (2021).

Figure 3.5: This image shows ASKAP telescopes on site. Credit: CSIO.

A second radio mosaic image of the LMC comes from the Australian
telescope compact array (ATCA). With its antennas of 22m in diameter,
ATCA observes the radio sky from millimeters to a few centimeters
(CSIRO, 2023). The scientific objectives are, among others, studying
SNe and SNRs. For the purpose of this thesis, archival ATCA data at
1.4GHz = 21cm are used (Figure 3.6 b).

The ASKAP data in Figure 3.6 (a) is used to create a non-thermal
radio image. Therefore, thermal radio emission has to be subtracted.
Assuming that thermal radio and Hα emission originate from the
same electron population, the thermal component can be subtracted
from the non-thermal component by calculating a normalization fac-
tor for the Hα emission in regions which show thermal emission only.
This procedure is also done in (Bozzetto et al., 2023; Ye et al., 1991)
or Zangrandy et al. (2023, in prep.). We use the resulting non-thermal
radio image to detect and discriminate SNRs and HII regions.
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(a) ASKAP (b) ATCA

Figure 3.6: The LMC in radio as seen by ASCAP (a) and ATCA (b). Credit:
Pennock et al. (2021)

3.4 x-ray

The extended Röntgen survey imaging telescope array (eROSITA) is an
X-ray instrument on the Spectrum-Röntgen-Gamma (SRG) spacecraft.
It is a wide-field X-ray telescope with a large FOV compared to com-
petitors like Chandra or the X-ray multi-mirror-Newton (XMM-Newton)
(Predehl et al., 2021). From its L2 orbit, it is planned to perform in to-
tal eight eROSITA all-sky surveys (eRASSs) by scanning the hole sky
several times. At the time of writing, four of these surveys are fin-
ished. The scanning geometry is drawing a circle on the sky, with

Figure 3.7: The effective (vignetted) exposure map derived from the eRASS
1 in the 0.6to2.3keV energy band and galactic coordinates. From
Predehl et al. (2021).

SRG and, thus, eROSITA in its center. Adding up the circles creates a
sphere with its poles coinciding with the ecliptic poles. Consequently,
the effective exposure is the highest at the northern and southern
ecliptic poles (Figure 3.7). The LMC is luckily located near the south-
ern ecliptic pole, which makes eROSITA images the perfect set of data
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to study the LMC in the X-ray regime. eROSITA has seven cameras and
seven identical X-ray mirror assemblies co-aligned (see Figure 3.8 a),
collecting photons in the energy range of 0.2− 8keV (Sunyaev et al.,
2021). The energy and angular resolution of eROSITA is 80eV at 1.5keV
and 30 arcsec half-energy width (HEW) (Sunyaev et al., 2021), respec-
tively.

(a) eROSITA (b) XMM-Newton

Figure 3.8: The X-ray telescopes named eROSITA (a) and XMM-Newton (b)
are shown schematically, with their X-ray mirrors and detectors,
in this Figure. From ESA: XMM-Newton SOC (2022) and Predehl
et al. (2021).

(a) XMM-Newton (b) eROSITA

Figure 3.9: The images show roughly the same cutout of the LMC recorded
by XMM-Newton (a) and eROSITA after eRASS4 (b). Credit: ESA,
MPE

The second X-ray telescope used is the XMM-Newton. Launched in
1999, XMM-Newton observes the universe in the X-ray and optical-UV
regime (ESA: XMM-Newton SOC, 2022). It has three telescopes, each
equipped with an european photon imaging camera (EPIC) and sim-
ilar X-ray mirrors, focusing the incoming photons onto the cameras.
The observable energies of the XMM-Newton range from (0.2− 12)keV
with an angular and spectral on-axis resolution of 6 arcsec FWHM and
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E/∆E ≈ 20− 50, respectively (ESA: XMM-Newton SOC, 2022). With its
FOV of just 30 arcmin, XMM-Newton observes targets in single pointing
mode. These single observations can be setup as a mosaic image by
combining appropriate observations as done for the LMC. Figure 3.9
shows the LMC in X-ray as seen by XMM-Newton and eROSITA.
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4
T R A I N I N G A N D T E S T D ATA

We use the data in chapter 3 to create training samples to train a
neural network on detecting bubble-like structures in astronomical
images later on. The samples are grayscale sub-images with an image
size of (50× 50) pixel and a bubble-like structure in the center (Figure
4.1 a, b). In addition, samples for no-bubble-like structures are added
to the set of training samples (Figure 4.1 c). Each sample is classified
into one of three classes (or labels), namely:

• shell: a ring-like structure which is brighter at the edge than in
the center

• diffuse: an extended diffuse structure with a gaussian-like, or
plateau-like, profile and

• none: no bubble-like structure present.

(a) shell (b) diffuse (c) none

Figure 4.1: Each image shows an example of the defined classes shell (a),
diffuse (b) and none (c) created from the MCELS2 image showing
Hα emission.

4.1 training data set

The samples in the training data set (TRS) are created by defining re-
gions on each available astronomical image, by manually marking a
bubble-like structure. A guideline for the region definition process is
that the bubble-like structure covers roughly 70− 80% of the defined
region. The area of the remaining 20% of the image is used for aug-
mentation purpose (e. g. translations and cropping). Since there is no
quantitative way to classify the defined regions (samples) into the de-
fined classes at this point, we classify them by the human eye and
decide if the bubble-like structure shows one of the characteristics de-
scribed above or not. Structures of class none are created by randomly
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defining regions on the image without enclosing bubble-like struc-
tures. That means the class none includes point-like or filamentous
structures. Since there is no quantitative labeling process involved,
the classification process is depending on the human eye and is there-
fore biased. In real data, the class characteristics may not be clearly
distinguishable to the human eye. A diffuse bubble-like structure may
also have some signs of a shell and vise versa. The labels may there-
fore be different depending on the observer.
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Figure 4.2: The generation of the dataset represented in a flowchart. Defined
regions are used to create images for the training data set by cut-
ting out the regions and standardize the pixel values. Magneto-
hydrodynamic simulations are added to extend the dataset.

The defined regions are used to cut out the samples for the train-
ing data set. In some defined regions, bright structures dominate the
sample and the pixel values span over a wide range. This is the case
for low background images with bright point-like structures, for ex-
ample. The range of pixel values of each sample will be standardized
to [0, 1]. Compressing the pixel value range improves the training ef-
ficiency because of a more controlled back propagation (equations 23

and 24) and, therefore, more efficient parameter updates (equations
25 and 26) while training (see section 2.1.7). The process of generating
the training data set is summarized in the flowchart shown in Figure
4.2.

The samples created from the MW data, mostly results from the so
called Milky Way project (MWP). It is a citizen science project for vi-
sual classification of infrared (IR) bubbles in the MW. With a catalog
of 5106 IR bubbles (Simpson et al., 2012) as an outcome, the MWP is
used to detect interstellar bubbles with machine learning algorithms
like Random Forest as done in Beaumont et al. (2014). The MWP an-
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class shell diffuse none total

LMC 138 209 436 783

MW 120 61 545 726

MHDS 43 11 54

total samples 303 281 981 1563

Table 4.1: Number of training samples in each class originating from astro-
nomical images of the LMC and MW as well as from MHDS. In
total, there are 1563 samples in the training data set.

alyzed the GLIMPSE and MIPSGAL observed by Spitzer (see chapter 3).
Although, these data are in the IR regime, the MWP is also utilized
for this work together with the method described above. We do not
use every region marked as a bubble in the MWP for the training set,
because of the introduced bias and the fact, that the definition of a
bubble-like structure and the scientific objective in the MWP is differ-
ent compared to this work, see Simpson et al. (2012).

After going through the given data of different instruments and
galaxies and counting the number of samples in each class for the
LMC and MW, the total amount of training samples are 1509 (Table
4.1). In the context of machine learning, a set of 1509 original train-
ing samples is challenging for training a DNN. Note that most of the
samples are of class none.

We therefore tried to increase the number of training samples by
magnetohydrodynamic simulations (MHDSs). Thanks to a team from
the INAF – Osservatorio Astronomico di Palermo, Italy, simulated
samples of SNRs could be added to the training data set. These sim-
ulations use the models from Ustamujic et al. (2021b), Ustamujic et
al. (2021c), Orlando et al. (2019), Orlando et al. (2016) and Orlando
et al. (2012). With these models the resulting simulations of SNRs

have different morphologies and ages. If the line of sight (LoS) and
evolution time of the remnant is varied, different images of a SNR

can be generated. In addition to the described variations, simulations
with different parameters like the ejecta mass or explosion energy
can be calculated as well. The morphology are very similar in most
cases with these additional parameter changes. There are three im-
ages for every simulation: one optical and one X-ray image for the
hard ((1− 2) keV) and soft ((0.3− 1) keV) band, respectively (Figure
4.3). For the X-ray simulations, the ISM abundances from Maggi et al.
(2016) and a column density of nH = 3 · 1021cm−2 are taken into ac-
count. Abundances from the ejecta is assumed to be 10-times larger
than of those from the ISM and an ionization equilibrium is simulated.
The resolution of these synthetic images is comparable to the Chan-
dra X-ray Observatory. For the optical images, temperatures between
104K and 105K are considered.
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The total number of generated MHDS samples is 54 and is also listed
in Table 4.1. Therefore, the total number of training samples are not
increased significantly by the MHDSs.

(a) optical (b) soft X-ray (c) hard X-ray

Figure 4.3: These images show the optical (a), soft (b) and hard (c) X-ray
simulation of an SNR. Credit: Ustamujic S. et al. at the INAF.

4.2 kolmogorov-smirnov test

The presented procedure for the training data set results in three sets
of training samples originating from data of the Large Magellanic
Cloud, the Milky Way and the magnetohydrodynamic simulations
(see Table 4.1). In order to ensure that the created samples are dif-
ferent to each other, we perform a Kolmogorov-Smirnov test (KST).
This statistical rank-order test for two independent samples (Hodges,
1958) is named after Andrey Kolmogorov and Nikolai Smirnov and
compares the two underlying continuous distributions of the samples
which, in this case, are the pixel value distributions of two images
within a set of samples. The null hypothesis is that the two distri-
butions are identical. Therefore, the null hypothesis is rejected if the
distributions are different. The KST is applied using the ks_2samp func-
tion, implemented in the scipy.stats python package. To verify the test,
the ks_2samp function returns the p-value. Small p-values lead to a
rejection of the null hypothesis. We introduce a statistical significance
of p̂ = 0.05. If p ⩽ p̂ the null hypothesis is rejected and the samples
are considered as different. The probability that the tested samples
have the same distribution is therefore less than 5%. The value of
the statistical significance p̂ = 0.05 is considered as a compromise be-
tween being not too strict to reject, and not too kind to accept the null
hypothesis.

Figure 4.4 shows the results of the KST applied to every sample pair
in all three data sets listed in Table 4.1 and, therefore, to the entire
training set created by combining the single data sets. According to
the KST, 0.3% of the samples within the training data set are similar.
Similar samples are only found of class none. Note that the number
of samples in the none class is ∼ 55% of the total samples and, thus,
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Figure 4.4: KST applied on the entire data set of the Large Magellanic Cloud,
Milky Way and magnetohydrodynamic simulations combined in
one training data set. Less than 0.3% of the samples within the
data set are similar. In fact, similar samples are only found in
class none. Overall, samples in the training data set are consid-
ered as not identical according to the KST.

this class is over-represented. Moreover, samples of class none include
point-like structures with low background. Consequently, a sample
of small pixel values over the entire image except for the point-like
structure, could lead to a similar pixel value distribution, if point-like
structures are at a similar position.

4.3 data set for pre-training

The parameters of the network can be initialized randomly to train a
network for the first time. Pre-training (see section 2.4) is helpful to
adjust the random parameter values to a better starting point for the
final training. In this section we introduce two data sets for pre-train
the neural networks.

ImageNet

ImageNet1 is a database of more than 14 million hand-labeled RGB im-
ages. On average 1000 images visualize a set of cognitive synonyms
(synsets) in the lexical WordNet2 database (About ImageNet 2023). In
total, WordNet contains 117000 such synsets (About WordNet 2023).
Therefore, ImageNet is a useful data set for training large-scale ob-
ject recognition models to a good level of generalization. There are
no astronomical images included in its database. ImageNet is used
in Geyer-Ramsteck (2020) in form of the pre-trained VGG16 network
implemented in Keras3, a deep learning framework.

1 https://www.image-net.org/about.php
2 https://wordnet.princeton.edu/
3 https://keras.io/api/applications/vgg/
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Galaxy10

The Galaxy10 data set (G10) was created with the Galaxy Zoo (Lintott
et al., 2008; Lintott et al., 2011). Similar to the MWP, it used the public
to classify around 36000 galaxies. The labels, given by the participants,
are not accurate for each galaxy. Therefore, only 21830 galaxies were
selected, where 55% of the participants’ classifications fall into the
same class4, and classified into ten distinct classes (see Figure 4.5) for
the Galaxy10 Sloan digital sky survey (SDSS) data set (see Table 4.2).
The Galaxy10 SDSS set uses images from the Sloan Digital Sky Survey5

Figure 4.5: This image shows examples of the Galaxy10 SDSS data set. One
image is shown for each class listed in Table 4.2. From https:

//astronn.readthedocs.io/en/latest/galaxy10sdss.html.

Galaxies have a different astrophysical appearance compared to
bubble-like structures shown in Figure 4.1. Although they have a
bright point-like center and may show some spiral arms, they have
some characteristics in common, for example the circular shape. In or-
der to initialize the parameters, the network is pre-trained on a subset
of the G10. We mark the classes in Table 4.2 which we refer to as the
reduced Galaxy10 data set (G6). It should be noted that G6 is an un-
balanced data set. To train the network on the G6, class weights are
calculated for each class (see section 2.4).

Images from class number 3, 4, 5 and 6 are removed from the data
set, because of the extremely elongated shape of the galaxies. Galax-
ies showing spiral arms are used for the G6 because of their shell-
like characteristic. Since G6 contains just color images, they are trans-
formed into grayscale images merging the red, green and blue chan-
nel into one and normalize the pixel values to 255. The idea behind
using the G6 is to pre-train the network on a more astronomical data
set compared to ImageNet.

4 https://astronn.readthedocs.io/en/latest/galaxy10sdss.html
5 https://www.sdss.org/

https://astronn.readthedocs.io/en/latest/galaxy10sdss.html
https://astronn.readthedocs.io/en/latest/galaxy10sdss.html
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class nr. describtion total used class label

0 Disk, Face-on, No Spiral 3461 X A

1 Smooth, Completely round 6997 X B

2 Smooth, in-between round 6292 X C

3 Smooth, Cigar shaped 394

4 Disk, Edge-on, Rounded Bulge 1534

5 Disk, Edge-on, Boxy Bulge 17

6 Disk, Edge-on, No Bulge 589

7 Disk, Face-on, Tight Spiral 1121 X D

8 Disk, Face-on, Medium Spiral 906 X E

9 Disk, Face-on, Loose Spiral 519 X F

Table 4.2: Overview of the ten classes of the Galaxy10 SDSS data set. In
total 21830 samples are available with this data set. The six crosses
indicate if the samples of the corresponding class are used in the
reduced data set (G6) for pre-training. In the end there are 19296

samples in the pre-training data set. A short label for each class
used in the G6 is introduced.

4.4 test data set

In order to test the performance of the neural network, a test data
set (TES) is created. We created the test samples with the same meth-
ods and guidelines described in section 4.1 for the training samples,
but using the SMC data of the MCELS. To ensure the quality of the TES

a Kolmogorov-Smirnov test is applied as well. Figure 4.6 shows the
results. Similar to the training data set, most samples which are sim-
ilar to each other are found in class none (0.2%) while in the classes
shell and diffuse are no similar samples, according to the KST. It is im-
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Figure 4.6: KST for the test data set. Similar to the training data set, most
samples (0.2%) similar to each other are found in the class none.

portant to strictly separate the training samples from the test samples
to make sure that applying the network to the test samples is a blind
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test for the network. In Table 4.3 the number of test samples are listed.

class shell diffuse none total

SMC 32 38 30 100

Table 4.3: The number of test samples in each class originating from astro-
nomical images of the SMC. In total, there are 100 samples in the
test data set.

4.5 augmented data sets

In addition to the main data sets for (pre-) training and testing the net-
works, we generate augmented data sets. Assuming current detection
methods, by eye or algorithm based, e. g. , in Collischon et al. (2021),
to detect bubble-like structures in the ISM are missing faint or low con-
trast structures, the idea of the augmented data sets is to fine-tune the
trained networks later on, to detect faint bubble-like structures.

The basement of the augmented data sets is the entire training data
set (TRS) from section 4.1. Each original sample is augmented once,
thus, the size of the TRS is preserved. In the first step, samples of
bubble-like structures are augmented such that the brightness is re-
duced to (10−25)% of the original brightness, while keeping the pixel
value range the same. In the second step, the pixel values of the aug-
mented samples are added to the pixel values of a random original
none-sample. This results, in some cases, in faint bubble-like struc-
tures embedded in a background dominated region adding a new
characteristic to the augmented sample. Since the none-samples are
extracted randomly and some samples of the none class show hardly
no diffuse emission but bright point-like structures, this method re-
sults in faint bubble-like structures with less diffuse background as
well. In any case, the bubble-like structure is hardly visible by eye. In
addition to the brightness reduction, rotations with a rotation angle
of φ < 360◦ and small distortions are applied, to ensure a good aug-
mentation level without misrepresenting the bubble-like structures.
The pixel values are normalized as for the original training data set
described in section 4.1. These augmented samples are referred to as
the training data set of faint samples (TRS-F).

A second augmented data set of low contrast samples is gener-
ated from the training data set. Contrary to the TRS-F, the brightness
is maintained, but the pixel value range is compressed, resulting in
lower contrast. After applying augmentation, the samples have a con-
trast level of (10− 25)% compared to the original samples. The idea
is to simulate bubble-like structure which are similar to the present
background and, therefore, harder to spot in the image. This is more
important in crowded regions which are crossed by filaments and
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other diffuse background emission. These augmented samples are re-
ferred to as the training data set of low-contrast samples (TRS-LC).

The same procedure is done for the test data set. The correspond-
ing data sets are referred to as the test data set of faint samples (TES-F)
and the test data set of low-contrast samples (TES-LC). We used Aug-
mentor6, a python package specialized on augmentation, for all per-
formed augmentation transformations.

6 https://github.com/mdbloice/Augmentor, 16. May 2023
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5
D E T E C T I O N O F B U B B L E - L I K E S T R U C T U R E S

The BScan detection pipeline consists of a CNN, to detect bubble-
like structures, and a custom algorithm to scan the input image and
estimate the center coordinates as well as the extent of the bubble-
like structure. In this chapter we introduce all parts of the detection
pipeline.

5.1 architectures

The detector is a CNN trained for an image classification problem.
Throughout this thesis, we train and test different neural network
architectures (NNAs) to narrow down the best performing architecture
for the classification task. The frame of this task is to classify images
according to the given classes: shell, diffuse and none. In this section the
architectures are described and the ideas behind them are explained.

5.1.1 VGG16

The first architecture used for BScan is the well known VGG16, a very
deep convolutional network with 134 · 106 parameters used for large-
scale image recognition. More details about the architecture of the
VGG16 can be found in Simonyan et al. (2014). In short, VGG16 is
called after the Visual Geometry Group of the Department of Engi-
neering Science at the University of Oxford, which developed the net-
work for the ImageNet large scale visual recognition challenge 2014

(ILSVRC14). It achieved the first place in localization and the second
place for classification. The VGG16 consists of 13 convolutional lay-
ers with a kernel size of (3× 3) pixels, which is the smallest kernel
size to understand the concept of left or right, up or down and cen-
ter (Simonyan et al., 2014). These layers are grouped in five convolu-
tional blocks, each followed by a Maximum Pooling layer. After the
last Maximum Pooling layer, a FCNN is applied for the classification.
Geyer-Ramsteck (2020) tested and applied a pre-trained VGG16 on
LMC data in his master’s thesis. The training data set used in this
work, however, is the TRS shown in section 4. In fact, the size of the
TRS is too small to train a very deep neural network like the VGG16

from scratch. That is why Geyer-Ramsteck (2020) used the VGG16

pre-trained on the ImageNet data set (Russakovsky et al., 2015). As
already stated, the ImageNet data set cannot be considered as an as-
tronomy related data set.

65
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In the following, we introduce a set of smaller CNNs. By keeping the
basic idea of the successful VGG16 architecture but reducing the num-
ber of parameters, we create customized networks which are better
prepared to handle the small TRS. As stated in section 2.1.7, finding
the balance between the network complexity and the size of the train-
ing data set is important to train a network properly. Therefore, the
parameter reduction approach gives more control over the training
and performance of the customized networks used for the classifica-
tion task.

5.1.2 Custom Convolutional Neural Networks

The small convolutional neural networks (SCNNs) are composed of
convolutional blocks (Figure 5.1) with a certain number of stacked
convolutional layers. As mentioned in section 2.1.7, the level of de-
tectable features can be enhanced by stacking convolutional layers
on top of each other. We therefore vary the number of stacked con-
volutional layers depending on the block position within the SCNNs.
The general approach is to implement more convolutional layers per
block as deeper the block is located. Therefore, we expect that basic
features of an image are detected in the first few layers and more
elaborate features are detected in deeper layers. After a set of con-
volutional layers, a layer for batch normalization and an activation
function is implemented.

Convolution Convolution

BatchNorm Activation

MaxPooling

Figure 5.1: Illustration of a possible convolutional blocks. The block consists
of two convolutional layers and a maximum pooling layer at the
end. Feature map values are normalized by using batch normal-
ization before applying an activation function. The number of
convolutional layers, used kernels and the kernel size can vary
for each convolutional block.

Batch normalization is stabilizing and speeding up the training pro-
cedure. The ReLU activation function (Equation 20) is implemented
to calculate the activation of neurons. As an optional layer on top
of each convolutional block, a maximum pooling layer can be used
to focus on pronounced features. The idea of using maximum pool-
ing is to discriminate between different features present in different
classes (see characteristics listed in section 4). Maximum Pooling is
therefore predominantly used for deeper convolutional blocks. The
training data set in section 4 is set up to detect bubble-like structures



5.1 architectures 67

in the center of an image to improve the position estimation. Since
maximum pooling leads to translation invariance, using maximum
pooling layers contradicts the idea of the training data set to a certain
degree. Therefore, maximum pooling is only used on top of some
preferable deeper convolutional blocks due to its benefits (see section
2.1.7).

A FCNN is put on top of the last convolutional block for the clas-
sification process. The feature map of the last convolutional block is
flattened into a one dimensional vector. This vector is used as the in-
put for the FCNN. Each fully connected layer of the FCNN uses the ReLU

activation function. The amount of neurons used for a layer decreases
by a factor of two with each layer. In this part of the network, dropout
is used for regularization purpose. The last fully connected layer (the
output layer) of the FCNN has exactly as many neurons as number of
classes (C = 3). Every neuron represents one class. To interpret the
output of each neuron in the output layer as a probability, the soft-
max activation function (Equation 22) is used. Figure 5.2 illustrates
the FCNN of a SCNN.

Flatten Dropout Dropout

Figure 5.2: This image shows an illustration of the fully connected top of
the SCNN. This part of the network is responsible for classifying.
The feature map of the last convolutional block is flattened into a
one dimensional feature vector. The length of this vector is equal
to the used neurons in the first fully connected layer. For each
fully connected layer the number of neurons is reduced. Dropout
is used for regularization purpose.

5.1.3 Model Naming Convention

Throughout this thesis, different SCNNs are compared to each other to
find the best performing network. Therefore, we introduce a naming
convention to keep track on the configuration of the considered SCNN.
Every network architecture is named after the following guideline

SCNNij,

where ij denotes the number of convolutional blocks and the num-
ber of convolutional layers within the block, respectively. Figure 5.3
shows an example of a composed SCNN41. In addition, for each net-
work, which can be trained on different data sets, the abbreviation
for the data set is added at the end. If the network in the previous
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example is pre-trained on the G6, for example, it would be states as
SCNN41-G6.

50x50

ConvBlock1
8x50x50

ConvBlock2
16x25x25

ConvBlock3
32x12x12

ConvBlock4
64x6x6

128

64
32

3

Figure 5.3: The network architecture of a SCNN41. An input image of
50 × 50 pixel (left) is fed to the network. The network con-
sists of four convolutional blocks (ConvBlock). Each convolu-
tional block i generates mi feature maps of ni × ni pixels. The
first convolutional block generates m1 = 8 feature maps with
n1 × n1 = 50 × 50 pixels. On top of the convolutional blocks
fully connected layers of 128, 64, 32 and 3 neurons are used.

5.2 training procedure

Each SCNN is trained on an image classification task using three classes
(see section 4). The training process used throughout this thesis is
monitoring the loss for saving the model and avoiding the effect
of overfitting. In addition to the loss, the precision is recorded for
the entire training process. Due to the imbalanced training data set
(see section 4) class weights are calculated using the python package
sklearn. The implemented function compute_sample_weights computes
the weights w(C) for each class C

w(C) =
NS

NC ·NS(C)
, (37)

by taking the total number of samples NS, the number of classes NC

and the number of samples inside each class NS (C) into account. The
weights are used as an input for the training routine. As an optimizer
the ADAM algorithm is used with an initial learning rate LR = 0.001
together with the CCE loss function. For more control over the LR dur-
ing training, e. g. , for fine-tuning, we implement custom LR functions
(Figure 5.4). The first function is a step decay function, reducing the
LR after a certain number of epochs E ′. Each new LR is calculated as

LR’ = LR · S E
E ′ , (38)

where S is the step decay rate S ∈ [0, 1] and E = 250 the number of
epochs. A step decay rate of S = 0.75 sets the LR after E ′ epochs to
the 75% level of the previous LR. The lower S the steeper the decay of
the LR reducing the impact on the parameter updates during transfer-
learning, for example.
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A second custom LR function is an exponential decay function,
where the LR is reduced after each batch according to

LR’ = LR · exp(−E · k) (39)

with k the decay rate.
Beside these two decay functions, it is also possible to let the LR

constant during the entire training process. If no decay function is

0 50 100 150 200 250
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0.0008

0.0010

LR

(a) step decay

0 50 100 150 200 250
E

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

LR

(b) exponential decay

Figure 5.4: The step (a) and the exponential (b) decay function to control
the learning rate during training with an initial learning rate of
LR = 0.001. The step decay is initialized with a step size of E ′ =
25 epochs and a step decay rate of S = 0.75. For the exponential
decay a decay rate of k = 0.01 is used.

specified, the default decay rate is used. In this case the decay rate is
determined by the ADAM algorithm.

Furthermore, we arrange the training data set in a certain folder
structure. Every sample is placed inside a folder named after the true
class. Therefore, the number of folder is the number of classes to train
on. This folder structure is accessed by the training routine to import
the samples as the training data set. The training routine splits the
training data set into the training- and test data set automatically. To
control the size of the test data set, the input parameter split_factor is
used. Its value is in the range of [0, 1]. For the data sets used through-
out this work, we set a split_factor of 0.1. That means 10% of the entire
training samples are used for testing and 90% are used for training
the network. In addition, the training routine arranges the training
data set into batches. The batch size is defined with the input param-
eter batch_size. For the available training data set, the batch size is set
to 32. Before training, we rescale the imported samples in the train-
ing data set. Since the samples are grayscale images, the pixel values
are in the range of [0, 255]. However, the pixel values are rescaled
such that the values are in [0, 1]. Therefore, a rescaling factor of 1

255 is
applied.

Finally, the metrics used for evaluating the training progress are
the precision on the one hand, and the loss on the other hand. The
progress is saved to disk, if the loss is lower than the loss of previous
iterations. This way, overfitting can be avoided (see Figure 2.7). The
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Parameter type description

data_path string path to training data set

model_path string path to save model

model_name string name of the model to train

nclasses integer number of classes

epochs integer number of epochs

batch_size integer number of samples in a batch

split_factor [0, 1] fraction of samples used for testing

optimizer string optimizing algorithm

learning_rate [0,∞] initial learning rate

lr_decay_mode string learning rate decay function

step_decay_rate (S) float if lr_decay_mode is step_decay

step_size (E ′) float if lr_decay_mode is step_decay

decay_rate (k) float if lr_decay_mode is exp_decay

Table 5.1: This table gives an overview of the possible input parameter for
the training routine.

name of the model, the path to save the trained model and the path to
the training data set is given as input. Table 5.1 summarize the input
parameter for the training routine.

Transfer-Learning

If a pre-trained SCNN is trained on the training date set, all convolu-
tional blocks will be trained. Since the data set for pre-training (G6)
consists of more than three classes and the classes differ from the ones
in the training data set, the FCNN on top of the model is exchanged
with nclasses = 3 and random weights initialization. All parameter
listed in Table 5.1 are the same as for pre-training the network on the
G6.

Fine-Tuning

For fine-tuning the trained SCNN, all convolutional layers are frozen
except of the last one. Therefore, parameters in the frozen layers are
untouched, while parameters in the last convolutional block and the
FCNN are fine-tuned. The initial learning rate and the number of
epochs for fine-tuning are reduced.
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5.3 scanning and detecting algorithms

We call the implemented custom scanning algorithm the nested boxes
detection algorithm (NBDA). It scans the input image by defining a
grid, centered on the image. On every grid position, a certain number
of boxes with different sizes are nested into each other (Figure 5.5).
Each nested box frames a region to search for bubble-like structures
with a SCNN. The NBDA can be described in three parts:

In the first part, it defines a grid on the given input image of
size X× Y. The general structure of the grid is in rows, from left-to-
right, i. e. , in positive x-direction, and columns, from bottom-to-top,
i. e. , in positive y-direction. Each grid position is numbered, start-
ing from the lower left (x0,y0) to the upper right (xEOG,yEOG) cor-
ner of the input image, with end-of-grid (EOG) the last grid position
(xEOG < X,yEOG < Y), which marks the end of the NBDA (Figure 5.5).
This grid structure is referred to as an ϵ-shaped grid throughout this
thesis. The first grid position is defined by the maximum box size
Λ = (Λx,Λy) of the nested boxes and the distance from the edge
of the input image to the first grid position β = (βx,βy) in x- and
y-direction, respectively, and is calculated as(

x0

y0

)
=

(
βx + Λx

2

βy + Λy

2

)
, Λx,y,βx,y ∈N. (40)

Therefore, the parameter β defines an area of the image, which is
not covered by any box on any grid position. The distance between
two neighboring grid positions (xk,yk) and (xk+1,yk+1) is called the
grid size g. It is determined by the stride factor γ and the minimum
box size of the nested boxes λ = (λx, λy) in x- and y-direction, respec-
tively, and is calculated as

g =

(
gx

gy

)
=

(
γ · λx

γ · λy

)
(41)

with γ > 0 (γ ∈ R) and λx,y ∈ N. Starting from (x0,y0), the NBDA

moves the boxes on the grid. If (xEOG,yk) is reached, the algorithm
moves one column up (yk+1) and sets the x-coordinate back to the
starting point (x0). Therefore, the term ϵ-shaped grid. This procedure
continues till the EOG position in x- and y-direction is reached. The
entire algorithm is shown in Algorithm 1. The dimension of the grid
can be calculated using the discussed parameters as

(Gx,Gy) =

(
X− (λx + 2 ·βx)

γ · λx + 1,
Y − (λy + 2 ·βy)

γ · λy + 1

)
. (42)

Assuming an image of size (X, Y) = (100, 100), introducing a border
around the image of βx,y = 5px, a stride factor of γ = 1, a minimum
and maximum box size of λx,y = 10px and Λx,y = 50px, respectively,
results in a 5× 5 grid shown in Figure 5.5.
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βx

βy

(x0, y0)

(xeog, yeog)

γ · λx

γ · λy

Λ

λ

ds

Figure 5.5: This Figure shows how the grid (points) is placed on an image
and how the nested boxes (dashed) are defined at a grid position.
The grid is centered taking the defined border βx,y and the max-
imum box size Λ into account. Its size is defined by the stride
factor γ and the minimum box size λx,y by γ · βx,y. From the
first grid position (x0,y0) the nested boxes move on the grid as
indicated by the arrows till the end position (xρ,yρ) is reached.
The spacing ds between the nested boxes depends on the num-
ber of nested boxes and the minimum and maximum box size.

In the second part, the nested boxes are defined. There are n boxes
nested into each other on each grid position (Figure 5.5). The box size
varies from λ to Λ with a difference in size of

ds =
Λ− λ

n− 1
. (43)

Every box which is used to cutout out the data from the input image
at the current grid position with the shape of the defined box. Since
the nested boxes are used to search for bubble-like structures with
the SCNN on the corresponding grid position, the nested boxes are
organized in batches. The batches are then used to predict bubble-
like structures inside each batch. Algorithm 2 demonstrate how the
nested boxes and, thus, a batch is created.

Part three makes use of the SCNN to predict if there is a bubble-
like structure inside a batch or not. The batch element (nested box)
with the highest prediction probability is then considered further.
For this consideration the threshold (τ), the relative strength factor
(RSF) and the prediction probabilities for each class (pc) is of im-
portance. The threshold is a first order criteria defining the mini-
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Algorithm 1 Moving to the next grid position

Require: (x,y), γ > 0∧ γ ∈ R, λ ∈N, Λ ∈N,β ∈N

gx,gy ← γ · λx,γ · λy
if (x,y) within boundaries ∧ EOG = False then

nx = x · gx
if nx outside x-boundary then

nx = βx + Λx

2

ny = y · gy
if ny outside y-boundary then return (0, 0), EOG← True

else return (nx,ny), EOG← False

end if
else return (nx,y), EOG← False

end if
else return (0, 0), EOG← True

end if

Algorithm 2 Defining Nested Boxes

Require: n ∈N, λ ∈N,Λ ∈N

m← 1

if λ = Λ then n← 1

else
dsx,dsy = Λx−λx

n−1 , Λy−λy

n−1

end if
batch← (Λx,Λy) ▷ initialized as an array of shape (n, 2)
while m < n do

batch← (Λx −m · dsx,Λy −m · dsy)
m← m+ 1

end while return batch

mum probability needed to consider the prediction as a valid bubble-
like structure. With the RSF, a secondary order criteria is introduced.
For each batch element the relative strength index (RSI) is calculated,
which can be considered as an effective probability that a bubble-
like structure (pshell, pdiffuse) relative to no bubble-like structure (1−
(pshell + pdiffuse)) is detected. We define the RSI as

RSI =
max{pshell,pdiffuse}− min{pshell,pdiffuse}

1− (pshell + pdiffuse)
. (44)

Similar to the threshold, the RSF defines the minimum of the RSI in
the considered batch element. If the RSF is set to zero, the secondary
order criteria are fulfilled always. The RSF is therefore an optional cri-
terion. The predicted bubble-like structure is considered as detected,
if all active criteria are met. In that case, the extent is estimated ac-
cording to the box size of the considered batch element. The output
of Algorithm 3 is the name of the class, the prediction probability and
the extent of the detected bubble-like structure.
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Algorithm 3 Search for bubble-like structures in batch

Require: p ∈ [0, 1] ∧ p ∈ R, τ ∈ [0, 1]∧ ∈ R, RSF > 0 ∧ RSF ∈
R,batch
pmax ← calculate maximum probability over entire batch

if τ ⩽ pmax then
RSI← calculate relative strength index at batch of pmax

if RSF ⩽ RSI then
extent← box size of the batch element with pmax

class← predicted class
end if

end if return detection← extent, class, pmax

Algorithm 4 combines the different parts described above into one
algorithm. It is one core element implemented in BScan and returns a
list of detections. A single detection consists of the information about
the grid position (x,y), the extent (ex, ey), the name of the class C, the
detection probability pmax = p and a tag of the input image where
the structure is detected. Each input image shows different emission.
That is why the tag hints the detected emission coming from the de-
tected bubble-like structure. While the position and the extent define
a region framing the detected structure, the class, p and the tag char-
acterize the structure even further. This information can be written to
disk in form of a SAOImageDS9 (DS9) region file.

Algorithm 4 Nested Boxes Detection Algorithm

Require: image, n ∈N, γ > 0∧ γ ∈ R, λ ∈N, Λ ∈N, β ∈N

EOG← False

(x,y)= (0, 0)
while EOG = False do

(x,y),EOG← Moving to next grid position
if EOG = True then break
else

batch← Defining Nested Boxes
detection← Search for bubble-like structures in batch

end if
end while return detection

5.4 clustering and merging

With the NBDA described in 5.3, multiple detections of the same struc-
ture is possible. Depending on the input parameters, the grid size
g varies. The smaller the grid size the more multiple detections can
occur due to overlapping boxes on the grid. To reduce multiple detec-
tions and avoid overlapping regions detecting the same structure, we
cluster and merge the results after scanning the entire input image.
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S

M

Figure 5.6: If there are several single detections at different positions
(dashed, light grey) detecting the same source (S), the single de-
tections are clustered and merged (M). The merged cluster is
then considered as final detection of the source.

For defining a cluster, the k-nearest neighbor (kNN) algorithm by
Maneewongvatana et al. (1999) is used. This algorithm is implemented
into the Python package SciPy as the KDTree class1 and provides a
searchable k-dimensional tree (Bentley, 1975) to find members m of a
cluster efficiently.

Assigning a list of coordinates (x,y) and radii (r) of detected bubble-
like structures, the cluster algorithm (Algorithm 5) groups all struc-
tures within a maximum distance of R = f · r to one cluster, but
only if the corresponding bubble-like structures are predicted as the
same class. This way, detected structures of different classes can still
be detected at nearby grid positions. The factor f controls the maxi-
mum distance R between cluster members and, therefore, the level of
overlap of detected bubble-like structures. As a default value we use
f = 1 and, thus, all bubble-like structures with a maximum distance
of R = r are clustered by default.

After finding the members of a cluster, each cluster is merged into
one region (Figure 5.6). The merged region is then considered as the fi-
nal detection of a bubble-like structure. The merging algorithm takes

1 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.html
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Algorithm 5 Cluster Detections Algorithm

Require: list of detections (coordinates, extend, class), f > 0∧ f ∈ R

K← apply kNN-algorithm with f · extend
2

for cluster in K do
for member in cluster do

if class (member) = shell then
S← member, coordinates, extend, class,p(member)

else if class (member) = diffuse then
D← member, coordinates, extend, class,p(member)

else
continue

end if
end for

end for return concatenated S and D

the output of Algorithm 5 and calculates the mean probability over
all cluster members

p =
1

Nm

∑
m

pm (45)

where Nm is the number of members inside the cluster and pm is the
probability of the considered member to be of class shell or diffuse. We
estimate the final coordinates by the weighted mean of the member
coordinates (xm,ym) with pm as the weights

(x,y) =
(∑

m pm · xm∑
m pm

,
∑

m pm · ym∑
m pm

)
. (46)

Similar to the coordinates, we estimate the final extent of the bubble-
like structure by the weighted mean of the extent of the cluster mem-
bers

(ex, ey) =
(∑

m pm · em
x∑

m pm
,

∑
m pm · em

y∑
m pm

)
(47)

with em
x,y the extent of the corresponding member of the cluster in x-

and y-direction, respectively. These characteristics are then written to
a DS9 region file.

5.5 training and testing

In this section, we train networks of different depths on the training
data sets. To find the best performing network on detecting bubble-
like structures in astronomical images, the trained networks are tested
(validated) on the test data sets as well. In addition, the best perform-
ing network is used together with the NBDA to test the network on 30

test images to determine the NBDA default values.
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5.5.1 Random Parameter Initialization

We start with randomly initialized networks of type SCNNij (see sec-
tion 5.1.3) with different convolutional block numbers i ∈ [3, 9] and
convolutional layers per block j ∈ [1, 3]. Those SCNNs have a different
amount of trainable parameters, which are trained on the training
data set (TRS). The number of trainable parameters of these networks
range from around 50 · 103 to more than 15 · 106. In comparison, the
VGG16 has ∼ 138 · 106 trainable parameters (Simonyan et al., 2014).

The training parameters are the same for each network. This leads
to a better comparability. Table 5.2 summarize the parameters needed
for the training procedure and the corresponding value.

Figure 5.7 (a) and (b) show the history of the training progress for
the network SCNN71-TRS. The SCNN71-TRS is the best performing
network in the set of trained SCNNs with randomly initialized param-
eters (see Table 5.3). The precision of the SCNN71-TRS is steadily

Parameter value

nclasses 3

epochs 250

batch_size 32

split_factor 0.1

optimizer Adam

learning_rate 0.001

lr_decay_mode none

Table 5.2: Training parameters used to train the networks SCNNij-TRS with
i ∈ [3, 9] and j ∈ [1, 3].

increasing during training (Figure 5.7, a), whereas the loss decreases
with each epoch. Therefore, no overfitting is observed. A similar be-
havior is shown for validation (Figure 5.7, b), but larger fluctuations
are evident. These fluctuations become smaller with epochs. The max-
imum precision achieved for the SCNN71-TRS is 0.98 and 0.99 for
training and validation, respectively. Due to the larger precision fluc-
tuations during validation, the slightly higher maximum precision for
validation can be explained. The training history shown in Figure 5.7
is recorded for all trained SCNNs. We compare the maximum precision
reached during training to decide which SCNN is the best performing
network.

This comparison is done in Figure 5.8. Networks with one con-
volutional layer per block (j = 1) reach a higher maximum perfor-
mance, except for the SCNN31-TRS, which consists of only three
blocks (i = 3). The maximum precision reaches the highest values
for networks with i ∈ {6, 7, 8}. Those perform similar during train-
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Figure 5.7: Training history of the SCNN71-TRS. (a) During training, the
precision (red) is increasing and the loss (orange) is decreas-
ing steadily with epochs. The maximum precision is 0.98. There
is no sign of overfitting. (b) The validation of the training
progress shows similar behavior but bigger fluctuations in preci-
sion (green) and loss (blue). For validation the precision reaches
a maximum of 0.99.

ing. In contrast, networks with j = 3 have a tendency towards lower
maximum precision.

To test the performance after 250 epochs of training, the SCNNs are
applied to the test data set (TES) and the augmented data sets of faint
(TES-F) and low-contrast (TES-LC) samples. A confusion matrix (CM) is
calculated to visualize the performance on these test sets. The CM cor-
relates the true labels, given to the network, with the labels predicted
by the network (Figure 5.9). The diagonal shows the true positive (TP)
and true negative (TN) predictions. Each row of the CM sums up to
100%. If the diagonals display 100%, it means that all samples in the
test set are predicted properly with the corresponding label. On the
off diagonals the false positive (FP) and false negative (FN) predictions
are represented. If off elements are larger than zero, the network is
confused and not able to predict the test samples completely. The
FN prediction is especially problematic, because a bubble-like struc-
ture would be categorized as a no-bubble-like structure. This would
certainly lead to missing out of a bubble-like structure for further
analysis. In contrast, with a FP prediction, the network would still
recognize the bubble-like structure, but instead of categorizing the
diffuse bubble-like structure into the correct class diffuse, for exam-
ple, it would be categorized as a shell. At this stage, BScan focuses on
detecting bubble-like structures, the classes diffuse and shell are intro-
duced for further applications in the future. Therefore, FP predictions
are not as significant as FN predictions for this thesis. Testing each
network as described above is resulting in several CMs. To quantita-
tively describe the best performing SCNN, we calculate the weighted
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Figure 5.8: This plot shows the maximum precision for the trained net-
works of type SCNNij-TRS (number of convolutional blocks
i ∈ [3, 9], number of convolutional layers within a block j ∈ [1, 3]).
The maximum precision forms a plateau for networks with
i ∈ [6, 8]∧ j = 1. For j = 2 the maximum precision reaches its
peak at i = 6, while for j = 3 and larger i the tendency is to-
ward lower maximum precision. Just looking at the precision the
SCNN6 and SCNN7 perform similar during training.

mean of TP predictions over all classes and test sets. The weighted
mean performance Π is defined as

Π =

∑
tωt

∑C
m CMt

mm

C
∑

tωt
, (48)

where ωt is the weight for the corresponding test set t, C = 3 is
the number of considered classes and CM is the confusion matrix of
each test set. Results are shown in Table 5.3 for the four best perform-
ing SCNNs. We choose the weights ωTES = 1.00, ωTES-F = 0.75 and
ωTES-LC = 0.50 to take into account that the networks are trained on
the training data set TRS only and a lower performance on the test sets
TES-F and TES-LC is therefore expected. According to this performance
measure, the SCNN71-TRS is the best performing network with a
weighted mean performance of

Π (SCNN71-TRS) = 0.8. (49)

As demonstrated in Figure 5.9, the SCNN71-TRS performs rela-
tively well on the TES (a). While the network is confused between the
classes diffuse and shell, there are no FN predictions. In numbers, this
translates to 10% of samples labeled as diffuse are predicted as shells
and 13% of shells are predicted as diffuse. The test results getting
worse if the SCNN71-TRS is tested on the TES-F (Figure 5.9 b). While
the confusion between the two classes diffuse and shell is nearly the
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(b) TES-F
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(c) TES-LC

Figure 5.9: These Figures show the confusion matrices for the trained
SCNN71-TRS tested on the test data set (a), the test data set for
faint (b) and the test data set for low contrast (c) samples. While
the SCNN71-TRS is confident in classifying the class none, in case
(a), it is confused between the classes shell and diffuse. Compared
to (a), the SCNN71-TRS gets increasingly confused in case (b),
not only between diffuse and shells, it classifies bubble-like struc-
tures into class none as well. The result for (c) is highly confused.

Nr. network TES [1.00] TES-F [0.75] TES-LC [0.50] Π

1 SCNN71-TRS 0.92 0.81 0.53 0.80

2 SCNN51-TRS 0.93 0.85 0.42 0.79

3 SCNN81-TRS 0.92 0.81 0.48 0.79

4 SCNN92-TRS 0.88 0.80 0.56 0.78

Table 5.3: This table shows the top four performing networks on the test
data set (TES), the augmented data set for faint (TES-F) and low-
contrast (TES-LC) samples considering the weighted mean of true
positive predictions over all classes and test sets. For each test set,
the mean fraction of true positive predictions over all classes are
shown. The weighted mean performance Π is calculated using the
given weights in square brackets.

same compared to Figure 5.9 (a), the confusion between no-bubble-
like structures (none) and bubble-like structures (diffuse, shell) is in-
creasing. Around 11% of all predictions are FN predictions. These FN

predictions originate from predicting 7% of diffuse and 27% of shells
as class none. In fact, the confusion on the TES-LC (Figure 5.9 c) espe-
cially the FN predictions getting worse. In total, 39% of all bubble-like
samples in the test data set are predicted as no-bubble-like structures
(57% of class diffuse and 60% of class shell).

According to this test results, the SCNN71-TRS is able to predict
well-prepared samples present in the TES but cannot handle faint or
low-contrast samples as present in the TES-F or TES-LC, respectively.
Therefore, the SCNN71-TRS will be fine-tuned on the training data
sets for faint (TRS-F) and low contrast (TRS-LC) samples later on.
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5.5.2 Pre-Training of the SCNN71

The best performing network architecture in the previous section
5.5.1, the SCNN71, is pre-trained on the reduced Galaxy10 data set
(G6) to improve the training on the TRS further. The resulting network
SCNN71-G6-TRS will then be compared to the SCNN71-TRS. Both
networks will undergo the same testing procedure illustrated in sec-
tion 5.5.1. We summarize the results in Table 5.4.

The history of the pre-training is shown in Figure 5.10. The training
(Figure 5.10, a) and validation (Figure 5.10, b) precision reach similar
maxima of 0.87 and 0.88, respectively. But both precision values are
relatively small. One possible reason for the low precision could be
found in the fact that the architecture focuses on a tiny data set, there-
fore, it has only a few parameters and therefore lacks of the capabil-
ity to perform well on a bigger data set like the G6 (see section 2.1.7).
Although the precision is increasing steadily, the slope becomes sig-
nificantly smaller after around 100 epochs, making it computationally
expensive to improve and inefficient to train for longer. The loss show
again no sign of overfitting during training.
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Figure 5.10: The Training history of the SCNN71-G6. (a) The training
progress with the measured precision (red) and the loss (or-
ange). After 250 epochs the maximum precision is 0.87. The
measured loss decreases steadily, hence, no overfitting is ob-
served while training. (b) Validation of the network paint a sim-
ilar behavior in precision (green) and loss (blue) but with bigger
fluctuations which become smaller with epochs.

Testing the SCNN71-G6 on a sub data set of G6 leads to the con-
fusion matrix (CM) shown in Figure 5.11. It reflects the low precision
reached during training in the low fractions of TP predictions on the
diagonal. The most accurate predictions are made for smooth, com-
pletely round galaxies (see Table 4.2, class label B) and disk-like galax-
ies with tight spiral arms observed face on (see Table 4.2, class label D)
with 97% and 90% of TP predictions, respectively. For all other classes
the SCNN71-G6 is more confused with less than 90% of TP predic-
tions. Especially for class A and E, the face-on disk galaxies without
and medium spiral arms, the network is heavily confused. A look into
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the samples of these classes reveal possible reason related to the data
set. In case of class A, samples have a characteristic bright center sur-
rounded by a diffuse disk-like emission of the galaxy. This features
can also be found in some, but not all, samples of class B and C. The
bright center feature is also present in galaxies with spiral arms. This
could be an explanation why the SCNN71-G6 predicts class A for
samples over all classes. In case of samples with medium spiral arms
(class label E), the network is mainly confused by classes containing
spiral arms samples like in D and F. The purpose of pre-training the
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Figure 5.11: Confusion matrix for the pre-training of the SCNN71 architec-
ture on the G6 data set. The most accurate predictions are for
smooth, completely round galaxies (class label B) with 97%, fol-
lowed by the disk-like galaxies with tight spiral arms observed
face on (class label D) with 90%, of true positive predictions. For
all other classes the network is confused on a higher level with
less than 90% correct predictions.

SCNN71 architecture on the G6 is to initialize the trainable parameter
to avoid random initialization like in section 5.5.1. Although the pre-
training is not performing well considering the achieved maximum
precision and the resulting CM, we consider the initial goal as fulfilled.
In the next step the network is trained on the TRS.

Comparing the training history of SCNN71-TRS (Figure 5.7) with
the one of SCNN71-G6-TRS in Figure 5.12 (a) progress is similar. The
precision slope is small after 100 epochs but reaches already values
close to one. A steadily decreasing training loss shows no overfitting.
For the validation of the SCNN71-G6-TRS (Figure 5.12, b) the preci-
sion and the loss is almost constant over all epochs. The loss shows
an ascending trend after 200 epochs, which could be a hint for over-
fitting, but the loss values are relatively small, however. In addition,
the training routine saves the network to disk, only if the loss of the
current valuation is lower compared to previous losses preventing
the trained network from overfitting. Consequently, the status of the
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pre-trained SCNN71-G6-TRS, which is used in the following, is saved
at epoch 195 with a validation loss of ∼ 0.04 and a precision of ∼ 0.98.
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Figure 5.12: The Training history of the SCNN71-G6-TRS. (a) The precision
(red) and loss (orange) over epochs. There is no sign of overfit-
ting while training, since the loss is decreasing steadily. (b) The
validation of the training progress shows a slightly different pic-
ture. While the precision (green) is also slightly increasing, the
loss (blue) seems to have an ascending trend after 200 epochs.
However, the loss values over all epochs are small and can be
considered as nearly constant.

Applying the SCNN71-G6-TRS to the TES, TES-F and TES-LC results
in the CMs in Figure 5.12. Although the mean ratio of true positive
predictions on the TES is the same for both networks, the SCNN71-G6-
TRS and the SCNN71-TRS (see Table 5.4), it is worth to have a closer
look to the predictions made by the networks in comparison. The
TP predictions for the class shell increase from 87% predicted by the
SCNN71-TRS, to 97% predicted by the SCNN71-G6-TRS. The ratio of
TP predictions, however, decreases from 90% to 87% for the SCNN71-
TRS to the SCNN71-G6-TRS. Overall the gain of TP predictions is
larger than the loss. This test result is a significant improvement. The
pre-trained network SCNN-G6-TRS predicts slightly more bubble-
like structures compared to the SCNN71-TRS. This could be con-
sidered as a positive test results because more detections of bubble-
like structures could lead to more SNR candidates, for example. But
this comes with a cost, namely the smaller fraction of TN predictions
which has decreased from 100% to 93% of no-bubble-like structures
(none) predicted correctly. Additional bubble-like structures predicted
by the SCNN71-G6-TRS come most likely from filaments represented
in class none and fall into the category FP predictions. Testing the
SCNN71-G6-TRS on the TES-F (Figure 5.12 b) reveals a significant im-
provement of predicting bubble-like structures of class shell. The ra-
tio of true positives increases from 63% to 80% of correctly predicted
shells in the TES-F. The ratios for the class diffuse and none are the same
for both networks. Consequently, the FP predictions are less present
if applying the SCNN71-G6-TRS to faint bubble-like structures com-
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pared to applying the SCNN71-TRS. The opposite is true for applying
the SCNN71-G6-TRS to the TES-LC samples (Figure 5.12 c). While the
ratio of true positives and true negatives stay the same for the class
diffuse and none, the true positives for the class shell decreases, leading
to more FP predictions.
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(b) TES-F

dif
fus

e
no

ne she
ll

Predicted Label

diffuse

none

shell

Tr
ue

 L
ab

el

20 63 17

0 100 0

0 73 27

0

20

40

60

80

100

Pr
ed

ict
io

ns
 [%

]

(c) TES-LC

Figure 5.13: The confusion matrices for the trained SCNN71-G6-TRS tested
on the test data set (a), the data set for faint (b) and low contrast
(c) samples. Compared to the SCNN71-TRS, which is not pre-
trained, the test performance of the SCNN71-G6-TRS most im-
proved on the TES-F but becomes worse on the TES-LC. On the
TES the SCNN71-G6-TRS predicts some no-bubble-like struc-
tures, most likely filaments, as shells. This is not the case for
the SCNN71-TRS.

We summarize the discussion above in Table 5.4, where the mean
ratio of the TP predictions for each test set and the weighted mean
performance Π is calculated for each network. Applying the same
weights as in section 5.5.1 results in

Π (SCNN71-G6-TRS) = 0.81 (50)

for the SCNN71-G6-TRS. This means an improvement of the weighted
mean performance of ∆Π = 0.1 (compared to equation 49). A closer
look to the mean ratios of TP predictions reveal a larger gain on faint
than the loss on low contrast samples. Having this in mind, we con-
sider the pre-trained network SCNN71-G6-TRS as the better perform-
ing network.

5.5.3 Fine-Tuning

The pre-trained network SCNN71-G6-TRS is fine-tuned on the cor-
responding TRS-F and/or TRS-LC in the following. If the network is
fine-tuned on both augmented data sets, the name of the SCNN has
the label FLC at the end. The fine-tuned networks are tested on the
test data sets, and the weighted mean performance is calculated as
before.

We freeze all convolutional blocks for the fine-tuning process. Con-
sequently, the only part of the network which is affected while fine-
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Nr. network TES [1.00] TES-F [0.75] TES-LC [0.50] Π

1 SCNN71-G6-TRS 0.92 0.87 0.49 0.81

2 SCNN71-TRS 0.92 0.81 0.53 0.80

Table 5.4: This table shows the SCNN71 architecture with and without pre-
training in comparison. Both versions are tested on the test data
set (TES), the augmented data set for faint (TES-F) and low-
contrast (TES-LC) samples considering the weighted mean perfor-
mance as shown in Table 5.3. The pre-trained version has a slightly
better Π with ∆Π = 0.1. This small increase in performance comes
from the better performance on the TES-F.

tuning is the FCNN at the end of the SCNN. Table 5.5 summarizes the
parameters used for fine-tuning. Compared to the training parame-
ters in Table 5.2, changes have been made in order to preserve the
training progress of the previous sections: To avoid large changes to
the parameters of the FCNN we half the learning rate to LR = 0.0005.
In addition, we double the batch size to 64 reducing the amount of pa-
rameter updates during fine-tuning. Since it is shown that a number
of between 100 and 125 epochs are sufficient for training and pre-
training, we reduce the number of epochs for fine-tuning to E = 125.
This saves computational time.

Parameter value

nclasses 3

epochs 125

batch_size 64

split_factor 0.1

optimizer Adam

learning_rate 0.0005

lr_decay_mode none

Table 5.5: Parameters used to fine-tune the SCNN71-G6-TRS.

Calculating the weighted mean performance Π from the calculated
confusion matrices results in the values given in Table 5.6 for the best
three fine-tuned networks. For better comparison the same weights
are used as in section 5.5.1 and 5.5.2. The network SCNN71-G6-TRS-
F has improved ratios of TP predictions on all test data sets except on
the TES-F compared to the SCNN71-G6-TRS. This is surprising given
the fact that it is fine-tuned on the TRS-F. The largest improvement is
seen on the test data set for low contrast samples TES-LC. On this test
set the ratio of true positives has improved by about 39% (compare
Table 5.4). Measuring the weighted mean performance according to
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(a) training: TRS-F
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Figure 5.14: The Training history of the SCNN71-G6-TRS-F recorded for
training and validation on the data set for faint samples TRS-
F used for fine-tuning. The precision (red) and loss (orange) for
training re shown in (a). For validation the precision (green) and
loss (blue) are shown in (b).

equation 48 the SCNN71-G6-TRS-F is the best performing network
with

Π (SCNN-71-G6-TRS-F) = 0.85. (51)

Its weighted mean performance improved by about 5% compared
to the SCNN71-G6-TRS (equation 49). The history of the fine-tuning
progress is shown in Figure 5.14.

Nr. network TES [1.00] TES-F [0.75] TES-LC [0.50] Π

1 SCNN71-G6-TRS-F 0.93 0.84 0.68 0.85

2 SCNN71-G6-TRS-LC 0.91 0.83 0.53 0.80

3 SCNN71-G6-TRS-FLC 0.88 0.81 0.58 0.79

Table 5.6: Comparison of the fine-tuned versions of the SCNN71-G6-TRS
network. The best weighted mean performance is reached by fine-
tuning the network on faint training samples. For a better compa-
rability the same weights are used as for pre-training.

Figure 5.15 shows the CMs for the SCNN71-G6-TRS-F applied to all
three test data sets as done before. The CM for the TES reveals some
confusion between the class diffuse and shell and, therefore, some FP

predictions but no FN predictions. The test performance did not im-
prove on the TES-F which is also seen in the CM in Figure 5.15 (b) com-
pared to Figure 5.12 (b). The ratio of false negatives stayed the same
but predictions of type true positives decreased significantly for class
shell. A different situation is shown in the CM of Figure 5.15 (c), which
is the result of applying the SCNN71-G6-TRS-F on the TES-LC. In com-
parison to Figure 5.12 (c), the CM of the SCNN71-G6-TRS applied on
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the TES-LC, false negative predictions are reduced significantly from
about 45% to only 19% of all samples predicted as a no-bubble-like
structure, while the sample show actually a bubble-like structure.
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(c) TES-LC

Figure 5.15: The figure shows the confusion matrices of the fine-tuned net-
work SCNN71-G6-TRS-F applied on the test data sets TES (a),
TES-F (b) and TES-LC (c). Compared to the confusion matri-
ces of the pre-trained network SCNN71-G6-TRS the biggest im-
provement is shown in (c).

5.6 determine default values for the nbda

In this section we apply the best performing network SCNN71-G6-
TRS-F with the NBDA on a set of 30 astronomical images. For each
wavelength regime (radio, optical and X-ray) ten images are used
showing different bubble-like structures of class diffuse and shell near
the center. The central structure can be surrounded by filaments but
no additional bubble-like structure for this test. The images are of the
size (1000× 1000)px. A grid is defined on top of each image using
the NBDA. It is defined in a way that the bubble-like structure is not
centered on any grid position. An example is presented in Figure 5.16.

Applying the NBDA on each of the 30 images with the same grid
definition results in 30 possible detections per grid position. Since the
bubble-like structures are located near the center of each image, most
detections are expected for gird positions in the central region. Count-
ing and visualizing the detections per grid position in a 2D histogram
helps to determine default values of the NBDA parameters by focus-
ing on the central bubble-like structure and assuming detections in
the outer regions are false positives. Summing up the detections per
grid position in x- and y-direction results in a distribution for each
axis with an expected peak in the center of the grid. A sharp peak
with low tail is preferred in order to estimate the location and the
extent of the source later on. This approach is considered as a more
realistic test of the network together with the NBDA.

By changing a single parameter of the NBDA (see section 5.3) while
keeping all other parameters the same and apply it to the set of 30 im-
ages, the 2D histograms can be used to estimate the default values of
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Figure 5.16: An image with a bubble-like structure of class shell with an im-
age size of 1000× 1000px. The defined grid is using a minimum
and maximum box size λ = 50px and Λ = 500px, respectively,
and β = 25. The stride factor is set to one. Therefore, the bubble-
like structure in the center of the image is not centered on any
grid position.

the NBDA parameters. The minimum and maximum values of the pa-
rameters used in this section are summarized in Table 5.7. Note that
the minimum and maximum box size λ = 50px and Λ = 500px, re-
spectively, is fixed and depends on the expected extents of the bubble-
like structures in the input image. The border β = 25px is also fixed
and exclude certain areas at the edge of the input image (see Figure
5.5).

Description parameter min. max.

stride factor γ 0.5 1

number of nested boxes n 5 15

threshold τ 0 1

Relative Strength Factor RSF 0 108

Table 5.7: Summary of the minimum and maximum values to find the de-
fault values of the NBDA parameters. Considered parameters are
the stride factor (γ), the number of nested boxes (n), the threshold
(τ) and the relative strength factor (RSI).

5.6.1 Stride Factor

The stride factor γ is the first parameter which we investigate. It is
varied between values of γ = 0.5 and γ = 1.0. Values γ < 0.5 are ex-
cluded because γ determines the grid size. A smaller grid size means
a higher density of grid positions. Thus, with a smaller grid size the
likelihood of detecting the same bubble-like structure multiple times
increases. For stride factors γ > 1 the grid size becomes larger than
the minimum nested box λ and, therefore, smaller bubble-like struc-
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tures may not be detected. This is especially true for those of similar
extent as λ. Also bubble-like structures located between neighboring
grid positions could be missing with stride factor γ > 1.

Figure 5.17 shows the result of varying the stride factor with ∆γ =

0.25 but keep the number of nested boxes n = 10, the threshold τ = 0

and the RSF = 0. For smaller stride factors multiple detections are
evident. Comparing Figure 5.17 (a) and (c), for example, the distri-
bution maxima in x- and y-direction increases from around 100 for a
stride factor of γ = 1 to around 200 for a stride factor of γ = 0.5.,
while the maximum number of detections per grid position stays
nearly the same at around 25. This means the same bubble-like struc-
ture is detected at neighboring grid positions. Due to the clustering
and merging algorithm the multiple detections are not as problematic.
The choice of the right stride factor is therefore not as important as
other parameters, as shown later, but a question of computational re-
sources. A smaller stride factor means more computational time. We
set the default value therefore to

γD = 1.0. (52)

In the following the default value is used, which results in a 10 grid
on the test images.

(a) γ = 0.5 (b) γ = 0.75 (c) γ = 1

Figure 5.17: The 2D histograms to compare the NBDA results on the 30 test
images for different stride factors: (a) γ = 0.5 (b) γ = 0.75 and
(c) γ = 1

5.6.2 Number of Nested Boxes

The second parameter we study is the number of nested boxes n.
Applying the NBDA on the test images with the stated input param-
eters in section 5.6.1 but changing n with ∆n = 5 results in the 2D
histograms in Figure 5.18. Except slightly smaller numbers in Figure
5.18 (a) compared to (b) and (c), no significant changes in the x- and
y-distributions and the number of detections per grid position can be
found. This is expected, since the NBDA allows exactly one detection
per grid position. A larger number of nested boxes means a smaller
difference of the box sizes (see ∆s in Figure 5.5). This may play a role
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for estimating the extent of the detected bubble-like structure (see
section 5.4).

(a) n = 5 (b) n = 10 (c) n = 15

Figure 5.18: Resulting 2D histograms using different numbers of nested
boxes n = 5 (a), n = 10 (b) and n = 15 (c) on the test images.
The number of detections per grid position and the distribution
in x- and y-direction are similar in all three cases.

In order to determine the default value for the number of nested
boxes n, we apply the NBDA on the 30 test images again but with
a 1× 1 grid centered on the bubble-like structure. This way, the de-
tection of the bubble-like structure depends only on the box size. In
addition, the tested n is extended to n ∈ 5, 10, 15, 20, 25. The result-
ing detections on the single grid position are shown in Table 5.8. In
total 30 detections are possible, since there are thirty test images with
a defined 1× 1 grid. For n ∈ {10, 15, 20, 25} there are 27 bubble-like
structures detected. The three missing structures are of class shell in
the X-ray wavelength regime. Note that the training samples for X-ray
are far less compared to other wavelengths and mostly of class diffuse.
Therefore, samples of class shell in X-rays are underrepresented in the
training data set. This could explain the three missing detections. For
n = 5 additional bubble-like structures in the optical regime are not
detected, namely one of class diffuse and one of class shell. In this case
the size of the nested boxes may not match the size of the bubble-like
structure. Consequently, the structure size may not fulfill the criteria
of being roughly 80% of the box size used in chapter 4. This could
explain the additional missing detections. Because of the results in
Figure 5.18 and Table 5.8, we use

nD = 10 (53)

as the default value. It is the lowest number of nested boxes which
detects the highest number of central sources in the test images. The
determined default value is used from now on.

After testing the NBDA with different n, it has to be stated, that
the default value n = 10 cannot be considered as the best value for
every image. It highly depends on the size distribution of bubble-like
structures. The larger the difference in size the finer the division of
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n detections

5 25

10 27

15 27

20 27

25 27

Table 5.8: This table summarizes the number of detected bubble-like struc-
tures in the test images using a 1× 1 grid with different numbers
of nested boxes n ∈ {5, 10, 15, 20, 25}. The maximum number of
detections is reached the first time with n = 10.

the box sizes of the nested boxes. Keep in mind that a larger n comes
with a higher computational cost.

5.6.3 Threshold

The threshold is a primary parameter of the NBDA, since it sets the
minimum of the output of the network and, therefore, a lower limit
of a prediction of a bubble-like structure that can be considered as
detected. It is of importance to find a proper default value which is
not too low, to avoid low confidence detections, and not too high, to
miss detections which have a lower probability than one but are still
detections of high confidence. We show three meaningful results in
Figure 5.19, chosen from applying the NBDA to the 30 test images with
threshold values of τ ∈ {0, 0.5, 0.75, 0.8, 0.9, 0.95, 0.99}. For the thresh-
olds from τ = 0 to τ = 0.9 the maximum detections per grid position
in the center are nearly the same at ∼ 25, while the number of detec-
tions in the outer regions are decreasing. This means the tails of the
distribution in x- and y-direction show lower numbers, resulting in
a sharper peak near the grid center. Consequently, the detection of
the central bubble-like structure improves. For thresholds τ > 0.9 this
improvement is not as significant, but the maximum detections per
grid position in the central region decreases to around 18, which indi-
cates that detections of the central bubble-like structure are rejected
because of a high threshold. According to this analysis we set the
default threshold to

τD = 0.9. (54)

5.6.4 Relative Strength Factor

The relative strength factor (RSF) is an optional, and therefore sec-
ondary parameter which is similar to a threshold (see section 5.3). It



92 detection of bubble-like structures

(a) τ = 0 (b) τ = 0.9 (c) τ = 0.99

Figure 5.19: This Figure shows three meaningful results of the NBDA vary-
ing the threshold from τ = 0 up to τ = 0.99. From τ = 0 to
τ = 0.9 the detection quality of the central bubble-like struc-
ture improves because detections in the outer regions decrease
while the detections per grid position stay nearly the same. For
τ > 0.9 some detection of the central structure is rejected be-
cause of a high threshold. This leads to lower detection per grid
position in the central region. The default value is set to τ = 0.9.

sets the lower limit of the RSI calculated in equation 44. The goal of
this part of the analysis is to improve the detection quality of the cen-
tral bubble-like structure further. That means reducing the detections
in the outer regions while keeping the peak of the detection distri-
bution in x- and y-direction nearly at the maximum of 27 detections
(from Table 5.8). This should improve the precision of the estimated
coordinates as well. The NBDA is applied with the default values de-
termined so far and RSF values of RSF = 10k with k ∈ [1, 8]. The
values for the RSF are arbitrary but fulfill the goal of this analysis.
Figure 5.20 shows the 2D histograms for RSF = 10 (a), RSF = 105 (b)
and RSF = 108 (c). The results shown in Figure 5.20 (a) show sim-
ilar results compared to Figure 5.19 (b) meaning low values for the
RSF have a small impact on the detection quality. With much higher
values (Figure 5.20 b) the detections in the outer regions become less
while the total number of detections near the center are about 27. In-
creasing the RSF even further reduces the number of detections in the
outer regions but rejects detections from the central region and re-
duces the number of bubble-like structures in the center to around 15.
Consequently, we set the default value for the RSF to

RSFD = 105. (55)

Because of arbitrary large numbers for the RSF, it is hard to find the
proper value for a specific image. Small changes to the RSF have
hardly no impact on the results. This circumstance make it even
harder to set the right value for the RSF according to the used input
image. It is therefore recommended, to use the RSF carefully.
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(a) RSF = 10 (b) RSF = 105 (c) RSF = 108

Figure 5.20: The 2D histograms of three meaningful results of applying the
NBDA with different relative strength factors (RSF) to the test
images: (a) RSF = 10, (b) RSF = 105 and (c) RSF = 108. The
default value is set to RSF = 105.

5.7 summary

In this chapter, we introduced the network architectures of the SCNNs

and we trained networks of different depths on the training data sets.
The trained networks were tested to find the best performing SCNN us-
ing the weighted mean performance Π, a metric we have introduced
in this thesis. According to this metric the SCNN71-G6-TRS-F, a pre-
trained and fine-tuned network, has a performance of Π = 0.85 taking
faint and low-contrast samples into account but using lower weights
for those samples to calculate the weighted mean performance. To
put this performance in perspective, established networks, e. g. the
VGG16, mentioned in section 5.1.1, has a valuation error of around
9% (Simonyan et al., 2014) on its trained task. Considering the mean
true positive and negative predictions given in Table 5.6, 7% of predic-
tions for the TES test set fall into the false positive and false negative
category. These false predictions can be considered as errors. For the
TES-F and TES-LC these errors are significantly worse with around 16%
and 32%, respectively. Depending on the considered test set the er-
rors of the SCNN71-G6-TRS-F can be considerably higher compared
to the VGG16.

Description parameter default value

stride factor γD 1

number of nested boxes nD 10

threshold τD 0.9

Relative Strength Factor RSFD 105

Table 5.9: Table of the determined default values for the NBDA.

In addition to the training of the SCNNs, we introduced the nested
boxes detection algorithm (NBDA). This algorithm calculates a grid
on the input image and a batch of nested boxes on each grid position.
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In combination with the SCNN71-G6-TRS-F, it can be used to detect
bubble-like structures in a 2D input image by return a prediction of
a bubble-like structure for each nested box. Table 5.9 summarizes the
default values for the NBDA determined in section 5.6. These default
values cannot be considered as the perfect values for applying the
NBDA on every image, but it should be a good starting point to apply
the NBDA to an astronomical image.
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C L A S S I F Y I N G D E T E C T E D S T R U C T U R E S

Applying the NBDA on all available images in the optical, radio and
X-ray regime, results in detections of bubble-like structures for each
input image. We combine these results and compare them across the
considered images to make it possible to classify the detected struc-
tures into fundamental structures of the ISM. Our focus, however, is
on SNRs and HII regions.

In the following chapter, we train a second neural network on a
different classification task and refer it to the classifier of bubble-like
structures, or classifier for short. The architecture of the classifier is
shown in section 6.1. While the data sets for training and testing the
network are discussed in section 6.2, the training procedure is pre-
sented in section 6.3. In the last section 6.4 of this chapter, the bridge
between the NBDA and the classifier is explained.

6.1 classifier architecture

The network used as classifier is a fully connected neural network
(FCNN) discussed in section 2.2 and the principle of the architecture is
shown in Figure 2.2, for instance. It expects a one-hot encoded input
feature vector of length six. Each feature is therefore represented by
a one or a zero meaning the feature is fulfilled or not. The classifier is
limited to exactly six features which will discussed in the next section.
Each of the five layers of the FCNN uses the ReLU except of the output
layer, which uses the Softmax activation function. The output of the
classifier can therefore be interpreted as a probability and each output
neuron represents one type of bubble-like structure, similar to the
FCNN used for the SCNNs (see section 5.1.2). The entire network has
17100 trainable parameters and is therefore a small FCNN.

6.2 training and test data

The training and test data set for the classifier is a set of feature vec-
tors. Each vector characterizes a detected bubble-like structure accord-
ing to the fulfilled features. There are six features and six labels. The
features are shown in Table 6.2, which is used as a look-up table for la-
beling the feature vectors. The corresponding labels are summarized
in Table 6.1.

The first feature tracks if there is a bubble-like structure detected
at a certain position in the Hα line emission image. If this is the case,
the first element of the feature vector is set to one. Consequently, this

95
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Description Features Label

considered as a SNR PFG SNRc

likely a SNRc PF + SFG likely

candidate of a SNRc PF + SF candidate

unlikely a SNRc PF unlikely

considered as HII region Hα + X-ray HII

other bubble-like structures SF/SFG other

Table 6.1: The six labels which characterize the detected bubble-like struc-
ture and a brief description what the label means. The features
needed to label the bubble-like structures accordingly is also given
(P/SF: primary/secondary feature, P/SFG primary/secondary
feature group)

feature can only be fulfilled if the NBDA is applied to an image show-
ing Hα line emission. This procedure is done in the correct order for
[SII] and [OIII] line emission, non-thermal radio as well as for X-ray
emission (Table 6.2). Thus, the first five elements of a feature vector
are directly related to emission in a certain band. It should be high-
lighted, that the radio feature is tracking the non-thermal radio emis-
sion coming from the bubble-like structure. It is therefore required to
apply the NBDA to a non-thermal radio image. The sixth feature tracks
the ratio between [SII] and Hα emission, which is enhanced for SNRs

(see section 1.2.5). As a default value we use [SII]/Hα > 0.67, although
0.4 would be sufficient for isolated SNRs (Kavanagh et al., 2016). The
ratio is estimated by dividing the available images for [SII] and Hα

line emission and calculating the median ratio in the region of the
detected structure. Therefore, the [SII]/Hα ratio can be underestimated
or overestimated depending on the ratio between the estimated and
the real extent of the detected structure.

6.2.1 Creating the Look-Up Table

Each feature vector has in total six features and is one-hot encoded,
that means each feature value is either one or zero. Consequently,
there are 26 = 64 possible feature combinations which we show in
Table 6.2. Every combination is labeled according to Table 6.1. The
classifier is focused on SNRs, at the moment and, thus, the labels likely,
candidate and unlikely are considered as a grading of how likely it is
that the detected bubble-like structure could be a SNR indeed.

We divide the features into primary features (PFs) and secondary
features (SFs) which form primary feature groups (PFGs) and secondary
feature groups (SFGs), respectively. A PFG is necessary to label a fea-
ture vector as a SNRc. SFGs, however, are not absolutely necessary to
classify a feature vector as SNRc, but it adds value to the detection.
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The non-thermal radio, X-ray and the [SII]/Hα ratio, together with the
Hα and [SII] emission line features, are primary features. Since SNRs

show at least two of these features, a PFG consist of at least two pri-
mary features. Secondary features are the single Hα, [SII] and the
[OIII] emission line features. Any combination of the secondary fea-
tures form a SFG. If the [SII]/Hα ratio feature is fulfilled (1) but one
of the emission line features Hα or [SII] is missing, it is referred to
as contradictory prime feature and is considered as a SFG. If both
emission line features or the [SII]/Hα ratio feature itself is missing, it is
referred to as a contradictory secondary feature and cannot be part
of a SFG. Which features, or feature combinations, are required for
which label is summarized in Table 6.1.

An example of a SNRc is the feature vector with the ID 25 in Table
6.2. All features are zero except of two primary features, namely the
PFG of the non-thermal radio and X-ray feature. A feature vector with
one primary feature only and at least one secondary feature is labeled
as likely. The ID 42 in Table 6.2 is a feature vector with exactly one
primary (non-thermal radio) and a contradictory prime feature with
the [SII] emission line feature missing, a SFG. Therefore, it is labeled
as likely. As stated before, the missing [SII] line emission feature does
not necessarily mean that there is no [SII] emission coming from this
region, but was simply not detected by the NBDA. With a more de-
tailed analysis of the considered region, e. g. as shown in Zangrandi
et al. (2023, in prep.), there could be [SII] emission spotted. Therefore,
the label likely is introduced. A vector with the label candidate has
again a primary feature and only one secondary feature, that means
the feature vector has no SFG. An example would be the feature vec-
tor with the ID 13 in Table 6.2. Feature vectors which show just a
primary feature are labeled as unlikely (e. g. ID 9). All other bubble-
like structures showing no primary features are labeled as class other.
There is one exception, namely the scenario of a feature vector with
an Hα and X-ray feature, which is labeled as a HII region. This fea-
ture combination appears only one time in Table 6.2 and has the ID
18.

Table 6.2: This table shows all 64 feature vectors and the corre-
sponding labels which are used for simulating the train-
ing and test data set. It can also be used as look-up ta-
ble.

1 0 0 0 0 0 0 other

2 1 0 0 0 0 0 other

3 0 1 0 0 0 0 other

ID Hα [SII] [OIII] Radio Xray [SII]/Hα LABLE

Continued on next page
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Table 6.2: This table shows all 64 feature vectors and the corre-
sponding labels which are used for simulating the train-
ing and test data set. It can also be used as look-up table.
(Continued)

4 1 1 0 0 0 0 other

5 0 0 1 0 0 0 other

6 1 0 1 0 0 0 other

7 0 1 1 0 0 0 other

8 1 1 1 0 0 0 other

9 0 0 0 1 0 0 unlikely

10 1 0 0 1 0 0 unlikely

11 0 1 0 1 0 0 unlikely

12 1 1 0 1 0 0 unlikely

13 0 0 1 1 0 0 candidate

14 1 0 1 1 0 0 candidate

15 0 1 1 1 0 0 candidate

16 1 1 1 1 0 0 candidate

17 0 0 0 0 1 0 unlikely

18 1 0 0 0 1 0 HII

19 0 1 0 0 1 0 unlikely

20 1 1 0 0 1 0 unlikely

21 0 0 1 0 1 0 candidate

22 1 0 1 0 1 0 candidate

23 0 1 1 0 1 0 candidate

24 1 1 1 0 1 0 candidate

25 0 0 0 1 1 0 SNRc

26 1 0 0 1 1 0 SNRc

27 0 1 0 1 1 0 SNRc

28 1 1 0 1 1 0 SNRc

29 0 0 1 1 1 0 SNRc

30 1 0 1 1 1 0 SNRc

31 0 1 1 1 1 0 SNRc

32 1 1 1 1 1 0 SNRc

33 0 0 0 0 0 1 other

34 1 0 0 0 0 1 other

ID Hα [SII] [OIII] Radio Xray [SII]/Hα LABLE

Continued on next page
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Table 6.2: This table shows all 64 feature vectors and the corre-
sponding labels which are used for simulating the train-
ing and test data set. It can also be used as look-up table.
(Continued)

35 0 1 0 0 0 1 other

36 1 1 0 0 0 1 unlikely

37 0 0 1 0 0 1 other

38 1 0 1 0 0 1 other

39 0 1 1 0 0 1 other

40 1 1 1 0 0 1 unlikely

41 0 0 0 1 0 1 unlikely

42 1 0 0 1 0 1 likely

43 0 1 0 1 0 1 likely

44 1 1 0 1 0 1 SNRc

45 0 0 1 1 0 1 candidate

46 1 0 1 1 0 1 likely

47 0 1 1 1 0 1 likely

48 1 1 1 1 0 1 SNRc

49 0 0 0 0 1 1 unlikely

50 1 0 0 0 1 1 likely

51 0 1 0 0 1 1 likely

52 1 1 0 0 1 1 SNRc

53 0 0 1 0 1 1 candidate

54 1 0 1 0 1 1 likely

55 0 1 1 0 1 1 likely

56 1 1 1 0 1 1 SNRc

57 0 0 0 1 1 1 SNRc

58 1 0 0 1 1 1 SNRc

59 0 1 0 1 1 1 SNRc

60 1 1 0 1 1 1 SNRc

61 0 0 1 1 1 1 SNRc

62 1 0 1 1 1 1 SNRc

63 0 1 1 1 1 1 SNRc

64 1 1 1 1 1 1 SNRc

ID Hα [SII] [OIII] Radio Xray [SII]/Hα LABLE
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6.2.2 Simulating Data Sets

We use the look-up table 6.2 to simulate a training and test data set
for the classifier. There is no overlap between the 64 feature vectors
and there is no bias because of a subjective decision-making of an
observer. This is in contrast to the training and test data set of the
SCNNs in section 4. Usually, it is difficult to simulate training samples
to train a neural network, because the simulated samples need to be
as realistic as possible to not train the network on features which do
not exist in reality. This would lead to a high training but a poor real
life performance of the network. If the simulated and the real feature
vectors are identical, the network can be trained effectively for the real
application. Simulating realistic feature vectors as shown in Table 6.2
is indeed possible. The classifier can therefore be trained effectively
with the simulated training data set.

For each data set a numpy array, containing a certain number of
feature vectors, is simulated by randomly creating features of values
{0, 1}. These simulated feature vectors are labeled according to the
look-up table. For the FCNN used as classifier a set of 100000 training
samples is sufficient to train the network. This means 10000 validation
samples are simulated, which corresponds to the usual fraction of
10% of the training samples. Furthermore, a test set of 1000 feature
vectors is simulated to test the network after the training.

6.3 training and evaluation

The training procedure for the FCNN is much simpler than the one
for the SCNNs, since the training data set is large compared to the
small network. Furthermore, the training data set is of better quality,
because of the data structure discussed in section 6.2.2. These factors
make it relatively easy to train the classifier.

Parameter value

nClasses 6

Epochs 10

BatchSize 64

Optimizer Adam

LearningRate 0.001

EarlyStopping yes

Table 6.3: Training parameter and their values used for training the classifier.

Table 6.3 give an overview of the used training parameters. Due to
the large training data set, the FCNN is trained with fewer epochs, but
a larger batch size compared to the SCNNs. In addition, we use early
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stopping (see section 2.1.7) to avoid overfitting and reduce computa-
tion time. After the network reaches a precision higher than 99.9%
the model is saved to disk and the training is finished. This is the
case after two epochs only with a loss of 3.7 · 10−4, which shows the
effective training of the FCNN.
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Figure 6.1: The confusion matrix of the classifier network. It shows now con-

fusion between different labels. All predicted labels match the
true label.

The network is tested on the simulated test data set after training
and a confusion matrix (CM) is calculated. The CM is shown in Fig-
ure 6.1. In contrast to the CMs shown in section 5.5, the classifier is
not confused between different classes (labels) at all. Consequently,
all predicted labels match the true labels. If a feature vector character-
ize the detected bubble-like structures correctly, the classification is
correct with a high probability of > 99.9%. The input feature vectors
for the classifier depend on the NBDA results and have to be created
before. Feature vectors are set up by comparing all NBDA results and
combine them into a set of features. This process is explained in sec-
tion 6.4 and is called the bridge.

6.4 the bridge

The NBDA detects bubble-like structures in different images. The brid-
ge loops over all available images and detections for each of these
images, matching the coordinates to generate the corresponding fea-
ture vector for this specific bubble-like structure.

Results of the NBDA are in the form of a DS9 region files. On each im-
age a bubble-like structure is detected at a certain grid position with
a certain box framing the region of the structure. The grid positions
and therefore the results of the NBDA are in pixel coordinates. We use
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these results to create a mask of detected structures. For the match-
ing of coordinates of different images, which may have different pixel
sizes, a world coordinate system (WCS) is required to transform pixel
coordinates to world coordinates. For images without such a WCS the
bridge and, therefore, the classification of bubble-like structures does
not work. While looping over the detected bubble-like structures of
an image, the masks of all the other images are checked if there is
a bubble-like structure detected as well. If that is the case we set the
corresponding feature to one, otherwise it is set to zero. The region of
the corresponding structure is flagged as part of the same detection.
This avoids multiple feature vectors characterizing the same bubble-
like structure. Once the bridge looped over all NBDA results an array
of feature vectors is created. This array is than used as input for the
classifier.

6.5 summary

In this chapter we introduced a second neural network, the classi-
fier, to classify the detected bubble-like structures. For that purpose
a look-up table with focus on SNRs was created and used as the base-
ment of simulations of feature vectors. The resulting data were used
for training and testing the classifier. It was shown that the precision
is higher than 99.9%. Nevertheless, the classification depends on the
performance of the NBDA, which by far does not show a precision as
high as the classifier. The bridge combines the detection with the clas-
sification pipeline of BScan. The overall BScan performance is tested
in the following part iii of this thesis.
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A P P LY I N G B S C A N T O A S T R O N O M I C A L I M A G E S

We apply BScan to astronomical images in this chapter. BScan uses a
configuration file to set all necessary parameters. The configuration of
BScan is presented in section 7.1. BScan is then applied to the MCELS

data of the SMC (section 7.2) and on radio, optical and X-ray data for
the LMC (section 7.3). Results of the SMC are used to compare BScan,
as we presented in this thesis, to the previous version described in
Geyer-Ramsteck (2020). Since the previous version is not able to clas-
sify detected structures, the NBDA and the previous BScan version is
applied to the SMC with comparable parameters. Data from the SMC

were not used to train both versions. Thus, applying BScan to the op-
tical images of the SMC is a blind test for both. Results of the LMC,
however, are used to test the BScan performance including the clas-
sification. Many samples in the training data set originate from the
LMC. Applying BScan on images of the entire LMC is therefore not a
blind test. Nevertheless, it is the only galaxy with images available
for all wavelengths needed for classification.

7.1 the configuration file

The configuration of BScan is done via a configuration file named con-
fig.ini. BScan is called via command line prompt. Part of this prompt
is the relative path to the mentioned configuration file. This way, the
BScan configurations are done all in one place. The config.ini file is
divided into four sections. Each section provides a set of certain pa-
rameters, some of which are mandatory and some are optional. The
sections are

• Parameter: sets parameter for the entire pipeline

• Paths: configures input and output paths

• Data: sets paths to the 2D images required for classification and

• aData: provides additional 2D FITS images.

The given parameters are written into a log-file (.log). Therefore, the
used parameters for a certain run are tracked. Furthermore, the con-
figuration file can be used to modify the pipeline. It is therefore pos-
sible to use the NBDA or the classifier only. Figure 7.1 shows the
optional paths through the pipeline in dashed lines. The diamond
shapes mark the parts of BScan where neural networks are involved.
Boxes, however, show parts of classical algorithms. The circles indi-
cate output of BScan.
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Configuration NBDA
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Figure 7.1: This Figure shows the pipeline structure for BScan. Solid lines
indicate fixed parts of the pipeline. Dashed lines are optional
paths. While diamonds show the location of the neural networks,
boxes show parts of classical algorithms. The circles show the
output.

The Parameter section sets all the parameters needed for the de-
tection and classification. Mandatory parameters in this section are
the DetectorName, the name of the CNN trained on image recognition
and used for the NBDA, and the ClassifierName, the name of the FCNN

trained on the feature vectors discussed in section 6. Both are defined
without the file ending „h5“, which is the data format used to save the
trained parameters of the network to disk and is therefore assumed
by BScan. The remaining parameters are optional and are set to de-
fault values. Changing these default values changes the detection and
classification behavior. We summarize the optional parameters which
can be set in the configuration file in the following:

Detection

A boolean parameter to configure BScan for detecting bubble-like
structures for the given 2D FITS images in section Data and aData.
The default value is True. If False, BScan expects results for each given
image of the same format as given by the bridge.

nBoxes

Number of nested boxes used by the NBDA (n ∈N). The default value
is 10.

minBXS

Minimum box size in pixels used by the NBDA (λ ∈ N). The default
value is 50px.
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maxBXS

Maximum box size in pixels used by the NBDA (Λ ∈ N). It is larger
than, or equal to minBXS. If Λ is equal to λ, the NBDA uses a single
box size. The default value is 500px.

StrideFactor

A factor to define the grid size calculated by the NBDA (γ > 0). The
default value is 1.

Threshold

The minimum probability to consider a prediction of the network as
detected. It is used by the NBDA (τ > 0). The default value is 0.9.

OverlapFactor

Defines the possible overlap (> 0) considered by the clustering and
merging algorithms. It defines the distance between two neighboring
regions by measuring the separation of the two centers. This distance
is defined as OverlapFactor · r0 with r0 the radius of the considered
region. A neighbor region with distance smaller than OverlapFactor ·
r0 is considered as overlapping. An OverlapFactor of 1 means two
regions are overlapping, if the center of the second region is within
the radius of the first region. The default value is 0.75.

RAW

A boolean parameter. If True all sub-results are saved to disk. The
default value is False.

sii2ha

Literature value of the [SII]/Hα ratio (> 0). The default value is 0.67
(see section 1.2.5).

PXS

Pixel size in arcsec/pixel of the given [SII] and Hα image. This value is
needed to estimate the [SII]/Hα ratio and is mandatory for the classi-
fication. For the MCELS images the pixel size is 2 arcsec/pixel.
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Classification

A boolean parameter to enable classification. If False the NBDA results
will not be classified. The default value is True.

The Paths section sets the absolute input and output paths. All
paths are required parameters:

PathToDetector

Location of the saved CNN.

PathToClassifer

Location of the saved FCNN.

PathToResults

Path to save the output of BScan. If this directory does not exist, it
will be created by BScan.

The last two sections Data and aData define the absolute paths
to the available FITS images to detect bubble-like structures and/or
classify the detected structures.

The keys for the Data section

• radio

• ha

• sii

• oiii

• xray

represent the different wavelengths and should not be changed, be-
cause they are hard coded. The data given in this section are also
needed for classification. If one of the required input images is miss-
ing, the classification does not work properly.

In contrast to DATA, keys of the aData section can be chosen by the
user. Note that no special characters are allowed. Consequently, only
the NBDA can be used for images given in the aData section. BScan
sets Classification to False automatically if additional images are given.
If NONE is given for a certain key, it will be ignored by BScan. This is
also the case for the Data section.
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7.2 small magellanic cloud

In this section we compare the current version of BScan and the ver-
sion presented in Geyer-Ramsteck (2020) qualitatively. The version
described in Geyer-Ramsteck (2020) is referred to as the version zero
(V0) and the version presented in this thesis is referred to as version
one (V1) to clearly distinguish between the two. Before diving into
this comparison, we give a short recap of the different versions in the
following paragraph.

While both versions leverage a CNN, V0 uses the pre-trained VGG16.
It is pre-trained on everyday life color images from the ImageNet data
set (see 5.1.1). Version V1, however, uses a much smaller CNN with
fewer parameters compared to the VGG16 and is pre-trained on the
G6 data set (see section 4), which contains grayscale images of differ-
ent types of galaxies. Therefore, the G6 is considered as a more task
related data set and is better suited for pre-training the CNN used
for BScan. In addition, V1 has the NBDA implemented and is able to
detect bubble-like structures of different sizes at the same grid posi-
tion. This is due to the nested boxes with different box sizes where
each box is used to predict if there is a bubble-like structure or not.
Version V0 uses a single box size. Nevertheless, both versions detect
one structure per grid position and merge overlapping boxes, that
means multiple detections of a considered structure at different grid
positions are combined to a final region. The final result, represented
as a DS9 region, is then written to a .reg file. Version V0 uses the coor-
dinates of the merged box center as location of the detected structure
and half of the merged box size as an estimate of the radius. V1 es-
timates the center coordinates and extent of the detected structure
according to equation 46 and equation 47 in section 5.4, respectively.
The classifier is just implemented in version V1 and is therefore not
part of this comparison.

We apply both versions to the MCELS data of the SMC. Therefore, the
detection of bubble-like structures is tested on an Hα, [SII] and [OIII]
image. The pixel size of these images is 2 arcsec/pixel. Three regions of
the SMC are considered for this comparison: Rg1 at RA= 14.97◦, Dec=
−71.67◦ with radius R1 = 0.27◦ (≡ 972px× 972px image), Rg2 at RA=

21.87◦, Dec= −73.33◦ with radius R2 = 0.49◦ (≡ 1764px × 1764px
image) and Rg3 at RA= 11.76◦, Dec= −73.20◦ with radius R3 = 0.56◦

(≡ 2016px× 2016px image). The first region Rg1 (Figure 7.2) shows
mostly isolated bubble-like structures of different extents, region Rg2
(Figure 7.4) shows a big bubble-like structure surrounded by smaller
bubble-like structures overlapping with the bigger one and region
Rg3 (Figure 7.10) is a crowded area with a high density of bubble-
like structures. Therefore, each region is challenging both versions in
a different way.
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7.2.1 Configuration

We use the networks model4 for the version V0 (Geyer-Ramsteck, 2020)
and the SCNN71-G6-TRS-F for the V1. For both versions the config-
uration is mainly set to the default values (see Table 5.9 for V1). Pa-
rameters which both versions have in common are the

• StrideFactor = γ = 1

• Threshold = τ = 0.9 and

• OverlapFactor = 0.75

and they are configured with the same values. The maximum box
size Λ in version V1 is set to the single box size of 250px used in
version V0. This ensures that both versions could detect structures
with the same upper limit in size. In comparison to V0, however, the
minimum box size λ of V1 is set to 50px with n = 10 nested boxes,
the only direct advantage for V1 compared to V0 in this configura-
tion. The configuration is chosen to test if version V1 has significantly
improved compared to V0 or not. Therefore, the configuration has to
include the possibilities given by the NBDA. The relative strength fac-
tor is also used and is set to the default value of RSF = 105. Since the
RSF can be considered as an additional threshold which has to be met
to detect a bubble-like structure, it may compensate the advantage of
the nested boxes.

7.2.2 Isolated Structures

Results of the two BScan versions in region Rg1 show a clear picture.
While V0 could not detect any structure in any of the three images
Hα, [SII] or [OIII] (Figure 7.2 a), version V1 detects some bubble-like
structures in the Hα (Figure 7.2 b, red) and [OIII] (Figure 7.2 b, blue)
images.

A first look at the results in Figure 7.2 (b) shows that V1 overes-
timates the extent of the detected structures in Hα and [OIII]. The
results of the Hα image shows that V1 is missing some structures
which would be detected visually, for example the bigger shell-like
structure in the north at around RA ≈ 15.25◦, Dec ≈ −71.5◦. This may
be due to the size of the structure. Since the maximum box size Λ is
set to 250px and the structure is larger than Λ, it may not be detected.
Even if the structure could be partly detected at some grid positions,
the threshold or the RSF may be too high to accept the predicted
bubble-like structure by the NBDA. Figure 7.3 shows the same region
of the SMC but with an applied relative strength factor of RSF = 0 and
a threshold of τ = 0.9 (a) and τ = 0.5 (b). The considered structure
is still not detected in both cases. One possible interpretation is that
the structure is indeed too large for the given Λ. Another possibility
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Figure 7.2: Results of BScan version V0 (a) and V1 (b) in the region Rg1.
The region is located in the SMC at RA= 14.97◦, DEC= −71.67◦

with a radius of R1 = 0.27◦. This corresponds to a 972px× 972px
image. While V1 detects at least some bubble-like structures in
this region, V0 cannot detect any structure.

is that the network is not generalized properly to detect the structure
in the north of the image.

Comparing the results for [SII] and Hα in Figure 7.2 (b), especially
the detection in the Hα image at RA ≈ 15◦ and Dec ≈ −71.75◦, one
could expect that V1 should detect the same structure in [SII] as well.
The [SII] structure is fainter and shows a slightly different intensity
profile but is very similar to the structure visible in Hα neverthe-
less. Figure 7.3 (a), however, shows that the structure is detected in
the [SII] image with a RSF = 0 and τ = 0.9. Not only the above-
mentioned structure is detected but also the south-western structure,
detected in Hα (Figure 7.2, b), is detected in the [SII] image (Figure
7.3, a). Overall, Figure 7.3 shows a trend of more detected bubble-like
structures with lower values of threshold typed parameters. Conse-
quently, BScan version V1 can handle the first challenge of mostly
isolated structures better than V0.

7.2.3 Overlapping Structures

Comparing the results for region Rg2 of both BScan versions show
that V0 can detect the brightest bubble-like structures in the Hα and
[OIII] images (Figure 7.4, a), but the same structures could not be de-
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Figure 7.3: Results of BScan version V1 in region Rg1 but with different
threshold typed parameters: (a) a relative strength factor of
RSF = 0 and threshold of τ = 0.9, (b) a threshold of τ = 0.5
but the same RSF as in (a). Compared to Figure 7.2 (b) the num-
ber of detected bubble-like structures increases.

tected in the [SII] image. Furthermore, V0 underestimates the extent
of the detected structures. Version V1 detects the same bubble-like
structures as V0 in these images, but in all three images (Figure 7.4,
b). The estimated extent is larger than the actual structure and is
therefore overestimated again. Moreover, V1 detects more structures
in Hα and [OIII] compared to V0. Overall, V1 performs better in the
second challenge as well.

In some cases it looks like V1 detects bubble-like structures where
no structure is present. These detections are marked with A, B, C and
D in Figure 7.4 (b). A closer look at these regions, however, reveals
that there are structures which fall into the class diffuse or shell. Fig-
ures 7.5 to 7.8 zoom into A, B, C and D, respectively. The detected
bubble-like structures in A (Figure 7.5), B (Figure 7.6) and D (Figure
7.8) would be characterized as diffuse, while the structure in C (Fig-
ure 7.7) would be of class shell. Regions A to C show clearly a bubble-
like structure as represented in the training data set (see chapter 4).
The structure in region D is most likely a region within a filament.
This region is part of the large shell-like structure seen in Figure 7.4,
with an increased intensity and seems like a structure of class diffuse.
Without a doubt these detections could be interesting as well, but fur-
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Figure 7.4: Results of BScan version V0 (a) and V1 (b) in the region Rg2. The
region is located in the SMC at RA= 21.87◦, DEC= −73.33◦ with
a radius of R2 = 0.49◦. This corresponds to a 1764px× 1764px
image. Both versions detect the brightest bubble-like structures
in this region in Hα and [OIII]. However, V1 detects the brightest
structures in all three bands and detects more structures than
V0 in each one. Detected structures in (b) marked with A, B, C
and D are fainter compared to other structures and need further
investigation.

ther analysis is needed. For this test, this detection is considered as a
false positive detection of class diffuse.

If the threshold type parameters are reduced like in section 7.2.2,
the BScan version V1 is again able to detect additional bubble-like
structures. For example in region B, two shell-like counterparts are
visible in Hα and [SII]. Figure 7.9 shows results for region B using a
relative strength factor of RSF = 0 and a threshold of τ = 0.5. Note
that although the threshold type parameters are extremely low, the
shell-like counterparts in [SII] are not detected while there are two
related detections in Hα. Furthermore, there are more of the diffuse-
like filament detections in Hα and [OIII].

7.2.4 Crowded Area

The last region to consider is the region Rg3. It encloses an area of
many nearby or even overlapping bubble-like structures of different
size. Therefore, region Rg3 is the hardest detection challenge for both
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Figure 7.5: The faint source detected in region A. The detection in Hα is
clearly visible and has an even fainter counterpart in [SII].
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Figure 7.6: The faint source detected in region B. The detection in [OIII]
(blue) is clearly visible. The two shell-like counterparts in Hα

and [SII] are not detected. This is because of the relatively high
threshold typed parameters, the RSF and τ.

BScan versions. Figure 7.10 shows the results for BScan version V0 (a)
and V1 (b). In general, the results are similar to the ones in section
7.2.2 and section 7.2.3 with more bubble-like structures detected by
V1 compared to V0 in all three images Hα, [SII] and [OIII]. V1 shows
a significant improvement compared to V0 again.

Especially in Hα and [OIII] the results of V1 are surprisingly good,
taking into account that the shown results are achieved with the de-
fault configuration. Structures of different size and brightness are de-
tected. Most of the structures, which are located close to each other,
are detected as separate structures. There is, however, a detection re-
gion which encloses multiple structures in the center of the Hα and
[OIII] images. This region is marked with an X and is shown in Figure
7.11 in more detail. On the one hand, assuming the more point-like
structures are detected separately in the first place, would lead to the
conclusion that the NBDA results have a larger overlap than it is ac-
cepted according to the OverlapFactor of 0.75 and consequently are
clustered and merged together. On the other hand, the minimum box
size λ could be too large to detect the small structures shown in re-
gion X. In this case, a too large λ would mean that the extent of the
point-like structures is smaller than 0.8 · λ, which is roughly the struc-
ture size relative to the box size used as a guideline for the training
samples (see section 4.1). Considering that the largest and most dom-
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Figure 7.7: The faint source detected in region C. The detection in [OIII]
(blue) is again visible. The extremely faint counterpart in the Hα

image is not detected.
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Figure 7.8: The faint source detected in region D. The detection in [OIII]
(blue) is most likely part of a filament with higher local intensity.
The filament is part of the large shell-like structure seen in Rg2.

inant diffuse structure in Figure 7.11 is off the center of the estimated
center coordinates of the detection region, the first explanation seems
more likely.

Comparing the results for the Hα and [OIII] images with the [SII]
image (Figure 7.10) reveals an underperformance of both versions in
[SII], although bubble-like structures are clearly visible in the area
around RA ≈ 11.7◦, Dec ≈ −73.3◦. Of course the value for the thresh-
old τ can be reduced to accept more predicted bubble-like structures
in the NBDA as demonstrated in the previous sections, but this would
also lead to more structures detected in Hα and [OIII] and conse-
quently increase the potentially false positive detections overall. Since
the MCELS images have the same dimension, resolution and pixel size,
this inconsistency in detecting bubble-like structures in these images
cannot be explained by the used configuration and therefore the grid
size, the size of the nested boxes or the used thresholds. Similar struc-
tures compared to the ones which are not detected in some images,
are detected in Hα, [OIII] and [SII] itself at other positions. The only
plausible explanation at this point is the lack of generalization of the
networks. For version V1 this falls back on the tiny training data set.
It has to be stated that one set of parameters is used to apply BScan
to all wavelengths and the corresponding NBDA results are used to
generate the input for the classifier later on. If there are bubble-like
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Figure 7.9: This figure shows region B again, but with results of BScan ver-
sion V1 using a relative strength factor of RSF = 0 and a thresh-
old of τ = 0.5. With these low thresholds the two shell-like coun-
terparts of the [OIII] in Hα only has three detections related to
the two structures.

structures detected in some images, but the counterparts present in
others are not, the classification cannot work properly.

7.2.5 Summary

The BScan version V1, presented in this thesis, performs significantly
better than BScan version V0, developed in Geyer-Ramsteck (2020),
in all three scenarios discussed in section 7.2.2, 7.2.3 and 7.2.4. This
means V1 detects more bubble-like structures than V0, including faint-
er structures and discriminating those which are partly overlapping
or which are close to each other. The estimated extent of detected
structures are underestimated by V0 and overestimated by V1.

Moreover, this blind test on the SMC data reveals the weaknesses of
V1 as well. The inconsistency of detecting some bubble-like structures,
but do not detect similar structures in the same or similar images is
one example. This can partly be explained by the chosen parame-
ter values like the threshold and the relative strength factor. In some
cases, however, the low generalization level of the trained network
is the most plausible explanation. In addition, V1 detects multiple
bubble-like structures as one single structure in some cases. This re-
sults in detection regions with an overlap larger than accepted by the
clustering and merging algorithm.

We summarize the results of the entire chapter with focus on the
BScan version V1 in Table 7.1.

7.3 large magellanic cloud

In this section we perform a more quantitative analysis of BScan (V1)
results, including the classification, by applying the whole pipeline
to the available LMC images and comparing them to a catalog of 92

sources from Bozzetto et al. (2017), Maggi et al. (2016), and Yew et al.



7.3 large magellanic cloud 117

13.0° 12.0° 11.0° 10.0°

-72.8°

-73.0°

-73.2°

-73.4°

-73.6°

RA (J2000)

De
c 

(J2
00

0)
H

13.0° 12.0° 11.0° 10.0°
RA (J2000)

[SII]

13.0° 12.0° 11.0° 10.0°
RA (J2000)

[OIII]

(a) V0

X X

(b) V1

Figure 7.10: This figure shows the results of BScan version V0 (a) and V1

(b) in the region Rg3. The region is located in the SMC at
RA= 11.76◦, DEC= −73.20◦ with a radius of R2 = 0.56◦. This
corresponds to a 2016px × 2016px image. The region marked
with X is a multiple detection region where more than one
bubble-like structures are detected as one single structure.
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Figure 7.11: This Figure shows region X marked in Figure 7.10. Multiple
structures are detected in one single detection region in Hα

(red) and [OIII] (blue).
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Region Challenge Configuration Results Problems

Rg1
isolated

structures
default

inconsistent detection results in
different images,

lower relative strength factor (RSF)
⇒ more consistent detections

in different images

overestimated structure extents

Rg2
overlapping
structures

default
detection of diffuse-like

filament regions,
not all structures could be detected

lower threshold typed parameters (τ, RSF)
⇒ more diffuse-like filament detections,
inconsistent detection results in different

images even with varying thresholds

Rg3 crowded area default

structures of different size
are detected,

overlapping structures are mostly
detected separately

multiple structures are
detected as one

Table 7.1: A summary of the main BScan V1 results discussed and problems revealed in section 7.2.
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(2021). These sources are confirmed SNRs or SNR candidates. In the fol-
lowing the sources are referred to as catalog sources or just sources
for simplicity. Images are available for Hα, [SII] and [OIII] line emis-
sion in the optical (section 3.2), a radio image showing non-thermal
emission (section 3.3) and an X-ray image (section 3.4). Although SNRs

of the LMC are used for the training data set and the LMC is, therefore,
not completely unknown like the SMC, it is the only available data set
which can be used to detect and classify bubble-like structures.

7.3.1 Configuration

The network used to apply BScan to the LMC data is again the SCNN71-
G6-TRS-F. Parameters of the NBDA are set to default values (see Table
5.9 and section 7.1). The minimum box size of λ = 50px and the max-
imum box size of Λ = 500px translates to structure sizes of 100 arcsec
to 1000 arcsec and, therefore, a wide range of detectable bubble-like
structures. The OverlapFactor = 1 is used to reduce the merging of
nearby structures. For the classification the ratio of [SII]/Hα = 0.67 is
set in configuration file.

In the following images, detected bubble-like structures are repre-
sented by black circles (NBDA results), whereas catalog sources are
shown in blue circles. Each detected structure is classified according
to the labels given in Table 6.1. Each label has a specific color: SNRc
(green), likely (yellow), candidate (orange), unlikely (red), other (brown)
and HII regions (cyan).

7.3.2 Matching of Catalog Sources

Figure 7.12 shows the number of detected bubble-like structures which
are classified and matched to a catalog source (M), relative to the
number of sources in the entire catalog (Nc = 92). Only 16% of these
structures are labeled as SNRc (green). This translates to only 15 con-
firmed SNRs or SNR candidates which are detected and characterized
as such by BScan. In addition to the 16% of SNRc-labeled structures,
roughly 4% and 2% got the label likely (yellow) and candidate (orange),
respectively. In numbers this means 4 bubble-like structures are la-
beled as likely and 2 are labeled as candidate. The majority of around
17% (≈ 16 structures), however, are labeled as unlikely (red). All de-
tected structures labeled as likely, candidate or unlikely are missing one
primary feature (PF). This can be the case due to one of the reasons
summarized in section 7.2.5. Also bubble-like structures which are
labeled as other (brown, ≈ 8%) or as HII region (cyan, ≈ 1%) can
be matched to catalog sources. The fact that each of the contribut-
ing structures in Figure 7.12 has matches with the catalog shows that
the results of the current BScan version (V1) are not yet trustworthy
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Figure 7.12: In this figure the fraction of detected and characterized bubble-
like structures M matching with catalog sources in the LMC
Nc = 92 is shown. Only 16% of the detected bubble-like struc-
tures which are labeled as SNRc (green) have counterparts in
the catalog. While a small fraction of 4% and 2% is labeled as
likely (yellow) and candidates (orange), respectively, the major-
ity (17%) of matched bubble-like structures are labeled as un-
likely (red). Structures which could not be classified as an SNR-
like structure but have a counterpart in the catalog are labeled
as other (magenta) and HII regions (blue).

enough to use it as a standard tool for detection and classification of
bubble-like structures in astronomy.

In total, we matched 45 detected bubble-like structures to catalog
sources, that means only around 49% of the catalog sources are de-
tected. Each detected and matched structure has an ID and is listed
in Table 7.2 together with its coordinates in RA, Dec, its estimated
radius R, the label and the corresponding feature vector.

One major characteristic of the detections, beside the classification,
is the estimated coordinates of the bubble-like structure. We therefore
compare the coordinates of the detected structures to the matched
sources by measuring the separation between their center coordinates
∆. Figure 7.13 shows the results for each ID. About 96% of the struc-
tures have a ∆ < λ. Only two bubble-like structures show a separation
of ∆ > λ. Those structures have the IDs 35 and 36. The median sepa-
ration of

∆m = 36 arcsec = 0.01◦ (56)

can be used to estimate the error of the estimated center coordinates.

In the next step we compare the estimated radius of the detected
structure R to the radius rc given for each catalog source (Figure 7.14).
BScan overestimates the radius of the bubble-like structures in most
cases. Moreover, in around 45% of all detections the estimated radius
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Figure 7.13: Separation ∆ between the center coordinates for each ID. The
median separation is ∆m = 36 arcsec.
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Figure 7.14: Ratio between the radius R of the bubble-like structure and the
given radius rc of the matched catalog source. Results are plot-
ted for each ID.

ranges from 2rc ⩽ R ⩽ 4rc. Only in ≈ 9% of the detections the es-
timated radius is R/rc < 1. There are three outliers, namely for the
detection with the ID = 19 and ID = 33 with R/rc ≈ 7, which are
classified as likely and unlikely, respectively. ID = 45 with R/rc ≈ 10,
is the only source detected and classified as an HII region. The lat-
ter is shown in the Appendix (Figure A.45) in the different images
of Hα, [SII], [OIII], radio and X-ray. For each image the detection re-
gions (black), the matched catalog source (blue) and the final detected
bubble-like structure (cyan) with its estimated radius are shown. The
detected diffuse emission in Hα coming from this area is larger than
the size of the catalog source. The coordinates of the detected HII
region are RA = 83.89◦ ± 0.01◦, Dec = −66.04◦ ± 0.01◦ (see Table
7.2 ID45). In fact, the MCELS HII region L310 (or DEM L234) with
RA = 83.890000◦ and Dec = −66.040556◦ (Pellegrini et al., 2012)
match the detection nicely. This shows that BScan does not detect
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the SNR from the catalog, it detects the HII region in which the SNR

is embedded. A ten times larger estimated radius of the bubble-like
structure detected by BScan can therefore be explained.

Table 7.2 shows not only the ID and coordinates of the detected
bubble-like structures which have a match in the catalog, it also shows
the feature vector on which the classification is based. Among our
45 matched structures, there is no single mismatch between the pre-
dicted label and the given feature vector. Each bubble-like structure
in Table 7.2 is shown in the Figures A.1 to A.45 in the Appendix. For
each detection the corresponding region of the Hα, [SII], [OIII], Radio
and X-ray image is plotted. The DS9 regions are overlaid. Even in the
entire set of 673 detected and classified structures there is only one
mismatch between the input feature vector and the output label. This
means in around 0.1% of classified structures, the classification could
be wrong.

A closer look at the Table 7.2 reveals, if the detected bubble-like
structure is classified as likely, candidate or unlikely and the feature vec-
tor is therefore missing one PF to provide it with the label SNRc, for
most of the 22 detections (see Table 7.2), the [SII]/Hα or the X-ray fea-
ture is not fulfilled. For 19 detections the bubble-like structures would
be classified as SNRc if the PF of [SII]/Hα was fulfilled. This translates
to ≈ 86% of the detected structures with the corresponding labels.
Reasons for the missing [SII]/Hα feature could be the overestimation of
the extent of the structure and the way the ratio is calculated (see sec-
tion 6.2). If the estimated extent in equation 47 is significantly larger
than the real source, the ratio of [SII] to Hα can be underestimated
due to the larger area of background emission. Consequently, the PF
[SII]/Hα may not be fulfilled. As discussed before, BScan systemati-
cally overestimates the extent and therefore underestimates the ratio
of [SII]/Hα. An extremely faint emission from Hα or [SII] may be the
reason that the emission from these two bands cannot be detected, on
the one hand. On the other hand, if the emission is detected by the
network but with a detection probability lower than the threshold
used in the configuration, the detection of the Hα or [SII] emission
can be missing as well. In both cases the PF of [SII]/Hα is not fulfilled.
Note that the result in section 7.2 showed an underperformance of
detecting [SII] structures. Therefore, it is important to improve the es-
timated extent of the detected structures and the performance of the
network in general.

In addition, in 18 (≈ 82%) of the cases the bubble-like structures
could be classified as SNRc if the primary X-ray feature was fulfilled.
In contrast to the [SII]/Hα ratio, this feature is already set if X-ray
emission is detected in the corresponding image. Since the resolution
in this regime is significantly lower and the number of X-ray training
samples is low compared to the optical training samples, for example,
the detection in the X-ray is limited to bright emission with low back-
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ground. If the X-ray emission from the catalog source is faint, or it
is surrounded by a higher background, the SCNN71-G6-TRS-F strug-
gles to detect a bubble-like structure. The network is trained on the
pixel values of images and is therefore sensitive to changes in pixel
values. Although the detection performance is higher for brighter X-
ray emission, if pixels are saturated, the X-ray emission is most likely
not detected as well.

7.3.3 Unmatched Detections

The detected bubble-like structures which have a match in the used
catalog are a fraction of all detected bubble-like structures. BScan de-
tects many uncatalogued structures. However, the used catalog is not
a complete catalog of all bubble-like structures. Figure 7.15 shows
the total number of detected and classified bubble-like structures
in the LMC. The matched structures in section 7.3.2 are shown in
dark blue, whereas unmatched structures are shown in teal. There
are no unmatched structures classified as SNRc or as likely. There-
fore, BScan did not detect a new SNR candidate in the LMC with the
used configuration. For structures labeled as candidate there are only
three detections without a match. These three detections are shown
in the Appendix (Figures B.1 to B.3). To find possible counterparts
for the detected structures, a Simbad coordinate query with a radius
of ∆m = 0.01◦ is executed for each unmatched structure. The detec-
tion shown in Figure B.3 at RA = 81.59± 0.01◦, Dec = −66.25± 0.01◦

is most likely the HII region called MCELS L−253 (Pellegrini et al.,
2012) with the center coordinates RA = 81.5825, Dec = −66.2828. For
the one shown in Figure B.1 and B.2 infrared sources and a young
stellar object (YSO) could be found within a radius of 0.01◦, respec-
tively. This kind of sources are of course interesting to find and to
study, however, BScan is not able to classify them in the current ver-
sion. Most unmatched structures are classified as unlikely and other
as shown in Figure 7.15. In Appendix B some examples are shown in
multi wavelength plots. It is beyond the scope of this thesis to ana-
lyze each detected structure. Because of the large number of detected
bubble-like structures of class unlikely and other only two of each class
are shown.

7.3.4 Alternative Configurations

Since 45 detected bubble-like structures could be matched to all 92
catalog sources, 47 sources could not be matched. Some of these 47

catalog sources are not even detected. In this part, we change the
configuration of BScan and apply it again to the same data. We select
five catalog sources which were not detected before and try to detect
them with different configurations. These configurations are referred
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Figure 7.15: Total number of detected bubble-like structures N and the cor-
responding labels. The structures with matches in the catalog
are colored in dark blue and unmatched structures are colored
in teal. Most detected structures are labeled as unlikely or other.
For both classes the vast majority is not matched to a catalog
source.
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Table 7.2: This table shows the list of detected bubble-like structures matched to catalog sources. Each detection has an ID,
the central coordinates of the bubble-like structure in RA, Dec, the estimated radius R, the label according the
classification and the feature vector the classification is based on. The name of the matched source is also given.
The error on the estimated coordinates is given as ∆m = 0.01◦.

1 81.98 −65.84 0.104 SNRc 1 1 1 1 0 1 J0527− 6550

2 73.93 −68.66 0.077 SNRc 1 1 0 1 1 1 J0455− 6839

3 72.11 −67.01 0.074 SNRc 1 1 1 1 0 1 J0448− 6700

4 83.02 −71.01 0.056 SNRc 0 1 1 1 1 1 J0531− 7100

5 84.39 −66.46 0.066 SNRc 0 1 0 1 1 1 J0537− 6628

6 81.50 −66.08 0.026 SNRc 0 1 0 1 1 1 J0526− 6605

7 86.80 −69.69 0.054 SNRc 0 0 0 1 1 1 J0547− 6941

8 81.36 −65.99 0.084 SNRc 0 0 0 1 1 0 J0525− 6559

9 79.94 −69.44 0.059 SNRc 0 0 0 1 1 1 J0519− 6926

10 83.50 −69.91 0.069 SNRc 0 0 0 1 1 0 J0534− 6955

11 81.25 −69.64 0.058 SNRc 0 0 0 1 1 0 J0525− 6938

12 85.05 −69.34 0.039 SNRc 0 0 0 1 1 1 J0540− 6920

ID RA±0.01 [deg] DEC±0.01 [deg] R [deg] Label Hα [SII] [OIII] Radio X-ray [SII]/Hα Catalog

Continued on next page
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Table 7.2: This table shows the list of detected bubble-like structures matched to catalog sources. Each detection has an ID,
the central coordinates of the bubble-like structure in RA, Dec, the estimated radius R, the label according the
classification and the feature vector the classification is based on. The name of the matched source is also given.
The error on the estimated coordinates is given as ∆m = 0.01◦. (Continued)

13 84.56 −69.36 0.039 SNRc 0 0 0 1 1 1 J0538− 6921

14 84.02 −70.63 0.039 SNRc 0 0 0 1 1 1 J0536− 7039

15 83.51 −70.57 0.039 SNRc 1 1 0 0 1 1 J0534− 7033

16 82.65 −70.11 0.074 likely 1 0 0 1 0 1 J0530− 7008

17 78.32 −69.20 0.098 likely 0 1 0 1 0 1 J0513− 6912

18 86.97 −70.41 0.039 likely 1 0 0 0 1 1 J0547− 7025

19 74.97 −70.19 0.115 likely 1 0 0 1 0 1 J0459− 7008

20 72.67 −70.83 0.103 candidate 0 0 1 1 0 0 J0450− 7050

21 72.34 −69.34 0.049 candidate 1 0 1 1 0 0 J0449− 6920

22 83.62 −70.55 0.059 unlikely 1 1 0 0 0 1 J0534− 7033

23 76.69 −70.44 0.039 unlikely 0 0 0 0 1 0 J0506− 7026

24 77.15 −69.47 0.059 unlikely 1 1 0 0 0 1 J0508− 6928

ID RA±0.01 [deg] DEC±0.01 [deg] R [deg] Label Hα [SII] [OIII] Radio X-ray [SII]/Hα Catalog

Continued on next page
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Table 7.2: This table shows the list of detected bubble-like structures matched to catalog sources. Each detection has an ID,
the central coordinates of the bubble-like structure in RA, Dec, the estimated radius R, the label according the
classification and the feature vector the classification is based on. The name of the matched source is also given.
The error on the estimated coordinates is given as ∆m = 0.01◦. (Continued)

25 79.69 −69.65 0.020 unlikely 0 0 0 1 0 0 J0518− 6939

26 84.45 −69.17 0.020 unlikely 0 0 0 1 0 0 J0537− 6910

27 75.51 −67.66 0.049 unlikely 1 1 0 0 0 1 J0502− 6739

28 78.10 −67.12 0.026 unlikely 0 0 0 1 0 0 J0512− 6707

29 82.46 −66.91 0.079 unlikely 0 0 0 0 1 0 J0529− 6653

30 81.12 −66.39 0.079 unlikely 0 0 0 1 0 0 J0524− 6624

31 73.69 −66.43 0.030 unlikely 0 0 0 1 0 0 J0454− 6626

32 76.54 −65.70 0.098 unlikely 0 0 0 1 0 0 J0506− 6541

33 76.53 −68.26 0.126 unlikely 0 0 0 1 0 0 J0506− 6815

34 83.40 −72.05 0.020 unlikely 0 0 0 1 0 0 J0533− 7202

35 85.79 −71.07 0.020 unlikely 0 0 0 1 0 0 J0542− 7104

36 87.69 −68.39 0.059 unlikely 0 0 0 1 0 0 J0550− 6823

ID RA±0.01 [deg] DEC±0.01 [deg] R [deg] Label Hα [SII] [OIII] Radio X-ray [SII]/Hα Catalog

Continued on next page
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Table 7.2: This table shows the list of detected bubble-like structures matched to catalog sources. Each detection has an ID,
the central coordinates of the bubble-like structure in RA, Dec, the estimated radius R, the label according the
classification and the feature vector the classification is based on. The name of the matched source is also given.
The error on the estimated coordinates is given as ∆m = 0.01◦. (Continued)

37 85.44 −66.99 0.079 unlikely 0 0 0 0 1 0 J0541− 6659

38 75.23 −65.20 0.079 other 1 0 0 0 0 1 J0500− 6512

39 74.41 −67.65 0.039 other 1 1 0 0 0 0 J0457− 6739

40 84.04 −67.56 0.039 other 0 0 1 0 0 0 J0536− 6735

41 82.06 −67.44 0.059 other 0 1 0 0 0 0 J0528− 6727

42 80.78 −67.88 0.039 other 0 1 0 0 0 1 J0523− 6753

43 76.72 −65.16 0.108 other 0 1 0 0 0 0 J0506− 6509

44 80.40 −65.70 0.039 other 0 1 0 0 0 1 J0521− 6543

45 83.89 −66.04 0.118 HII 1 0 0 0 1 0 J0535− 6602

ID RA±0.01 [deg] DEC±0.01 [deg] R [deg] Label Hα [SII] [OIII] Radio X-ray [SII]/Hα Catalog
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to as alternative configurations (ACs). The default configuration as
discussed in section 7.1 which is the basement of each configuration.
For each alternative configuration the stride factor γ, the threshold
τ and the RSF are altered. The considered sources are: J0507− 7110

and J0527 − 7134 listed in (Bozzetto et al., 2017) (Figure 7.16 a and
b), J0529− 7004 listed in (Yew et al., 2021) (Figure 7.16 c) as well as
J0508 − 6902 and J0527 − 7104 listed in (Maggi et al., 2016) (Figure
7.16 d and e).

The first alternative configuration (AC1) uses a stride factor of γ =

0.5 but set the remaining parameters to the default values. Results
of the NBDA for the five sources are shown in the multi wavelength
plots in Figure 7.17. The source J0527−7134 (Figure 7.17 b) is detected
in Hα and radio, and the source J0508− 6902 (Figure 7.17 d) is de-
tected in [SII] and radio, whereas the other three sources are still not
detected in any image. This demonstrates that the stride factor and
the grid size has indeed an influence on the outcome of the NBDA.
A smaller stride factor means a smaller grid size which results in
more possible detections. This can be explained by the fact that more
grid positions are distributed over a possible structure. Consequently,
it increases the possibility that the network detects the structure at
the proper position as expected according to the training samples. In
these cases the detection probability increases and is more likely to
exceed the threshold τ and the RSF.

For the second alternative configuration (AC2) we set the relative
strength factor to zero compared to AC1. Comparing Figure 7.17 with
Figure 7.18 there are significantly more detections in nearly every im-
age. Each selected catalog source is detected in at least two of the five
images. In addition to the bubble-like structures, the NBDA detects
more point-like sources, or structures with a smaller extent. This can
be seen in Figure 7.18 (b) in radio, (d) in [SII] and [OIII] and (e) in
all three optical bands. The latter point-like sources are partly de-
tected with the AC1 as well. Furthermore, the number of detected
faint structures (Figure 7.18 e, Hα), diffuse large scale emission (Fig-
ure 7.18 e, radio), small intensity fluctuations or even noise (Figure
7.18 a and b, X-ray) is increased. This comparison shows that the RSF

effectively cleans up the NBDA results but reduces the probability to
detect bubble-like structures which would be detected without using
the RSF. The RSF was introduced to enhance the quality of the detec-
tion and this still holds, because most detections using the RSF show
a bubble-like structure whereas without using the RSF intensity fluc-
tuations or noise is also detected.

Compared to the AC2 the threshold is set to τ = 0.5 in the third alter-
native configuration (AC3). The results for the five selected sources are
shown in Figure 7.19. Similar to Figure 7.18 each source is detected
in at least two bands. However, the number of detected point-like
sources, diffuse large scale emission, intensity fluctuations or noise is
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increased even further. The radio detections around the central source
in Figure 7.19 (e), for example, cover the entire diffuse large scale
emission in the west compared to Figure 7.18 (e) using the AC2. The
central structure in Figure 7.19 (b) in [OIII] is detected twice but with
smaller detection regions. This is also true for X-ray in Figure 7.19

(d) and (e). This means that the classifier treats these as two distinct
sources which may lead to different classification results. Although
it could be of interest to detect bubble-like structures within a larger
bubble-like structure, or parts of a large bubble-like structures in gen-
eral, this is not an intended feature of BScan right now. The configura-
tion AC3 should be treated with caution and a low threshold τ is not
recommended. In fact, the threshold τ should be as high as possible.

7.3.5 Summary

BScan is not able to detect every confirmed SNR or SNR candidate in
a catalog of 92 sources with the default configuration. The classifica-
tions of the detected sources are not precise for most detections. This
is mostly because of a missing counterpart detectection in other wave-
lengths. In rare cases the classification can be misleading because of
a false positive prediction of the classifier. It could be shown that the
estimated center coordinates is within a radius which is smaller than
the given minimum box size λ. However, this must not be true for ar-
bitrary λ. The median separation ∆ = 0.01◦ between the detected and
catalog source is used as an estimated error on the center coordinates.
The radius is systematically overestimated. This leads to an underes-
timation of the [SII]/Hα ratio and is contributing to the misclassifica-
tion of bubble-like structures. It is important to note that although
there are some catalog sources missing with the default parameters,
the parameters need to be chosen carefully in order to not detect ev-
ery single enhanced emission coming from filaments or even noise
in the considered images or region. It is worth to consider different
parameter values for the stride factor γ, the threshold τ and the RSF
depending on the input image. The threshold τ, however, should be
as high as possible.
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Figure 7.16: The five catalog sources which are not detected with the default
BScan configuration. (a) and (b) show sources listed in (Bozzetto
et al., 2017), (c) show a source listed in (Yew et al., 2021) and (d)
and (e) show sources listed in (Maggi et al., 2016). The sources
are present within the blue circles.
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Figure 7.17: NBDA results of the five selected catalog sources using the al-
ternative configuration AC1. The AC1 uses the default configu-
ration but a stride factor of γ = 0.5. While the sources in (a), (c),
(d) and (e) are not detected in any image, the source (blue) in
(b) is detected in Hα and radio (black).
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Figure 7.18: NBDA results of the five selected catalog sources using the al-
ternative configuration AC2. The AC2 uses the default configu-
ration but a stride factor of γ = 0.5 and a RSF = 0. Each source
(blue) from (a) to (e) is detected (black) in at least two of the five
images. In addition to the detected sources the NBDA detects
extremely faint and point-like structures or intensity fluctua-
tions in large scale emission around the central source
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Figure 7.19: NBDA results of the five selected catalog sources using the al-
ternative configuration AC3. The AC3 uses the default configu-
ration but a stride factor of γ = 0.5, a RSF = 0 and a primary
threshold of τ = 0.5. Each source (blue) from (a) to (e) is de-
tected (black) at least in two of the five images. The AC3 results
in even more detections around the central sources. The AC3 is
not recommended.
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Description Result Reason/Error Comment

structure localization within λ ∆m = 36 arcsec in rare cases larger than λ

extent estimation (R) systematically overestimated R ⩽ 4rc in most cases

stride factor (γ) impact on NBDA results
the more grid positions

at a possible structure the
more likely the detection

smaller γ (smaller grid size)
⇒ more possible detections

threshold (τ) should be as high as possible
set threshold for detection

probability given by the
neural network

low threshold τ

⇒ noise can also be detected

Relative Strength Factor (RSF)

cleaner NBDA results
but lowering chance for

detecting structures with
lower detection probability (≈ τ)

additional threshold typed
parameter to met

can be adjusted depending
on the input image,

lower RSF increases false
positive detections

[SII]/Hα feature
most missing feature

for classification
overestimation of R,

missing detection
noticeable underperformance

of the NBDA on [SII]

X-ray feature
second most missing

feature for classification
low signal-to-background ratio,

pixel saturation
less training samples available

Table 7.3: A compact summary of the main results discussed in section 7.3. For each result one or more reasons (or errors) and a comment is given.
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8
D I S C U S S I O N

In part ii and iii we presented a python routine named BScan. It was
tested on its abilities to find bubble-like structures in astronomical im-
ages. Those structures were described in part i chapter 1. This routine
uses two deep neural networks, one for detecting and one for classi-
fying bubble-like structures. At the time of writing, BScan focused on
SNRs for the detection and classification.

In the following, we discuss methodical challenges in section 8.1,
while in section 8.2 we discuss the detection and classification perfor-
mance with respect to the used images. Section 8.3 deals with a more
complete characterization of SNR. Here, newly discovered eROSITA

SNRs and SNR candidates are discussed. They are partly used to high-
light what kind of information could be used to characterize detected
SNRs further (section 8.3.2 and 8.3.3). Finally, we give an outlook be-
yond the status quo of BScan in section 8.4 and give a final statement
about BScan as an astronomical tool (section 8.5).

8.1 methodology

In this section methodological problems and improvements will be
discussed. Firstly, the biggest problem of this thesis is discussed in
section 8.1.1, namely the training data set and how it could be im-
proved in the future, possibly. In section 8.1.2 a multichannel architec-
ture is considered to improve the entire detection and classification
process. Last but not least, the role of the configuration is revisited
briefly in section 8.1.3.

8.1.1 The Training Data Set

One of the main problems, if not the main problem, is the tiny train-
ing data set of around 1500 training samples. Furthermore, the way
the training samples are generated is highly biased. Since there is
no quantitative description of a shell-like or diffuse-like structure. As
stated in section 4, machine learning algorithms require a high quality
training data set. That means numerous samples showing clear char-
acteristics of the corresponding class are required. Therefore, a larger
training data set is necessary to improve BScan in the first place.

Augmentation is one possible approach to improve the training
set, but can only remedy this problem to a limited extent. The rea-
son lies in the limited transformations and therefore in the limited
information that is provided to the network through augmentation.

139
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Adding magnetohydrodynamic simulations of SNRs to the training
data was proven extremely difficult, in contrast. Although it is not rec-
ommended to train a neural network on simulated data only, a num-
ber of simulated bubble-like structures could help to improve pre-
training the network in the future. If the simulated data mirror the
reality as much as possible, a larger set of magnetohydrodynamic sim-
ulations of SNRs could substitute the G6 or could be added to the G6

for pre-training. The pre-training of the SCNNs could be improved this
way. A second approach to increase the size of the training data set
could be to leverage so-called generative neural networks (GNNs). An
example would be the generative adversarial network (GAN) (Good-
fellow et al., 2014; Gui et al., 2020), which basically consists of two
neural networks. The generator is trained on creating artificial data
based on real world examples and the discriminator is trained on
classifying the artificial data and real data. If the generated data are
realistic enough, that the discriminator cannot distinguish between
artificial and real data, the GAN could be used to set up a proper
training data set of realistic but artificial training samples based on
real world samples. One major problem is the discriminator. If it is
not possible to train the discriminator properly to classify artificial
and real data with high precision, the generator cannot be trained
properly to generate realistic data, which can then be used as training
samples. Therefore, this approach would be interesting but challeng-
ing at the same time. A high quality training data set should therefore
be the focus of future projects to improve BScan further.

8.1.2 A Multichannel Neural Network

The detection of bubble-like structures rely on the neural network
trained on image recognition on the one hand, and the NBDA on the
other hand. The (pre-)trained and fine-tuned neural network SCNN71-
G6-TRS-F suffers generalization because of the training data set dis-
cussed above. The achieved test performance is better than expected
but low compared to high standard neural networks known in the
machine learning space. In combination with the NBDA the neural net-
work is the bottleneck of detecting and classifying bubble-like struc-
tures in astronomical images. As shown in chapter iii the configura-
tion of the NBDA has a large impact on the detection results. It could
be shown that structures which were not detected with the default
configuration of the NBDA, could be detected by using alternative con-
figurations, i. e. changing NBDA parameters. Parameters like the RSF
were introduced to improve the localization of detected bubble-like
structures. They are useful in some cases but contributing to the in-
terdependencies between the detection and classification. This is an
issue, since the classification depends on the NBDA. Reducing the in-
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terdependencies would not only improve the classification process, it
would also reduce computing time.

We suggest to introducing a single neural network with a five chan-
nel input layer (multichannel network), where each channel is car-
rying information of a certain wavelength or different information
needed for classification. Such a network could solve dependencies
within BScan by taking care of all available data simultaneously. This
would make the bridge and the classifier obsolete and would improve
BScan drastically, because it would unify the detection and classifica-
tion process. However, this was one of the first BScan architecture
ideas which did not work out. The reason can be found in the train-
ing data set. Currently, the same bubble-like structure visible in dif-
ferent wavelengths are treated as separate training samples. For a
five-channel architecture a proper training data set for each channel
and, therefore, for each wavelength is needed. The training data sets
used throughout this work is far from the standard high quality data
set needed for training such a multichannel architecture. A high qual-
ity training data set would not only improve the training of the neural
network, it would also allow thinking about alternative network ar-
chitectures which would reduce the interdependencies of BScan. Even
more input information like spectral characteristics (see section 8.3.2)
could be added to improve classification even further.

The classifier, however, is trained on a high quality training data
set of simulated feature vectors. As shown in section 6.3 and section
7.3 the precision of the classification is considerably higher than the
detection of bubble-like structures. The classifier as stand-alone tool
for available feature vectors, as described in the look-up Table 6.2, is
trustworthy up to an estimated false positive rate of 0.1%. That means
only one classification in 1000 incidents are expected to be wrong.
Nevertheless, because of the already discussed interdependencies of
the classifier, the focus should be on removing the classifier from the
pipeline in the future (e. g. with a multichannel network).

8.1.3 Modification of the Configuration

The default configuration is a good starting point to play around with
the parameters for the NBDA and the classifier, but the default values
may change depending on the input images. It is therefore needed to
examine the input images, considering pixel size and resolution, and
the parameter values given in the configuration file before applying
BScan. In some cases it may be useful, or intended, to detect smaller
bubbles or sub-bubbles in larger bubble-like structures. In these situ-
ations it could be worth to consider lower values for the RSF or the
stride factor and apply BScan to the desired subregion only.
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8.2 detection and characterization performance

In Figure 8.1 we show the relative frequency of detected features for
each classification label evaluated for every bubble-like structure in
the LMC. It gives rise to which features (wavelengths) are responsi-
ble for the resulting label (see table 6.2) of the detected structure. It
could be shown that BScan struggles to detect structures showing
faint emission. Consequently, the more defined the structure appears
in the available image (wavelength) the more likely it is that BScan
detects the corresponding feature.

If a structure is labeled as SNRc (Figure 8.1, green) it is most likely
detected in X-ray (XR) and radio (RA). The [SII]/Hα ratio, however, is
detected for less than 50% of the SNRc labeled structures. If the ratio
is considered as a secondary feature group (SFG) (i. e. [SII]/Hα > 0.67
but only one related detection in Hα or [SII]), Hα is most likely the
missing feature. This is also supported by the total number of feature
vectors of all detected bubble-like structures in the LMC, which are la-
beled as SNRc in Figure 8.2 (green). More than half of the considered
feature vectors show no Hα feature, e. g. , the vectors with the IDs 25

and 57 (see Table 6.2), which are two of the most common detected
feature vectors for the label SNRc.

For bubble-like structures labeled as likely (Figure 8.1, yellow) the
relative frequency of X-ray detections drop significantly while nearly
all show an enhanced [SII]/Hα ratio, but mostly as a SFG with a miss-
ing [SII] detection. Only about 25% of all detected structures labeled
as likely show the [SII] feature. The main reason why these structures
are labeled as likely is because they are detected in radio. The same
can be stated about the detected structures with the label candidate
(Figure 8.1, orange). In addition, the candidates seem to be relatively
bright in the optical bands. Especially in [OIII] and Hα candidates are
frequently detected by BScan. Only a few bubble-like structures are
labeled as likely or candidate. This can be seen in Figure 8.2 (yellow or
orange) or in section 7.3.2 Figure 7.12.

In contrast, there are many detected structures labeled as unlikely
(Figure 8.1, red). Comparing the relative frequencies for each feature
of the SNRc labeled structures (Figure 8.1, green) with the ones la-
beled as unlikely, the relative frequencies of unlikely follow a similar
pattern but have significant lower values (< 0.5). That means it is un-
usual to detect primary features, like radio or X-ray, together with
a secondary feature, like Hα or [SII] for example. A closer look at
Figure 8.2 reveals that the three main feature vectors involved in clas-
sifying detected bubble-like structures as unlikely, are the vectors with
the IDs 17, 41 and 49 (see Table 6.2). What is striking is that all three
feature vectors show no features in the optical. Two of them are only
showing the X-ray primary feature (IDs 17 and 49). BScan does not
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Figure 8.1: The relative frequency of detected features for each classification
label evaluated for every bubble-like structure detected in the
LMC.

detect a counterpart in other wavelengths for bubble-like structures
detected in the X-ray image most likely.

We find the reason for that in X-ray background sources detected
by BScan. Figure 8.3 shows the BScan detection results for the eROSITA

image (a) and a zoomed-in region at the edge of the image where
no bubble-like structures of the LMC is visible (b). There are many
more detections towards the upper left corner than in the center of
the image. Most X-ray emission from the LMC is coming from the
central region of the image. In addition, most of those detections
have the minimum size which is detectable. This leads to the con-
clusion that the structures detected by BScan are relatively small too.
Indeed, many structures detected at the edge of the image have a
point-like source in its center. A closer look to the zoomed-in region
in Figure 8.3 (b) shows that BScan detects a bright point-like source
(cyan), which can be identified as the active galactic nucleus (AGN)
MRC0611− 663. The detections marked as red and green circles are
listed as unlabeled X-ray sources in the 1RXS (First ROSAT X-ray Sur-
vey) and 2XMM (Second XMM-Newton Serendipitous Source Cata-
log). Such X-ray background sources lead to a background emission
which, in some cases, is recognized as a bubble-like structure. If an
X-ray background sources is too far away or simply is obscured by
dense clouds, there could be no optical or radio counterparts because
of absorption, for example.

Since there is only one feature vector representing a HII region in
Table 6.2.1 (ID 18), it is no surprise that all structures labeled as HII
are detected in the Hα and X-ray image (Figure 8.1, cyan).
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Figure 8.2: Total number of feature vectors responsible for the classification
of all detected and labeled bubble-like structures in the LMC.
The given ID is the feature vector ID as presented in the look-up
table 6.2 in section 6.2.1.

All structures labeled as other (Figure 8.1, brown) show no primary
feature and thus are only detected in optical wavelengths. Most of
them are detected in Hα.

To sum up the discussion above, the quality of the used images is
of importance. The more defined the structures in the images the bet-
ter the detection and classification results. Speaking about quality of
the images, one crucial criteria is a well subtracted background. That
would mean to remove point-like sources and reduce background
emission which does not come from the considered region as good as
possible. This is a task on its own for an astronomical image. Since the
current version of BScan is focused on detecting and classifying SNRs,
the detection of X-ray background emission or missing X-ray emis-
sion from SNRs lead to false positive detections and misclassifications.
As shown in Figure 8.3, in some cases there are real X-ray sources like
AGNs detected, but the information needed to classify these sources is
simply not available to BScan right now. Therefore, clean images are
of importance for BScan. This is true for the X-ray image especially.

8.3 a more complete characterization of snrs

Throughout this thesis the detected bubble-like structures are clas-
sified with focus on SNRs. This is achieved by detecting bubble-like
structures in the optical, radio and X-ray regime and matching the de-
tected structures according to their coordinates with each other (see
chapter 6). With this approach, it can be estimated if the detected
structure is a SNR or not. However, a detailed classification of SNRs is
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(a) LMC detection results (b) zoomed-in region

Figure 8.3: The BScan detection results for the LMC (a) and zoomed-in re-
gion (b). White circles show bubble-like structures as detected
by BScan. The blue box in (a) shows the location and size of the
zoomed-in region. The colored circles in (b) show some examples
of X-ray background sources: (cyan) An active galactic nucleus,
(red) unlabeled X-ray source of the 1RXS and (green) unlabeled
X-ray source of the 2XMM catalog.

far more complicated (see section 1.2.4) and, thus, more complicated
than BScan can handle right now. If a detected bubble-like structure
is classified as a SNR, the questions arise what are the characteristics
of the detected SNR and what does the remnant tell us about the ex-
ploded progenitor star, for example.

With new telescopes, which have better resolution and better sensi-
tivity, the resulting data improve as well. With these new data, new
SNRs become visible and get discovered. In Zangrandi et al. (2023, in
prep.), for example, 15 new SNRs and SNR candidates in the LMC were
detected with eROSITA data for the first time. In section 8.3.1 these
sources are discussed briefly in the context of the already presented
BScan results of the LMC (see section 7.3). Information used to classify
SNRs with BScan are just the tip of the iceberg. The following sections
8.3.2 and 8.3.3 will discuss additional astrophysical aspects of SNRs,
which were also partly used in Zangrandi et al. (2023, in prep.), and
therefore would improve the characterization of SNRs if implemented
into BScan.

8.3.1 The Newly Detected eROSITA Sources

Among the 15 newly detected sources there are twelve SNR candidates
and three confirmed SNRs, most of which are described as faint X-ray
sources. They were detected by eye using gaussian gradient magni-
tude (GGM) filters to highlight the shocked gas (Zangrandi et al. 2023,
in prep.). BScan detects just one of the confirmed SNRs which is rela-
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tively bright in X-ray, namely the remnant J0506− 7009 (Figure C.13).
It is labeled as unlikely. The only SNR candidate detected by BScan is
the source J0510− 6853. It is detected in the Hα image (Figure C.4)
only and is therefore labeled as other.

Because of the location of the SNR candidate J0614 − 7251, which
is outside the MCELS images, only the remaining eleven candidates
are presented in this thesis. All remaining 14 sources are shown in
Appendix C. A short description of each new eROSITA source and an
overview of the BScan results is also given in the Appendix C (see
Table C.1).

The low BScan detection performance is most likely because of
the faint nature of the new eROSITA sources, especially in the X-ray
image used in this work. In addition, the shapes of some SNRs or
SNR candidates are described as irregular or as a semi-shell in Zan-
grandi et al. (2023, in prep.). BScan, however, is only trained on shell-
like and diffuse-like structures which have closed and nearly spher-
ical shapes. According to Zangrandi et al. (2023, in prep.) some new
eROSITA sources are embedded in a complex environment or in big-
ger structures like HII regions (see table C.1, e. g. J0543− 6624, J0525−
6621 or J0549− 7001). It could be shown that BScan struggles to de-
tect and clearly separate bubble-like structures in such environments
(see section 7.2.4). Furthermore, the BScan results are achieved with
the default configuration and could be improved by finding the best
parameters.

8.3.2 Core Collapse and Thermonuclear Supernovae

As briefly discussed in section 1.2.4, the origin of SNRs is either a
core collapse (CC) or a thermonuclear, a Type Ia, supernova. Both are
naturally different and lead to different characteristics of the resulting
SNR.

One major difference is the stellar remnants left behind, or their
progenitor stars. While CC supernovae generally leave a neutron star
or a black hole within the remnant, Type Ia supernovae do not show
stellar remnants. Therefore, the detection of point-like sources within
the SNR can be used to hint the origin of the remnant. Black holes
are extremely hard to detect and will not be considered in this the-
sis. Neutron stars, however, emit a wide range of electromagnetic
radiation, usually from radio to X-rays or even γ-rays (Vink, 2020).
This emission can be detected by radio and X-ray telescopes and can
prove the existence of the neutron star. Consequently, if a neutron star
is detected in the center of a SNR, it is evident that the origin of the
remnant is indeed a CC supernova.

Since core collapse supernovae have the most massive progenitor
stars (Karttunen et al., 2003), the presence of massive stars nearby the
remnant suggests a CC event. As mentioned in section 1.1.1 and 1.2.1,
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OB-type stars create HII regions. The location of a SNR inside a HII
region can therefore be considered as an indicator for a CC origin.
However, the mere existence of massive stars in the vicinity of a SNR

does not prove a CC origin. The star formation history (SFH) need to
be considered as well. The time between the formation of a massive
star and its core collapse need to be long enough to evolve into the
end state. Since the lifetime of massive stars is a few million years and
depends on their mass, the time span should be greater than 106yr. If
the SFH does not support the evolution of a possible progenitor star, a
CC origin of the corresponding SNR cannot be concluded. Zangrandi
et al. (2023, in prep.) estimated the number of OB stars within a radius
of 100pc around each SNR and used the SFH to conclude a possible CC

origin.
An example of a newly detected SNR with a possible CC origin is

the remnant J0543− 6624 (Figure C.14). It has an irregular rectangular
shape and is embedded inside a HII region with a peak in the SFH at
107yr ago (Zangrandi et al. 2023, in prep.).

In addition to the stellar remnants and progenitor stars as indica-
tors of a CC origin, the two explosion mechanisms differ also in the
expected emission coming from the SNR. As mentioned in section
1.2.5, Type Ia supernovae are associated with the observation of iron
lines around 1keV, while CC supernovae are associated with oxygen-
rich remnants. Oxygen can be observed in the optical, in [OIII], and
in X-ray around 0.6keV. A SNR which shows bright emission from
oxygen suggests therefore a prior CC supernova.

The reason of the different emission lies in the nature of the explod-
ing progenitor star. The most massive stars are responsible for CC su-
pernovae and produce heavy elements up to iron in their cores. This
is possible because of their high temperatures. The iron core is sur-
rounded by layers of heavy elements, for example oxygen (see section
1.2.4). While the star collapses, the iron core is contracting into a neu-
tron star. The outer layers, however, will be driven into the ISM and
form the SNR (Karttunen et al., 2003). Since the iron core is consumed
in the neutron star, most emission of the remnant comes from the ele-
ments which surrounded the iron core, e. g. , oxygen. Thermonuclear
supernovae on the other hand, have their origin most likely in a ther-
monuclear explosion of a white dwarf (see section 1.2.4). The nuclear
reactions taking place during the explosion form also heavy elements
like iron. Indeed, it is evident that the amount of produced iron-group
elements, e. g. iron (Fe), is about a factor of ten times larger in Type
Ia than in core collapse SNe. If iron is in a proper ionization state,
the remnant usually show bright iron lines around 1keV. In some
cases the iron inside the remnant may not be in a high enough ion-
ization state and is therefore not showing emission coming from iron.
A reason for that could be that the iron is not completely shocked
by the reverse shock (Vink, 2012). Although not every SNR with Type
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Ia origin show bright iron lines, it is a common measurement to dis-
criminate between a CC and a thermonuclear explosion scenario as
done in Zangrandi et al. (2023, in prep.) for the newly confirmed SNR

J056− 7009 (Figure C.13).
According to Zangrandi et al. (2023, in prep.) the remnant show X-

ray emission between 0.7keV and 1.1keV, which indicates a Type Ia
origin. A faint optical shell and a semi-shell structure in the non-
thermal radio image is also visible according to Zangrandi et al. (2023,
in prep.). J056 − 7009 is detected by BScan as a diffuse bubble-like
structure in the eROSITA image, but the faint shell (or semi-shell) struc-
tures in the optical (or non-thermal radio) images is not detected.

Implementing the described physics into BScan would upgrade
the classification of SNRs. For example, provide a set of X-ray im-
ages to BScan which represent a soft and a medium X-ray band (see
e. g. Zangrandi et al. 2023, in prep.) to discriminate between oxygen-
rich and iron-rich remnants and, thus, between a possible core col-
lapse and thermonuclear explosion scenario. This may not be straight
forward for the current BScan version but with a multichannel net-
work, as sketched in section 8.1.2, it could be possible in the future.
In principle, such a network should also be able to detect a radio
and/or an X-ray point source and narrow down the possible scenario
of the SN explosion mechanism.

8.3.3 Morphologies

The history of SNRs, e. g. , their origin or age, together with the over-
all structure of the ISM, the density distribution or the presence of
molecular clouds, lead to a variety of morphologies. Each of these
morphologies provide different information about the remnant. That
is why the various morphologies of SNRs is a classification scheme of
its own. In general, SNRs can be divided into four classes of morpholo-
gies:

The shell-type morphology is one of the most common morpholo-
gies for isolated SNRs expanding into a relatively homogeneous ISM.
Shell-type SNRs are not necessarily closed shells with a circular shape
but also show more irregular shapes with partly interrupted shell-like
structure. The shape of a shell depends heavily on the surrounded
ISM. It should be noted that SNRs of Type Ia origin tend to be more
spherical than SNRs from core collapse events (Lopez et al., 2009;
Lopez et al., 2011). Figure 8.4 (a) shows a shell-type SNR of a Type
Ia supernova in our Milky Way.

A more complex structure of a remnant is the mixed-morphology
SNR. This type is characterized by bright central X-ray emission with
shell-type radio morphology. The X-ray emission coming from the
central region is of thermal nature. It is believed that this kind of
morphology is created by the presence of molecular clouds inside
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the remnant and/or an inhomogeneous ISM where the SNR expands
into (see section 1.2.4). SNRs with a mixed-morphology are usually
remnants older than 10000yr evolving in denser regions of the ISM

(Vink, 2020). The connection to older remnants suggests that they al-
ready merge into their surroundings. Figure 8.4 (b) shows the known
mixed-morphology SNR W44 which is interacting with a dense ISM

(Shelton et al., 2004).
In some cases of a CC supernova, a pulsar wind nebula (PWN) can

be formed inside a SNR as described in section 1.2.4. This constel-
lation is called a composite SNR (Vink, 2020). In contrast to mixed-
morphology remnants, the PWN is emitting non-thermal X-rays and
is strictly speaking not part of the SNR itself. It is fueled by the pulsar.
In Figure 8.4 (c) the composite SNR G11.2− 0.3 (Roberts et al., 2002) is
shown with a clearly visible shell-type SNR.

If there is no remnant observed around the PWN it is rather re-
ferred to as a plerion. The Crab Nebula (Figure 8.4, d), possibly the
best known PWN, does not have a distinct SNR but show optical line
emission around its PWN which can be related to the ejecta of the SN

explosion (Vink, 2012). It can therefore be considered as a SNR and a
PWN (plerion) alike.

At the moment of writing, BScan does not have any information of
SNR morphologies. In fact, for the current version it is hardly possi-
ble to implement the described morphologies into the classification
process, but it would be once more a step towards a more detailed
characterization of SNRs. If implemented, the output of BScan could
give rise to the age (e. g. mixed-morphology SNRs) or the origin (spher-
ical shape, iron-rich remnant - possibly a Type Ia SN - or detecting a
radio and/or an X-ray point-source within an oxygen-rich remnant -
possible CC origin) of the SNR. Again a multichannel network could
recognize the different morphologies or may find even more details,
hidden from the human eye. This could lead to an even better char-
acterization of SNRs. Assuming a proper data set of SNRs showing
different morphologies, a multichannel network could be a way to
provide BScan with more astrophysical information about SNRs and
improve the performance further.

8.4 beyond the current bscan version

As introduced in section 1.2 there are more bubble-like structures
than just SNRs and HII regions in the ISM. In the future, BScan should
be upgraded to be able to not only detect bubble-like structures, but
also classify all of them accordingly. This is important, because each
structure has its own astrophysical processes which characterize it. A
deeper understanding of such astrophysical processes and the inter-
play of the bubble-like structures within the ISM requires the detection
and characterization of many sources. The interaction of bubble-like
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(a) shell-type (b) mixed-morphology

(c) composite (d) pulsar wind nebula

Figure 8.4: Different morphology types of SNRs: (a) A shell-type SNR
(G299.2-2.9) as seen in X-ray (orange) and infrared (red, green,
blue). Credit: NASA, CXC, U. Texas at Arlington, S.Park et al,
ROSAT; 2MASS, UMass, IPAC-Caltech, NASA, NSF. (b) The well
known mixed-morphology SNR W44 observed in X-ray (cyan)
and infrared (red, green, blue). Credit: NASA, CXC, University
of Georgia, R.Shelton and NASA, CXC, GSFC, R. Petre; NASA,
JPL-Caltech. (c) A composite SNR (G11.2 − 0.3) in the X-ray
regime with its central PWN (blue, 2.5− 8keV) and the SNR (red
0.5− 1.5keV, green 1.5− 2.5keV). Credit: NASA, CXC, Eureka Sci-
entific, M.Roberts et al. (d) The well known Crab Nebula, a pulsar
wind nebula as seen in the X-ray (blue), optical (red, yellow) and
infrared (purple). Credit: NASA, CXC, SAO, F.Seward; NASA,
ESA, ASU, J.Hester and A.Loll; NASA, JPL-Caltech, Univ. Minn.,
R.Gehrz.
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Figure 8.5: This images shows superbubbles inside the nebula N44. (blue)
Chandra X-ray data showing hot gas heated by winds and shocks
driven by stars and supernovae. (red) Infrared data from the
Spitzer Space Telescope which highlight dust and cooler gas.
(yellow) Optical data from the 2.2m Max-Planck-ESO telescope
showing hot, young stars which are responsible for the nebula to
glow due to ultraviolet radiation. Credit: NASA, CXC, U.Mich.,
S.Oey; NASA, JPL; ESO, WFI

structures can trigger star formation, if two shock fronts collide form-
ing denser regions, or creating so-called superbubbles, if strong stellar
winds of stellar clusters and supernovae inside the clusters creating
huge cavities.

Figure 8.5 shows the nebula N44 in the LMC with the star cluster
NGC1929 in its core. The stellar winds and SNe create superbubbles
filled with shocked hot gas (shown in blue) surrounded by dust and
cooler gas (shown in red). Superbubbles can extend up to a few hun-
dred parsecs (Kavanagh, 2020) and emit a wide range of emission due
to the involved events leading to their formation. Furthermore, Chan-
dra observations have revealed more X-ray emission than expected
from pressure-driven superbubbles (Kavanagh, 2020). That is why
superbubbles are heavily studied to complete the pressure-driven
model (e. g. Weaver et al. (1977)) of a superbubble formation. Indeed,
new instruments will provide new data to study those huge bubble-
like structures of the ISM. With the first X-ray all sky survey provided
by eROSITA, superbubble population studies should be possible in the
LMC (Kavanagh, 2020). An addition future X-ray telescope, probably
launching in 2031, is the Athena X-ray observatory. It should be able
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to reveal faint X-ray emission coming from superbubbles. Since su-
perbubbles are created by single bubble-like structures, being able to
detect all those structures forming the superbubble would result in a
better understanding of the formation process and, thus, of the ISM.

New observatories in different wavelength regimes will have bet-
ter resolution and a higher sensitivity to reveal probably even fainter
emission coming from fundamental structures of the ISM. In case of
the SNRs, this would mean they detect rather old and faint or young
and too small remnants (Filipovic, 2021) in greater detail than in cur-
rent data. With new high quality data new bubble-like structures will
be detected. Being able to detect every single bubble-like structure
would be a powerful tool for astronomy.

8.5 bscan as an astronomical tool

There are other approaches using different techniques to detect fun-
damental bubble-like structures in the ISM. One of these techniques is
the Minkowski tensor analysis used by Collischon et al. (2021), for ex-
ample. They are focusing on detecting and localizing these structures
in astronomical images. However, the idea of BScan is to combine the
detection and classification of those fundamental structures in one
tool. BScan should be able to detect all bubble-like structures present
in the ISM, including faint structures like old SNRs, for example. This
is a huge challenge, especially for a machine learning approach pre-
sented in this work considering the limited training samples available
right now. Therefore, we do not consider BScan as a reliable tool to
fulfill the need of a standard tool in astronomy but with further de-
velopments, like the technical and astrophysical aspects discussed in
section 8.1 and 8.3, respectively, the idea of BScan will become reality
in the future.
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Here every detected bubble-like structure which has a match in the
used SNR catalog is plotted in a multi wavelength plot showing the
corresponding region in Hα, [SII], [OIII], radio and X-ray. The struc-
tures are classified into six different Classes: SNRc (green), likely (yel-
low), candidate (orange), unlikely (red), HII (cyan) and other (brown).
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Figure A.1: This figure shows the multi wavelength plot of ID0 at RA =

81.98◦, Dec = −65.84◦ and R = 0.104◦. The detected structure is
classified as SNRc (green) and is detected in all bands except of
X-ray (black). The matched SNR J0527− 6550 is shown in blue.
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Figure A.2: This figure shows the multi wavelength plot of ID1 at RA =

73.93◦, Dec = −68.66◦ and R = 0.077◦. The detected structure is
classified as SNRc (green) and is detected in all bands except of
[OIII] (black). The matched SNR J0455− 6839 is shown in blue.
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Figure A.3: This figure shows the multi wavelength plot of ID2 at RA =

72.11◦, Dec = −67.01◦ and R = 0.074◦. The detected structure is
classified as SNRc (green) and is detected in all bands except of
X-ray (black). The matched SNR J0448− 6700 is shown in blue.
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Figure A.4: This figure shows the multi wavelength plot of ID3 at RA =

83.02◦, Dec = −71.01◦ and R = 0.056◦. The detected structure is
classified as SNRc (green) and is detected in all bands except of
Hα (black). The matched SNR J0531− 7100 is shown in blue.

84.6° 84.4° 84.2°

-66.35°

-66.40°

-66.45°

-66.50°

-66.55°

RA (J2000)

De
c 

(J2
00

0)

H

84.6° 84.4° 84.2°
RA (J2000)

[SII]

84.6° 84.4° 84.2°
RA (J2000)

[OIII]

84.6° 84.4° 84.2°
RA (J2000)

Radio

84.6° 84.4° 84.2°
RA (J2000)

X-ray

Figure A.5: This figure shows the multi wavelength plot of ID4 at RA =

84.39◦, Dec = −66.46◦ and R = 0.066◦. The detected structure is
classified as SNRc (green) and is detected in all bands except of
Hα and [OIII] (black). The matched SNR J0537− 6628 is shown
in blue.
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Figure A.6: This figure shows the multi wavelength plot of ID5 at RA =

81.50◦, Dec = −66.08◦ and R = 0.026◦. The detected structure is
classified as SNRc (green) and is detected in all bands except of
Hα and [OIII] (black). The matched SNR J0526− 6605 is shown
in blue.
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Figure A.7: This figure shows the multi wavelength plot of ID6 at RA =

86.80◦, Dec = −69.69◦ and R = 0.054◦. The detected structure
is classified as SNRc (green) and is detected in Radio and X-ray
only (black). The matched SNR J0547− 6941 is shown in blue.
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Figure A.8: This figure shows the multi wavelength plot of ID7 at RA =

81.36◦, Dec = −65.99◦ and R = 0.084◦. The detected structure
is classified as SNRc (green) and is detected in Radio and X-ray
only (black). The matched SNR J0525− 6559 is shown in blue.
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Figure A.9: This figure shows the multi wavelength plot of ID8 at RA =

79.94◦, Dec = −69.44◦ and R = 0.059◦. The detected structure
is classified as SNRc (green) and is detected in Radio and X-ray
only (black). The matched SNR J0519− 6926 is shown in blue.
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Figure A.10: This figure shows the multi wavelength plot of ID9 at RA =

83.50◦, Dec = −69.91◦ and R = 0.069◦. The detected structure
is classified as SNRc (green) and is detected in Radio and X-ray
only (black). The matched SNR J0534− 6955 is shown in blue.
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Figure A.11: This figure shows the multi wavelength plot of ID10 at RA =

81.25◦, Dec = −69.64◦ and R = 0.058◦. The detected structure
is classified as SNRc (green) and is detected in Radio and X-ray
only (black). The matched SNR J0525− 6938 is shown in blue.
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Figure A.12: This figure shows the multi wavelength plot of ID11 at RA =

85.05◦, Dec = −69.34◦ and R = 0.039◦. The detected structure
is classified as SNRc (green) and is detected in Radio and X-ray
only (black). The matched SNR J0540− 6920 is shown in blue.
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Figure A.13: This figure shows the multi wavelength plot of ID12 at RA =

84.56◦, Dec = −69.36◦ and R = 0.039◦. The detected structure
is classified as SNRc (green) and is detected in Radio and X-ray
only (black). Although, the X-ray emission is off. The matched
SNR J0538− 6921 is shown in blue.
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Figure A.14: This figure shows the multi wavelength plot of ID13 at RA =

84.02◦, Dec = −70.63◦ and R = 0.039◦. The detected structure
is classified as SNRc (green) and is detected in Radio and X-ray
only (black). The matched SNR J0536− 7039 is shown in blue.
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Figure A.15: This figure shows the multi wavelength plot of ID14 at RA =

83.51◦, Dec = −70.57◦ and R = 0.039◦. The detected structure
is classified as SNRc (green) and is detected in Hα, [SII] and
X-ray (black). The matched SNR J0534− 7033 is shown in blue.
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Figure A.16: This figure shows the multi wavelength plot of ID15 at RA =

82.65◦, Dec = −70.11◦ and R = 0.074◦. The detected structure
is classified as likely (yellow) and is detected in Hα and Radio
(black). The matched SNR J0530− 7008 is shown in blue.
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Figure A.17: This figure shows the multi wavelength plot of ID16 at RA =

78.32◦, Dec = −69.20◦ and R = 0.098◦. The detected structure
is classified as likely (yellow) and is detected in [SII] and Radio
(black). The matched SNR J0513− 6912 is shown in blue.

87.1° 87.0° 86.9° 86.8°

-70.35°

-70.40°

-70.45°

RA (J2000)

De
c 

(J2
00

0)

H

87.1° 87.0° 86.9° 86.8°
RA (J2000)

[SII]

87.1° 87.0° 86.9° 86.8°
RA (J2000)

[OIII]

87.1° 87.0° 86.9° 86.8°
RA (J2000)

Radio

87.1° 87.0° 86.9° 86.8°
RA (J2000)

X-ray

Figure A.18: This figure shows the multi wavelength plot of ID17 at RA =

86.97◦, Dec = −70.41◦ and R = 0.039◦. The detected structure
is classified as likely (yellow) and is detected in Hα and X-ray
(black). The matched SNR J0547− 7025 is shown in blue.
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Figure A.19: This figure shows the multi wavelength plot of ID18 at RA =

74.97◦, Dec = −70.19◦ and R = 0.115◦. The detected structure
is classified as likely (yellow) and is detected in Hα and Radio
(black). The matched SNR J0459− 7008 is shown in blue.
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Figure A.20: This figure shows the multi wavelength plot of ID19 at RA =

72.67◦, Dec = −70.83◦ and R = 0.103◦. The detected structure
is classified as candidate (orange) and is detected in [OIII] and
Radio (black). The matched SNR J0450− 7050 is shown in blue.
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Figure A.21: This figure shows the multi wavelength plot of ID20 at RA =

72.34◦, Dec = −69.34◦ and R = 0.049◦. The detected structure
is classified as candidate (orange) and is detected in Hα, [OIII]
and Radio (black). The matched SNR J0449− 6920 is shown in
blue.
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Figure A.22: This figure shows the multi wavelength plot of ID21 at RA =

83.62◦, Dec = −70.55◦ and R = 0.059◦. The detected structure
is classified as unlikely (red) and is detected in Hα and [SII]
(black). The matched SNR J0534− 7033 is shown in blue.
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Figure A.23: This figure shows the multi wavelength plot of ID22 at RA =

76.69◦, Dec = −70.44◦ and R = 0.039◦. The detected structure is
classified as unlikely (red) and is detected in X-ray only (black).
The matched SNR J0506− 7026 is shown in blue.
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Figure A.24: This figure shows the multi wavelength plot of ID23 at RA =

77.15◦, Dec = −69.47◦ and R = 0.059◦. The detected structure
is classified as unlikely (red) and is detected in Hα and [SII]
(black). The matched SNR J0508− 6928 is shown in blue.
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Figure A.25: This figure shows the multi wavelength plot of ID24 at RA =

79.69◦, Dec = −69.65◦ and R = 0.020◦. The detected structure is
classified as unlikely (red) and is detected in Radio only (black).
The matched SNR J0518− 6939 is shown in blue.
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Figure A.26: This figure shows the multi wavelength plot of ID25 at RA =

84.45◦, Dec = −69.17◦ and R = 0.020◦. The detected structure is
classified as unlikely (red) and is detected in Radio only (black).
The matched SNR J0537− 6910 is shown in blue.
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Figure A.27: This figure shows the multi wavelength plot of ID26 at RA =

75.51◦, Dec = −67.66◦ and R = 0.049◦. The detected structure
is classified as unlikely (red) and is detected in Hα and [SII]
(black). The matched SNR J0502− 6739 is shown in blue.
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Figure A.28: This figure shows the multi wavelength plot of ID27 at RA =

78.10◦, Dec = −67.12◦ and R = 0.026◦. The detected structure is
classified as unlikely (red) and is detected in Radio only (black).
The matched SNR J0512− 6707 is shown in blue.
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Figure A.29: This figure shows the multi wavelength plot of ID28 at RA =

82.46◦, Dec = −66.91◦ and R = 0.079◦. The detected structure is
classified as unlikely (red) and is detected in X-ray only (black).
The matched SNR J0529− 6653 is shown in blue.
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Figure A.30: This figure shows the multi wavelength plot of ID29 at RA =

81.12◦, Dec = −66.39◦ and R = 0.079◦. The detected structure is
classified as unlikely (red) and is detected in Radio only (black).
The matched SNR J0524− 6624 is shown in blue.
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Figure A.31: This figure shows the multi wavelength plot of ID30 at RA =

73.69◦, Dec = −66.43◦ and R = 0.030◦. The detected structure is
classified as unlikely (red) and is detected in Radio only (black).
The matched SNR J0454− 6626 is shown in blue.



matched bubble-like structures 163

76.80° 76.60° 76.40° 76.20°

-65.60°

-65.70°

-65.80°

RA (J2000)

De
c 

(J2
00

0)

H

76.80° 76.60° 76.40° 76.20°
RA (J2000)

[SII]

76.80° 76.60° 76.40° 76.20°
RA (J2000)

[OIII]

76.80° 76.60° 76.40° 76.20°
RA (J2000)

Radio

76.80° 76.60° 76.40° 76.20°
RA (J2000)

X-ray

Figure A.32: This figure shows the multi wavelength plot of ID31 at RA =

76.54◦, Dec = −65.70◦ and R = 0.098◦. The detected structure is
classified as unlikely (red) and is detected in Radio only (black).
The matched SNR J0506− 6541 is shown in blue.
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Figure A.33: This figure shows the multi wavelength plot of ID32 at RA =

76.53◦, Dec = −68.26◦ and R = 0.126◦. The detected structure is
classified as unlikely (red) and is detected in Radio only (black).
The matched SNR J0506− 6815 is shown in blue.
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Figure A.34: This figure shows the multi wavelength plot of ID33 at RA =

83.40◦, Dec = −72.05◦ and R = 0.020◦. The detected structure is
classified as unlikely (red) and is detected in Radio only (black).
The matched SNR J0533− 7202 is shown in blue.
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Figure A.35: This figure shows the multi wavelength plot of ID34 at RA =

85.79◦, Dec = −71.07◦ and R = 0.020◦. The detected struc-
ture is classified as unlikely (red) and is detected in Radio only
(black). The matched SNR J0542− 7104 is shown in blue. How-
ever, the detected radio emission is at the edge of J0542− 7104

and comes most likely from another source.
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Figure A.36: This figure shows the multi wavelength plot of ID35 at RA =

87.69◦, Dec = −68.39◦ and R = 0.059◦. The detected structure is
classified as unlikely (red) and is detected in Radio only (black).
The matched SNR J0550− 6823 is shown in blue.
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Figure A.37: This figure shows the multi wavelength plot of ID36 at RA =

85.44◦, Dec = −66.99◦ and R = 0.079◦. The detected structure is
classified as unlikely (red) and is detected in X-ray only (black).
The matched SNR J0541− 6659 is shown in blue.
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Figure A.38: This figure shows the multi wavelength plot of ID37 at RA =

75.225◦, Dec = −65.20◦ and R = 0.079◦. The detected structure
is classified as other (brown) and is detected in Hα only (black).
The matched SNR J0500− 6512 is shown in blue.
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Figure A.39: This figure shows the multi wavelength plot of ID38 at RA =

74.41◦, Dec = −67.653◦ and R = 0.039◦. The detected structure
is classified as other (brown) and is detected in Hα and [SII]
(black). The matched SNR J0457− 6739 is shown in blue.



matched bubble-like structures 165

84.2° 84.1° 84.0° 83.9°

-67.50°

-67.55°

-67.60°

RA (J2000)

De
c 

(J2
00

0)

H

84.2° 84.1° 84.0° 83.9°
RA (J2000)

[SII]

84.2° 84.1° 84.0° 83.9°
RA (J2000)

[OIII]

84.2° 84.1° 84.0° 83.9°
RA (J2000)

Radio

84.2° 84.1° 84.0° 83.9°
RA (J2000)

X-ray

Figure A.40: This figure shows the multi wavelength plot of ID39 at RA =

84.04◦, Dec = −67.56◦ and R = 0.039◦. The detected structure
is classified as other (brown) and is detected in [OIII] (black).
The matched SNR J0536− 6735 is shown in blue.
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Figure A.41: This figure shows the multi wavelength plot of ID40 at RA =

82.06◦, Dec = −67.44◦ and R = 0.059◦. The detected structure
is classified as other (brown) and is detected in [SII] (black).
The matched SNR J0528− 6727 is shown in blue.
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Figure A.42: This figure shows the multi wavelength plot of ID41 at RA =

80.78◦, Dec = −67.88◦ and R = 0.039◦. The detected structure
is classified as other (brown) and is detected in [SII] (black).
The matched SNR J0523− 6753 is shown in blue.
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Figure A.43: This figure shows the multi wavelength plot of ID42 at RA =

76.72◦, Dec = −65.16◦ and R = 0.108◦. The detected structure
is classified as other (brown) and is detected in [SII] (black).
The matched SNR J0506− 6509 is shown in blue.
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Figure A.44: This figure shows the multi wavelength plot of ID43 at RA =

80.40◦, Dec = −65.70◦ and R = 0.039◦. The detected structure
is classified as other (brown) and is detected in [SII] (black).
The matched SNR J0521− 6543 is shown in blue.
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Figure A.45: This figure shows the multi wavelength plot of ID44 at RA =

83.89◦, Dec = −66.04◦ and R = 0.118◦. The detected structure is
classified as HII (cyan) and is detected in Hα and X-ray (black).
The matched SNR J0535− 6602 is shown in blue.
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candidate

In this section all unmatched bubble-like structures classified as can-
didate (Figures B.1 to B.3) are shown in multi wavelength plots. Within
a search radius of 0.01◦ there are some detectable structures like HII
regions, YSOs or infrared sources.
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Figure B.1: This figure shows the detected bubble-like structure classified as
candidate (orange) at RA = 85.00± 0.01◦, Dec = −69.79± 0.01◦

and radius of R = 0.020◦. It is detected in Hα, [OIII] and radio
(black). There is a YSO within a radius of 0.01◦.
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Figure B.2: This figure shows the detected bubble-like structure classified as
candidate (orange) at RA = 84.18± 0.01◦, Dec = −66.41± 0.01◦

and radius of R = 0.020◦. It is detected in [OIII] and radio (black).
Although, the detection in radio is at a different position and
much larger compared to the one in [OIII]. It is likely that in
radio another emission is detected. Within a radius of 0.01◦ there
are some infrared sources.

unlikely and other

In this section unmatched bubble-like structures classified as unlikely
and other are shown in a multi wavelength plot. Because of the large
number of detected and classified structures into these classes, only
two of each class are shown. Figures B.4 and B.5 show examples of
class unlikely, while Figures B.6 and B.7 show examples of class other.
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Figure B.3: This figure shows the detected bubble-like structure classified as
candidate (orange) at RA = 81.59± 0.01◦, Dec = −66.25± 0.01◦

and radius of R = 0.043◦. It is detected in [OIII] and radio (black).
In radio, however, the larger structure is detected. There is an HII
region within in the reach of 0.01◦ named L−253.
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Figure B.4: This figure shows the detected bubble-like structure classified as
unlikely (red) at RA = 72.91± 0.01◦, Dec = −67.10± 0.01◦ and
radius of R = 0.115◦. It is detected in Hα and [SII] (black).
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Figure B.5: This figure shows the detected bubble-like structure classified as
unlikely (red) at RA = 72.82± 0.01◦, Dec = −67.45± 0.01◦ and
radius of R = 0.075◦. It is detected in Hα and [SII] (black).
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Figure B.6: This figure shows the detected bubble-like structure classified as
other (brown) at RA = 74.94± 0.01◦, Dec = −67.92± 0.01◦ and
radius of R = 0.177◦. It is detected in [OIII] only (black).
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Figure B.7: This figure shows the detected bubble-like structure classified as
other (brown) at RA = 73.88± 0.01◦, Dec = −67.14± 0.01◦ and
radius of R = 0.186◦. It is detected in Hα only (black).
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N E W E R O S I TA S N R S A N D S N R C A N D I D AT E S

This section show new confirmed SNRs and SNR candidates in the LMC

detected with eROSITA data for the first time (Zangrandi et al. 2023, in
prep.). All descriptions of the remnants from Figure C.1 to C.14 are
based on Zangrandi et al. (2023, in prep.).
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Figure C.1: J0451− 6717: This new eROSITA SNR candidate (blue) is located
next to structures visible in the optical images. Indeed, BScan
detects the bubble-like structure closest to the SNR candidate
in Hα and [OIII]. However, no clear bubble-like structure can
be seen at the location of the candidate. In X-ray there is some
emission coming from the considered region, but is not detected
by BScan, unfortunately.
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Figure C.2: J0456 − 6830: For this SNR candidate (blue) there is no clear
bubble-like structure visible in any image used for this work.
Therefore, BScan does not detect this newly detected candidate.
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Figure C.3: J0507− 7143: There is no emission visible in the optical images
for this SNR candidate (blue). The point source seen in the non-
thermal radio and X-ray image is an active galactic nucleus (Zan-
grandi et al. 2023, in prep.). In the X-ray image there may be
some emission coming from the SNR candidate, but it is too
faint to be detected by BScan.
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Figure C.4: J0510 − 6853: In this region of the new SNR candidate (blue)
a shell-like structure is visible in the optical images (except of
[OIII]). This structure is partly detected in the Hα image (black).
In radio and X-ray there is also some faint emission but is not
detected by BScan.
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Figure C.5: J0521− 6853: This eROSITA candidate (blue) is located within a
bigger complex optical structure where some subregions show
an enhanced [SII]/Hα ratio. There may be some enhanced X-ray
emission too, but such faint emission is hardly possible to detect
by BScan.
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Figure C.6: J0521− 6936: For this SNR candidate no clear structure can be
seen in all five images used. However, there could be faint emis-
sion within the candidate (blue) in the X-ray image. This emis-
sion is not detected by BScan.
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Figure C.7: J0523− 6804: This candidate (blue) is extremely faint in images
used in this work. Consequently, BScan is not able to detect
J0523− 6804 detected by Zangrandi et al. (2023, in prep.)
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Figure C.8: J0525− 6621: This eROSITA SNR candidate (blue) is located in
between some bubble-like structure in the optical and radio
band. In the non-thermal radio image BScan detects one of those
structures in the south. In the X-ray image a faint diffuse emis-
sion within the candidate’s region is visible indeed, but not de-
tected by BScan.
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Figure C.9: J0528 − 6719: For this SNR candidate (blue) a faint but visible
shell-like emission can be spotted in the X-ray image. Unfortu-
nately, it is not detected by BScan. In the the optical and radio
band no bubble-like structures are visible.
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Figure C.10: J0532− 6554: For this SNR candidate no optical and radio emis-
sion is visible. In X-ray a very faint diffuse emission ca be seen
within the blue circle. BScan does not detect this candidate.

87.7° 87.6° 87.5° 87.4° 87.3°

-69.95°

-70.00°

-70.05°

-70.10°

RA (J2000)

De
c 

(J2
00

0)

H

87.7° 87.6° 87.5° 87.4° 87.3°
RA (J2000)

[SII]

87.7° 87.6° 87.5° 87.4° 87.3°
RA (J2000)

[OIII]

87.7° 87.6° 87.5° 87.4° 87.3°
RA (J2000)

Radio

87.7° 87.6° 87.5° 87.4° 87.3°
RA (J2000)

X-ray

Figure C.11: J0549− 7001: This SNR candidate is not detected by BScan. It
is located next to a bright and complex region in the optical
band. No non-thermal radio emission which is correlated with
the SNR candidate can be spotted. In X-ray a faint diffuse and
irregular shape is visible in the region of the remnant (blue).
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Figure C.12: J0456− 6533: For this SNR no structure is visible in the optical
and radio band. In X-ray, however, a faint diffuse emission can
be spotted within the blue circle. This source is not detected by
BScan.
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Figure C.13: J0506−7009: This confirmed SNR (blue) is detected in the X-ray
regime (black). According to Zangrandi et al. (2023, in prep.)
the SNR is brightest in the mid X-ray range, which supports
a thermonuclear supernova scenario, and faint shell is visible
in [SII]. Zangrandi et al. (2023, in prep.) also spotted a non-
thermal radio semi-shell. However, BScan does not detect any
structure in optical or radio.
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Figure C.14: J0543− 6624: An eROSITA SNR (blue) with an irregular shape
brightest in soft X-rays (Zangrandi et al. 2023, in prep.). A shell-
like structure is visible in [SII] but not detected by BScan.
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Table C.1: This table shows the new eROSITA SNRs and SNR candidates detected by Zangrandi et al. (2023, in prep.). The coordi-
nates (J2000), the current status and a short description of each source is given. If the corresponding source is detected
by BScan the emission and the label is added for each source as well. * as described in Zangrandi et al. (2023, in prep.)

J0451− 6717 72.9405 −67.2900 0.0812 candidate diffuse X-ray
elongated shell in Hα

/ /

J0456− 6830 74.1063 −68.5145 0.0222 candidate faint diffuse X-ray
possible Type Ia SN

/ /

J0507− 7143 76.9615 −71.7115 0.0406 candidate faint diffuse X-ray
possible Type Ia SN

/ /

J0510− 6853 77.6180 −68.8915 0.0312 candidate faint X-ray
optical shell

partly shell-like non-thermal radio
possible CC origin

Hα other

J0521− 6853 80.3604 −68.8793 0.0432 candidate bright X-ray env.
elongated non-thermal radio

diffuse optical

/ /

J0521− 6936 80.4531 −69.6136 0.0436 candidate bright X-ray env.
shell-like optical

/ /

Source RA [deg] DEC [deg] R [deg] status* description* detected by BScan label

Continued on next page
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Table C.1: This table shows the new eROSITA SNRs and SNR candidates detected by Zangrandi et al. (2023, in prep.). The coordi-
nates (J2000), the current status and a short description of each source is given. If the corresponding source is detected
by BScan the emission and the label is added for each source as well. * as described in Zangrandi et al. (2023, in prep.)
(Continued)

J0523− 6804 80.8781 −68.0668 0.0323 candidate circular X-ray
non-thermal radio

possible Type Ia SN

/ /

J0525− 6621 81.2614 −66.3569 0.0428 candidate irregular X-ray
complex non-thermal radio env.

possible Type Ia SN

/ /

J0528− 6719 82.2073 −67.3204 0.0318 candidate half-shell X-ray
possible CC origin

/ /

J0532− 6554 83.1020 −65.9032 0.0231 candidate diffuse X-ray / /

J0549− 7001 87.4572 −70.0291 0.0440 candidate elongated X-ray
filamentous optical
possible Type Ia SN

/ /

Source RA [deg] DEC [deg] R [deg] status* description* detected by BScan label

Continued on next page
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Table C.1: This table shows the new eROSITA SNRs and SNR candidates detected by Zangrandi et al. (2023, in prep.). The coordi-
nates (J2000), the current status and a short description of each source is given. If the corresponding source is detected
by BScan the emission and the label is added for each source as well. * as described in Zangrandi et al. (2023, in prep.)
(Continued)

J0456− 6533 74.2153 −65.5472 0.0473 confirmed circular X-ray
optical shell

faint radio shell
possible Type Ia SN

/ /

J0506− 7009 76.5661 −70.1555 0.0272 confirmed diffuse X-ray
faint optical shell

non-thermal radio semi-shell
possible Type Ia SN

X-ray unlikely

J0543− 6624 85.9524 −66.3974 0.0464 confirmed irregular X-ray
similar optical shape

embedded in HII region
possible CC origin

/ /

Source RA [deg] DEC [deg] R [deg] status* description* detected by BScan label
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